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ABSTRACT

In dynamic real-world settings, models must adapt to changing data distributions,
a challenge known as Test Time Adaptation (TTA). This becomes even more chal-
lenging in scenarios where test samples arrive sequentially, and the model must
handle open-set conditions by distinguishing between known and unknown classes.
Towards this goal, we propose ROSITA, a novel framework for Open set Single Im-
age Test Time Adaptation using Vision-Language Models (VLMs). To enable the
separation of known and unknown classes, ROSITA employs a specific contrastive
loss, termed ReDUCe loss, which leverages feature banks storing reliable test sam-
ples. This approach facilitates efficient adaptation of known class samples to do-
main shifts while equipping the model to accurately reject unfamiliar samples.Our
method sets a new benchmark for this problem, validated through extensive ex-
periments across diverse real-world test environments.. Our code is anonymously
released at https://github.com/anon-tta/ROSITA.git

1 INTRODUCTION

Over the past decade, substantial advancements have been achieved in various computer vision
tasks Deng et al. (2009); Ren et al. (2015); He et al. (2017); Everingham et al. (2010). However,
these achievements are predominantly realized under the assumption that both training and test
data originate from the same distribution. In contrast, the real world is dynamic and ever-changing,
making such assumptions often untenable. Distribution gaps between training and test data manifest
in diverse forms Hendrycks & Dietterich (2019); Peng et al. (2019b), including domain shifts and
semantic shifts. Domain shifts emerge from variations in lighting, weather, camera specifications,
or geographical locations between the train and test datasets. Semantic shifts occur when a model,
initially trained on a specific set of classes, encounters previously unseen classes during testing.
Hence, navigating deep learning models through these dynamic test environments is imperative.

Researchers have been tackling the robustness of models to domain shifts, by diving into paradigms
like Unsupervised Domain Adaptation Ganin et al. (2016), Source-Free Domain Adaptation Liang
et al. (2020); Yang et al. (2022). More recently, the problem of Test Time Adaptation (TTA) Wang
et al. (2021); Schneider et al. (2020); Niu et al. (2022) and Continuous Test Time Adaptation
(CTTA) Döbler et al. (2023) has come to the forefront. TTA is characterized by three key factors: (1)
No access to source data; (2) No ground truth labels for test data; (3) An online adaptation scenario
where the model encounters test samples only once, reflecting the online nature of real-world.

Another facet of distribution gaps lies in semantic shifts Li et al. (2023); Lee et al. (2023). While
TTA methods have predominantly focused on closed-set scenarios, the real world seldom operates
within such constraints. A classic example is that of autonomous driving Wang et al. (2022),
where models trained for specific geographical locations are deployed elsewhere. For instance,
a model trained to recognize only vehicles commonly seen in urban areas—such as car, truck,
motorcycle—may incorrectly classify a bicycle as a motorcycle when deployed in rural settings. In
these new environments, the model must be able to identify elements that are not relevant to its
training as unknown, rather than misclassifying them as part of the known set of categories. This
underscores the importance of Open Set Adaptation. Though this has only recently been explored in
the context of TTA Li et al. (2023); Lee et al. (2023), current TTA and CTTA methods Wang et al.
(2021); Döbler et al. (2023) generally rely on accumulating a batch of images to update the model,
which may not be feasible in scenarios where test samples arrive individually. This highlights the
growing need for efficient Single Image Test Time Adaptation methods.
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Parallel to the recent advances in TTA, there has been tremendous progress in the development of
large scale Vision Language Models (VLM) like CLIP Radford et al. (2021). Having trained on large
scale web scrapped image-text pairs, these VLMs Radford et al. (2021) have demonstrated impressive
zero shot generalization capabilities, making it a natural candidate for TTA. Recently, Shu et al.
(2022); Samadh et al. (2023); Karmanov et al. (2024) have shown that these VLMs can be adapted on
each image during inference, further improving the zero shot generalization performance.

Current VLM based works Shu et al. (2022); Karmanov et al. (2024) address Single Image TTA in
closed-set setting and do not explicitly handle open set scenarios. Recent CNN based open-set TTA
works Li et al. (2023); Lee et al. (2023) operate on batches of test images. In this work, we address
both the challenges and establish a benchmark for Open set Single Image Test Time Adaptation using
VLMs. We refer to the classes of interest with respect to a particular downstream classification task
(say 10 classes of CIFAR-10) as desired classes and the rest as undesired classes (say 10 digits of
MNIST). In such scenarios, it is necessary to filter out undesired class samples, preventing them from
negatively impacting model adaptation during test-time adaptation (TTA). To achieve this, we employ
a Linear Discriminant Analysis (LDA) Fisher (1936); Li et al. (2023)-based class identifier, which
first determines whether a test sample belongs to a desired or undesired class. Samples identified as
belonging to the desired classes are then classified accordingly into one of the desired classes. The
challenges we address are twofold: (1) Enabling TTA of VLMs where samples arrive sequentially,
and (2) handling open-set scenarios where test samples may belong to either Desired or Undesired
classes. To tackle these challenges, we utilize Reliable samples to differentiate Desired vs Undesired
classes through a Contrastive loss, termed ReDUCe, within the framework of Open set Single Image
Test time Adaptation (ROSITA). Our contributions are summarized as follows:

• To the best of our knowledge, we are the first to tackle the challenging and realistic problem
of Open set Single Image Test Time Adaptation using VLMs, setting a new benchmark.

• We provide a comprehensive analysis on continuous adaptation of VLMs during test time
and identify LayerNorms to be the optimal set of parameters to adapt the model.

• Our framework, ROSITA, adapts a VLM to recognize desired class samples with domain
shifts while enabling it to effectively differentiate unfamiliar samples by saying “I don’t
know.” This distinction between desired and undesired class samples is achieved using our
ReDUCe loss, which dynamically contrasts these classes to enhance separability.

• We demonstrate the effectiveness of our method through extensive experiments across a
diverse array of domain adaptation benchmarks, simulating various real-world test environ-
ments, with samples from single domain, continuous and frequently changing domains. We
also experiment varying the ratio of desired and undesired class samples in the test stream.

2 OPEN SET SINGLE IMAGE TEST TIME ADAPTATION

2.1 PROBLEM SETUP

Test stream. The model encounters a single test sample xt at time t, sampled from Dt = Dd ∪ Du

comprising of: (i) Desired class samples: Dd = {xt; yt ∈ Cd}, with domain shift and belonging to
one of the Cd desired classes, for example, Cd = {car, bus, ...,motorcycle}; (ii) Undesired class
samples: Du = {xt; yt ∈ Cu}, which have semantic shift (irrelevant classes) such that Cd ∩Cu = ϕ.

Goal. Given a test sample xt arriving at time t, the goal is to be first recognize if it belongs to a
desired class or not, constituting a binary classification task. If xt is identified as a desired class
sample, a subsequent |Cd|-way classification is performed, else the prediction is “I don’t know”. In
essence, the overall process can be viewed as a |Cd|+ 1 way classification problem.

Open set Single Image TTA scenarios. We simulate several test scenarios inspired from the real
world to evaluate the effectiveness of our method. (1) Single domain: We extend the standard TTA
scenario where the test samples come from an unseen domain Dd (say snow corruption of CIFAR-
10C) by incorporating undesired samples Du (say MNIST). (2) Continuously changing domains:
Here, Dt changes with time as (D1

d ∪Du) → (D2
d ∪Du) . . . → (Dn

d ∪Du), where Di
d is the ith

domain encountered. (3) Frequently changing domains: Here, we significantly reduce the number of
samples per domain in continuous open set TTA. Lesser the samples per domain, more frequently the
domain of the test stream changes, simulating very dynamic open set test scenarios. (4) Vary the ratio
of samples from Cd to Cu in the test stream.
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Open set TTA in the context of pretrained VLMs. TTA has traditionally focused on improving
the performance of CNNs, where models trained on clean data struggle in unseen environments
such as noisy or weather-affected conditions. However, these models are trained specifically on a
dataset to recognize a desired set of classes Cd. Recently VLMs such as CLIP Radford et al. (2021)
have demonstrated impressive zero-shot generalization performance across diverse domains without
any specific retraining. Due to the contrastive pretraining of (image, text) pairs in VLM, text-based
classifiers can be obtained for free by embedding text prompts of the form “A photo of a {class
name}” through its text encoder. Image features can then be matched with text-based classifiers to
perform |Cd|-way classification. This makes CLIP a natural candidate for TTA scenarios.

In the context of CLIP, it is non-trivial to define classes or domains as unseen, given its exposure to a
vast array of visual data including variations, corruptions, and styles. In general, CLIP can be used to
classify an image by making a choice from the given set of desired classes. However, it lacks the
ability to explicitly say I don’t know when presented with a sample which does not belong to the set
of desired classes. Also, despite CLIP’s strong zero-shot performance on clean data, its performance
on corrupted/style-shifted datasets like ImageNet-C/R is still subpar (Shu et al., 2022; Karmanov
et al., 2024; Zhang et al., 2024), highlighting the need for handling severe domain shifts better. This
makes the problem highly relevant and worth addressing.

To address this, we establish a strong benchmark by adapting current TTA methods based on CLIP,
as well as open-set TTA approaches designed for CNNs to evaluate CLIP’s performance in open-set
settings. Further, we introduce a novel framework called ROSITA, which achieves state-of-the-art
results, surpassing prior methods and setting a new standard for open-set TTA.

2.2 BASELINES

We perform experiments using CLIP Radford et al. (2021) and MaPLe Khattak et al. (2023) backbones.
CLIP consists of a Vision (FV ) and Text (FT ) encoder, trained using contrastive learning on image-
text pairs. MaPLe backbone uses multimodal prompts to adapt CLIP for downstream tasks.

Classification using VLMs. Given a test image xt and a set of desired classes Cd = {c1, c2, . . . cN},
we construct the text-based classifier by first prepending each class name with a predefined text
prompt pT = “A photo of a”. This forms class-specific text inputs {pT , ci}, which are then passed
through the text encoder to obtain text embeddings ti = FT ({pT ; ci}) for each ci ∈ Cd. As a result,
we get the text-based classifier {t1, t2, . . . t2}. Finally, the class prediction is made by identifying
the text embedding ti that has the highest similarity to the image feature ft.

Desired vs Undesired Class Identifier. In real-world, a deployed model may encounter instances
from both desired and undesired classes. We equip all methods Shu et al. (2022); Karmanov et al.
(2024); Zhang et al. (2024) with an LDA based parameter-free class identifier Fisher (1936); Li et al.
(2023) to reject undesired class samples. Subsequently, the model is adapted during test time.

Benchmark for Open-set Single Image TTA. We adapt the single image closed-set TTA baselines
ZSEval Radford et al. (2021), TPT Shu et al. (2022), PAlign Samadh et al. (2023), TDA Karmanov
et al. (2024), DPE Zhang et al. (2024) for our problem setting. We also adapt TPT and PAlign for
continuous model update by adapting prompts, which we refer as TPT-C and PAlign-C respectively.
The test samples recognized to belong to Cu are not used to update the model as they can adversely
affect its performance on desired classes. We adapt two recent CNN based open-set TTA works
(K+1)PC Li et al. (2023), UniEnt Gao et al. (2024) for VLMs. We refer to Li et al. (2023) as
(K + 1)PC, as they perform (K + 1)-way Prototypical Classification. We equip all these baselines
(Appendix B) with the same LDA based desired vs undesired class identifier for fair comparison.

We first present our preliminary analysis on continuous adaptation of VLMs. We then describe the
LDA based Cd vs Cu class identifier Li et al. (2023) and the proposed ROSITA framework.

2.3 PRELIMINARY ANALYSIS: CONTINUOUS ADAPTATION OF VLMS

Test time adaptation methods using CNNs Wang et al. (2021); Schneider et al. (2020); Liang et al.
(2020); Chen et al. (2022) successfully leverage test domain data arriving in an online manner (in
batches) to continuously update the model. In this work, we study TTA of VLMs like CLIP, which
has only been explored very recently Shu et al. (2022); Karmanov et al. (2024); Zhang et al. (2024)
by adapting prompts independently for each image. While these methods show promise for on-the-fly
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adaptation in a zero-shot framework, it is not clear whether they can leverage the online data stream
to continuously update the model parameters. Based on the evidence in prior TTA works (Wang et al.,
2021; Chen et al., 2022), we analyze two aspects of VLMs for the TTA task: (1) Here, we question if
VLMs can be continuously adapted in a similar manner, but using only a single test image at a time;
(ii) If so, are prompts (Shu et al., 2022) the best parameters to continuously update?

Experiment. We choose six different parameter groups: (1) Prompts, (2) LayerNorm parame-
ters (Zhao et al., 2023), (3) Full network (4) First Attention Block of ViT (5) Last Attention Block
of ViT (6) Prompts+LayerNorm(LN). We perform single image TTA in a closed set scenario on
CIFAR-10C, by continuously adapting each of these parameter groups of CLIP, using reliable entropy
loss, LTTA = 1(st > τ)Lent(xt), which is commonly used in several TTA methods (Wang et al.,
2021; Niu et al., 2022) and VLM based prompt tuning methods TPT, PAlign. Here, xt and st refer to
the test sample and its confidence, respectively. τ is the confidence threshold used to select reliable
samples Niu et al. (2022) for the model update, which we set to 0.7 in this analysis.

10−6 10−5 10−4 10−3 10−2
0

20

40
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80
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ZS-Eval Prompts LayerNorm Full
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Figure 1: Accuracy on fine-tuning different
parameter groups for single image TTA.

Observations. We find that continuous model adap-
tation can indeed improve VLMs performance based
on our empirical analysis (Figure 1). (1) Using a high
learning of 10−2 for any parameter group results in a
severe drop in accuracy compared to the zero-shot per-
formance of CLIP in this extreme setting of continuous
single image model update. (2) The other extreme of
low learning rate of 10−6 performs at par with ZSEval
for all parameter groups, suggesting the model has not
sufficiently changed. (3) Updating the Full Network
results in an accuracy of about 10% across all learn-
ing rates, suggesting that giving the highest flexibility
can cause the model to lose the inherent generalization
ability of the VLM. (4) Early attention layers can po-
tentially be updated. However, they are more sensitive
to learning rate and optimizer choice (Appendix C.7).
Also, Prompt updates are more expensive as the com-
pute scales with the number of classes, making them less suitable for continuous adaptation (Appendix
C.8). (5) We find that tuning the LayerNorm parameters of the Vision encoder (which account for
just 0.032% of the total parameters) offers the best balance between performance and complexity.

