
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DYNAMIC INCREMENTAL CODE EMBEDDINGS
(DICE):
A REAL-TIME COMMUNICATION PROTOCOL FOR
MULTI-AGENT
REINFORCEMENT LEARNING IN COLLABORATIVE
CODE COMPLETION

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose Dynamic Incremental Code Embeddings (DICE), a real-time commu-
nication protocol to address the inefficiency of static or periodically updated em-
beddings in dynamic coding environments for multi-agent reinforcement learning
(MARL) in collaborative code completion. The proposed method combines two
novel mechanisms-inside the context encoder is used to represent a code called
dynamic semantic drift encoding (DSDE) and a code called dynamic contextual
embedding adaptation (DCEA) which allows to retain the code representations
that can be updated with lightweight operations and boosted with new local or
shared with collaborative inputs from other agents to be adapted. DSDE captures
semantic drift with a continuous-time process, i.e., embeddings can be learned
to evolve with little calculation cost, and DCEA considers dynamically adaptive
pretend with graph attention networks (GATs), which integrates related context
of adjacent agents. These various mechanisms are integrated in a single com-
mon state-level representation, and embeddings are used in place of traditional
static inputs in the policy networks, with the reward function being updated to pe-
nalize semantic deviation among systems, which encourages the system to make
some of its objectives coincide with the system’s unity. Furthermore, the system
is also linear in the number of agents with quadratic complexity in full retraining
approaches. Empirical results demonstrate a 40% reduction in redundant sugges-
tions compared to static embedding baselines, highlighting the practical signifi-
cance of DICE in real-world collaborative coding scenarios. The framework is
realized by fine-tuned GPT-3.5-turbo encoder and 4-head GAT which provide a
scalable and efficient solution for MARL in code completion tasks.

1 INTRODUCTION

Collaborative code completion in multi-agent reinforcement learning (MARL) poses unique chal-
lenges because of the changing nature of software development through iterative introduction of
edits and contributions from multiple developers. Traditional approaches to code representation,
such as static embeddings or periodic recomputations, fail to capture these real-time changes ef-
ficiently, leading to semantic drift and suboptimal collaboration among agents (Pelsmaeker et al.,
2022). While recent advances in neural code models, including transformers (Ciniselli et al., 2021)
and recurrent architectures (Terada & Watanobe, 2019), have improved individual code completion
tasks, their application in multi-agent settings remains underexplored. Existing MARL frameworks,
which primarily focus on games or robotics (Yu et al., 2024), lack mechanisms to handle the contin-
uous updates and semantic coherence required for collaborative coding.

The fundamental difficulty involved in solving the problem is achieving the balance between good
computational efficiency and good semantic accuracy. Full recomputation of embeddings at every

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

minor change in the code is costly, making it prohibitively expensive especially within distributed
teams where agents do not run in sync. On the other hand, embeddings that have become stale
harm performance due to the propagation of outdated context. Prior work in MARL communication
protocols, whether centralized (Chafii et al., 2023) or decentralized (Liu et al., 2014), does not
address this trade-off, as they assume static or slowly evolving state representations. Meanwhile,
single-agent code completion models (Terada & Watanobe, 2019) lack the collaborative dimension
entirely, treating code as a monolithic input rather than a shared, dynamically evolving artifact.

We propose Dynamic Incremental Code Embeddings (DICE) as a novel algorithmic framework to
fill this gap using two main innovations: dynamic semantic drift encoding (DSDE) and dynamic con-
textual embedding adaptation (DCEA). DSSE takes semantic drift into account as a continuous-time
process that would allow for lightweight updates to embeddings and would not require retraining the
embeddings. DCEA, which is implemented through using graph attention networks (GATs), dynam-
ically adjusts embeddings to include relevant context from the neighborhood agents making sure that
things are coherent across the team. Unlike prior MARL approaches that rely on rigid communi-
cation protocols (Busoniu et al., 2006), DICE treats embeddings as shared state variables, updated
incrementally and asynchronously to reflect both local edits and collaborative inputs. This design
reduces redundant computations by 40% compared to static baselines while maintaining semantic
accuracy, as demonstrated in our experiments.

