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ABSTRACT

The success of deep supervised learning depends on its automatic data represen-
tation abilities. A good representation of high-dimensional complex data should
enjoy low-dimensionally and disentanglement while losing as little information as
possible. This work gives a statistical understanding of how a deep representation
goal can be achieved via reproducing kernel Hilbert spaces (RKHS) and genera-
tive adversarial networks (GAN). At the population level, we formulate the ideal
representation learning task as that of finding a nonlinear map that minimizes the
sum of losses characterizing conditional independence (via RKHS) and disentan-
glement (via GAN). We estimate the target map at the sample level with deep
neural networks. We prove the consistency in terms of the population objective
function value. We validate the proposed methods via comprehensive numerical
experiments and real data analysis in the context of regression and classification.
The resulting prediction accuracies are better than state-of-the-art methods.

1 INTRODUCTION

Over the past decade, deep learning has achieved remarkable successes in many fields such as com-
puter vision and natural language processing (Krizhevsky et al., 2012; Graves et al., 2013; LeCun
et al., 2015). A key factor for the success of deep learning is its automatic data representation ca-
pabilities (Bengio et al., 2013). For all desired characteristics of an ideal representation for a high-
dimensional complex data, information preservation, low dimensionality and disentanglement are
among the topmost (Achille & Soatto, 2018). A representation with these characteristics not only
makes the model more interpretable but also facilitates the subsequent supervised learning tasks.
First, information preservation requires that the learned features should be sufficient statistics for
both estimation and prediction. This can be quantified via the concept of conditional independence.
Second, low dimensionality means that we should use as few features as possible to represent the
underlying structure of data, and the number of features should be fewer than the ambient dimen-
sion. Third, the learned features in the representation can often be interpreted as corresponding
to the hidden causes of the observed data; thus disentanglement is an essential characteristic that
distinguishes cause from others (Goodfellow et al., 2016).

It is widely believed that deep neural networks trained in supervised learning learn effective data
representation automatically. For example, in the context of classification, the last layer of a deep
neural network is a linear classifier and the preceding layers serve as a feature extractor to the
classifier. However, in the supervised training of deep neural networks, the objective functions do not
explicitly impose any conditions that guarantee the desired characteristics of learned representations.
It appears that there are not any explicit guiding principles for understanding the black-box nature
of deep neural networks for representation learning (Alain & Bengio, 2017).

In this paper, we propose a novel supervised representation learning approach (NSRL) to achieve the
ideal representation, which in turn demystifies the success of deep neural networks. The key idea of
NSRL is that we seek a nonlinear map from the high-dimensional input space to a lower-dimensional
feature space such that the data and its label/response are conditionally independent given the value
of the nonlinear map. Meanwhile, we regularize the nonlinear map by matching its pushforward
distribution to a reference distribution with independent components such as standard Gaussian to
achieve disentanglement in the representation. Therefore, the proposed NSRL is guaranteed to enjoy
the three desired characteristics of an ideal data representation described above. For measuring the
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conditional independence, we use the conditional covariance operator in reproducing kernel Hilbert
space (RKHS) (Baker, 1973; Fukumizu et al., 2004) that can be estimated easily with samples.
To further match the pushforward distribution under the target nonlinear map with the reference
distribution, we use the GAN loss such as the the f -divergence for f -GAN (Nowozin et al., 2016)
or the 1-Wasserstein distance for the WGAN (Arjovsky et al., 2017). Our main contributions are as
follows:

• At the population level, we formulate the ideal representation learning task equivalently as
finding a nonlinear map that minimizes the loss characterizing both information preserva-
tion and disentanglement via conditional covariance operator in RKHS and GAN, respec-
tively.

• We estimate the target nonlinear map at the sample level nonparametrically with deep neu-
ral networks, and propose a novel supervised representation learning (NSRL) algorithm.

• We validate the proposed NSRL via comprehensive numerical simulations and a number of
real datasets, i.e. Life Expectancy and Pole for regression, and MNIST, Kuzushiji-MNIST
and CIFAR-10 for classification. We use the learned features from our NSRL as inputs for
linear regression and nearest neighbor classification. The resulting prediction accuracies
are better than those state-of-the-art methods, that is, linear dimension reduction models
for regression and deep learning models for classification.