Adapting Image encoder vs Text classifiers: Most existing TTA approaches Schneider et al. (2020);
Wang et al. (2021); Chen et al. (2022) focus on adjusting image representations for domain shifts
during test time while keeping the classifiers fixed. This strategy helps retain class discriminative
information. Conversely, in TPT and PAlign, the text-based classifiers which depend on learnable
prompts are updated based on single images. While this does not impact zero-shot evaluation (since
the model resets after each image), it can be detrimental during continuous updates.

Based on this analysis, we freeze the text-based classifiers and modify only the image representations
using LayerNorm affine parameters. The rationale behind this approach is that text representations
can be inherently more robust across domains. Text embeddings, often derived from a wide range of
linguistic contexts, capture semantic meanings that are less susceptible to variations in visual data.
Therefore, adapting the image encoder allows for more effective handling of domain shifts while
retaining the class-level discriminative information from the text modality. This ensures that the
model can be updated continuously without the need for resets, ultimately enhancing its performance
in dynamic real open-set environments.

2.4 DESIRED VS UNDESIRED CLASS IDENTIFIER

Contrary to closed-set TTA setting, updating the model using all the test samples is not desirable in
the open-set scenario, where test samples can come from either Cd or Cu. It is hence imperative to
equip the model with the ability to say I don’t know by rejecting samples which do not belong to Cd.
In the context of VLMs, we define a score (st) of a test sample to be the maximum cosine similarity
with the text embeddings as given below:

st = max
k

sim(ft, tk); k ∈ {1, . . . C} (1)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

This problem can be viewed as a binary classification problem between desired and undesired samples
based on the score st. Defining a threshold to discriminate between the two can be particularly
challenging in the TTA scenario as the samples are only accessible in an online manner. To circumvent
this issue, following Li et al. (2023), we store the scores in a score bank S, which is continuously
updated in an online manner to store the latest |S| scores, approximating the latest distribution
of scores of the test data. Given this, the optimal threshold can be estimated by performing 1D
LDA Fisher (1936). A simple linear search over a range of thresholds is done to identify the best
threshold that minimizes the variance of scores of samples from Cd and Cu. For a threshold τ , let
Sd = {si|si > τ, si ∈ S} and Su = {si|si < τ, si ∈ S} denote the scores of samples identified to
belong to Cd and Cu respectively. The optimal threshold τ∗t at time t is identified as the one that
minimizes the intra class variance as follows

τ∗t = argminτ
1

|Sd|
∑
s∈Sd

(s− µd)
2 +

1

|Su|
∑
s∈Su

(s− µu)
2 (2)

where µd and µu are the means estimated from Sd and Su respectively. The test sample xt is classified
as desired if st ≥ τ∗t and undesired otherwise.s We establish a strong benchmark for Open set Single
Image TTA by equipping all the baseline methods (Section 2.2) with this simple and efficient LDA
based class identifier. In Section C.4, we demonstrate the effectiveness of this method in comparison
with simple confidence thresholding. We now describe the proposed framework ROSITA.

3 PROPOSED ROSITA FRAMEWORK

Given a single test sample xt at time t, it is first identified as a desired or undesired class sample as
described above. This is important, since, using undesired class samples can have a negative impact
on model adaptation. In this work, we propose a test time objective that can leverage both desired
and undesired class samples through feature banks to enhance the discriminability between them.

Reliable samples for TTA. We first identify a test sample xt as a reliable desired or undesired class
sample based on its score st. As we have access to an approximate distribution of the scores as
described in Section 2.4, we leverage the statistics µd and µu estimated through LDA to identify
reliable samples. A test sample xt is said to be a reliable sample belonging to desired classes Cd if
its score st > µd and a reliable sample from any of the other classes Cu if its score st < µu. We
leverage Reliable samples to differentiate Desired vs Undesired class samples through a Contrastive
(ReDUCe) Loss for Open-set Single Image Test time Adaptation, illustrated in Figure 2.

ReDUCe Loss. A contrastive objective typically needs positive and negative features, the goal
being to maximize the similarity between a sample and its positive (could be augmentation Chen
et al. (2020) or nearest neighbours Dwibedi et al. (2021)), while minimizing its similarity with the
negatives. Such objectives (Chen et al., 2020; He et al., 2020; Khosla et al., 2020; Dwibedi et al.,
2021) have been extensively used to learn good image representations in a self-supervised way. While
self-supervised learning assumes access to abundant data in an offline manner giving the freedom
to carefully choose positives and negatives, this problem is set in an online scenario, where the test
samples arrive one at a time and are accessible only at that instant. This challenging setting makes it
non trivial to use objectives by Dwibedi et al. (2021). To circumvent this issue of lack of abundant
test data, we propose to store two dynamically updated feature banks Md and Mu of sizes Nd and
Nu, to store the features of reliable samples from Cd and Cu respectively. We propose a ReDUCe
objective to contrast a reliable sample from Cd by choosing its positives and negatives as the K
nearest neighbours from Md and Mu respectively and vice versa for a reliable sample from Cu.
The buffer size for Md is set as |Cd| ×K, where |Cd| is the number of desired classes and K is the
number of neighbours retrieved. The feature banks Md or Mu are updated with a feature ft if it is
detected as a reliable sample from Cd and Cu respectively.

We fetch the K nearest neighbours of a reliable test sample xt from each feature bank as follows.

Qd = kNN(ft;Md); Qu = kNN(ft;Mu) (3)

Case 1: Reliable sample from Cd. If a test sample is identified as a reliable sample from Cd, we use
a reliable pseudo-label loss on the sample xt and its augmentation x̃t as follows:

LRe = LCE(xt, ŷt) + LCE(x̃t, ŷt); ŷt = argmaxi sim(ft, ti) (4)
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Figure 2: ROSITA framework: The test stream with samples from Cd and Cu arrive one at a time.
An input image xt is recognized as a sample from Cd and Cu through an LDA based class identifier.
Further, if a test sample is reliable, the respective feature banks are updated and the proposed ReDUCe
loss is optimized to update the LayerNorm parameters of the Vision Encoder.

where sim represents cosine similarity. Further, we also propose to use a contrastive objective to
enhance the clustering of desired class samples while pushing them apart from the undesired class
samples.

As we aim to correctly classify the desired class samples, we select positives z+ from Qd if its
prediction y+ matches with ŷt. The features Qu consisting of its kNN from Mu act as its negatives.
The following is the ReDUCe loss for a reliable sample from Cd:

LD = − 1

K+

∑
z+∈Qd

1(y+ = ŷt) log
exp (sim (ft, z

+) /τ)∑
z−∈Qu

exp(sim(ft, z−)/τ) (5)

where K+ =
∑

z+∈Qd 1(y+ = ŷt), is the number of neighbours positively matched with ŷt.

Case 2: Reliable sample from Cu. If a test sample is identified as a reliable sample from Cu, we
use the following contrastive objective by selecting positives z+ from Qu and negatives z− from Qd:

LU = − 1

K

∑
z+∈Qu

log
exp (sim (ft, z

+) /τ)∑
z−∈Qd

exp(sim(ft, z−)/τ)
(6)

The LayerNorm parameters of the Vision Encoder are updated to minimize the following test time
objective to adapt the model one sample at a time in an online manner:

LReDUCe =

{
LRe + LD if st > µd

LU if st < µu
(7)

This objective improves the proximity between the test sample and its positives, suitably chosen
based on its score st, while also pushing apart the test sample and its negatives. This collectively
encourages the model to adapt such that each of the desired classes and undesired classes are clustered
and farther apart from each other, improving the overall classification performance of Cd and Cu.
We now perform Gradient Analysis on the loss function and theoretically justify how the proposed
ReDUCe loss helps in enhancing the discriminability between desired and undesired class samples.

Evaluation Metrics. We employ standard metrics, namely Area Under the Receiver Operating
Characteristic Curve (AUROC) and False Positive Rate at a True Positive Rate of 95% (FPR95), from
the OOD detection literature Lee et al. (2023); Li et al. (2023); Wang et al. (2023). Additionally, we
compute the classification accuracy for desired class samples (AccD) and the binary classification
accuracy for correctly recognizing samples from Cu (AccU ) as defined below. To gauge the overall
performance, we compute AccHM (HM), representing the harmonic mean of AccD and AccU ,
which serves as a comprehensive metric capturing the trade-off between AccD and AccU . Here, we

6
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Table 1: Results with ImageNet-C/R as desired class data Dd, MNIST and SVHN for Du.

Method IN-C/MNIST IN-C/SVHN IN-R/MNIST IN-R/SVHN

AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑
C

L
IP

ZS-Eval 93.39 55.52 41.43 85.89 72.91 40.83 91.27 91.09 71.50 90.43 75.04 71.66
TPT 93.12 58.01 42.21 85.43 74.47 40.95 91.25 91.23 71.98 90.43 74.98 72.36

TPT-C 56.57 99.12 6.19 11.38 100.00 7.24 82.81 85.79 68.25 80.94 80.03 69.18
(K+1) PC 95.76 10.43 42.95 87.75 26.23 38.50 97.46 11.78 81.51 97.55 11.17 80.39

TDA 90.54 76.23 43.66 86.76 75.45 43.07 91.79 87.83 71.56 90.67 75.41 71.48
UniEnt 94.19 46.98 41.53 87.56 67.03 41.10 91.64 88.67 71.73

DPE 87.92 91.94 42.87 82.96 77.90 41.93 92.13 81.09 71.39 90.86 73.30 70.64

ROSITA 99.52 4.06 48.53 98.34 10.21 46.32 99.44 4.29 83.53 98.62 9.08 80.75
+6.13 +51.46 +7.10 +12.45 +62.70 +5.49 +8.17 +86.80 +12.03 +8.19 +65.96 +9.09

M
A

PL
E

ZS-Eval 81.49 92.95 41.70 83.26 71.15 42.77 90.15 83.54 74.42 92.74 65.70 75.71
TPT 81.38 93.17 39.92 83.18 71.52 40.93 90.14 83.58 74.00 92.74 65.68 75.23

TPT-C 83.25 87.60 42.81 83.18 70.60 42.86 90.35 81.49 74.73 92.79 65.20 75.59
PAlign 81.38 93.17 41.32 83.18 71.52 42.30 90.14 83.58 74.66 92.74 65.68 75.93

PAlign-C 71.22 86.32 27.14 32.17 94.32 15.44 92.20 59.70 75.23 93.54 54.59 75.67
(K+1)PC 98.58 3.35 48.69 77.17 39.74 38.10 99.01 3.16 84.23 95.14 13.77 80.16

TDA 76.79 99.02 42.98 82.46 91.75 44.63 90.43 86.56 73.66 92.92 64.63 74.16
UniEnt 81.53 93.45 41.50 83.41 70.84 42.78 90.14 83.49 74.48

DPE 73.97 99.59 41.39 80.06 87.10 44.05 90.44 78.77 72.67 93.48 55.74 76.74

ROSITA 99.56 1.66 51.30 98.68 5.09 50.67 99.39 2.95 84.70 97.85 12.98 83.07
+18.07 +91.29 +9.60 +15.42 +66.06 +7.90 +9.24 +80.59 +10.28 +5.11 +52.72 +7.36

summarily report AUROC (AUC), FPR95 (FPR) and AccHM (HM) for all the datasets (All five
metrics are reported in detail in Appendix E).

AccD =

∑
(xi,yi)∈Dd

1 (yi = ŷi) · 1 (yi ∈ Cd)∑
(xi,yi)∈Dd

1 (yi ∈ Cd)
; AccU =

∑
(xi,yi)∈Du

1 (ŷi ∈ Cu) · 1 (yi ∈ Cu)∑
(xi,yi)∈Du

1 (yi ∈ Cu)

3.1 GRADIENT ANALYSIS OF THE PROPOSED REDUCE LOSS

The key to understanding the behavior of the contrastive loss is to analyze its gradient. The softmax
term in the denominator encourages ft to have lower similarity with negative samples, and the
numerator encourages ft to have higher similarity with positive samples. We compute the gradient of
the loss components LD and LU of the ReDUCe loss with respect to ft (Appendix A).

∂LD

∂ft
= − 1

K+

∑
z+∈Qd

1
(
y+ = ŷt

)
· 1
τ

z+ −
∑

z−∈Qu

p
(
z−

)
z−


∂LU

∂ft
= − 1

K

∑
z+∈Qu

1

τ

z+ −
∑

z−∈Qd

p
(
z−

)
z−

 (8)

where p (z−)is the softmax probability of the negative samples defined as

p
(
z−

)
=

exp (sim (ft, z
−) /τ)∑

z′∈Q− exp (sim (ft, z′) /τ)
(9)

where Q− is Qu for LD and Qd for LU . The gradient of these contrastive loss formulations drives
the following behavior in this context:

1. Attraction to positive neighbors. In the gradient of LD, the first term pulls the test feature ft
towards its positives z+ ∈ Qd, representing the attraction force that encourages samples from desired
classes to form |Cd| tight clusters as the positives are chosen such that ŷt = y+. Similarly, in the
gradient of LU , the first term pulls ft towards its positives z+ ∈ Qu encouraging all samples from
Cu to cluster together.

2. Repulsion from negative neighbors. The second term p (z−) z− in the gradient pushes the test
feature ft away from its negatives z− ∈ Q− (Q− is Qu for LD and Qd for LU ). The strength of
the repulsion is controlled by the softmax probability p(z−), where more similar negatives exert a
stronger repulsive force on ft, increasing the separation between samples from Cd and Cu. As the
negatives selected are its K nearest neighbours of the opposite type, they are infact hard negatives.
Further, the contrastive objective inherently models the degree of hardness through the means of this
probability p(z−). Closer the hard negative, stronger the repulsion force.

7
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(a) ZSEval
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(b) ROSITA (c) scores with time (d) Accuracy with time

Figure 3: Histograms of the scores st for ZS-Eval (a) and ROSITA (b) on CIFAR-10C/MNIST dataset.
(c) Change in scores for Cd and Cu class samples, the best threshold with time t; (d) Accuracy
metrics measured for samples seen until time t. Using the LDA based class identifier with ROSITA,
samples from Cd and Cu separate them better and the accuracy metrics improve with time.