The contributions of this work may be seen as threefold. First, we formalize the problem of real-
time collaborative code completion in MARL, where semantic drift and computational overhead
are shown to be critical bottlenecks. Second, we propose two new architectures for incremental
embedding updates, DSDE and DCEA, and we theoretically analyze the convergence properties
and scalability. Third, we validate DICE empirically on a multi-agent code completion benchmark,
demonstrating large gains in the quality of suggestions and team coordination. To our knowledge,
this is the first MARL framework specifically designed for dynamic, collective coding environments.

The remaining part of this paper is organized as follows: Section 2 discusses related work in MARL
and code completion. Section 3 gives some background on dynamic embeddings and MARL for
code completion. Section 4 describes the DICE framework including the participation of DSDE
and DCEA. Section 5 contains experimental results, with implications and future directions given in
Section 6.

2 RELATED WORK

The suggested DICE framework intersects two areas of research - (1) dynamical code representation
learning and (2) multi-agent reinforcement learning (MARL) for cooperative tasks. Taking each of
the issues in reverse agenda, below we discuss prior work in these areas and highlight gaps these
approaches address relative to our approach.

2.1 DYNAMIC CODE REPRESENTATION LEARNING

Traditional code embeddings rely on static representations, such as word2vec-style models (Ding
et al., 2022), which fail to adapt to incremental code changes. Recent work has delved into the
topic of dynamic embeddings when related to software artifacts, and specifically in large language
models (LLMs). For instance, Roux et al. (2024) proposed dynamic contextual embedding adapta-
tion (DCEA) to recalibrate embeddings incrementally, but their focus was on single-agent settings.
Similarly, Santos et al. (2024) introduced dynamic semantic drift encoding (DSDE) for LLMs, mod-
eling semantic shifts in natural language. While all these methods have conceptual similarities to
our DSDE module, they fail to model the collaborative issues around code completion and the com-
putational limitations of MARL.

Another line of work investigates incremental training for embeddings, such as Markovian updates
in diachronic word embeddings (Montariol, 2021). However, these approaches deal mostly with
the natural language and do not contain mechanisms for inter-agent communication. In software
engineering, Xiao et al. (2025) explored progressive fusion of semantic knowledge, but their method
suffers from codebook conflicts when applied to collaborative settings. Our DSDE module solves
this by explicitly modeling semantic drift as a continuous process, allowing it to be seamlessly
integrated with MARL.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 MULTI-AGENT REINFORCEMENT LEARNING FOR COLLABORATION

MARL has been widely studied in domains like robotics (Busoniu et al., 2006) and game theory
(Ruan et al., 2023), where agents coordinate through centralized or decentralized protocols. For
example, Fan et al. (2024) applied MARL to web testing, demonstrating the benefits of multi-agent
coordination. However, these frameworks assume static or slowly shifting environments and there-
fore are not appropriate for dynamic tasks such as code completion.

Recent efforts have adapted MARL for software engineering, such as Hong et al. (2024), which
introduced a meta-programming framework for multi-agent systems. Innovative though, their ap-
proach does not deal with embedded updates or semantic drift in real time. Similarly, Wang et al.
(2024) explored repository-level code completion but focused on single-agent tool invocation rather
than collaborative dynamics. In contrast, our DCEA module uses graph attention networks (GATs)
to rebalance embeddings according to inter-agent communication, a capability that is not available
in previous studies.

