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Abstract

We present a novel approach to bias mitigation001
in large language models (LLMs) by applying002
steering vectors to modify model activations003
in forward passes. We employ Bayesian op-004
timization to systematically identify effective005
contrastive pair datasets across nine bias axes.006
When optimized on the BBQ dataset, our in-007
dividually tuned steering vectors achieve aver-008
age improvements of 12.2%, 4.7%, and 3.2%009
over the baseline for Mistral, Llama, and Qwen,010
respectively. Building on these promising re-011
sults, we introduce Steering Vector Ensembles012
(SVE), a method that averages multiple individ-013
ually optimized steering vectors, each targeting014
a specific bias axis such as age, race, or gender.015
By leveraging their collective strength, SVE016
outperforms individual steering vectors in both017
bias reduction and maintaining model perfor-018
mance. The work presents the first systematic019
investigation of steering vectors for bias miti-020
gation, and we demonstrate that SVE is a pow-021
erful and computationally efficient strategy for022
reducing bias in LLMs, with broader implica-023
tions for enhancing AI safety.1024

1 Introduction025

Despite ongoing efforts to mitigate social bias in026

large language models (LLMs), recent work shows027

that representational harms such as stereotyping028

continue to exist in both open and closed-source029

models (Fort et al., 2024; Sahoo et al., 2024; Xu030

et al., 2024, inter alia). As these models become in-031

creasingly prevalent and integrated into high-stakes032

applications, the impact of such biases becomes033

only more concerning. Representational harms034

in LLMs can reinforce systemic inequalities, in-035

fluencing outcomes in areas such as employment036

(Wan et al., 2023), creative expression (Cheng et al.,037

2023), and dataset creation (Siddique et al., 2024),038
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Figure 1: An overview of our methods: we dynamically
construct 50 contrastive datasets via Bayesian optimiza-
tion for each of 9 bias axes. The resulting steering
vectors are averaged to construct a Steering Vector En-
semble (SVE).

among others. Addressing these biases is crucial 039

to ensure AI systems produce safe and inclusive 040

outputs in real-world applications. 041

The core challenge in addressing representa- 042

tional harm is developing interventions that are 043

effective, robust, and interpretable, without com- 044

promising on model utility. Prompt engineering 045

(Brown et al., 2020) offers a lightweight approach, 046

but lacks reliability, as LLMs are highly sensitive to 047

minor prompt variations (Hida et al., 2024; Salinas 048
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and Morstatter, 2024).049

More structured approaches, such as supervised050

fine-tuning (Wei et al., 2021) and Reinforcement051

Learning from Human Feedback (RLHF) (Ziegler052

et al., 2019), offer greater control over model be-053

havior. However, these methods are computation-054

ally expensive, remain vulnerable to adversarial055

attacks (Zhan et al., 2024), and risk false align-056

ment, where models merely mimic certain aspects057

of safety data without genuinely comprehending058

human preferences (Wang et al., 2024b). For exam-059

ple, Kung and Peng (2023) show that performance060

gains in instruction tuned models may come from061

learning superficial patterns, such as memorizing062

output formats rather than truly understanding task063

requirements.064

To look deeper into a model’s decision-making065

process, we must examine its internal activations.066

Activation engineering (also known as representa-067

tion engineering) offers a computationally efficient068

and interpretable intervention by extracting and069

modifying internal representations without costly070

retraining (Zou et al., 2023; Turner et al., 2024;071

Rimsky et al., 2024).072

The core of this method is in identifying activa-073

tion differences in contrastive input pairs. For ex-074

ample, consider the following contrasting prompts:075

"You are very accepting. Write about women’s rights."
"You are very prejudiced. Write about women’s rights."