Key factors distinguishing ROSITA from prior works.

1. Enhanced Use of LDA Statistics to identify Reliable samples: Apart from the threshold τt, ROSITA
leverages the score statistics µd and µu provided by the LDA class identifier, combined with the
novel ReDUCe loss function, to adapt the model. This synergy enhances the discriminability between
desired (Cd) and undesired (Cu) class samples, offering a clear advantage over baselines that use the
same LDA identifier but fail to exploit this additional information (Figure 3).

2. Bridging CNN and VLM-Based TTA Insights: ROSITA integrates key insights from CNN-based
TTA methods such as normalization layer updates with vision-language models (VLMs) (Section
2.3). While simple in hindsight, this baseline was overlooked in prior VLM-based TTA works Shu
et al. (2022); Karmanov et al. (2024); Zhang et al. (2024). ROSITA highlights how these learnings
can translate effectively to VLMs, underscoring their utility as a foundational approach for TTA.

3. Holistic Design for Open-set TTA: ROSITA introduces the ReDUCe loss to distinctly separate
desired (Cd)and undesired (Cu) class samples using compact feature banks. Although it is inspired
by contrastive learning frameworks Chen et al. (2020; 2022), it is specifically designed for open-set
TTA: (i) Reliable samples from Cu use nearest Cu samples as negatives, and vice versa (ii) Unlike the
Cd+1-way classification in Li et al. (2023), ROSITA forces Cd features to form distinct clusters and
pushes Cufeatures away. (iii) The feature banks are populated only with reliable samples, ensuring
robust updates during adaptation (see Appendix C.5). This approach addresses the significant overlap
of zero-shot scores st between Cd and Cu in vision-language models, reducing misclassification and
boosting discriminability.

4 EXPERIMENTS

Table 2: AccHM on VisDA dataset and
Clipart, Painting, Sketch domains from
DomainNet as Dd and MNIST as Du.

Method VisDA Clipart Painting Sketch

ZSEval 78.28 50.22 47.81 48.59
TPT 78.42 57.71 49.73 54.67

TPT-C 75.35 57.57 49.31 54.41
(K+1)PC 90.35 71.21 70.61 67.21

TDA 76.85 61.04 51.20 55.26
UniEnt 78.09 57.88 49.75 54.76

DPE 53.67 54.52 47.91 32.18

ROSITA 90.64 71.40 70.89 67.35
+12.36 +21.18 +23.08 +18.76

Datasets. We experiment with a diverse set of datasets
to choose desired class data Dd and undesired class data
Du. For Dd, we use CIFAR-10C Hendrycks & Dietterich
(2019), CIFAR-100C Hendrycks & Dietterich (2019),
ImageNet-C Hendrycks & Dietterich (2019) from the cor-
ruption category and ImageNet-R Hendrycks et al. (2021),
VisDA Peng et al. (2017) and the Clipart, Painting, Sketch
domains from DomainNet Peng et al. (2019a) as style
transfer datasets. We introduce samples from MNIST Le-
Cun et al. (1998), SVHN Netzer et al. (2011), CIFAR-
10/100C Hendrycks & Dietterich (2019) and TinyIma-
geNet Le & Yang (2015) datasets as Du in the test stream.
We describe the datasets in detail in the Appendix B.3.

Implementation Details. We use CLIP and MaPLe backbones with ViT-B16 architecture. For
ROSITA, we use SGD optimizer with a learning rate of 0.001 to update the LayerNorm parameters
of the Vision encoder. We set size of the score bank S to 512, number of neighbours K to 5. The
size of feature bank Md is set as K × Cd and that of Mu to 64. Implementation details for all the
baseline methods are presented in Appendix B.4 We equip all methods with the same Cd vs Cu class
identifier described in Section 2.4. All experiments are done on a single NVIDIA A6000 GPU.

8
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Table 3: Results with CIFAR-10C/100C as desired class data Dd and four other datasets as Du.

Method MNIST SVHN Tiny-ImageNet CIFAR-100C/10-C

AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑
C

IF
A

R
-1

0C

C
L

IP
ZS-Eval 91.91 85.04 75.57 89.93 64.20 74.08 91.33 27.07 74.63 82.57 67.92 68.89

TPT 91.89 85.55 75.81 89.93 64.41 74.36 91.31 27.23 75.17 82.57 68.06 69.17
TPT-C 81.64 67.53 74.86 58.48 71.72 48.26 74.08 61.45 49.88 61.45 94.30 46.10

(K+1)PC 98.05 12.50 83.27 80.74 50.33 70.10 87.09 52.29 73.98 62.55 91.68 56.46
UniEnt 91.98 85.2 75.62 89.97 64.38 74.18 91.40 26.96 74.73 82.59 68.14 68.98
TDA 92.94 71.11 77.06 92.02 52.68 76.64 91.68 25.37 75.94 83.54 66.06 70.13
DPE 46.97 99.10 27.60 84.15 85.24 68.52 89.92 31.30 69.90 79.18 75.06 62.34

ROSITA 99.10 7.63 84.17 94.79 32.59 78.80 96.43 12.10 80.06 82.99 62.89 69.56
+7.19 +77.41 +8.60 +4.86 +31.61 +4.72 +5.10 +14.97 +5.43 +0.42 +5.03 +0.6

M
A

PL
E

ZS-Eval 98.48 3.77 83.63 98.34 7.86 83.57 90.86 27.54 76.04 86.14 52.08 71.76
TPT 98.15 5.67 81.56 98.34 7.89 82.73 90.86 27.61 75.46 86.15 52.14 70.94

TPT-C 98.56 3.74 83.51 98.32 8.18 83.47 91.18 26.93 76.31 86.50 50.56 71.07
PAlign 98.15 5.67 82.24 98.34 7.90 83.51 90.86 27.60 75.98 86.15 52.18 71.52

PAlign-C 98.56 3.74 83.49 98.32 8.13 83.46 91.18 26.90 76.30 86.50 50.58 71.04
(K+1)PC 98.34 9.63 86.52 71.01 78.78 68.70 71.20 85.81 68.29 62.35 88.44 61.89
UniEnt 98.17 5.49 82.64 98.35 7.85 83.65 90.90 27.41 76.08 86.16 51.91 71.72
TDA 98.42 4.13 81.97 98.60 6.20 83.95 91.27 27.00 76.84 86.72 51.40 72.61
DPE 83.82 92.73 55.52 97.42 12.95 79.41 89.10 31.13 74.32 73.57 73.67 53.64

ROSITA 99.34 5.22 87.63 97.80 13.15 84.17 91.67 25.31 77.67 86.82 50.33 73.15
+0.86 -1.45 +4.00 +0.54 -5.29 +0.60 +0.81 +2.23 +1.63 +0.68 +1.75 +1.39

C
IF

A
R

-1
00

C

C
L

IP

ZS-Eval 77.78 99.93 48.39 64.70 98.68 45.85 67.31 73.89 45.80 63.28 93.25 44.04
TPT 77.76 99.94 48.33 64.71 98.63 45.85 67.28 73.82 45.93 63.26 93.20 44.02

TPT-C 51.57 100.00 27.04 9.40 99.98 5.74 59.74 79.76 18.41 55.86 86.35 13.64
(K+1)PC 96.89 12.15 59.72 75.24 51.64 43.73 41.84 99.61 31.83 54.02 93.93 32.00

TDA 80.33 99.57 46.52 71.77 96.11 46.01 70.70 69.63 47.52 66.07 91.90 45.79
UniEnt 77.94 99.93 48.32 64.78 98.61 45.84 67.40 73.77 45.83 63.28 93.18 44.04

DPE 67.06 99.88 42.54 43.23 99.79 35.69 61.42 80.62 42.80 60.08 92.80 42.21

ROSITA 96.07 19.28 57.34 82.09 64.64 48.17 83.55 50.76 55.88 68.54 89.71 47.98
+18.29 +80.65 +8.95 +17.39 +34.04 +2.32 +16.24 +23.13 +10.08 +5.26 -3.54 +3.94

M
A

PL
E

ZS-Eval 87.43 64.19 54.97 92.98 40.51 56.42 68.80 74.35 48.24 66.93 87.94 46.06
TPT 87.42 64.09 53.09 92.97 40.44 54.37 68.80 74.20 46.97 66.93 87.95 44.38

TPT-C 87.65 63.08 55.14 93.09 40.30 56.31 68.85 74.71 48.53 66.97 87.94 46.30
PAlign 87.42 64.11 53.98 92.97 40.48 55.37 68.80 74.23 47.69 66.93 87.93 45.16

PAlign-C 88.25 57.31 55.69 93.45 39.39 57.39 68.76 78.12 48.15 66.82 87.80 47.01
(K+1)PC 96.49 9.42 62.97 65.73 78.63 32.60 42.94 99.95 27.52 53.48 94.26 34.70

TDA 89.82 52.24 55.46 95.04 30.76 59.51 72.05 71.83 49.19 69.12 87.36 49.06
UniEnt 87.40 64.02 54.86 92.99 40.36 56.42 68.84 74.26 48.41 66.93 87.96 46.09

DPE 39.05 98.88 33.66 84.29 76.13 52.20 63.74 82.75 45.74 65.61 90.67 46.36

ROSITA 97.04 11.01 62.06 96.26 20.99 59.25 70.37 77.00 48.68 69.57 83.61 48.80
+9.61 +53.18 +7.09 +3.28 +19.52 +2.83 +1.57 -2.65 +0.44 +2.64 +4.33 +2.74

5 ANALYSIS

Comparison with prior methods. We observe, from Table 1, 2, 3 that TPT and PAlign perform
similar to ZSEval in most datasets, as the prompts are reset after every single image update. On
continuously updating prompts in TPT-C and PAlign-C, we observe a reduction in HM compared to
ZS-Eval. The effect is more severe with CLIP when compared to MaPLe, as only the text prompts
are updated keeping the vision encoder fixed (as also observed in Section 2.3). ROSITA, being
equipped with a carefully designed objective to better discriminate between samples from Cd and Cu

samples (Figure 3), results in overall better metrics in general. We study the need for reliable samples
in C.5, analyse the sensitivity of ROSITA’s performance for different random seeds in C.1, choice
of parameter K in C.2. We report additional experimental results using CLIP with ViT-B/32 and
ResNet-50 architecture in D.2 and with different corruption types in D.1.

Performance in different Open set TTA scenarios. (a) Continuously changing domains: We
sequentially present 15 corruptions from CIFAR-10C, which form the domain Dd, alongside samples
from four other datasets Du. (b) Frequently changing domains: To further simulate more dynamic
test environments, for CIFAR-10C/MNIST, we reduce the number of samples per corruption to 100,
250, 500, and 1000 in the continuously changing domain open-set TTA scenario. Reducing the
sample count per corruption causes more frequent domain changes, increasing the challenge for
adaptation. (c) Varying ratio of samples belonging to classes Cd vs Cu: We simulate real-world
scenarios using the CIFAR-10C/MNIST dataset by varying the ratio of samples from the known
classes Cd versus unknown classes Cu in the test stream by varying this ratio as 0.2, 0.4, 0.6, and
0.8. From results in Table 5,we observe that ROSITA demonstrates consistent superiority across all
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Table 5: Performance in different Open set TTA scenarios.
(a) Continuously changing domains (b) Frequently changing domains (c) Varying ratio of Cd/Cu

Method CIFAR-10C No. of samples per corruption Ratio

SVHN MNIST Tiny C-100C 100 200 500 1000 0.2 0.4 0.6 0.8

ZSEval 64.33 64.04 66.50 58.49 61.41 61.87 61.42 63.30 75.56 75.59 75.57 75.56
TPT 64.26 64.03 66.50 58.47 61.33 62.32 61.59 63.24 75.67 75.75 75.81 75.83

TPT-C 33.05 46.44 59.38 37.24 60.62 61.30 57.16 34.88 72.70 74.31 74.79 75.16
(K+1)PC 65.13 62.52 66.93 57.46 60.90 60.76 61.40 63.26 62.31 68.85 81.70 82.90

TDA 66.02 66.44 67.64 59.44 60.17 61.43 63.22 64.82 72.45 75.04 77.54 77.91
DPE 23.36 50.12 58.96 35.56 47.48 46.22 39.83 46.52 65.67 66.12 56.38 29.98

ROSITA 66.86 65.26 68.89 59.16 61.64 66.82 67.97 73.24 82.96 83.97 84.51 84.37

three open-set TTA scenarios, showcasing its capability to adapt effectively to both continuously and
frequently changing domains, as well as varying class distributions.

Table 4: Ablation study on loss components.
LRe LD LU

CIFAR-10C/MNIST IN-R/MNIST

AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑
✗ ✗ ✗ 91.91 85.04 75.57 91.27 91.09 71.5
✓ ✗ ✗ 95.29 30.82 80.97 81.07 99.02 64.32
✗ ✓ ✗ 95.23 28.91 79.71 87.73 94.67 67.28
✗ ✗ ✓ 98.61 12.73 79.84 99.39 4.81 80.82
✓ ✓ ✗ 96.23 22.73 79.24 76.78 99.22 62.54
✓ ✗ ✓ 98.69 12.06 82.98 99.34 4.67 82.98
✗ ✓ ✓ 99.27 4.15 80.69 99.48 4.40 81.92
✓ ✓ ✓ 99.10 7.63 84.17 99.44 4.29 83.53

Loss Ablation. We observe that only using
LRe or LD improves the metrics for CIFAR-
10C dataset. For ImageNet-R (IN-R) as Dd, us-
ing LRe or LD is observed to increase FPR and
decrease HM. IN-R has 200 classes making it a
more challenging and confusing task compared
to CIFAR-10C. This decrease in performance
for IN-R can be attributed to the misclassifica-
tion of some samples from Cu as reliable desired
class samples, increasing the confusion between
Cd and Cu classes. Using LU significantly reduces the confusion between samples from Cd and Cu,
shown by the significant drop in FPR compared to ZSEval. The contrastive objectives LD and LU to
separate the two types of samples, in conjunction with reliable pseudo label loss LRe which aids to
improve the |Cd|-way classification of desired class samples, gives the overall best results.