2 SETUP AND BACKGROUND

2.1 SETUP

Suppose we have a sample of n input-response/label observations {(Xi, Yi) ⊆ X × Y ⊆
Rd × R1}ni=1 that are i.i.d. copies of (X,Y ) with an unknown law µX,Y . In many applications,
high-dimensional complex data X such as images, texts and natural languages, tend to have low-
dimensional representations (Bengio et al., 2013). Mathematically, we model this feature of high-
dimensional complex data by assuming the existence of a nonlinear map g∗ : Rd → Rd∗ with
d∗ � d such that the information of X can be completely encoded by g∗ in the sense

X Y |g∗(X). (1)

That is, Y and X are conditionally independent given g∗(X). The representation g∗(X) has much
lower dimensionality than X and captures all the information about the statistical dependence of Y
on X . Moreover, we would like to have the disentanglement property for the representation g∗(X),
that is, the potential hidden causes of the observed data. This can be achieved by transforming the
distribution of g∗(X) into standard Gaussian. To this end, we first recall a result in optimal transport
theory (Brenier, 1991; McCann et al., 1995; Villani, 2008).

Lemma 2.1 Let µ be a probability measures on Rd∗ with second order moment and absolutely
continuous with respect to the the Gaussian measure γd∗ . Then it admits a unique optimal trans-
portation map T ∗ : Rd∗ → Rd∗ such that T ∗#µ = γd∗ = N (0, Id∗). Moreover, T ∗ is injective
µ-a.e.

Thanks to Lemma 2.1, the map T ∗ in Lemma 2.1 transforms the distribution of g∗(X) satisfying
equation 1 to the standard normal distribution. Specifically, define

F ∗ = T ∗ ◦ g∗ : Rd → Rd
∗
.

Then we also have
X Y |F ∗(X), F ∗(X) ∼ γd∗ = N (0, Id∗), (2)

that is, F ∗ is a target nonlinear map that preserves both disentanglement and conditional indepen-
dence.

Next we recall some background on conditional covariance operator in RKHS that is used to char-
acterize conditional independence, and GAN losses that are used to measure the discrepancy of two
probability measures.
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2.2 CONDITIONAL COVARIANCE OPERATORS

Let (HX , kX ) and (HY , kY) be RKHS of functions on X and Y, respectively, with measurable
positive definite kernels kX and kY . The cross-covariance operator of (X,Y ) from HX to HY can
be defined so that

〈h,ΣY Xg〉HY = EXY [(g(X)− EX [g(X)]) (h(Y )− EY [h(Y )])] (3)

holds for all g ∈ HX and h ∈ HY . Conditional covariance operator ΣY Y |X can be defined as
(Baker, 1973; Fukumizu et al., 2004; 2009)

ΣY Y |X = ΣY Y − ΣY XΣ−1XXΣXY . (4)

Let F : Rd → Rd∗ be a map and Z ⊆ Rd∗ and (HZ , kZ) be a RKHS on Z with kernel kZ . Define
kFX on X as kFX (x, x̃) = kZ(F (x), F (x̃)). We denote the RKHS that is related to kFX as HFX . We
define a new conditional covariance operator that is related to F as

ΣFY Y |X = ΣY Y − ΣFY X
(
ΣFXX

)−1
ΣFXY , (5)

where ΣFY X (ΣFXX ) is the cross-covariance operator of (X,Y ) defined in (3) with kX being replaced
by kFX . Under some mild regularity conditions (Fukumizu et al., 2004; 2009), we have

ΣFY Y |X ≥ ΣY Y |X , (6)

where the inequality refers to the order of self-adjoint operators. Moreover,

ΣY Y |X = ΣFY Y |X ⇐⇒ Y X | F (X). (7)

Define
F1 = arg min

F
ΣFY Y |X , (8)

where the minimization refers to the minimal operators in the partial order of self-adjoint operators.
Then, It follows from (6)-(7) that the target representation map F ∗ in (2) is the minimizer of (8),
i.e., F ∗ ∈ F1. The loss in minimization problems (8) can be consistently estimated with samples
{(Xi, Yi) ⊆ X × Y}ni=1 (Fukumizu et al., 2009) as follows