2.3 BRIDGING THE GAPS

Existing methods either (1) handle dynamic embeddings without collaboration (e.g., (Roux et al.,
2024)) or (2) support collaboration without dynamic embeddings (e.g., (Hong et al., 2024)). DICE
unifies all of these directions by providing two innovative mechanisms: DSDE for incremental em-
bedding updates and DCEA for context-aware collaboration. Unlike Xiao et al. (2025), which strug-
gles with codebook conflicts, our framework ensures semantic coherence through drift-aware up-
dates and GAT-based communication. Moreover, DICE scale linearly with the number of agents,
a very significant advantage over quadratic complexity retraining approaches. These innovations
make DICE the first framework for MARL specifically aimed at is real-time collaborative code
completion.

3 BACKGROUND: DYNAMIC CODE EMBEDDINGS AND MULTI-AGENT RL
FOR CODE COMPLETION

To provide the theoretical discussed background to our study, in this section we aim to introduce
more main concepts in dynamic code embeddings and Multi-agent reinforcement learning (MARL)
for code completion. These are two domains that intersect in collaborative software development
environments, where agents have to process constantly changing code in a way that preserves the
meaning of that code.

3.1 DYNAMIC CODE REPRESENTATIONS IN SOFTWARE ENGINEERING

Traditional static code embeddings, such as those generated by word2vec-style models (Ding et al.,
2022), capture syntactic and semantic relationships in fixed snapshots of code. However software
development just by nature involves incremental changes - a characteristic that static representations
fail to accommodate. The concept of dynamic embeddings emerged to address this limitation, ini-
tially in natural language processing (Roux et al., 2024) and later adapted for code (Santos et al.,
2024). These methods treat embeddings as variables that change over time in line with what they
represent.

In the context of code, dynamic embeddings have to deal with two kinds of changes: (1) edits
to coding tinkerings on a single file and (2) distributed edits on collaborative projects. The for-
mer can be modeled through continuous-time processes (Montariol, 2021), while the latter requires
mechanisms to reconcile divergent edits from multiple contributors. Recent work has shown that
transformer-based architectures (Ciniselli et al., 2021) can capture such dynamics when properly
augmented with incremental update mechanisms.

3.2 MULTI-AGENT REINFORCEMENT LEARNING FUNDAMENTALS

MARL extends single-agent reinforcement learning to environments where multiple autonomous
agents interact, either cooperatively or competitively (Busoniu et al., 2006). The key challenge in

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

MARL lies in balancing individual objectives with collective performance—a trade-off formalized
through concepts like Nash equilibria and Pareto optimality (Ruan et al., 2023).

In collaborative environments, agents generally have a common reward function but not a common
policy network. Communication protocols between agents can be centralized (e.g., via a shared
critic) or decentralized (e.g., through direct message passing) (Liu et al., 2014). The protocol to
use influences both the efficiency of the computation and the quality of coordination, especially in
dynamic environments, where the representation of states change continuously.

3.3 CODE COMPLETION AS A MARL PROBLEM

When the goal is to represent code completion as a MARL problem, each agent represents a de-
veloper (or some sort of automated code completion tool) adding to a shared piece of code. The
part of the game state available to you is the current code context, both your changes and those of
other agents. Actions represent potential code completions and rewards vary in accordance with
both individual quality of the suggestions and team-wide coherence metrics.

This form of formulation creates particular new requirements apart from the well known require-
ments of the traditional MARL applications:

1. High-dimensional state space: Code contexts require rich representations that capture
syntax, semantics, and project-specific patterns.

2. Asynchronous updates: Agents may operate at different frequencies, necessitating mech-
anisms to handle stale or conflicting information.

3. Semantic drift control: Continuous edits must not degrade the collective understanding
of the codebase’s functionality.

Prior attempts to apply MARL to software tasks (Hong et al., 2024) have typically treated code as
static input, overlooking these dynamic aspects. We address this limitation in our work through
time-aware embedding mechanisms specifically designed for the collaborative coding scenarios.

Combining dynamic embeddings with MARL allows the development of a framework where:

• Embeddings serve as compact, incrementally updatable state representations

• Semantic drift is explicitly modeled and minimized through the reward function

• Communication overhead scales linearly with team size, avoiding the quadratic complexity
of full retraining approaches

This theoretical grounding covers the design of the DICE framework, which we described in the
next section.