Table 6: Memory overhead in ROSITA.
Dataset |Cd| No. of features Memory (in MB)

CIFAR-10C 10 5x10+64 0.758
VisDA 12 5x12+64 0.778

CIFAR-100C 100 5x100+64 1.679
ImageNet-R 200 5x200+64 2.703
ImageNet-C 1000 5x1000+64 10.89

Memory buffer. Prior prompt tuning methods like
TPT Shu et al. (2022), Samadh et al. (2023) do not require
any memory buffer. TDA Karmanov et al. (2024) requires
a memory buffer of size (|Cd| × (3 + 2)) × F to store
3 features per desired class in the positive cache and 2
features per class in the negative cache. DPE Zhang et al.
(2024) requires a memory buffer of size (|Cd| × 3)×F to store 3 features per desired class. ROSITA
requires a small memory buffer of size 512 for the score bank S and (|Cd| × K + |Mu|)×F for
the feature banks. For a ViT-B16 (F = 512) model with ImageNet-C (|Cd| = 1000), the required
memory buffer size is 5 × 1000 × 512 + 64 × 512 (10.89MB). The memory to store them and
computation required to compute feature similarity is as lightweight as performing a forward pass
through a simple linear layer, demonstrating the memory and computational efficiency of ROSITA
for real time applications.

Complexity Analysis For prompt tuning methods TPT/-C and PAlign/-C, the GPU memory and
time taken (secs/image) scales with the number of classes, as it requires more memory to store the
intermediate activations and gradients. The time taken to perform forward and backward pass through
the text encoder also depends on the number of classes. On the other hand, ROSITA requires two
forward passes and one backward pass through the vision encoder for reliable test samples. For e.g.,
for ImageNet-C dataset with 1000 classes, ZSEval, TPT, TDA and ROSITA require 5.71 GB, 23.24
GB, 5.71 GB and 5.73 GB GPU memory (refer Appendix C.8) to perform a single image based
model update. Hence, ROSITA is computationally very efficient, similar to that of ZSEval.

6 CONCLUSION

In this work, we propose ROSITA, a novel framework to address the challenging problem Open
set Test Time Adaptation (TTA) on a single image basis. ROSITA effectively distinguishes between
samples from desired classes vs others by leveraging two dynamically updated feature banks. The
proposed ReDUCe loss facilitates effective model adaptation by using reliable, while mitigating
any negative impact of undesirable samples in the test stream. Through extensive experimentation
on diverse domain adaptation benchmarks, we demonstrate the effectiveness of ROSITA in several
scenarios inspired by the dynamic real world environment. We discuss the limitations in B.5.
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APPENDIX

A GRADIENT ANALYSIS OF THE REDUCE LOSS

Here, we delve deeper into the ReDUCe loss function in ROSITA, breaking down its key components
and mathematically demonstrate why the proposed objective improves the separation of Cd and Cu

samples. We’ll focus on contrastive loss components LD and LU which are designed to improve
discriminability.

ReDUCe loss in a nutshell. A test sample xt arrives at time t with feature representation ft. Two
feature banks, Mw and Ms store reliable sample features from Cd and Cu respectively. ReDUCe
loss aims to pull the test sample’s feature ft towards its positive samples z+, which are its K nearest
neighbors Qd = kNN(ft;Md) if it is a reliable Cd sample or Qu = kNN(ft;Mu) if it is a reliable
Cu sample. The feature ft is pushed away from its negative samples z−, which are the K nearest
neighbors from the undesired feature bank Mu if it is a reliable Cd sample or from the desired feature
bank Md if it is a reliable Cu sample. The features ft, z+, z− are all unit norm vectors.

The key to understanding the behavior of the contrastive loss is to analyze its gradient. Gradient of
LD with respect to ft:

The contrastive loss for desired class samples LD is defined as:

LD = − 1

K+

∑
z+∈Qd

1(y+ = ŷt) log
exp (sim (ft, z

+) /τ)∑
z−∈Qu exp(sim(ft, z−)/τ)

∂LD

∂ft
= − 1

K+

∑
z+∈Qd

1(y+ = ŷt)
∂

∂ft
log

exp (sim (ft, z
+) /τ)∑

z−∈Qu exp(sim(ft, z−)/τ)

(10)

The loss is of the log-softmax structure. Consider gradient of the following term:

∂

∂ft
log

exp (sim (ft, z
+) /τ)∑

z−∈Q

exp(sim(ft, z−)/τ)
=

∂

∂ft

(
sim (ft, z

+)

τ

)
− ∂

∂ft
log

∑
z−∈Q

exp(sim(ft, z
−)/τ)

The gradients of the two terms involved are

∂

∂ft

(
sim (ft, z

+)

τ

)
=

z+

τ

∂

∂ft
log

∑
z−∈Q

exp(sim(ft, z
−)/τ) =

∑
z−∈Q

∂
∂ft

exp(sim(ft, z
−)/τ)∑

z−∈Q

exp(sim(ft, z−)/τ)

=
1

τ
.

∑
z−∈Q

exp(sim(ft, z
−)/τ)∑

z−∈Q

exp(sim(ft, z−)/τ)z−

=
1

τ
.
∑

z−∈Q

p(z−)z−

The final gradient of the log-softmax term is

∂

∂ft
log

exp (sim (ft, z
+) /τ)∑

z−∈Q

exp(sim(ft, z−)/τ)
=

z+ −
∑

z−∈Q

p
(
z−

)
z−


(11)

where p (z−)is the softmax probability of the negative samples defined as
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p
(
z−

)
=

exp (sim (ft, z
−) /τ)∑

z′∈Q−
exp (sim (ft, z′) /τ)

Substituting Equation 11 in Equation 10, we get the gradient of the desired sample contrastive loss
LD with respect to ft as

∂LD

∂ft
= − 1

K+

∑
z+∈Qd

1(y+ = ŷt)

z+ −
∑

z−∈Qu

p
(
z−

)
z−

 (12)

Gradient of LD with respect to ft:

The contrastive loss for desired class samples LD is defined as:

LU = − 1

K

∑
z+∈Qu

log
exp (sim (ft, z

+) /τ)∑
z−∈Qd

exp(sim(ft, z−)/τ)

∂LU

∂ft
= − 1

K+

∑
z+∈Qu

∂

∂ft
log

exp (sim (ft, z
+) /τ)∑

z−∈Qd

exp(sim(ft, z−)/τ)

(13)

Substituting Equation 11 in Equation 13, we get:

∂LU

∂ft
= − 1

K+

∑
z+∈Qu

z+ −
∑

z−∈Qd

p
(
z−

)
z−

 (14)

Interpretation of the Gradients.

• Both the gradient terms in Equations 12 and 14 have two components: Positive term z+ and
Negative term p (z−) z−. The positives and negatives are suitably chosen from the desired
and undesired feature banks.

• Positive term z+: The term z+pulls the test feature ft closer to its feature vectors z+. This
term represents the attraction force that encourages Cd samples to cluster together in LD

and Cu samples to cluster together in LU .
• Negative term p (z−) z−: The negative samples z− exert a repulsive force, pushing ft away

from them. The strength of this repulsion is controlled by the softmax probabilities p (z−),
where higher similarity between ft and z−increases the repulsion force. This inherently
models the degree of hard negatives from the negative feature bank.

• The overall gradient update encourages ft to move closer to its positives while moving away
from its negatives, enhancing the separation between samples from Cd and Cu classes.
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B BASELINES

B.1 VISION LANGUAGE MODELS

CLIP Radford et al. (2021) is a multimodal VLM consisting of two modules: Vision encoder and
Text encoder denoted as FV and FT respectively. During pre-training, the two modules are jointly
trained in a contrastive self-supervised fashion to align massive amounts of web scrapped image-text
pairs. CLIP has demonstrated impressive zero-shot performance across a wide variety of datasets.

MaPLe Khattak et al. (2023) is a multimodal prompt learner model that simultaneously adapts
both the vision and text encoders while finetuning CLIP for downstream tasks. They use learnable
text prompts pT and bridge the two modalities using visual prompts obtained as pV = Proj(pT ).
Learnable tokens are also introduced in the deeper layers of both image and text encoders, to enable
progressive adaptation of the features.

B.2 METHODS

ZSEval (Radford et al., 2021): Given a test image xt, the image feature is extracted from the
vision encoder as ft = FV (xt). For a C-class classification problem, the classifier is obtained by
prepending a predefined text prompt pT =”A photo of a”, with the class names {c1, c2, . . . cC} to
form class specific text inputs {pT , ci} for i ∈ {1, . . . C}. These texts are then embedded through
the text encoder as ti = FT ({pT ; ci}) to get the text classifiers {t1, t2, . . . tC}. The class prediction
is made by identifying the text feature ti which has the highest similarity with the image feature ft.

TPT Shu et al. (2022) aims to improve the zero shot generalization ability of CLIP by providing
custom adaptable context for each image. This is done by prepending learnable text prompts pT

to the class names instead of a predefined text prompt. The text classifiers ti = FT ({pT ; ci}), i ∈
{1, 2, . . . C} are now a function of these learnable prompts, which are specially adapted for each test
image using an entropy minimization objective as argminpT

Lent . The entropy is obtained using the
average score vector of the filtered augmented views.

PromptAlign (PAlign) (Samadh et al., 2023) leverages multimodal prompt learner model
MaPLe Khattak et al. (2023) to facilitate the adaptation of both vision and language encoders
for each test sample. They align the token distributions of source and target domains, considering
ImageNet as a proxy for the source dataset of CLIP. The vision and language prompts of MaPLe are
optimized with the objective argmin{pV ,pT } Lent + Lalign for each sample xt.

TPT-C Shu et al. (2022)/PAlign-C (Samadh et al., 2023): We adapt TPT and PAlign for continuous
model update, which we refer as TPT-C and PAlign-C respectively. The prompts {pT } and {pV ,pT }
in TPT and PAlign are continuously updated with the test stream with their respective test objectives.

(K+1)PC (Li et al., 2023): This was the first work exploring open world TTA, however it was done
in the context of CNNs and not VLMs. Also, the test samples come in batches, while we perform
single image TTA. We adapt this method for our problem setting as follows: As we use VLMs, we
use the text prototypes (instead of the source prototypes). The prototype pool is dynamically updated
by adding features of reliable test samples recognized to belong to undesired classes. The vision
encoder is updated using a (K+1) way prototypical cross entropy loss.

TDA (Karmanov et al., 2024): TDA is a training-free dynamic adapter for test-time adaptation in
vision-language models, utilizing a lightweight key-value cache for efficient pseudo label refinement
without backpropagation.

DPE (Zhang et al., 2024):DPE accumulates task-specific knowledge by dynamically evolving two
sets of prototypes, textual and visual, during test time. These prototypes are refined to capture
increasingly accurate multi-modal representations for target classes. To ensure consistency between
modalities, DPE incorporates learnable residuals for each test sample, aligning textual and visual
prototypes for improved representation alignment.

UniEnt Gao et al. (2024): This is a very recent work addressing open-set TTA in the context of CNNs.
They use a Distribution Aware Filter (DAF) based on Gaussian Mixture Modeling of the scores to
distinguish between desired and undesired class samples. They employ entropy minimization and
entropy maximization objectives for desired and undesired class samples respectively.
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We equip all the baselines with the same LDA based desired vs undesired class identifier described in
Section 2.4 for fair comparison of the TTA methods for this problem.

B.3 DATASETS

We experiment with a diverse set of datasets, encompassing corruption datasets, style transfer datasets,
and other common datasets.

CIFAR10-C Hendrycks & Dietterich (2019) is a small-scale corruption dataset of 10 classes with 15
common corruption types. It consists of 10,000 images for each corruption.

CIFAR-100C Hendrycks & Dietterich (2019) is also a corruption dataset with 100 classes and 15
corruption types. It also consists of 10,000 images for each corruption.

ImageNet-C Hendrycks & Dietterich (2019) is a large-scale corruption dataset spanning 1000
categories with a total of 50,000 images. 15 types of corruption images are synthesized from these
50,000 images.

ImageNet-R Hendrycks et al. (2021) is a realistic style transfer dataset encompassing interpretations
of 200 ImageNet classes, amounting to a total of 30,000 images.

VisDA Peng et al. (2017) is a synthetic-to-real large-scale dataset, comprising of 152,397 synthetic
training images and 55,388 real testing images across 12 categories.

DomainNet Peng et al. (2019a) is a large-scale domain adaptation dataset. We use the Clipart,
Painting and Sketch domains with 345 categories from the DomainNet dataset for our experiments.

MNIST LeCun et al. (1998) is a dataset of handwritten images consisting of 60,000 training and
10,000 testing images.

SVHN Netzer et al. (2011) is also a digits dataset with house numbers captured from real streets. It
consists of 50,000 training images and 10,000 testing images.

We perform experiments on eight domains Dd for desired class samples. The corresponding Du are
chosen such that there is no overlap between the classes Cd and Cu as described in Table 7. The 15
corruptions of CIFAR-10C/100C and ImageNet-C fall into four categories: synthetic weather effects,
per-pixel noise, blurring, and digital transforms. snow corruption is a synthesized weather effect on
which all the main experiments of CIFAR-10C, CIFAR-100C and ImageNet-C are done. To evaluate
the robustness of our method across different corruption types, we do additional experiments with
impulse noise , motion blur and jpeg compression corruptions from the categories per-pixel noise,
blurring and digital transforms respectively and report the results in Section D.1.

Table 7: Details of desired and undesired class dataset combinations

Datasets # images

Dd Du Dd Du Total

CIFAR-10C MNIST, SVHN, Tiny ImageNet, CIFAR-100C 10000 10000 20000
CIFAR-100C MNIST, SVHN, Tiny ImageNet, CIFAR-10C 10000 10000 20000
ImageNet-C MNIST, SVHN 50000 50000 100000
ImageNet-R MNIST, SVHN 30000 30000 60000

VisDA MNIST, SVHN 50000 50000 100000
Clipart MNIST, SVHN 29208 29208 58416

Painting MNIST, SVHN 43700 43700 87400
Sketch MNIST, SVHN 41832 41832 83664

B.4 IMPLEMENTATION DETAILS

Here, we describe the parameters chosen for all the baseline methods and our proposed method.