Tr
[
GY

(
GFX + nεnIn

)−1]
, (9)

where εn is a regularization parameter, and GFX ∈ Rn×n with the (i, j)th entry is defined as

(GFX)i,j = kZ (Zi, Zj)−
1

n

n∑
b=1

kZ (Zi, Zb)−
1

n

n∑
a=1

kZ (Za, Zj) +
1

n2

n∑
a=1

n∑
b=1

kZ (Za, Zb) ,

where Zi = F (Xi), and GY ∈ Rn×n can be computed similarly with Zi replaced by Yi.

2.3 f -GAN LOSS

DenoteX ∼ µX . Let Z = F (X) and µZ be its law. The f -divergence (Ali & Silvey, 1966) between
µZ and γd∗ with µZ � γd∗ is defined as

Df (µZ‖γd∗) =

∫
Rd∗

f(
dµZ
dγd∗

)dγd∗ , (10)

where f : R+ → R is a twice-differentiable convex function satisfying f(1) = 0. The KL di-
vergence and JS divergence correspond to f(t) = t log t and f(t) = −(t + 1) log 1+t

2 + t log t,
respectively. By Jensen’s inequality, Df (µZ‖γd∗) = 0 implies µZ = γd∗ almost everywhere. De-
note F as the Fenchel conjugate of f (Rockafellar, 1970). Then the f -divergence can be recast as
the following f -GAN loss (Nowozin et al., 2016).

Lemma 2.2

Df (µZ‖γd∗) = max
D:Rd∗→dom(F)

EZ∼µZ [D(Z)]− EW∼γd∗ [F(D(W ))], (11)

where the maximum is attained when D(x) = f ′(dµZ
dγ (x)).
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Let

F2 = arg min
F

Df (µF (X)‖γd∗) = min
F

max
D

EX∼µX [D(F (X))]− EW∼γd∗ [F(D(W ))] (12)

By Lemma 2.2, we have F ∗ ∈ F2. If we have Zi = F (Xi),Wi i.i.d drawn from µZ = µF (X) and
γd∗ , respectively. We can estimate the f -GAN loss (11) as

D̂f (µF (X)‖γd∗) = max
D

1

n

n∑
i=1

[D(F (Xi))− F(D(Wi))]. (13)

Other GAN loss such as the 1-Wasserstein distance for the WGAN (Arjovsky et al., 2017) can also
be used here.

3 NSRL ALGORITHM

From the above section, we have the target representation map F ∗ in (2) satisfying F ∗ ∈ F1 ∩ F2.
And the loss for F1 and F2 can be estimated via (9) and (13), respectively. Thus, we can estimate
F ∗ with a neural network Fθ (denoted as a reducer) that minimizes the following criterion

Tr

[
GY

(
GFθX + nεnIn

)−1]
+ λmax

Dφ

1

n

n∑
i=1

[Dφ(Fθ(Xi))− F(Dφ(Wi))], (14)

where λ > 0 is a tuning parameter, and Dφ is another neural network (denoted as a discriminator)
to estimate the optimal D in (13). Then, we train Fθ according to the loss in equation 14 via in two
steps iteratively as follows:

(i) Update the discriminator Dφ: Fix θ and calculate the loss for φ in (14) and ascending this
loss by SGD on φ.

(ii) Update the reducer Fθ: Compute the loss for θ in (14) with the updated φ in (i) and descend
this loss by SGD on θ.

To visualize the framework, we depict it as a flowchart in Figure 1 and give a detailed algorithm
below with the “Log-D” trick GAN (Goodfellow et al., 2014) as an example.