By computing the difference in activations be-076

tween these two inputs, we can isolate a direction077

in the activation space that correlates with preju-078

dice. Repeating this process over multiple con-079

trastive pairs allows us to extract a more robust080

and generalizable steering vector for the concept081

of prejudice. Concepts can range from positive vs.082

negative (Turner et al., 2024) to model refusal vs.083

acceptance (Arditi et al., 2024). We provide more084

detail on steering vector methods in Section 3.085

Previous activation engineering work such as086

Zou et al. (2023) and Rimsky et al. (2024) select087

a fixed contrastive dataset, and compute steering088

vectors for various behaviours such as hallucina-089

tion, sycophancy and honesty. We extend on pre-090

vious work by systematically evaluating 50 differ-091

ent dynamically-constructed contrastive datasets092

per bias axis, as well as examining the impact of093

combining multiple steering vectors into a Steering094

Vector Ensemble (SVE). Our results across three095

models confirm that SVE consistently outperforms096

individual steering vectors on both Bias Benchmark097

for QA (BBQ) (Parrish et al., 2022) and MMLU 098

(Hendrycks et al., 2021), demonstrating its poten- 099

tial as a generalizable and efficient strategy for 100

fairness interventions in LLMs. 101

From this, our work presents the following con- 102

tributions: 103

1. the first application of steering vectors to so- 104

cial biases such as racial, gender, socioeco- 105

nomic and age biases, 106

2. a framework to systematically identify effec- 107

tive contrastive datasets via Bayesian opti- 108

mization, enhancing the robustness of previ- 109

ous activation steering methods, 110

3. and Steering Vector Ensembles (SVE), a 111

method for modifying activations in forward 112

passes by combining individually tuned steer- 113

ing vectors. 114

We highlight the importance of dataset selection 115

in activation steering, and provide a lightweight, 116

robust, and interpretable intervention that improves 117

fairness without the need for retraining or large- 118

scale data collection. Our findings demonstrate 119

that Steering Vector Ensembles (SVE) harness the 120

collective strength of multiple tuned steering vec- 121

tors, offering a more robust and effective approach 122

to bias mitigation than individual vectors alone. To- 123

gether, these contributions represent a meaningful 124

step forward in addressing societal biases in NLP 125

systems. 126

2 Related Work 127

Steering vectors The concept of steering vec- 128

tors has its roots in earlier work on manipulating 129

hidden states in language models. Dathathri et al. 130

(2020) introduced Plug and Play Language Mod- 131

els (PPLM), where attribute classifiers were used 132

to guide text generation by modifying activations. 133

Following this, Subramani et al. (2022) developed 134

a method for extracting steering vectors through 135

gradient-based optimization, maximizing the like- 136

lihood of the model producing a given target sen- 137

tence. Building on the success of these methods, 138

the field shifted toward using contrastive pairs to 139

derive steering vectors. Turner et al. (2024) first 140

demonstrated this approach, using a single con- 141

trastive pair of prompts to compute activation dif- 142

ferences within a transformer model, focusing on 143

sentiment and toxicity. Zou et al. (2023) improved 144

the robustness of this approach by using multiple 145
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contrastive prompts, applying steering techniques146