TPT Shu et al. (2022): The prompt is initialized with the default A photo of a text. The corresponding
4 tokens in the input text embedding space are optimized for each test image. The prompt is reset
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after each update. A single test image is augmented 63 times using random resized crops to create a
batch of 64 images. The confident samples with 10% lowest entropy are selected. The test time loss
is the entropy of the averaged prediction of the selected confident samples. AdamW optimizer with a
learning rate of 5e−4 is used, following Shu et al. (2022).

10−5 10−4 10−3 10−2
0

25

50

75

100

learning rate

A
cc

H
M

TPT-C (AdamW) PAlign-C (AdamW)

TPT-C (SGD) PAlign-C (SGD)

Figure 4: Performance of TPT-C and
PAlign-C for CIFAR-10C/MNIST with
AdamW and SGD optimizer on varying
learning rates.

PAlign Samadh et al. (2023): Following PromptAl-
ign Samadh et al. (2023), MaPLe Khattak et al. (2023)
model trained on ImageNet using 16-shot training data
with 2 prompt tokens for a depth of 3 layers is used. The
prompts on both the text and vision encoders are opti-
mized on a single test image. Similar to TPT, 10% of
64 augmentations are selected to compute the entropy
loss. The token distribution loss to align the token statis-
tics of test with that of source data is computed for all
64 images. AdamW optimizer with a learning rate of
5e−4 to update the prompts for each image, following
Samadh et al. (2023). The prompts are reset to the
ImageNet trained prompts after each update.

TPT-C Shu et al. (2022)/ PAlign-C Samadh et al.
(2023): We create the continuous prompt update ver-
sions of TPT and PAlign as TPT-C and PAlign-C re-
spectively. The only difference is that the prompts are
continuously updated using the test stream of samples.
If a sample is detected as reliable Cd sample, the respective test time objectives are used to update
the prompts. For this purpose, we vary the learning rate and optimizer to select the best optimizer for
continuous prompt update. On performing experiments on CIFAR-10C/MNIST data, from Figure 4
we observe that SGD optimizer with learning rate 10−5 works the best for continuous prompt update
and hence we use this for all the experiments of TPT-C and PAlign-C.

(K+1)PC Li et al. (2023): The vision encoder is updated using a (K+1) way prototypical cross
entropy loss . The prototypes are updated using the test stream of samples. The learning rate is set to
0.001.

TDA (Karmanov et al., 2024): We use τt from the LDA based Cd vs Cu identifier to recognise the
desired and undesired class samples. Following Karmanov et al. (2024), we set the shot capacity to 3
and the number of key-value caches is Cd as we use the adapter only for desired class samples.

DPE (Zhang et al., 2024): We use the same LDA based Cd vs Cu identifier to recognise the desired
and undesired class samples. We use the same hyperparameters presented in Zhang et al. (2024). A
priority queue storing 3 visual features per class is used. The text and visual prototype residuals are
updated with a learning rate of 0.0006 using AdamW optimizer.

UniEnt: We use the UniEnt objective in combination with LDA based class indentifier. The
entropy minimization and maximization objectives are used for desired and undesired class samples
respectively. The LayerNorm parameters are updated with a learning rate of 0.001 using SGD
optimizer.

ROSITA: We use SGD optimizer with a learning rate of 0.001 to update the LayerNorm affine
parameters of the Vision encoder. We set the size of score bank S to 512, number of neighbours K to
5 and the size of Mu is set to to 64.

B.5 LIMITATIONS AND SCOPE FOR FUTURE WORK

Although ROSITA performs better than the baselines, in datasets where CIFAR-10C is and CIFAR-
100C is, where it is hard to distinguish desired and undesired class samples, the FPR is still quite
high, indicating that there is still significant scope for improvement. While in this work, we aim
to identify the undesired class samples as “I don’t know”, in many practical applications these new
classes can be of interest and need to be included in the desired classes. This incremental nature
of TTA, where the set of desired classes keep growing, can be potentially explored in the future.
Additional parameter choices such as adapters, LoRA can be explored for fine-tuning the model.
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C ADDITIONAL ANALYSIS

In this section, in addition to the analysis done in Section 5, we study the robustness of the proposed
method ROSITA more extensively, in the terms of (1) Error bars on different test data streams, (2)
Role of the parameter K, the number of neighbours, (3) Analysis of the scores st on using different
combinations of the proposed loss components, (4) Effectiveness of LDA based Desired vs Undesired
class identifier in comparison with simple thresholding, (5) Complexity Analysis of MaPLe backbone.

C.1 ANALYSIS ON ERROR BARS

To study the robustness of our method for differently ordered test streams, we run ROSITA with
five random seeds and report the Mean and Standard deviation of the AccHM in Table 8 for CIFAR-
10C/100C as Dd and MNIST, SVHN, Tiny ImageNet, CIFAR-100C/10C as Du (corresponding to
our results in Table 3 in the main paper). We observe that the variance in the performance of ROSITA
is very low, reinforcing the robustness of the proposed method for different shuffled datasets and
augmentations created.

Table 8: Performance (Mean and Standard deviation of AccHM ) of ROSITA across
5 random seeds for CIFAR-10/100C as Dd with 4 other datasets as Du.

Dd\Du MNIST SVHN Tiny CIFAR-100/10C

CIFAR-10C 84.07 ± 0.023 78.90 ± 0.038 80.10 ± 0.014 69.44 ± 0.018
CIFAR-100C 57.09 ± 0.041 47.90 ± 0.047 55.95 ± 0.051 48.10 ± 0.024

C.2 ANALYSIS ON PARAMETER K

Table 9: Performance (AccHM ) on varying K with MNIST as Du.

Dd |Cd
K

0 1 3 5 7 9

CIFAR-10C 10 80.97 83.9 84.32 84.17 84.10 84.02
ImageNet-R 200 64.32 83.65 83.87 83.53 83.39 83.42
ImageNet-C 1000 42.05 48.35 47.17 48.53 48.37 47.73

We vary the hyperparameter K which represents the number of positives and negatives chosen in
Equation 5 and 6 and report the results (AccHM ) in Table 9. The size of the feature bank Md is
set as Nd = K × Cd. Nd increases with the number of classes as well as the number of neighbours
K. We set K to be 5 in all main results reported, which corresponds to feature bank size Nd of
50, 1000, 5000 respectively for the datasets CIFAR-10C, ImageNet-R and ImageNet-C respectively.
In Table 9, we abuse the notion K = 0 to correspond to the case where only the reliable pseudo
label loss LRe is used. The results show that even with K = 1, there is a significant improvement
in AccHM when compared to the case where LD,LU is not used (K = 0). On further increasing
K, we observe improvement only for the CIFAR-10C as Dd, but the performance is similar for
ImageNet-R and ImageNet-C for higher values of K as well. Further, we investigate this observation
that the performance of ROSITA is similar on significantly varying K or the feature bank size. For
K = 5, we check the average number of positives actually selected for LD in Equation 5 for each
of these datasets. We find this to be 4.1, 2.5 and 1.5 for CIFAR-10C, ImageNet-R and ImageNet-C
respectively. This agrees with the results in Table 9 where K of 3, 5 works better compared to 1
as more neighbours have common pseudo label, aiding the clustering of classes of interest. For
CIFAR-10C and ImageNet-R, using K < 5 suffices and for ImageNet-C as only 1-2 neighbours are
matched for majority of reliable desired class samples, setting K = 1 suffices. For practical purposes,
this observation suggests that the buffer size for Md can indeed be reduced based on storage budget
available depending on the application and device the model is deployed on. For e.g., if the memory
budget available can store only upto 1000 features, K can be set flexibly depending on the number of
classes of interest. For ImageNet-C with 1000 classes, K can be set to 1.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C.3 ANALYSIS OF REDUCE LOSS COMPONENTS

We provide detailed results of Table 4 including all the five metrics in Table 10. Additionally, we
visualise the histograms of the scores st on using different combinations of the loss components of
ReDUCe Loss in the Figures 5, 6, justifying their role in better discrimination of samples from Cd

and Cu.

Table 10: Detailed performance metrics analysing the ReDUCE Loss components.

LRe LD LU
CIFAR-10C/MNIST ImageNet-R/MNIST

AUC FPR AccD AccU AccHM AUC FPR AccD AccU AccHM

✗ ✗ ✗ 91.91 85.04 60.82 99.77 75.57 91.27 91.09 55.67 99.90 71.50
✓ ✗ ✗ 95.29 30.82 68.36 99.30 80.97 81.07 99.02 48.42 95.76 64.32
✗ ✓ ✗ 95.23 28.91 66.93 98.52 79.71 87.73 94.67 51.13 98.34 67.28
✗ ✗ ✓ 98.61 12.73 66.60 99.68 79.84 99.39 4.81 67.81 99.99 80.82
✗ ✓ ✓ 99.27 4.15 67.76 99.73 80.69 99.48 4.40 69.38 99.98 81.92
✓ ✓ ✓ 99.10 7.63 72.81 99.74 84.17 99.44 4.29 71.73 99.98 83.53
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Figure 5: Histograms of Cd and Cu class scores for ZS-Eval and on using different loss components
of the proposed ReDUCe loss on CIFAR-10C/MNIST dataset with CLIP.
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Figure 6: Histograms of Cd and Cu class scores for ZS-Eval and on using different loss components
of the proposed ReDUCe loss on ImageNet-R/MNIST dataset with CLIP.

From Figure 5 and 6, we observe that, on using just LRe, the scores of Cd and Cu classes still
sufficiently overlap, similar to the case of ZSEval. The performance purely depends on the quality
of pseudo labels of the detected reliable desired class samples. In CIFAR-10C, as there are only 10
classes and given that ZSEval performance in CIFAR-10C is fairly good, it ensures good quality
pseudo labels, hence resulting in overall better metrics on even using LRe as shown in Table 10.
ImageNet-R dataset inherently has more confusion as it is a 200-way classification problem. This
naturally could result in lower quality pseudo labels, in turn degrading the performance compared
to ZSEval. Alongside, using LRe for desired class samples which are misclassified as undesired
class samples increases the FPR and results in a decrease in metrics overall compared to ZSEval. On
the other hand, using LD and LU separates the scores st of samples from Cd and Cu, resulting in
two distinct peaks as seen in Figure 5 and 6, which in turn results in a significantly low FPR as
reported in Table 10. Hence, the best results (Table 10) are obtained using the proposed ReDUCe loss
where all the loss componenents aid each other to better discriminate the desired classes Cd from Cu

(measured by AUC, FPR) and also improving the Cd-way accuracy (AccD) on desired classes.
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C.4 COMPARISON OF DIFFERENT Cd VS Cu CLASS IDENTIFIERS FOR OPEN-SET TTA

To study the role of the Cd vs Cu class identifiers in Open-set Single Image TTA, we experiment
with three class identifiers, on five datasets as Dd with MNIST as Du using CLIP backbone.

(1) Simple thresholding: We set fixed thresholds τu, τd to identify reliable samples from Cd and
Cu classes respectively and τt to distinguish between Cd and Cu samples. We combine this class
identifier with the ReDUCe loss of the proposed ROSITA framework.

(2) Distribution Aware Filter (DAF) Gao et al. (2024) : We adopt the Distribution Aware Filter
proposed in UniEnt Gao et al. (2024), a very recent method on open-set TTA using CNNs, where they
model the scores st (similarity between image feature and source prototype) as a Gaussian Mixture
Model for each batch. In our case, as we do single image TTA, we use a score bank as described in
Section 2.4 as a proxy for the batch of samples, to estimate the parameters of the GMM. As it is a
2-component GMM, we identify a sample as a desired class sample if the probability π(xt) of the
sample belonging to the desired classes(component with higher mean estimated) is greater than 0.5
or vice versa. The GMM based class identifier is defined as follows:

ŷ

{
∈ Cd if π(xt) ≥ 0.5
∈ Cu if π(xt) < 0.5

(15)

We combine this class identifier with the Unified entropy objective and ReDUCe loss proposed by
UniEnt Gao et al. (2024) and our proposed ROSITA framework respectively.

(2) Linear Discriminant Analysis (LDA) based Li et al. (2023) : As described in Section 2.4, we
set τd to µd and τu to µu to identify reliable Cd and Cu samples to perform TTA. We set τt to µu to
distinguish between Cd and Cu samples. The thresholds are estimated in an online manner using the
score bank S. The LDA based class identifier is defined as follows:

ŷ

{
∈ Cd if st ≥ τ∗t
∈ Cu if st < τ∗t

(16)

We combine this class identifier with the Unified entropy objective and ReDUCe loss proposed by
UniEnt Gao et al. (2024) and our proposed ROSITA framework respectively. The three thresholds
for ReDUCe loss in Table 11 correspond to τu/τt/τd where τu and τd is used to identify reliable
test samples and τt is used to distinguish between Cd and Cu samples. In the case of DAF with
ReDUCe loss, we use the means µ∗

d and µ∗ for the two gaussian mixture components to identify
reliable samples.

Table 11: Comparison of Cd vs Cu class identifiers: MSP vs LDA vs (Distribution Aware Filter) DAF.
The three thresholds for ReDUCe loss correspond to τu/τt/τd where τu and τd is used to identify
reliable test samples and τt is used to distinguish between Cd and Cu samples. In the case of DAF
with ReDUCe loss, we use the estimated means µ∗

d and µ∗ of the two gaussian mixture components
to identify reliable samples.

Cd vs Cs Threshold Test-time Du: MNIST
objective C-10C C-100C IN-C IN-R VisDA

MSP
0.4/0.6/0.8

ReDUCe
43.44 34.42 1.20 77.12 88.49

0.3/0.5/0.7 33.70 32.60 1.74 80.29 50.87
0.5/0.5/0.5 22.82 37.41 1.91 30.90 32.31

LDA st > τt UniEnt 75.62 48.31 41.53 71.73 78.09
DAF π(xt) > 0.5 79.43 50.12 46.52 79.30 86.79

LDA µu/τt/µd ReDUCe 84.17 57.34 48.53 83.53 90.64
DAF µ∗

u/0.5/µ
∗
d 83.56 55.37 48.33 83.32 90.97

Our key observations based on the results in Table 11 are as follows:

Fixed vs Dynamic Thresholds: The performance of both, DAF and LDA based class identifier
is significantly better than the simple thresholding case on adaptation using ReDUCe loss. The
thresholds estimated in an online manner using the score bank S are more reliable than fixed
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thresholds. The DAF and LDA based class identifier is able to better discriminate between Cd and
Cu samples, resulting in better performance.