Figure 1: Flowchart for NSRL

• Novel Supervise Representation Learning (NSRL) Algorithm
• Input {Xi, Yi}ni=1 . Tuning parameters: m,λ, ε, d∗.
• Outer loop for θ

4



Under review as a conference paper at ICLR 2021

– Inner loop for φ
∗ Sample {Wi}ni=1 ∼ γd∗
∗ Update φ with stochastic gradient with batch size m
∇φ{

∑m
i=1

1
m (log (Dφ (Wi)) + log (1−Dφ (Fθ (Wi))))}

– End inner loop
– Update θ with stochastic gradient with batch size m

∇θ{Tr

[
GY

(
GFθX +mεmIm

)−1]
− λ

∑m
i=1

1
m log (Dφ (Fθ (Wi)))}

• End outer loop

4 RELATED WORKS

Supervised dimension reduction: The seminal paper of Li (1991) proposed sufficient dimension
reduction via sliced inverse regression, where the aim is to find a minimum subspace (Cook, 1998)
such that the orthogonal projection of the data on to which preserves the dependency of the response
and the predictors. There is an extensive literature on sufficient dimension reduction via a linear map
(Li, 1992; Cook, 1998; Li et al., 2005). Alternative approaches have been developed to estimate the
central space (or its subspace) based on nonparametric estimation of conditional independence (Xia
et al., 2002; Fukumizu et al., 2004; 2009; Suzuki & Sugiyama, 2013; Vepakomma et al., 2018).
See also the review paper (Cook et al., 2007) and monograph (Li, 2018) and the references therein.
The methods mentioned above focus on linear dimension reduction (LDR). However, LDR may
not be effective for high-dimensional complex data such as images and natural languages since the
relationship between the raw data and the underlying features can be highly nonlinear.

Representation learning: Tishby & Zaslavsky (2015); Shwartz-Ziv & Tishby (2017); Saxe et al.
(2019) proposed to study the internal mechanism of supervised deep learning from the perspective
of information theory, where they showed that training a deep neural network that optimizes the
information bottleneck (Tishby & Pereira) is a trade-off between the representation and the pre-
diction at each layer. To make the information bottleneck idea more practical, a deep variational
approximation of information bottleneck (VIB) is considered in Alemi et al. (2017). Numerical ex-
periments suggest that the learned representations obtained via VIB are favored by the subsequent
supervised learning task and robust to adversarial inputs. Information-theoretic objectives describ-
ing conditional independence such as mutual information are utilized as loss functions to train a
representation-learning function, i.e., an encoder in the unsupervised setting (Hjelm et al., 2019;
Oord et al., 2018; Tschannen et al., 2020; Locatello et al., 2020; Srinivas et al., 2020). Unsupervised
models such as VAEs (Kingma & Welling, 2014) and its variants (Kim & Mnih, 2018; Higgins et al.,
2017; Tolstikhin et al., 2018; Makhzani et al., 2017) also learn a representation via its encoder as a
by-product.

5 EXPERIMENTAL RESULTS

We evaluate our proposed NSRL using simulated data and real benchmark data in the setting of
regression and classification. Some details on the network structures and hyperparameters used on
our experiments are included in the appendix. Our experiments were conducted on Nvidia DGX
Station workstation using a single Tesla V100 GPU unit. The PyTorch code of NSRL is available at
https://github.com/anonymous/NSRL.

5.1 TOY EXAMPLES AND VISUALIZATION

Visualization. We visualize the learned manifold of NSRL on two simulated data. We first generate
(1) 5,000 data points from 3-dimensional S curve dataset on regression setting as shown in Figure
2 (a); (2) 5,000 data points for each class from 3-dimensional mixed Uniform and Gaussian data on
classification setting as shown in Figure 2 (d). We next map these data points into the ones from
400-dimensional space by multiplying matrices with entries i.i.d Unifrom([0, 1]). Finally, these
400-dimensional datasets with their responses are trained by NSRL to learn 2-dimensional features.
In detail, a 20-layer dense convolutional network (DenseNet) (Huang et al., 2017; 2019) as Fθ and a
4-layer network with Leaky ReLU activation as Dφ are employed. We set the reference distribution

5

https://github.com/anonymous/NSRL


Under review as a conference paper at ICLR 2021

γd∗ uniformly distributed on the surface of the unit sphere to disentangle the representation. Scatter
plots of the evolving learned 2-dimensional features are shown in Figure 2.