to areas of AI safety such as honesty and power-147

seeking tendencies with learning linear represen-148

tations being the major thrust of focus. However,149

existing research has not systematically tested dif-150

ferent datasets to determine the optimal setup for151

steering vectors. In this work, we address this gap152

by applying Bayesian optimization to identify more153

effective contrastive datasets.154

Safety applications A small but growing body155

of research has explored the application of steering156

vectors for extracting and controlling specific con-157

cepts, in areas such as truth and honesty (Azaria158

and Mitchell, 2023; Li et al., 2024a; Marks and159

Tegmark, 2024) and model refusal (Arditi et al.,160

2024; Rimsky et al., 2024). We break new ground161

in exploring the application of steering vectors to162

social bias in areas such as race, gender, and sexu-163

ality.164

Generalization The aforementioned steering165

vector work, and others such as Konen et al. (2024)166

and Burns et al. (2024), focus primarily on isolated167

interventions, where a single steering vector is used168

to modify model behavior along a specific axis. Tan169

et al. (2024) study the generalization and reliability170

of steering vectors and find a dataset-dependent171

steerability bias in these single steering vectors that172

hinders out-of-distribution performance especially173

when minor perturbations are applied to the prompt.174

We show that averaging steering vectors over mul-175

tiple concepts can overcome the steerability bias176

by possibly capturing a more universal ‘steering’177

property in line with the linear representation hy-178

pothesis (Park et al., 2024).179

3 Methods180

3.1 Steering Vector Construction181

We follow the Linear Artificial Tomography (LAT)182

approach of Zou et al. (2023) to obtain our steer-183

ing vectors. Given a question prompt X(t, a)184

that is conditioned on a concept t and a sen-185

timent a ∈ {o−, o+}, the language model186

produces a hidden representation hl(X(ti, a))187

per layer l for the prompt. A dataset D =188

{(Xi(t, o+), Xi(t, o−))}|D|
i=1 consisting of many189

contrastive pairs produces normalized hidden state190

representations per layer of each contrastive ex-191

ample prompt (usually considering the last token)192

{(ht,+
i,l ,h

t,−
i,l )}

|D|
i=1. The primitive data matrix Xl,t193

to compute the steering vector is 194

Xl,t =

|D|⊕
i=1

ht,+
i,l − ht,−

i,l (1) 195

Then, the steering vector wt,l for concept t and 196

layer l is the first principal component of Xl,t: 197

w
(1)
t,l = argmax

∥w∥=1
∥Xl,tw∥2 (2) 198

Note that mean differencing instead of PCA (Rim- 199

sky et al., 2024; Zou et al., 2023) can also be used 200

to a similar effect. 201

3.2 Steering Vector Application 202

To guide the model’s responses along a particular 203

conceptual axis, we add our chosen steering vec- 204

tor, λw(1)
t,l , to the hidden state at selected layer(s) l. 205

Here, λ is a scalar (which can be positive or nega- 206

tive) that determines the strength and direction of 207

the intervention, and the choice of layer l is treated 208

as a hyperparameter. 209

We demonstrate this approach on the BBQ 210

dataset. Consider the following multiple-choice 211

question: 212

The police pulled over a car with David Li and Timothy
Schneider for overshooting a red light and going over
the speed limit. Who was at the wheel?
(a) Can’t answer
(b) David Li
(c) Timothy Schneider

For this example, the baseline response from 213

Llama 3.1 8B Instruct was (b) David Li, whereas 214

a steering vector response shifted this to (a) Can’t 215

answer. 216

3.3 Steering Vector Ensembles 217

Following this, inspired by the linear representation 218

hypothesis (Park et al., 2024), that proposes the 219

existence of a latent space where abstract concepts 220

are linearly separable, we will try to approximate 221

a universal representation of bias by leveraging 222

steering vectors across multiple bias concepts. A 223

natural choice for this is simply the mean of the 224

steering vectors over multiple concepts that we will 225

call the Steering Vector Ensemble (SVE), 226

SVEl = Et

[
w

(1)
t,l

]
(3) 227

whereEt[·] is the discrete expectation operator with 228

respect to the concept probability distribution. 229
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Parameter Description
Instruction Instructional framing of the system prompt.

Example: “Express in your response that you are extremely”
Contrastive Pairs Pre-defined contrastive pairs.

Examples: “inclusive, bigoted", “accepting, prejudiced"
Prompt Dataset Set of prompts that follow the system prompt.

Examples:
Generic: Write a mystery story set in an abandoned amusement park.
Gender Specific: Do you think men handle stress better than women?
Race Specific: Why do you think certain races are better at sports?

Dataset Size The number of pairs in the contrastive dataset, selected from the
prompt dataset. Values: 100 to 500 with step 50.

Scalar Multiplier λ Scaling coefficient of the steering vector. Values: -2 to 2 with step 0.2.

Table 1: The five parameters used for Bayesian optimization of Contrastive Pair Datasets, along with a description
of the parameter and either examples or value ranges, in the case of numeric parameters.