UniEnt vs ReDUCe loss: The performance on using ReDUCe loss (with either DAF or LDA class
identifier) is significantly better than using the Unified entropy objective proposed in UniEnt Gao
et al. (2024). The ReDUCe loss components aid each other to better discriminate the desired classes
Cd from Cu (measured by AUC, FPR) and also improving the Cd-way accuracy (AccD) on desired
classes.

LDA vs DAF with ReDUCe loss: The performance of LDA and DAF based class identifier perform
very similarly when used in combination with ReDUCe loss. This suggests that ReDUCe loss in
ROSITA is robust to the choice of a dynamically updating class identifier.

Why is ReDUCe loss better than Unified entropy objective for Open-set TTA of VLMs?

• Both LDA Li et al. (2023) and DAF Gao et al. (2024) were proposed for CNN based open-set
TTA where a source model is trained on say clean data and is adapted to new domains,
with the observation that the feature-prototype similarity scores st can distinguish desired
and undesired class samples. In the case of VLMs, the source model is trained on a large
scale dataset and is adapted to potentially unseen/corrupted/covariate-shifted data. The
prior that the feature-prototype similarity scores st can distinguish desired and undesired
class samples does not translate to VLMs as the scores overlap significantly, as observed in
ZSEval histogram plots in Figures 3 5 6.

• In the case of CNNs, where the the initial scores are well separated and model has access
to a batch of test samples at a time, UniEnt leverages this to further aid the separation
of desired and undesired class samples in the batch through the UniEnt objective. In the
case of VLMs, the scores are not well separated initially. This results in the means µd and
µu in the case of LDA to be very close leading to misclassification of Cd and Cu class
samples using the estimated threshold τt. Similarly, in the case of DAF, the two components
of GMM would not be very distinctive to well distinguish desired and undesired class
samples. This misclassification can result in entropy minimization being applied on Cu

samples and entropy maximization on Cd samples, which is undesirable. Employing UniEnt
objective with several misclassified samples may not actually separate desired and undesired
classes, as also empirically observed in Tables 1 2 3 (UniEnt has high FPR rate in general).
Entropy maximization of Cu samples does not explicitly enforce the separation of desired
and undesired class samples in the feature space.

• The LD and LU loss components of ReDUCe loss explicitly enforce the separation desired
and undesired class samples in the common VL latent space, while the LRe loss aims to only
align the desired class samples to align with the text prototypes. With time, the model is
adapted such that undesired class samples are away from the desired class samples and also
the text prototypes. This ReDUCe loss addresses the challenges in single image open-set
TTA in a holistic manner, resulting in better performance.

• On adopting UniEnt objective to single-image TTA, either entropy minimization or max-
imization loss would be active based on whether a test sample is identified as desired or
undesired class sample, which is a limitation, as the objective cannot enforce distinction
between the two types of features.

• In the case of CNNs, where the the initial scores are well separated and model has access
to a batch of test samples at a time, UniEnt leverages this to further aid the separation of
desired and undesired class samples in the batch through the UniEnt objective. In the case of
VLMs, the scores are not well separated initially, hence the ReDUCe loss components (with
the help of feature banks) is the driving force to better separate the desired and undesired
class samples in the common latent space, resulting in lower FPR rates as a consequence.

C.5 NEED FOR RELIABLE SAMPLES

To understand the role of selecting reliable samples for TTA, we do a simple experiment where we
only use the threshold τt to distinguish between Cd and Cu samples. For all the samples with st > τt
identified to belong to Cd, we perform TTA using LRe + LD (Equation 5). Similarly, we use LU

( Equation 6) for all samples identified to belong to Cu based on the criterion st < τt. From the
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Table 12: Performance of ROSITA using all samples vs only reliable samples for TTA.

Thresholds Du: MNIST
τu/τt/τd C-10C C-100C IN-C IN-R VisDA

τt/τt/τt 84.99 55.16 44.05 83.28 91.24
µu/τt/µd 84.17 57.34 48.53 83.53 90.64

results in Table 12, we see that, for CIFAR-10C and VisDA, this case performs slightly better than our
case(last row in Table 12) where TTA is performed only on reliable samples. CIFAR-10C and VisDA
dataset have 10 and 12 classes of interest respectively. The zero shot performance of these datasets
being good, as the class confusion is less, using all samples for TTA can be helpful. On the other
hand, the classification in CIFAR-100C, ImageNet-C and ImageNet-R is harder, due the inherent
confusion arising due to the large number of classes. Using non reliable test samples, with scores
in the range µu < st < µd can adversely affect the adaptation process. Hence, using only reliable
samples for TTA performs better for these datasets as seen in Table 12). In a real world test time
adaptation scenario, where we have no prior information about the difficulty of the classification task,
in terms of severity of domain shift and class confusion, it is desirable to only use reliable samples
for model updates.

C.6 PERFORMANCE OF ROSITA WITH TIME

We plot the scores st of samples from Cd and Cu, and the best threshold τt, with time in Figure 7a on
using ROSITA. We observe that the scores st for Cd and Cu samples become distinctive with time and
the threshold estimated τt continuously tracks the changes in the scores st. Better discrimination of
Cd and Cu samples aids the test time adaption process in ROSITA, resulting in a gradual improvement
in the accuracy metrics as shown in Figure 7b. The metrics in Figure 7b are calculated based on the
test samples seen until time t.

(a) scores (b) Accuracy metrics

Figure 7: Analysis of ROSITA on CIFAR-10C/MNIST: (a) Change in the scores of samples
from Cd and Cu classes, the best threshold τt (based on LDA) with time t; (b) Accuracy met-
rics AccD, AccU , AccHM measured for samples seen until time t. We see that the samples from Cd

and Cu separate better with time. The accuracy metrics also improve with time.

Unstable performance in the initial phase of TTA: For the initial test samples (t < 2500), the
scores of Cd and Cu samples overlap significantly(Figure 7a). The performance would be similar to
the ZSEval(scores overlap at the beginning as the threshold identified τt classifies most Cu samples
accurately (AccS is almost 100%), but misclassifies several desired class samples as Cu (Figure
7b). A sample is predicted as one of the Cd desired classes only if st > τt. As several desired
class samples are misclassified in this initial phase, this naturally leads to low Cd-way classification
accuracy(AccD) justifying the initial performance drop in Figure 7b. With time, as the model
is updated with the proposed ReDUCe loss function, it better distinguishes Cd and Cu samples,
separating their scores. For t > 2500, the model starts to accurately classify into Cd or Cu, which in
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turn results in gradual improvement of AccD and AccHM consequently. The instability (in the range
t < 1500) can be attributed due to this initial learning process and also that the accuracy is measured
on very less number of samples. In this case, as we are looking at single image TTA, the number of
samples seen till time t is also t on which the accuracy metrics are measured and plotted, hence the
oscillating nature, especially in the very early stages (say t < 500).

C.7 EXTENSIVE PRELIMINARY ANALYSIS

Our initial experiments showed that updating LayerNorm parameters with simple entropy objective
can effectively improve closed-set TTA performance. We illustrate this in Section 2.3 on CIFAR-
10C dataset. Further, to justify our choice of updating LayerNorm parameters, we present the
detailed experiments we conducted based on the following choices: (a) Learnable parameters: (1)
Prompts, (2) Full network, (3) First Attention Block of ViT, (4) Last Attention Block of ViT (5)
Prompts+LayerNorm(LN), (6) LayerNorm parameters (Zhao et al., 2023) (b) Datasets: In addition to
CIFAR-10C (Section 2.3), we experiment with ImageNet-R, a relatively large scale dataset consisting
of 30,000 images from 200 classes. (c) Optimizer: Along with SGD, we experiment with AdamW
optimizer also used in [1], with varying learning rates on both CIFAR-10C and ImageNet-R dataset.
We consistently observe that LayerNorm parameters is in general, a good choice to update the model.

Table 13: Accuracy on updating different parameter groups on CIFAR-10C and ImageNet-R datasets.

Optimizer Parameters CIFAR-10C ImageNet-R

1e−6 1e−5 1e−4 1e−3 1e−2 1e−6 1e−5 1e−4 1e−3 1e−2

SGD

Prompts 73.40 31.04 12.53 11.18 10.19 73.97 74.17 74.71 25.68 10.63
Full 10.48 10.44 9.99 10.00 10.01 14.18 7.19 0.65 0.65 0.42

First Block 75.1 76.12 78.27 13.07 10.01 73.84 74.31 74.91 8.76 0.32
Last Block 73.45 72.42 59.44 10.17 10.02 75.95 77.93 24.82 0.52 0.67

Prompts+LN 73.82 46.77 24.71 10.24 10.18 73.76 75.09 76.35 28.72 11.74

LayerNorm 74.35 76.61 80.41 84.58 11.69 74.13 74.35 75.23 76.92 33.07

AdamW

Prompts 72.40 18.6 12.83 10.04 10.08 74.4 75.17 27.93 6.82 4.37
Full 10.32 10.03 10.00 10.00 9.97 14.83 0.95 0.28 0.52 0.66

First Block 79.05 24.70 10.84 10.00 10.00 74.6 74.8 5.68 0.26 0.15
Last Block 59.23 10.84 10.49 10.00 10.01 77.44 10.67 0.51 0.25 0.33

Prompts+LN 75.01 72.10 21.92 13.33 10.01 74.52 76.45 12.99 8.87 5.55

LayerNorm 76.10 81.57 85.9 85.27 10.03 73.96 75.64 78.28 78.81 31.47

C.8 COMPLEXITY ANALYSIS
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Figure 8: Complexity Analysis of different meth-
ods using CLIP backbone.

In Figure 8 and 9, we plot the GPU mem-
ory required and the time taken(secs/image) for
TTA on each dataset using CLIP and MaPLe
backbone respectively. The GPU memory and
time taken scales with the number of classes for
the prompt tuning baseline TPT. However, in
ROSITA, the computational complexity is com-
parable to the ZS-Eval case. The text classifiers
are obtained once and kept fixed throughout the
adaptation process as in ZS-Eval. In ROSITA,
we perform a forward pass of the image and its
augmentation and one backward pass if a sample
is categorized as reliable Cd or Cu sample.

For CLIP backbone, for ImageNet-C dataset
with 1000 classes, ZSEval, TPT, TDA and
ROSITA require 5.71 GB, 23.24 GB, 5.71 GB
and 5.73 GB GPU memory to perform a single image based model update.
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Figure 9: Complexity Analysis of different meth-
ods using MaPLe backbone.

For MaPLe backbone, for ImageNet-C dataset
with 1000 classes, ZSEval, PAlign and ROSITA
require 5.94 GB, 29.12 GB and 5.98 GB GPU
memory to perform a single image based model
update. This makes the use of PAlign imprac-
tical and expensive for real time deployment in
test scenarios, making it especially hard to port
it on edge devices. The time taken to process
a single image is 0.008s, 0.232s and 0.036s us-
ing ZSEval, PAlign and ROSITA respectively.
Hence, ROSITA is computationally very effi-
cient, similar to that of ZSEval.

This shows that ROSITA achieves the best trade
off between memory and time complexity, being
at par with ZSEval in terms of computational
requirements while significantly outperforming ZSEval and the prompt tuning methods TPT and
PAlign.

Memory buffer: Prior prompt tuning methods like TPT Shu et al. (2022), Samadh et al. (2023)
do not require any memory buffer. TDA Karmanov et al. (2024) requires a memory buffer of size
(|Cd|×(3+2))×F to store 3 features per desired class in the positive cache and 2 features per class in
the negative cache. DPE Zhang et al. (2024) requires a memory buffer of size (|Cd| × 3)×F to store
3 features per desired class. ROSITA requires a memory buffer of size (|Cd| × 5+ 64)×F to store 5
features per desired class and 64 features for the undesired classes. Here, F is the feature dimension.
TDA, DPE and ROSITA are all memory efficient, requiring only about 10MB of additional memory
even for a hard dataset like ImageNet-C with 1000 desired classes. However, ROSITA makes best use
of the buffer, storing desired sample features for retrieving positive neighbours and undesired sample
features for retrieving negative neighbours, which in turn results in better performance compared to
TDA and DPE as observed in Tables 1 2 3.

C.9 PERFORMANCE OF ROSITA ON LARGE VISION LANGUAGE BACKBONES

Here, in addition to CLIP ViT-B/16 Radford et al. (2021) and MAPLE Khattak et al. (2023) backbones,
we perform experiments using large-scale Vision language backbones including CLIP ViT-L/14 by
OpenAI Radford et al. (2021) and Open-CLIP ViT-L/14 Cherti et al. (2023) with CIFAR-10C/100C
as Dd and MNIST, SVHN, Tiny-ImageNet and CIFAR-100C/10C as Du. From Table 14, we observe
that ROSITA consistently outperforms even very recent baselines like TDA Karmanov et al. (2024),
suggesting that the performance of ROSITA is agnostic to the choice of VL backbone.

Table 14: Comparison of ROSITA with prior methods on large scale Vision Language backbones.

VL Backbone Method CIFAR-10C CIFAR-100C

MNIST SVHN Tiny C-100C MNIST SVHN Tiny C-10C

ZSEval 83.94 74.54 80.16 72.32 56.29 52.35 53.25 49.89
CLIP (K+1)PC 85.43 80.60 81.65 71.90 64.14 55.18 54.53 47.90

ViT-L/14 TDA 84.91 76.87 81.07 74.23 59.11 55.25 55.44 52.48

ROSITA 89.46 83.42 83.61 75.63 65.41 60.31 57.55 54.66
ZSEval 80.64 76.90 84.10 75.40 62.96 59.38 61.10 59.57

Open-CLIP (K+1)PC 85.84 82.42 84.99 75.70 70.14 63.36 60.56 59.43
ViT-L/14 TDA 80.57 77.92 84.60 75.79 64.90 60.70 62.01 61.20

ROSITA 89.04 82.98 85.55 76.62 70.54 63.84 62.57 61.84
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D ADDITIONAL EXPERIMENTS

In addition to the results presented in the main paper, we perform additional experiments supporting
the claims made and for more comprehensive understanding of the analysis presented in Section 5.