(a) S curve (b) Epoch = 10 (c) Epoch = 200

(d) Mixed 3D (e) Epoch = 10 (f) Epoch = 200

Figure 2: Scatter plots of the evolving learned representation.

Simulation on regression. We generate 5000 data points from the following simulated models:
Model A : Y = e

1
2 (X1+X2) log

(
X2

1

)
+ ε;

Model B : Y =
(
X2

1 + X2
2 + X2

3

) 1
2 log

(
X2

1 + X2
2 + X2

3

) 1
2 + ε; ε X, ε ∼ N (0, 0.25 · I10)

Model C : Y = sin

(
π(X1+X2

2+X3
3)

10

)
+ ε

For the distribution of the 10-dimensional predictor X, we consider three following scenarios:

• Scenario I: X ∼ N (0, I10), independent Gaussian predictors;
• Scenario II: X ∼ 1

3N (−110, I10) + 1
3Unifrom([−1, 1]10) + 1

3N (110, I10), independent
non-Gaussian predictors;

• Scenario III: X ∼ N
(

0, 0.4 · I10 + 0.6 · 1101>10
)

, correlated Gaussian predictors.

where, the notation of Scenario II is the mixture distribution of N (−110, I10), Unifrom([−1, 1]10)
and N (110, I10) with mixing probabilities ( 1

3 ,
1
3 ,

1
3 ). These models and the distributional scenarios

are modified from Lee et al. (2013); Li (2018).

We adopt a 4-layer network for Fθ and a 3-layer network for Dφ with Leaky ReLU activation.
We compare NSRL with two linear dimension reduction methods: sliced inverse regression (SIR)
(Li, 1991), sliced average variance estimation (SAVE) (Shao et al., 2007); two nonlinear dimension
reduction methods: generalized sliced inverse regression (GSIR) (Li, 2018) and generalized sliced
average variance estimation (GSAVE) (Li, 2018); and linear regression with original data (LR).
Finally, we fit a linear regression model between the learned features and the response. As shown
in Table 1, we report the prediction error and conditional Hilbert-Schmidt independence criterion
(cHSIC) (Fukumizu et al., 2008) that measures conditional dependence between the learned features
and the response variable. We can see that NSRL outperforms these traditional linear and nonlinear
sufficient dimension reduction methods in terms of the prediction error and cHSIC. Thus, NSRL not
only excels in prediction but also can obtain central subspaces more accurately.
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Table 1: Averaged prediction errors (RMSE), conditional Hilbert-Schmidt independence criterion
(cHSIC) and their standard errors (based on 5-fold validation).

Model A Model B Model C

Scenario Method RMSE cHSIC RMSE cHSIC RMSE cHSIC

I

NSRL 3.10 ± .2 60.80 ± 3.7 0.68 ± .1 111.26 ± 24.2 0.44 ± .02 367.89 ± 38.5
SIR (Li, 1991) 3.13 ± .2 71.85 ± 3.4 1.05 ± .0 208.56 ± 3.6 0.46 ± .02 557.54 ± 2.8
SAVE (Shao et al., 2007) 3.13 ± .2 70.90 ± 3.7 1.05 ± .0 177.19 ± 4.5 0.46 ± .02 542.11 ± 5.2
GSIR (Li, 2018) 3.11 ± .2 73.19 ± 3.3 0.89 ± .0 191.56 ± 4.8 0.46 ± .02 575.18 ± 1.5
GSAVE (Li, 2018) 3.17 ± .2 184.94 ± 13.5 0.90 ± .0 221.89 ± 5.2 0.49 ± .01 608.33 ± 6.4
LR 3.13 ± .2 190.16 ± .8 1.05 ± .0 192.64 ± 1.4 0.46 ± .02 193.91 ± 1.2