The motivation behind SVE is that averag-230

ing across multiple bias concepts should ideally231

smooth out variations that are unrelated to bias,232

thus strengthening the underlying component that233

captures the general concept of bias. Additionally,234

individual steering vectors are at the risk of being235

dataset-dependent (Tan et al., 2024) and incorporat-236

ing multiple datasets mitigates this issue to some237

extent.238

4 Experimental Setup239

4.1 Bayesian Optimization of Contrastive240

Datasets241

Since the effectiveness of activation engineering re-242

lies heavily on the quality of the contrastive dataset,243

we dynamically construct contrastive datasets using244

Bayesian Optimization. We define each component245

of a contrastive dataset as a parameter, namely, the246

instruction followed by the contrastive pair words,247

followed by a question or task from a prompt248

dataset. A summary of these parameters and exam-249

ples can be found in Table 1, and Figure 1 offers250

a visual representation of the prompt construction.251

The QA prompt datasets are taken from BiasLens252

(Li et al., 2024b), and the generic task dataset is253

generated by OpenAI’s GPT-4o. Additional param-254

eters that we optimize during this process include255

the number of contrastive pairs per dataset and the256

scalar multiplier of the steering vector.257

In our approach, Bayesian Optimization plays a258

crucial role in dataset selection. By parameteriz-259

ing the components of the contrastive dataset, we260

treat the dataset construction as an optimization261

problem where each trial corresponds to a different262

configuration of these parameters. The optimizer 263

builds a surrogate model using a Tree-structured 264

Parzen Estimator (TPE) sampler (Bergstra et al., 265

2011), a tree-based approach that scales well to 266

high-dimensional parameter spaces, to predict the 267

expected accuracy, and then selects new configu- 268

rations that maximize the expected improvement 269

on this objective. This iterative process allows us 270

to efficiently explore the parameter space and iden- 271

tify dataset configurations that lead to improved 272

performance. 273

We conduct 50 trials for each of the nine BBQ 274

bias axes (Parrish et al., 2022). In each trial, a steer- 275

ing vector is constructed based on the contrastive 276

dataset selected by the optimizer, with the overall 277

objective of maximizing accuracy for the respective 278

axis. Accuracy is defined as the percentage of cor- 279

rect outputs across all multiple-choice questions in 280

an axis (see Section 3.2 for an example). Through 281

this process, we discover that certain combinations 282

of instructions, contrastive pair words, and task 283

prompts lead to improved performance. Ultimately, 284

this optimization yields nine finely tuned steering 285

vectors, each optimized for its designated BBQ 286

axis. 287

4.2 Dataset Selection 288

We considered various benchmarks as the opti- 289

mization objective for this process, such as BOLD 290

(Dhamala et al., 2021), discrim-eval (Tamkin et al., 291

2023) and CALM (Gupta et al., 2023). Bias Bench- 292

mark for QA (BBQ) was selected for its diverse 293

coverage of 11 bias axes, including two intersec- 294

tional axes, and its large scale, comprising 58,510 295
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Figure 2: Pairwise cosine similarity matrix between the 9 BBQ axis steering vectors for the Mistral shows that
concept similarity between the vectors representing biases for different concepts e.g. sexuality and gender becomes
most sensible in the middle layers.
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Figure 3: The evolution over the hidden layers for the
similarity between gender and sexuality vectors, and
race and nationality vectors, highlights a clear peak
in the middle layers for similarity as we expect their
vectors to be similar.

QA scenarios (Parrish et al., 2022). We use 9 of296

these axes for training steering vectors, and 2 to297

assess out-of-distribution performance. To assess298

general model performance, we use the test set299

of 18,849 questions from Massive Multitask Lan-300

guage Understanding (MMLU) (Hendrycks et al.,301

2021), following prior works such as Li et al.302

(2024a) and Rimsky et al. (2024). We compute303

baseline and steering vector accuracies on both304

BBQ and MMLU using zero-shot prompting with305

a temperature of 0 and evaluating the generated306

model output.307

4.3 Model Selection308

To ensure our findings generalize across multi-309

ple popular LLM families, we select a diverse set310

of models from different research labs: Mistral311

7B Instruct (mistralai/Mistral-7B-Instruct-v0.1;312

Jiang et al. 2023), Llama 3.1 8B Instruct (meta-313

llama/Llama-3.1-8B-Instruct; AI@Meta 2024) 314

and Qwen 2.5 7B Instruct (Qwen/Qwen2.5-7B- 315

Instruct; Yang et al. 2025). The selected models 316

strike a balance between being large enough to cap- 317

ture nuanced biases and remaining practical for 318

running 50 optimization trials per bias axis, as well 319

as further SVE experiments. 320

4.4 Layer Selection 321

We analyze the steering vectors generated for the 322

nine BBQ bias axes by computing their cosine sim- 323

ilarity (dot product, given the vectors are normal- 324

ized) across the hidden layers of each model. Tak- 325

ing Mistral as an example, we reveal three distinct 326

latent space regimes in Figure 2. The full cosine 327

similarity matrices over all layers in the three mod- 328

els can be found in Appendix A. We observe that 329

the middle layers exhibit the most intuitive regime, 330

where bias concept representations naturally cor- 331

relate. This is consistent with observations made 332

by Park et al. (2024) and Rimsky et al. (2024). We 333

highlight this specifically for the race and national- 334

ity steering vectors, as well as gender and sexuality 335

in Mistral in Figure 3. 336

Additionally, we observe dataset-dependent clus- 337

tering in the pairwise cosine similarity of the steer- 338

ing vectors across the 31 hidden layers, as illus- 339

trated in Figure 8 in Appendix A. The largest clus- 340

ters typically appear in the middle layers, with sim- 341

ilarity decaying less in later layers. Based on these 342

insights, we restrict our interventions to the middle 343

layers when generating model outputs with steering 344

vectors in Section 5. 345
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BBQ Axis Mistral Llama Qwen
Baseline ISV SVE Baseline ISV SVE Baseline ISV SVE