D.1 EXPERIMENTS USING DIFFERENT CORRUPTION TYPES

To evaluate the robustness of our method across different domains, we do additional experiments
with impulse noise , motion blur and jpeg compression corruptions from the corruption categories
per-pixel noise, blurring and digital transforms respectively and report the results here. From Table 15,
Table 16 and Table 17, we observe that ROSITA either outperforms or at par with prior methods in
most cases even on using the same set of hyperparameters. This demonstrates its robustness across a
variety of corruption types.

Table 15: Results on CIFAR-10C/100C (Impulse Noise) as Dd with other Du.

Method MNIST SVHN Tiny-ImageNet CIFAR-100C/10-C

AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑
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ZS-Eval 86.34 97.77 57.67 84.40 79.43 56.80 88.97 31.86 61.11 78.61 67.88 54.40
TPT 86.35 97.83 59.80 84.43 79.52 58.97 88.96 31.99 64.48 78.60 68.24 56.38

TPT-C 62.34 87.66 39.90 59.71 83.29 35.42 81.30 38.59 37.02 66.22 89.92 30.86

ROSITA 98.87 9.43 71.31 82.85 56.82 61.03 93.36 21.47 64.47 78.69 69.45 57.87

M
A

PL
E ZS-Eval 91.10 76.09 64.01 92.98 45.28 63.66 83.77 44.44 60.93 79.22 65.26 57.49

PAlign 91.10 76.01 65.76 93.00 45.13 65.28 83.78 44.42 62.75 79.22 65.24 58.80
PAlign-C 92.43 63.39 63.61 92.92 45.86 64.50 83.36 45.74 60.83 79.30 64.47 57.00

ROSITA 98.80 6.10 71.79 95.39 28.06 72.13 84.92 45.35 65.30 80.49 65.57 61.63
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IP

ZS-Eval 70.48 99.17 25.08 51.12 96.44 25.69 59.90 67.18 27.72 53.51 94.97 25.16
TPT 70.56 99.17 25.26 51.21 96.38 26.26 59.91 67.09 28.36 53.53 94.94 25.63

TPT-C 57.65 93.07 8.71 79.28 57.07 2.74 90.40 22.60 5.71 50.26 95.34 3.26

ROSITA 36.47 99.96 20.98 24.17 99.77 18.99 53.57 79.85 26.27 58.02 94.15 29.75

M
A

PL
E ZS-Eval 69.29 89.49 33.66 81.03 73.94 34.99 49.57 84.71 26.09 57.84 94.44 29.34

PAlign 69.31 89.54 33.74 81.05 73.98 34.96 49.60 84.63 25.81 57.84 94.48 29.53
PAlign-C 71.14 73.63 34.38 82.08 68.24 35.11 47.27 87.87 25.95 57.79 93.54 30.73

ROSITA 95.38 8.80 43.06 80.25 41.21 34.88 42.77 97.15 19.70 49.73 96.72 12.62

Table 16: Results on CIFAR-10C/100C(Motion blur) as Dd with other Du.

Method MNIST SVHN Tiny-ImageNet CIFAR-100C/10-C

AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑

C
-1

0C
(M

ot
io

n
bl

ur
)

C
L

IP

ZS-Eval 97.73 2.75 73.69 96.40 18.34 73.82 95.25 15.75 74.27 79.57 70.08 62.86
TPT 97.72 2.68 74.15 96.39 18.16 74.42 95.23 15.72 75.03 79.56 69.86 63.25

TPT-C 80.73 86.28 63.74 62.09 62.52 42.19 80.76 51.66 48.04 55.66 97.04 37.53

ROSITA 99.90 0.04 81.87 96.50 21.55 77.47 96.58 13.65 77.44 82.03 65.95 66.96

M
A

PL
E ZS-Eval 96.52 18.33 78.68 97.08 14.78 78.15 88.45 33.15 71.19 84.00 57.94 66.93

PAlign 96.51 18.37 78.92 97.08 14.82 78.38 88.45 33.13 71.73 83.99 57.99 67.15
PAlign-C 97.17 13.47 78.49 96.89 15.87 78.09 88.80 32.94 72.09 84.29 56.80 67.40

ROSITA 98.49 10.01 83.26 92.61 44.87 78.93 87.48 38.23 73.24 84.27 57.60 70.67

C
-1

00
C

(M
ot

io
n

bl
ur

)

C
L

IP

ZS-Eval 93.08 58.92 48.17 83.63 81.33 46.04 79.34 53.56 48.53 64.03 91.54 41.63
TPT 93.06 59.87 48.18 83.61 81.56 45.54 79.29 53.76 48.26 64.02 91.63 41.25

TPT-C 66.77 98.77 19.96 29.69 99.94 11.39 69.25 62.87 17.10 53.22 94.57 13.59

ROSITA 98.93 6.79 55.49 89.39 37.86 48.50 90.20 31.61 55.05 65.30 91.59 42.54

M
A

PL
E ZS-Eval 81.21 80.28 45.66 89.04 60.73 46.98 60.84 80.63 40.60 64.01 90.18 42.30

PAlign 81.20 80.52 44.52 89.03 61.01 45.76 60.84 80.64 40.03 64.01 90.26 41.26
PAlign-C 82.72 68.08 49.92 90.48 53.83 51.87 62.00 82.85 41.66 64.47 89.05 43.58

ROSITA 97.12 7.78 57.30 85.13 56.16 49.89 63.85 80.20 42.65 62.55 94.62 41.54

D.2 EXPERIMENTS USING CLIP VIT-B32 AND CLIP RESNET50 ARCHITECTURES

To test the performance of ROSITA and prior methods across different architectures, we perform
additional experiments using CLIP ViT-B/32 and CLIP ResNet50 models. In CLIP ResNet50 model,
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Table 17: Results on CIFAR-10C/100C(JPEG Compression) as Dd with other Du.

Method MNIST SVHN Tiny-ImageNet CIFAR-100C/10-C

AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑
C

-1
0C

(J
PE

G
) C
L

IP
ZS-Eval 68.16 100.00 53.92 67.04 99.93 55.69 79.44 65.02 59.66 73.65 85.60 56.30

TPT 68.07 100.00 54.16 66.97 99.93 56.06 79.37 65.11 60.09 73.64 85.58 56.87
TPT-C 68.28 99.37 53.12 54.76 98.97 35.64 66.70 72.20 39.02 59.82 94.78 32.78

ROSITA 81.83 58.81 60.34 82.85 61.38 61.87 95.06 15.84 67.87 71.19 86.62 51.98

M
A

PL
E ZS-Eval 95.15 33.39 69.72 95.96 22.02 69.73 86.64 36.79 65.68 79.26 68.19 60.10

PAlign 95.13 33.57 69.62 95.95 22.01 69.31 86.63 36.82 65.62 79.26 68.18 59.86
PAlign-C 96.53 20.14 70.50 95.94 21.51 70.01 87.38 35.07 66.42 79.85 66.17 61.11

ROSITA 99.28 5.71 76.74 95.54 29.06 72.86 89.88 31.12 68.78 80.69 61.64 62.23

C
IF

A
R

-1
00

C
(J

PE
G

)

C
L

IP

ZS-Eval 50.88 100.00 32.27 39.25 100.00 26.41 48.65 95.60 29.92 53.51 95.59 32.48
TPT 50.78 100.00 32.38 39.18 100.00 26.48 48.55 95.60 29.86 53.49 95.57 32.70

TPT-C 12.11 100.00 3.32 10.05 99.98 2.45 63.07 90.01 9.49 52.23 95.05 6.33

ROSITA 29.10 100.00 22.83 35.58 99.94 23.50 50.76 94.76 31.64 53.96 96.18 30.39

M
A

PL
E ZS-Eval 78.86 80.60 37.60 87.72 61.14 39.18 58.31 80.75 34.03 54.50 95.49 34.02

PAlign 78.82 80.92 36.62 87.69 61.37 38.01 58.29 80.79 33.17 54.49 95.52 32.96
PAlign-C 81.85 63.37 40.87 89.96 49.09 41.89 59.33 81.48 33.84 53.82 95.17 33.28

ROSITA 97.68 7.87 46.51 92.14 34.44 42.71 66.63 75.00 37.43 51.33 96.68 25.41

we finetune the BatchNorm parameters instead of LayerNorm. We observe that the performance
improvement of ROSITA with respect to the baselines is agnostic to the model architecture of the
VLM.

Table 18: Results on CIFAR-10C/100C as Dd with four other Du datasets.

Method MNIST SVHN Tiny-ImageNet CIFAR-100C/10-C

AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑

C
IF

A
R

-1
0C

V
iT

-B
/3

2 ZS-Eval 96.58 18.94 73.20 92.01 43.95 71.35 91.55 24.72 72.19 79.27 69.32 64.06
TPT 96.55 19.44 73.96 91.97 44.31 71.96 91.54 24.81 73.61 79.25 69.48 64.59

TPT-C 63.79 99.97 50.48 55.96 99.30 40.63 78.71 52.30 43.31 57.83 93.11 42.47

ROSITA 99.14 3.84 81.65 93.78 33.45 75.18 98.86 4.14 80.91 80.28 64.17 64.34

R
N

50

ZS-Eval 36.73 100.00 31.49 59.79 99.07 41.01 84.64 36.21 54.61 67.63 87.30 45.19
TPT 37.26 100.00 32.18 60.25 99.03 41.95 84.76 36.07 56.41 67.62 87.37 45.98

TPT-C 14.06 98.57 5.46 36.98 93.76 19.11 73.60 62.60 22.87 51.23 91.64 19.69

ROSITA 62.45 99.87 47.63 96.30 23.90 65.52 96.51 11.03 59.34 68.30 83.64 49.11

C
IF

A
R

-1
00

C

V
iT

-B
/3

2 ZS-Eval 89.17 61.01 46.11 78.17 79.92 44.59 72.58 61.21 45.65 64.29 90.53 41.44
TPT 89.08 61.15 45.99 78.06 80.11 44.78 72.57 61.24 46.25 64.31 90.47 41.65

TPT-C 61.66 99.96 17.97 30.50 89.96 11.55 83.18 82.01 11.79 53.52 92.74 9.34

ROSITA 94.34 23.99 57.14 90.26 45.33 51.60 91.22 30.17 56.02 68.33 86.03 44.57

R
N

50

ZS-Eval 23.47 100.00 14.27 37.73 99.91 20.84 65.59 61.52 27.77 54.28 94.77 22.18
TPT 23.88 100.00 14.17 38.18 99.91 20.49 65.80 61.22 27.39 54.30 94.82 21.81

TPT-C 24.35 97.90 2.32 13.57 99.96 2.44 83.84 44.88 4.17 53.54 95.29 3.84

ROSITA 23.73 100.00 15.27 66.59 73.78 28.34 73.04 60.32 26.57 54.30 93.50 23.52

Table 19: Results with ImageNet-R/C as Dd with MNIST and SVHN as Du.

Method IN-C/MNIST IN-C/SVHN IN-R/MNIST IN-R/SVHN

AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑

V
iT

-B
/3

2 ZS-Eval 89.17 61.01 46.11 78.17 79.92 44.59 72.58 61.21 45.65 64.29 90.53 41.44
TPT 89.08 61.15 45.99 78.06 80.11 44.78 72.57 61.24 46.25 64.31 90.47 41.65

TPT-C 61.66 99.96 17.97 30.50 89.96 11.55 83.18 82.01 11.79 53.52 92.74 9.34

ROSITA 94.34 23.99 57.14 90.26 45.33 51.60 91.22 30.17 56.02 68.33 86.03 44.57

R
N

50

ZS-Eval 91.15 61.44 17.56 92.37 43.01 19.23 87.39 98.23 57.87 92.34 55.18 60.40
TPT 91.69 58.09 18.18 92.74 40.72 20.21 87.50 98.16 58.68 92.39 54.97 61.41

TPT-C 95.00 10.45 1.74 29.09 99.98 1.31 71.95 97.61 37.79 75.25 78.47 41.85

ROSITA 99.60 1.26 22.58 98.91 4.96 23.03 99.55 2.77 69.46 99.67 1.81 70.53
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Table 20: Results with VisDA as Dd with MNIST and SVHN as Du datasets.

Method VisDA/MNIST VisDA/SVHN

AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑

V
iT

-B
/3

2 ZS-Eval 89.10 95.57 73.85 85.54 80.62 71.93
TPT 89.06 95.61 74.05 85.49 80.72 72.11

TPT-C 66.98 99.75 62.89 17.01 99.83 13.62

ROSITA 99.17 4.50 87.83 97.35 16.56 84.89
R

N
50

ZS-Eval 67.19 100.00 61.47 81.59 97.46 68.41
TPT 67.28 100.00 61.60 81.60 97.43 68.62

TPT-C 6.24 100.00 5.55 10.72 100.00 15.79

ROSITA 78.57 99.96 66.89 98.44 8.06 79.87

D.3 OPEN SET SINGLE IMAGE CTTA EXPERIMENTS

Here, we report the detailed corruption-wise results presented in Table 5. In addition, we evaluate
the performance of ROSITA in comparison with prior methods more extensively here. We present
the 15 corruptions of CIFAR-10C sequentially as Dd, one sample at a time along with different
datasets for Cu samples, namely MNIST, SVHN, Tiny ImageNet, CIFAR-100C and report the results
in Table 21. We observe that the improvement in performance of ROSITA is agnostic to model
architecture, challenging scenarios including different combinations of Dd (continuously changing
domains) and Du datasets.

Table 21: Results on Openworld Single Image Continuous Test Time Adaptation(CTTA) for CIFAR-
10C (15 corruptions shown sequentially) as Dd with other Du datasets.