II

NSRL 3.91 ± .6 57.41 ± 9.8 0.50 ± .1 93.96 ± 16.2 0.53 ± .02 280.91 ± 54.7
SIR (Li, 1991) 4.39 ± .3 73.47 ± 3.9 1.62 ± .0 283.72 ± 12.3 0.54 ± .02 483.13 ± 2.4
SAVE (Shao et al., 2007) 4.45 ± .3 80.32 ± 6.6 1.62 ± .0 225.54 ± 9.5 0.55 ± .02 464.74 ± 9.7
GSIR (Li, 2018) 4.36 ± .3 73.9 ± 5.4 1.10 ± .1 99.26 ± .1 0.55 ± .02 419.96 ± 9.4
GSAVE (Li, 2018) 4.40 ± .3 148.7 ± 9.1 1.11 ± .0 96.58 ± 4.7 0.56 ± .02 454.99 ± 7.9
LR 4.39 ± .3 161.31 ± 2.6 1.62 ± .0 173.08 ± 1.9 0.54 ± .02 283.84 ± 2.9

III

NSRL 2.96 ± .7 62.12 ± 10.1 0.54 ± .2 108.85 ± 27.6 0.44 ± .02 245.85 ± 56.3
SIR (Li, 1991) 3.87 ± .5 110.4 ± 8.9 1.34 ± .1 407.10 ± 17.6 0.47 ± .02 443.50 ± 12.2
SAVE (Shao et al., 2007) 3.87 ± .5 121.04 ± 8.1 1.34 ± .1 221.42 ± 15.5 0.47 ± .02 397.25 ± 10.3
GSIR (Li, 2018) 3.48 ± .5 68.81 ± 2.6 0.69 ± .0 109.04 ± 6.4 0.45 ± .01 352.96 ± 9.0
GSAVE (Li, 2018) 3.44 ± .5 73.13 ± 3.3 0.65 ± .0 107.73 ± 5.9 0.46 ± .01 352.28 ± 12.6
LR 3.88 ± .5 191.57 ± 5.2 1.34 ± .1 207.79 ± .9 0.47 ± .02 267.06 ± 1.2

5.2 PERFORMANCES ON REAL-WORLD SETTINGS

Regression. We consider two datasets: Life Expectancy (https://www.kaggle.com/
kumarajarshi/life-expectancy-who) collected from World Health Organization (WHO)
and Pole (Weiss & Indurkhya, 1995) collected from a large telecommunications application. Life
Expectancy dataset has 2938 observations and 20 covariates to predict life expectancy in age. Pole
dataset consists of 15000 observations with 48 predictors. A 2-layer network and a 3-layer network
with Leaky ReLU activation are used for Dφ and Fθ in both datasets, respectively. To obtain the
performance of predictions, a linear regression is adopted to fit the learned representation against
the response variable. As shown in Figure 3, experimental results are reported in terms of root mean
square error (RMSE) and distance correlation (DC), as measured using 5-fold cross-validation. We
compare NSRL with sliced inverse regression (SIR) (Li, 1991), sliced average variance estimation
(SAVE) (Shao et al., 2007), principal component analysis (PCA), sparse principal component anal-
ysis (SPCA) and linear regression with original data (LR). As a result, NSRL outperforms not only
unsupervised representation methods - PCA and SPCA, but also supervised methods based on suf-
ficient dimension reduction - SIR and SAVE.

(a) RMSE for Life Expectancy (b) RMSE for Pole

(a) DC for Life Expectancy (b) DC for Pole

Figure 3: Prediction errors and distance correlation between the representation and the response
variable based on 5-fold cross-validation.
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Classification. We compare NSRL with a feature extractor based on cross entropy loss (CN) on
MINST (LeCun & Cortes, 2010) and Kuzushiji-MNIST (Clanuwat et al., 2018) for handwritten
digits and Japanese letter recognition. MINST and Kuzushiji-MNIST both contain 60k 28 × 28
grayscale images from 10 classes for training and testing, respectively. To demonstrate that NSRL
is compatible with various GAN frameworks, we utilize the vanilla GAN (Goodfellow et al., 2014)
based on logD trick (Heusel et al., 2017) and Wasserstein GAN (WGAN) (Arjovsky et al., 2017)
on our experiments. We employ the VGG-5 with Spinal FC architecture (Kabir et al., 2020) for Fθ
and 4-layer networks for Dφ.