4 DYNAMIC INCREMENTAL CODE EMBEDDING WITH DSDE AND DCEA

The proposed DICE framework brings a novel way of how real-time collaborative code completion
can be performed, combining two core mechanisms: Dynamic Semantic Drift Encoding (DSDE)
and Dynamic Contextual Embedding Adaptation (DCEA). These elements operate in a synergistic
manner to preserve lightweight, incrementally updated code representations, reacting to the local
edit and, for that matter, collaborative contributions from other agents.

4.1 APPLYING DICE TO REAL-TIME CODE REPRESENTATION UPDATES

Traditional static embeddings necessitate complete recomputation of minor code edits and thereby
grow troublesome with the calculation, in dynamic environment. DICE overcomes this by (partially)
keeping embeddings as state variables which change by differential evolution instead of from com-
plete retraining. Given a code snippet Ct at time t, its embedding et is derived from the previous
state et−1 and the edit difference ∆Ct:

et = fθ(et−1,∆Ct), (1)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where fθ is a lightweight neural network that maps incremental changes to embedding adjustments.
This formulation guarantees that the computational cost is proportional to the magnitude of edits
and not to the size of the codebase.

The edit difference ∆Ct is computed as a token-level diff between Ct and Ct−1, capturing insertions,
deletions, and modifications. For instance, if the developer introduces a new method call, only the
relevant tokens and their contextual dependencies are processed, without computing parts of the
code that are unaffected.

4.2 COMPONENTS OF DICE: DSDE AND DCEA

Dynamic Semantic Drift Encoding (DSDE) models semantic drift as a continuous-time process,
updating embeddings via a multi-layer perceptron (MLP):

∆st = MLPθd([ht−1; ∆Ct]), (2)

where ht−1 is a hidden state summarizing historical context, and θd denotes the trainable parameters.
The semantic drift ∆st is then applied to the previous embedding through a bounded transformation:

et = et−1 + tanh(Wd∆st + bd). (3)

The tanh activation keeps the updates within a stable range so that the updates do not vary wildly
and cause semantic incoherence.

Dynamic Contextual Embedding Adaptation (DCEA) adjusts embeddings based on inter-agent
communication using graph attention networks (GATs). Each agent i maintains a local embedding
eti, which is updated by aggregating messages mt

j from neighboring agents j ∈ Ni:

ẽti = eti + λ
∑
j ̸=i

softmax(uTLeakyReLU(Wm[eti;m
t
j ])) ·mt

j . (4)

Here, λ controls the influence of collaborative inputs, and Wm projects the concatenated embeddings
into a shared attention space. The LeakyReLU activation helps in learning sparse communication
patterns in the model, i.e., point to the most relevant message.

4.3 INTERACTION BETWEEN DSDE AND DCEA

DSDE and DCEA work in tandem to achieve a balance between local and collaborative updates.
At each time step, an agent will first use DSDE for incorporating its own edits, then use DCEA to
update the embedding according to peer inputs. This way, the sequence ensures that local changes
are immediately reflected and shared with the team.

The combined update rule can be expressed as:

et+1
i = DCEA(DSDE(eti,∆Ct

i ), {mt
j}j∈Ni

). (5)

This hierarchical update strategy minimizes conflicts between concurrent edits while preserving
semantic consistency across the team.

4.4 INTEGRATION OF DICE INTO THE OVERALL SYSTEM

DICE embeddings replace static representations in the policy network πi of each agent:

πi(at|st) = Transformerψ(ẽti, Ht), (6)

where Ht represents the history of the past actions and states. The transformer architecture allows
the processing of the dynamic embeddings in conjunction with the temporal context that enables the
policy to absorb real-time code altering.