Method ga
us

si
an

sh
ot

im
pu

ls
e

de
fo

cu
s

gl
as

s

m
ot

io
n

zo
om

sn
ow

fr
os

t

fo
g

br
ig

ht
ne

ss

co
nt

ra
st

el
as

tic

pi
xe

la
te

jp
eg

Mean

C
IF

A
R

-1
0C

/M
N

IS
T

C
L

IP

ZS-Eval 43.21 47.74 57.68 75.43 38.56 73.91 76.94 75.56 79.38 74.36 84.88 67.36 55.61 60.56 53.82 64.33
TPT 43.15 47.66 57.70 75.36 38.22 73.70 76.84 75.49 79.32 74.80 84.82 67.46 55.50 60.40 53.48 64.26
TPT-C 30.06 25.92 31.05 52.71 20.88 45.97 53.08 21.61 26.83 38.80 38.88 37.40 33.83 35.26 3.53 33.05

ROSITA 43.35 48.21 57.04 78.01 43.29 77.48 80.16 76.84 80.15 76.26 86.33 73.44 60.35 61.55 60.38 66.86

M
A

PL
E ZS-Eval 42.33 44.71 64.00 78.78 45.90 78.69 81.12 82.56 84.79 78.13 88.87 67.94 63.87 51.63 69.77 68.21

PAlign 42.95 44.22 64.85 77.36 44.70 78.44 80.16 82.46 83.47 77.25 88.29 65.49 64.34 51.73 67.53 67.55
PAlign-C 42.97 45.32 63.98 78.79 48.07 78.42 81.09 83.88 85.21 77.38 89.09 69.90 66.22 56.59 70.01 69.13

ROSITA 43.51 49.92 64.87 78.98 54.56 80.58 84.04 87.27 89.09 84.11 93.02 78.60 74.02 71.64 75.30 73.97

C
IF

A
R

-1
0C

/S
V

H
N

C
L

IP

ZS-Eval 42.86 47.15 56.79 75.11 41.57 74.03 76.65 74.07 77.73 73.66 83.01 68.03 54.80 59.66 55.58 64.05
TPT 42.82 47.10 56.82 74.98 41.49 73.88 76.64 74.05 77.67 73.93 82.95 68.32 54.70 59.60 55.51 64.03
TPT-C 37.26 34.53 39.45 62.23 30.72 55.30 62.65 45.74 47.70 50.35 55.42 57.01 43.26 45.32 29.64 46.44

ROSITA 43.08 47.99 57.62 76.73 42.35 74.99 78.59 76.34 78.54 72.00 83.58 68.93 60.21 60.08 57.86 65.26

M
A

PL
E ZS-Eval 45.34 50.19 63.65 78.24 52.00 78.13 80.62 83.57 85.00 77.77 88.80 67.55 63.51 55.23 69.73 69.29

PAlign 45.74 50.29 64.35 76.99 51.50 77.97 79.89 83.16 83.63 76.89 88.47 65.56 64.10 55.91 67.70 68.81
PAlign-C 45.36 50.36 63.83 78.19 51.55 77.84 80.50 83.05 84.42 76.82 88.15 71.57 65.50 55.01 70.04 69.48

ROSITA 45.51 50.99 64.73 78.36 53.10 78.74 80.87 83.79 85.18 78.47 88.71 70.78 66.70 59.28 71.18 70.43

C
IF

A
R

-1
0C

/T
in

y

C
L

IP

ZS-Eval 49.41 52.96 61.09 76.40 49.23 74.28 77.36 74.49 77.39 73.92 81.34 70.26 60.29 59.40 59.67 66.50
TPT 49.43 52.97 61.07 76.41 49.13 74.27 77.36 74.63 77.43 74.05 81.49 70.14 60.16 59.28 59.66 66.50
TPT-C 49.64 51.56 59.10 74.35 47.37 66.65 71.56 60.46 62.19 63.91 69.60 63.85 55.65 52.31 42.58 59.38

ROSITA 49.64 53.56 61.64 77.02 50.23 76.09 79.22 78.05 79.34 76.84 84.55 73.65 65.87 58.86 68.76 68.89

M
A

PL
E ZS-Eval 44.18 47.30 60.94 71.71 49.99 71.18 73.40 76.15 76.76 71.56 80.22 64.44 61.51 55.67 65.69 64.71

PAlign 44.17 46.35 61.56 70.27 48.90 70.63 72.46 75.57 75.32 70.66 79.65 62.53 62.15 56.28 63.13 63.98
PAlign-C 44.38 48.00 61.09 72.15 49.94 72.06 74.47 76.10 77.67 72.13 80.51 66.68 61.75 55.69 66.51 65.28

ROSITA 44.29 47.93 61.59 72.35 51.11 72.20 74.47 76.34 77.45 72.89 80.82 66.70 62.81 57.72 67.00 65.71

C
IF

A
R

-1
0C

/C
IF

A
R

-1
00

C

C
L

IP

ZS-Eval 40.48 44.50 54.34 67.17 40.46 62.85 68.16 68.90 70.68 65.22 76.26 62.16 51.48 48.42 56.23 58.49
TPT 40.43 44.45 54.32 67.13 40.40 62.89 68.14 68.90 70.71 65.17 76.24 62.13 51.41 48.46 56.31 58.47
TPT-C 27.80 26.46 33.01 40.72 28.05 38.78 42.05 41.90 43.91 39.15 45.80 41.50 37.11 32.71 39.69 37.24

ROSITA 40.66 45.15 55.01 67.31 41.07 63.12 68.54 69.58 71.09 66.23 76.34 63.89 54.15 48.23 57.08 59.16

M
A

PL
E ZS-Eval 41.99 45.82 57.50 69.19 44.03 66.86 70.43 71.81 73.33 68.32 76.95 64.18 56.74 49.81 60.15 61.14

PAlign 41.93 45.16 57.81 68.04 42.44 66.54 69.56 71.35 71.78 67.46 76.70 62.17 56.98 49.86 58.22 60.40
PAlign-C 41.86 45.80 57.51 69.78 46.17 67.73 71.47 71.03 74.00 68.98 77.61 65.53 57.08 52.17 61.17 61.86

ROSITA 42.13 46.09 58.00 69.48 45.33 67.44 71.00 71.00 73.31 69.42 78.37 65.55 57.32 53.52 60.85 61.92
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E DETAILED EXPERIMENTAL RESULTS

Here, we report in detail all the metrics (Section 3), namely AUC, FPR, AccW , AccS , AccHM of the
main results presented in Table 1, Table 3.

Table 22: Detailed results using CIFAR-10C as Dd with MNIST and SVHN as Du.

Method CIFAR-10C/MNIST CIFAR-10C/SVHN

AUC FPR AccD AccU AccHM AUC FPR AccD AccU AccHM

C
L

IP

ZS-Eval 91.91 85.04 60.82 99.77 75.57 89.93 64.20 60.82 94.74 74.08
TPT 91.89 85.55 61.13 99.78 75.81 89.93 64.41 61.16 94.83 74.36

TPT-C 81.64 67.53 59.88 99.82 74.86 58.48 71.72 37.11 69.00 48.26

ROSITA 99.10 7.63 72.81 99.74 84.17 94.79 32.59 66.64 96.40 78.80

M
A

PL
E

ZS-Eval 98.48 3.77 72.08 99.60 83.63 98.34 7.86 73.08 97.58 83.57
TPT 98.15 5.67 69.04 99.64 81.56 98.34 7.89 71.78 97.63 82.73

TPT-C 98.56 3.74 71.87 99.64 83.51 98.32 8.18 72.76 97.87 83.47
PAlign 98.15 5.67 70.02 99.64 82.24 98.34 7.90 72.95 97.64 83.51

PAlign-C 98.56 3.74 71.84 99.65 83.49 98.32 8.13 78.71 97.89 83.46

ROSITA 99.34 5.22 78.02 99.93 87.63 97.80 13.15 73.49 98.49 84.17

Table 23: Detailed results using CIFAR-10C as Dd with Tiny ImageNet and CIFAR-100C as Du.

Method CIFAR-10C/Tiny CIFAR-10C/CIFAR-100C

AUC FPR AccD AccU AccHM AUC FPR AccD AccU AccHM

C
L

IP

ZS-Eval 91.33 27.07 70.55 79.20 74.63 82.57 67.92 60.81 79.45 68.89
TPT 91.31 27.23 71.55 79.17 75.17 82.57 68.06 61.15 79.61 69.17

TPT-C 74.08 61.45 37.65 73.89 49.88 61.45 94.30 34.54 69.31 46.10

ROSITA 96.43 12.10 74.81 86.11 80.06 82.99 62.89 66.63 72.75 69.56

M
A

PL
E

ZS-Eval 90.86 27.54 74.49 77.66 76.04 86.14 52.08 67.99 75.97 71.76
TPT 90.86 27.61 73.47 77.56 75.46 86.15 52.14 66.61 75.87 70.94

TPT-C 91.18 26.93 75.27 77.37 76.31 86.50 50.56 70.59 71.56 71.07
PAlign 90.86 27.60 74.49 77.53 75.98 86.15 52.18 67.65 75.85 71.52

PAlign-C 91.18 26.90 75.28 77.35 76.30 86.50 50.58 70.58 71.51 71.04

ROSITA 91.67 25.31 76.69 78.67 77.67 86.82 50.33 72.96 73.35 73.15

Table 24: Detailed results using ImageNet-C as Dd with MNIST and SVHN as Du.

Method ImageNet-C/MNIST ImageNet-C/SVHN

AUC FPR AccD AccU AccHM AUC FPR AccD AccU AccHM

C
L

IP

ZS-Eval 93.39 55.52 26.14 99.89 41.43 85.89 72.91 26.10 93.78 40.83
TPT 93.12 58.01 26.76 99.88 42.21 85.43 74.47 26.18 94.03 40.95

TPT-C 56.57 99.12 3.25 62.57 6.19 11.38 100.00 4.03 35.16 7.24

ROSITA 99.52 4.06 32.04 99.97 48.53 98.34 10.21 30.21 99.21 46.32

M
A

PL
E

ZS-Eval 81.49 92.95 26.60 96.40 41.70 83.26 71.15 28.06 89.81 42.77
TPT 81.38 93.17 25.17 96.33 39.92 83.18 71.52 26.50 89.93 40.93

TPT-C 83.25 87.60 27.55 95.96 42.81 83.18 70.60 28.28 88.49 42.86
PAlign 81.38 93.17 26.30 96.33 41.32 83.18 71.52 27.65 89.93 42.30

PAlign-C 71.22 86.32 16.78 70.89 27.14 32.17 94.32 10.36 30.29 15.44

ROSITA 99.56 1.66 34.50 99.92 51.30 98.68 5.09 34.05 98.95 50.67
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Table 25: Detailed results using CIFAR-100C as Dd with MNIST and SVHN as Du.

Method CIFAR-100C/MNIST CIFAR-100C/SVHN

AUC FPR AccD AccU AccHM AUC FPR AccD AccU AccHM

C
L

IP

ZS-Eval 77.78 99.93 32.05 98.68 48.39 64.70 98.68 32.05 80.55 45.85
TPT 77.76 99.94 32.00 98.72 48.33 64.71 98.63 32.00 80.85 45.85

TPT-C 51.57 100.00 17.51 59.31 27.04 9.40 99.98 3.62 13.90 5.74

ROSITA 96.07 19.28 40.63 97.41 57.34 82.09 64.64 32.59 92.32 48.17

M
A

PL
E

ZS-Eval 87.43 64.19 38.73 94.69 54.97 92.98 40.51 39.54 98.45 56.42
TPT 87.42 64.09 36.89 94.68 53.09 92.97 40.44 37.55 98.48 54.37

TPT-C 87.65 63.08 38.90 94.68 55.14 93.09 40.30 39.43 98.49 56.31
PAlign 87.42 64.11 37.75 94.68 53.98 92.97 40.48 38.51 98.48 55.37

PAlign-C 88.25 57.31 39.75 92.99 55.69 93.45 39.39 40.58 97.95 57.39

ROSITA 97.04 11.01 45.11 99.41 62.06 96.26 20.99 42.30 98.89 59.25

Table 26: Detailed results using CIFAR-100C as Dd with Tiny ImageNet and CIFAR-10C as Du.

Method CIFAR-100C/Tiny CIFAR-100C/CIFAR-10C

AUC FPR AccD AccU AccHM AUC FPR AccD AccU AccHM

C
L

IP

ZS-Eval 67.31 73.89 35.35 65.01 45.80 63.28 93.25 32.04 70.42 44.04
TPT 67.28 73.82 35.55 64.88 45.93 63.26 93.20 31.99 70.57 44.02

TPT-C 59.74 79.76 10.68 66.75 18.41 55.86 86.35 7.64 63.33 13.64

ROSITA 83.55 50.76 45.69 71.91 55.88 68.54 89.71 36.92 68.52 47.98

M
A

PL
E

ZS-Eval 68.80 74.35 38.44 64.74 48.24 66.93 87.94 33.45 73.94 46.06
TPT 68.80 74.20 36.88 64.65 46.97 66.93 87.95 31.75 73.71 44.38

TPT-C 68.85 74.71 38.84 64.67 48.53 66.97 87.94 34.01 72.48 46.30
PAlign 68.80 74.23 37.78 64.64 47.69 66.93 87.93 32.56 73.66 45.16

PAlign-C 68.76 78.12 37.31 67.87 48.15 66.82 87.80 35.72 68.74 47.01

ROSITA 70.37 77.00 37.62 68.97 48.68 69.57 83.61 38.03 68.09 48.80

Table 27: Detailed results using ImageNet-R as Dd with MNIST and SVHN as Du.

Method ImageNet-R/MNIST ImageNet-R/SVHN

AUC FPR AccD AccU AccHM AUC FPR AccD AccU AccHM

C
L

IP

ZS-Eval 91.27 91.09 55.67 99.90 71.50 90.43 75.04 56.36 98.38 71.66
TPT 91.25 91.23 56.26 99.90 71.98 90.43 74.98 57.22 98.40 72.36

TPT-C 82.81 85.79 51.86 99.78 68.25 80.94 80.03 54.88 93.55 69.18

ROSITA 99.44 4.29 71.73 99.99 83.53 98.62 9.08 67.90 99.61 80.75

M
A

PL
E

ZS-Eval 90.15 83.54 59.79 98.51 74.42 92.74 65.70 61.20 99.24 75.71
TPT 90.14 83.58 59.26 98.51 74.00 92.74 65.68 60.56 99.26 75.23

TPT-C 90.35 81.49 60.20 98.52 74.73 92.79 65.20 61.03 99.26 75.59
PAlign 90.14 83.58 60.11 98.51 74.66 92.74 65.68 61.48 99.26 75.93

PAlign-C 92.20 59.70 60.72 98.88 75.23 93.54 54.59 61.12 99.33 75.67

ROSITA 99.39 2.95 73.49 99.96 84.70 97.85 12.98 71.14 99.80 83.07
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