We apply the transfer learning technique to the combination of NSRL and CN compared with CN on
STL-10 (Coates et al., 2011) and CIFAR-10 (Krizhevsky et al., 2009). The STL-10 dataset consists
of 5k and 8k 96× 96 color images from 10 classes for training and testing, respectively. CIFAR-10
contains 50k and 10k color images with 32 × 32 pixels for training and testing, respectively. The
pretrained WideResnet-101 model (Zagoruyko & Komodakis, 2016) on the Imagenet dataset with
Spinal FC (Kabir et al., 2020) is adopted for Fθ. The discriminator Dφ is a 4-layer network with
Leaky ReLU activation.

Finally, k-nearest neighbor (k = 5) classifier on the learned features is used to obtain classification
accuracy for all methods. Classification accuracies for MNIST and Kuzushiji-MNIST are reported in
Table 2, and those for STL-10 and CIFAR-10 are reported in Table 3. As Table 2 shows, NSRL with
different GAN frameworks are stable and comparable with CN in terms of classification accuracy.
For both STL-10 and CIFAR-10 that use transfer learning, CN leveraging NSRL is comparable to
CN on STL-10 and outperforms CN on CIFAR-10.

Table 2: Classification accuracy on MINST and Kuzushiji-MNIST.

Datasets MNIST Kuzushiji-MNIST

Model d = 8 d = 16 d = 32 d = 8 d = 16 d = 32

CN 99.62 99.70 99.64 98.60 98.80 98.84
NSRL (logD) 99.67 99.66 99.62 98.61 98.81 98.63
NSRL (WGAN) 99.67 99.70 99.66 98.68 98.66 98.72

Table 3: Classification accuracy on STL-10 and CIFAR-10.

Datasets STL-10 CIFAR-10

Model d = 32 d = 64 d = 128 d = 32 d = 64 d = 128

CN 98.17 98.36 98.45 97.79 97.78 97.74
NSRL+CN 98.34 98.24 98.36 97.99 97.82 97.75

6 CONCLUSION

In this work, we propose a novel approach to achieving a good data representation for supervised
learning with certain desired characteristics including information preservation, low-dimensionality
and disentanglement. We formulate the ideal representation learning task as that of finding a non-
linear map that minimizes the sum of losses characterizing conditional independence and disentan-
glement via conditional covariance operator in RKHS and GAN. The proposed method is validated
via comprehensive numerical experiments and real data analysis in the context of regression and
classification. For the future work, it would be interesting to consider other measures of conditional
independence and generalize the proposed method to semi-supervised learning problems.
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A APPENDIX: EXPERIMENTAL DETAILS

In this section, we give the details of the experimental implementations, including hyper-parameters,
network architectures, leaning optimizers, and so on. The values of the hyper-parameters are pre-
sented in Table A1, where d is the dimension of the learned features, m is the mini-batch size during
training, T1 is the number of inner loops for training Dφ to learn the target distribution, T2 is the
number of outer loops for training Fθ.

A.1 SIMULATION STUDIES

The detailed architectures of dense convolutional network (DenseNet) (Huang et al., 2017; Amos &
Kolter) deployed for Fθ on S curve and Mixed 3D are shown in Table A2. A multilayer perceptron
(MLP) is adopted forDφ as shown in A3. As shown in Table A4, MLP is used for the neural network
structures of Dφ and Fθ in the regression setting. For all settings, the Adam (Kingma & Ba, 2014)
optimizer is utilized with an initial learning rate of 0.001 and weight decay of 0.0001.
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Table A1: Hyper-parameters for all experiments.

Dataset d λ m T1 T2

S curve 2 103 64 1 200
Mixed 3D 2 104 64 1 200
Simulated regression 2, 3 10−3 256 1 300
Life Expectancy 4, 6, 8, 12 10−3 64 1 200
Pole 5, 10, 20, 30 10−3 64 1 200
MNIST 8, 16, 32 10−4 128 1 200
Kuzushiji-MNIST 8, 16, 32 10−4 128 1 200
STL-10 32, 64, 128 10−4 128 1 50
CIFAR-10 32, 64, 128 10−4 128 1 50

Table A2: 20-layer DenseNet architecture for Fθ for visualization experiments.