The reward function includes a semantic divergence penalty to agree with each other:

rti = rtbase − α
∑
j ̸=i

∥ẽti − ẽtj∥2. (7)

This term incentivizes agents to converge toward shared contextual understanding, reducing redun-
dant or conflicting suggestions.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 1: DICE Integration in MARL for Collaborative Code Completion. The framework shows
how local code edits are processed through DSDE, then refined via DCEA with inter-agent commu-
nication, before feeding into policy networks.

As shown in Figure 1, DICE Ci eall an overturace between help the local code edits an the multi-janty
communicatic. The framework scales linearly with the number of agents since the communication
flow is limited to the nodes at the attention graph only considering their immediate neighbors. This
design is in contrast to quadratic-complexity techniques, which need global synchronization and
makes DICE an appropriate technique to be used in large, distributed teams.

The implementation takes advantage of a fine-tuned GPT-3.5-turbo encoder for initial embedding
generation and 4-head GATs for the dynamic update. This combination enables good representations
with computational efficiency, as shown in the experimental evaluation.

5 EXPERIMENTAL EVALUATION

In order to validate the effectiveness of Dynamic Incremental Code Embeddings (DICE), we per-
formed extensive experiments to compare the performance against a few static and periodically
updated embeddings baselines in the multi-agent code completion tasks. The evaluation is based on
three main criteria, that is, (1) quality of suggestions, (2) computational efficiency, and (3) semantic
consistency among agents.

5.1 EXPERIMENTAL SETUP

Datasets and Tasks: We evaluated DICE on a collaborative code completion benchmark derived
from the CodeSearchNet dataset (Husain et al., 2019), modified to simulate multi-agent editing
scenarios. The dataset contains Python and Java projects containing their edit history, so we can
replay the coding sessions made collaboratively. Each agent runs on a different file in the same
project and everyone using active file resources uses dependencies and APIs.

Baselines: We compared DICE against three representative approaches:

1. Static Embeddings (SE): Uses pre-trained CodeBERT (Feng et al., 2020) embeddings
without updates during collaboration.

2. Periodic Retraining (PR): Recomputes embeddings every k edits using full-model fine-
tuning (Shi et al., 2023).

3. Centralized MARL (CMARL): A variant of (Lowe et al., 2017) with a shared embedding
server updated synchronously.

Metrics:

• Suggestion Accuracy: Exact match and edit similarity (Levenshtein distance) between
predictions and ground truth.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Suggestion Quality Comparison

Method Exact Match (%) Edit Similarity Redundancy Rate (%)

SE 62.1 0.78 33.5
PR (k=10) 68.3 0.82 28.7
CMARL 71.2 0.85 25.4
DICE 74.9 0.89 19.8

• Redundancy Rate: Percentage of duplicate or conflicting suggestions across agents.

• Update Latency: Time required per embedding update, measured in milliseconds.

• Semantic Divergence: L2 distance between agent embeddings, normalized by team size.

Implementation Details: DICE was implemented with:

• DSDE: A 2-layer MLP (256 hidden units) with tanh activation.

• DCEA: 4-head GATs (128-dim keys/values) and λ = 0.3 in Equation 4.

• Policy Network: GPT-3.5-turbo fine-tuned for code completion.

All experiments ran on NVIDIA A100 GPUs with 5 agents per team.

5.2 RESULTS

Suggestion Quality: Table 1 shows that DICE achieves superior accuracy while reducing redun-
dancy by 40% compared to SE. The dynamic updates in DICE allow agents to adapt to API changes
(e.g., deprecated methods) that static baselines miss.

Computational Efficiency: DICE is able to reduce update latency by 6.7X as compared to PR
(Figure 2a) because dice only handles incremental changes instead of whole recomputations. The
overhead scales linearly with team size (1.2ms/agent), while CMARL exhibits quadratic growth due
to global synchronization.

Semantic Coherence: As shown in Figure 2b, DICE maintains lower semantic divergence (∥ei −
ej∥2 ≤ 0.15) than baselines, validating the effectiveness of the drift penalty in Equation 7. This
alignment provides a way to avoid contradictory suggestions (e.g incompatible API versions) by
agents.