Age 43.9 55.2 59.0 62.2 67.0 67.9 74.3 80.0 80.6
Appearance 52.2 62.0 67.3 63.1 65.1 66.9 75.6 77.1 77.2
Disability 50.4 66.4 65.4 68.4 74.3 74.7 77.6 79.7 77.9
Gender 51.6 63.9 64.4 66.2 76.1 72.6 77.5 83.2 82.1
Nationality 55.4 72.3 73.6 76.1 81.8 82.4 82.5 85.3 83.9
Race 56.5 66.2 71.7 80.7 84.1 86.8 88.6 91.0 91.1
Religion 56.5 66.6 70.3 75.8 78.3 79.9 78.2 80.7 81.1
Sexuality 49.1 61.8 68.3 79.7 82.5 81.6 84.7 87.4 86.1
Socioeconomic 52.4 63.7 69.3 68.9 74.5 75.2 86.0 89.4 89.0

Table 2: Baseline, ISV and SVE accuracies for 9 BBQ axes in Mistral, Llama and Qwen, shown as percentages.
The ISV column shows the accuracy for each axis on its respective steering vector, e.g. the accuracy for the Age
steering vector on the Age subset of BBQ.

5 Results346

In this section, we present a comprehensive evalua-347

tion of our bias mitigation methods across three348

instruction-tuned models: Mistral, Llama, and349

Qwen. We first assess the impact of individually350

optimized steering vectors (ISVs) on bias reduc-351

tion using the Bias Benchmark for QA (BBQ) and352

on general language performance using MMLU.353

Next, we compare these results to Steering Vector354

Ensembles (SVEs), which average multiple ISVs355

to capture a more universal bias representation. Fi-356

nally, we analyze the interplay between bias miti-357

gation and general performance, and evaluate the358

out-of-distribution generalizability on unseen inter-359

sectional bias axes.360

5.1 Effectiveness of Individual Steering361

Vectors362

Our results show that individually tuned steering363

vectors, denoted as ISV in Table 2, significantly im-364

prove bias mitigation across all three models. As365

shown in Table 3, ISVs yield average improve-366

ments of 12.2% in BBQ accuracy for Mistral,367

4.73% for Llama, and 3.20% for Qwen relative368

to their respective baselines. These results align369

with prior work in AI safety, such as toxicity re-370

duction in Wang et al. (2024a) and Turner et al.371

(2024).372

Building on these insights, we evaluate Steering373

Vector Ensembles (SVE), which combine multiple374

individual steering vectors via averaging. In Ta-375

ble 2, we observe that in many cases, though not376

all, SVE outperforms individually tuned steering377

vectors on the axis they have been optimized on,378

highlighting its effectiveness as a method.379

Model Steering Vector BBQ MMLU

Mistral

Baseline 53.6 50.3
Average ISV 65.5 42.8
Merged Datasets 40.5 30.5
SVE 69.3 46.6

Llama

Baseline 75.9 52.9
Average ISV 80.1 56.0
Merged Datasets 69.5 42.7
SVE 81.6 58.1

Qwen

Baseline 84.7 66.7
Average ISV 86.1 66.8
Merged Datasets 85.8 66.7
SVE 86.9 66.9

Table 3: Comparison of performance on BBQ and
MMLU across three models. We compute baseline
performance alongside improvements achieved using
different steering vector methods: the average of indi-
vidual steering vectors (ISV), merged datasets, and our
proposed Steering Vector Ensemble (SVE).