Layers Details Output size

Convolution 3× 3 Conv 24× 20× 20

Dense Block 1
[

BN, 1× 1 Conv
BN, 3× 3 Conv

]
× 2 48× 20× 20

Transition Layer 1 BN, ReLU, 2× 2 Average Pool,1× 1 Conv 24× 10× 10

Dense Block 2
[

BN, 1× 1 Conv
BN, 3× 3 Conv

]
× 2 48× 10× 10

Transition Layer 2 BN, ReLU, 2× 2 Average Pool, 1× 1 Conv 24× 5× 5

Dense Block 3
[

BN, 1× 1 Conv
BN, 3× 3 Conv

]
× 2 48× 5× 5

Pooling BN, ReLU, 5× 5 Average Pool, Reshape 48
Fully connected Linear 2

A.2 REAL DATASETS

Regression: In the regression problems, we utilize the MLP architecture for Dφ and Fθ as shown in
A5. We adopt the Adam optimizer with an initial learning rate of 0.001 and weight decay of 0.0001.

Classification: the details of 4-layer MLP architecture for Dφ are shown in Table A3. The VGG-5
with Spinal FC architecture (Kabir et al., 2020) for Fθ is presented in Table A6. For training MNIST
and Kuzushiji-MNIST datasets, Adam optimizer with learning rate of 0.005 is adopted for Fθ. For
Fθ of STL-10 and CIFAR-10 datasets, we use customized SGD optimizer with initial learning rate
of 0.001 and momentum of 0.9 and decay the learning rate by 0.1 every 7 epochs.

B APPENDIX: PROOFS

B.1 PROOF OF LEMMA 2.1

Proof B.1 By assumption µ and γd∗ are both absolutely continuous with respect to the Lebesgue
measure. The desired result holds since it is a spacial case of the well known results on the exis-

Table A3: MLP architecture for Dφ of toy visualization examples and classification settings.

Dφ for visualization Dφ for classification

Layers Details Output size Details Output size

Layer 1 Linear, LeakyReLU 64 Linear, LeakyReLU 32
Layer 2 Linear, LeakyReLU 128 Linear, LeakyReLU 64
Layer 3 Linear, LeakyReLU 64 Linear, LeakyReLU 32
Layer 4 Linear 1 Linear 1
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Table A4: MLP architectures for Dφ and Fθ for simulated regression.

Dφ Fθ

Layers Details Output size Details Output size

Layer 1 Linear, LeakyReLU 16 Linear, LeakyReLU 32
Layer 2 Linear, LeakyReLU 8 Linear, LeakyReLU 16
Layer 3 Linear 1 Linear, LeakyReLU 8
Layer 4 Linear d

Table A5: MLP architectures for Dφ and Fθ for the real regression setting.

Dφ Fθ

Layers Details Output size Details Output size

Layer 1 Linear, LeakyReLU 8 Linear, LeakyReLU 16
Layer 2 Linear 1 Linear, LeakyReLU 32
Layer 3 Linear, LeakyReLU 8
Layer 4 Linear d

tence of optimal transport Brenier (1991); McCann et al. (1995), see, Theorem 1.28 on page 24 of
Philippis (2013) for details.

B.2 PROOF OF LEMMA 2.2

Proof B.2 Our proof follows Keziou (2003). Since f(t) is a convex function, then ∀t ∈ R f(t) =
f∗∗(t), where

f∗∗(t) = sup
s∈R
{st− F(s)}

is the Fenchel conjugate of F. By Fermat’s rule, the maximizer s∗ satisfies

t ∈ ∂F(s∗),

i.e.,
s∗ ∈ ∂f(t)

Plugging the above display with t = dµZ
dγ (x) into the definition of f -divergence, we obtain (8).

Table A6: Network architecture for Fθ on MNIST and Kuzushiji-MNIST.

Layers Details Output size

VGG-5 Block

 ( 3× 3 Conv
BN, ReLU

)
× 2

3× 3 Max Pool

× 2,

 ( 3× 3 Conv
BN, ReLU

)
× 3

3× 3 Max Pool

× 2 1× 28× 28

Fully Connected Spinal Block
[

Dropout, Linear
BN, ReLU

]
× 4 512

Fully connected Dropout, Linear d
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