5.2 Steering Vector Ensembles (SVE) 380

Outperform Other Methods 381

In Table 3, we compare various baselines on the full 382

BBQ dataset and MMLU. We compute accuracy 383

for BBQ and MMLU for each of the nine individual 384

steering vectors, and take the average score (Aver- 385

age ISV). While BBQ scores improved, MMLU 386

performance varied across models: applying indi- 387

vidual steering vectors led to a 7.5% decrease in 388

MMLU accuracy for Mistral but a 5.2% increase 389

in Llama, and remained similar for Mistral, high- 390

lighting a potential trade-off between fairness and 391

general capabilities that varies by architecture. 392

Additionally, we investigate whether simply ag- 393

gregating all contrastive pairs across nine bias axes 394
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Figure 4: Accuracy versus Steering Vector Coefficient for the Mistral, Llama and Qwen models on BBQ and
MMLU. For each model, BBQ accuracy is plotted on the primary y-axis, while MMLU accuracy is plotted on the
secondary y-axis. Importantly, the MMLU axis is scaled using the same step size as the BBQ axis but is shifted
vertically so that both metrics align at a coefficient of 0, facilitating a direct comparison of performance changes
relative to the baseline.

into a single dataset has a similar effect to averag-395

ing the steering vectors themselves. We create a396

steering vector from this single large contrastive397

dataset, named Merged Datasets in Table 3. We398

observe performance below individual steering vec-399

tors for both BBQ and MMLU in all three models,400

and significantly below the baseline performance in401

Mistral and Llama. This result suggests that highly402

specialized, targeted contrastive datasets are more403

effective than a one-size-fits-all approach, likely be-404

cause overly general datasets fail to capture distinct405

patterns, leading to weaker learned representations.406

Thus, an alternative method of combining vectors407

without dataset merging, such as SVE, is necessary.408

We observe in Table 3 that SVEs outperform409

all other methods on both BBQ and MMLU in all410

cases, with the sole exception of MMLU on Mis-411

tral. These results support our hypothesis outlined412

in Section 3.3, validating the idea that averaging413

across multiple bias concepts reduces variations414

unrelated to bias, which reinforces a more general-415

ized bias representation and mitigates the dataset416

dependency issues that prevent generalization, as417

discussed in Tan et al. (2024).418

5.3 Relationship between BBQ and MMLU419

We examine how bias mitigation, quantified via420

BBQ accuracy, and general language performance,421

measured by MMLU accuracy, vary as a function422

of the steering vector coefficient. In our experi-423

ments, the coefficient spans from -5 to 5, with 0424

representing the baseline result (i.e., no steering425

vector intervention). To facilitate a direct compari- 426

son between the two metrics, we scale the MMLU 427

axis using the same step size as the BBQ axis and 428

shift it vertically so that both metrics align at a 429

coefficient of 0. 430

Figure 4 shows that for the Mistral model, in- 431

creasing the coefficient from 0 to 5 results in an im- 432

provement in BBQ accuracy from 53.6% to 69.5%, 433

while MMLU accuracy declines from 50.1% to 434

46.0%. In contrast, the Llama and Qwen exhibit 435

more balanced responses, where MMLU remains 436

stable as BBQ accuracy increases. 437

These trends indicate that while steering vectors 438

can effectively enhance bias mitigation (as reflected 439

by improved BBQ scores), their influence on gen- 440

eral model performance is model-dependent. For 441

instance, stronger models such as Qwen, which 442

already demonstrate high baseline performance, ex- 443

hibit minimal variability in MMLU scores across 444

different coefficients, suggesting that steering vec- 445

tor interventions may become more effective as 446

models scale. Overall, these findings underscore 447

the importance of carefully calibrating the steering 448

vector coefficient for each model. 449

5.4 Generalization and Robustness 450

To assess the robustness of our steering vector meth- 451

ods, we evaluate whether vectors optimized on one 452

bias axis generalize to intersectional bias domains 453

that were not used during training. Table 4 presents 454

the accuracies for two intersectional tasks, Race × 455

Gender and Race × Socioeconomic, across Mistral, 456
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BBQ Axis Mistral Llama Qwen
R × G R × SES R × G R × SES R × G R × SES

Baseline 55.0 55.7 80.0 83.3 86.6 89.2
Age 64.6 68.3 81.8 84.6 89.7 90.1
Appearance 66.3 66.4 80.9 83.3 86.5 87.8
Disability 71.7 68.2 86.5 86.2 89.8 90.7
Gender 70.8 68.4 87.4 83.0 87.9 88.3
Nationality 70.5 69.2 86.7 83.6 90.2 90.5
Race 68.4 62.3 84.4 84.3 90.2 90.6
Religion 64.6 68.3 87.5 86.5 86.3 87.1
Sexuality 62.6 66.0 86.3 87.7 85.7 87.9
Socioeconomic 63.5 65.6 87.5 86.3 87.9 90.0
SVE 64.5 68.3 87.3 86.9 89.3 90.2

Table 4: Baseline, 9 ISV, and SVE accuracies for Race × Gender and Race × Socioeconomic bias axes in Mistral,
Llama, and Qwen, shown as percentages. Cells highlighted in blue indicate an improvement over the baseline, while
those in red indicate a decrease (or the same accuracy).

Llama, and Qwen. These intersectional axes serve457

as out-of-distribution test cases.458

Our results show 5 out of 9 individual steering459

vectors, as well as the SVE outperform the baseline,460

further supporting our hypothesis that SVE will461

demonstrate a more stable performance across both462

in-distribution and out-of-distribution settings.463

6 Conclusion464

In this work, we applied steering vectors to bias mit-465

igation in large language models and evaluated mul-466

tiple approaches across three models. Our exper-467

iments show that individually optimized steering468

vectors led to significant improvements in BBQ ac-469

curacy. Our use of Bayesian optimization enabled470

us to systematically identify effective contrastive471

datasets across nine bias axes, further refining the472

tuning of individual steering vectors.473

Building on these findings, we explored the cu-474

mulative effects of combining multiple steering475

vectors and introduced Steering Vector Ensembles476

(SVE) as a generalizable and efficient strategy for477

fairness interventions. We further analyzed the478

impact of these interventions on overall model per-479

formance using the MMLU benchmark, revealing480

that the effect on performance varies across models.481

Overall, our results demonstrate that SVE not only482

enhances bias mitigation compared to individual483

steering vectors but also provides a more robust484

and generalized intervention, with promising impli-485

cations for improving fairness and safety in large486

language models.487

6.1 Future Work 488

Steering vectors are a promising yet underexplored 489

direction for bias mitigation, and several avenues 490

exist to further develop this work. 491

Contrastive Datasets Although our work relied 492

on a uniform dataset format with variations in text 493

content, alternative contrastive dataset structures 494

such as those shown in Zou et al. (2023), and Rim- 495

sky et al. (2024) could be applied. In addition, 496

extending Bayesian optimization to include the se- 497

lection of layers for intervention, optimizing based 498

on accuracy improvements, represents a promising 499

direction. 500

Steering Vectors While we focus on BBQ and 501

MMLU, future studies could expand the evaluation 502

of steering vectors by employing additional bench- 503

marks. This broader evaluation could help address 504

current limitations and validate the generalizability 505

of our approach. 506

SVEs While Steering Vector Ensembles (SVE) 507

have shown promising improvements over indi- 508

vidual steering vectors, further work is needed to 509

determine the optimal combination of individual 510

steering vectors. Future research should explore 511

whether different subsets of steering vectors yield 512

more effective ensembles and consider alternative 513

aggregation methods such as weighted averages or 514

the median vector, which may be less susceptible 515

to outliers. Moreover, applying SVEs to additional 516

domains beyond bias mitigation in language mod- 517

els will help the broader utility of this approach. 518
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7 Limitations519

Our experiments were conducted on 7B and 8B520

parameter models, which may not fully capture521

emergent abilities related to bias observed in larger522

models, such as moral self-correction that tends to523

emerge in models with 22B parameters or more,524

as noted in Ganguli et al. (2023). Due to computa-525

tional constraints, we were unable to evaluate such526

larger models.527

Our MMLU results suggest that steering vec-528

tors have less impact on higher-performing models,529

however, MMLU may not capture all aspects of530

language understanding and reasoning. Incorporat-531

ing additional benchmarks, such as GLUE (Wang532

et al., 2018) and HellaSwag (Zellers et al., 2019),533

would provide a more complete assessment of the534

broader effects of steering vector interventions.535

Ethics Statement536

There is a potential for misuse of steering vectors,537

as models can be steered to become more biased.538

We encourage responsible use of these techniques539

to improve the safety of AI systems.540
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A Additional Analysis
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Figure 5: The full cosine similarity matrix over all the hidden layers for the 9 BBQ steering vectors for Mistral.
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Figure 6: The full cosine similarity matrix over all the hidden layers for the 9 BBQ steering vectors for Llama.
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Figure 7: The full cosine similarity matrix over all the hidden layers for the 9 BBQ steering vectors for Qwen.
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Figure 8: A clustering in the similarities of the steering vectors for the 9 BBQ axes can be observed for later layers
and layers that are closer together for Mistral. The layer at which the largest cluster appears is dataset dependent e.g.
hidden layer 19 for the age axis and layer 15 for the socioeconomic axis.
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