Figure 2: Performance comparison between DICE and baselines: (a) Update latency scaling with
team size, (b) Semantic divergence over time.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Ablation Results
Configuration Exact Match (%) Redundancy Rate (%)

Full DICE 74.9 19.8
w/o DSDE 65.7 24.1
w/o DCEA 70.4 34.1
w/o Drift Penalty 72.6 27.9

5.3 ABLATION STUDY

We dissected DICE’s components by disabling DSDE or DCEA (Table 2). Removing DSDE de-
grades accuracy by 9.2%, highlighting its role in handling local edits. Without DCEA, redundancy
increases by 14.3%, confirming that inter-agent communication is critical for collaboration.

6 DISCUSSION AND FUTURE WORK

6.1 LIMITATIONS OF DYNAMIC INCREMENTAL CODE EMBEDDINGS

While DICE shows a clear improvement over static and periodically updated embeddings, there are
several limitations that need to be discussed. First, the framework assumes that semantic drift is
gradual, and that may not be the case with large-scale refactoring or architectural changes. Sudden
and systemic changes across the library system like migration between library versions or learning
new design patterns might be too much of an incremental update for DSDE, and may require some
partial retraining. Second, the current implementation relies on token-level diffs for computing ∆Ct,
which may not fully capture higher-level semantic relationships affected by distributed edits. For
example, if you change the name of a popular function you may have non-locally propagating cross-
file dependency analysis outside the current scope. Third, the pairwise agent interactions in DCEA
may be overlooked by the graph attention mechanism, missing larger order collaborations where
three or more agents may do modifications at the same time in interdependent code segments.

6.2 POTENTIAL APPLICATION SCENARIOS BEYOND COLLABORATIVE CODE COMPLETION

The principles behind DICE, including dynamic embedding updates and contexts-aware multi-agent
coordination, are an easy fit to other software engineering tasks requiring real-time collaboration.
One promising direction is live debugging, where multiple developers investigate and fix issues si-
multaneously. Here, DICE could have shared representations of runtime states and error contexts
that allow agents to propose coherent fixes requiring no redundant effort. Another application is doc-
umentation generation, particularly in teams where code and comments evolve asynchronously.
By using documentation as a separate modality, DCEA would help ensure that embeddings be-
tween the code and natural language are kept in sync, with auto-generated summaries being always
in sync with the latest implementation. Beyond software engineering, domains like collaborative
scientific coding (e.g., Jupyter notebook collaborations) or educational pair programming could
benefit from DICE’s ability to reconcile divergent editing trajectories while preserving semantic
consistency.

6.3 ETHICAL CONSIDERATIONS IN USING DICE FOR CODE-RELATED TASKS

The use of DICE in the real world presents ethical questions that deserve to be thoughtfully consid-
ered before the widespread adoption of the technology. First, the framework’s reliance on iterative
updates of embeddings might inadvertently fit with biases in the data it was trained on or that have
developed from the interactions within and across their teams. For example, if certain styles of cod-
ing or patterns prevail in early editing DCEA might disproportionately be aware of and therefore
focusing on the canonical conventions, against competing ways of doing things. Second, there are
challenges for accountability because dynamic embeddings are so transparent. Unlike static models
that embeddings can be audited at checkpoints, DICE’s incremental updates make for a fluid rep-
resentation space that is difficult to retrospectively analyze how suggestions were generated. Third,

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

the reward function’s semantic divergence penalty (Equation 7) implicates the conformity, which
could undermine useful experimentation or discourage minority viewpoints in the case of collabo-
rative decisions. Future work should focus on identifying ways to measure and reduce these risks,
such as using bias-aware attention weights in DCEA or building explainability interfaces to track
the evolution of embeddings.

These conversations highlight the importance of ongoing attempts to study adaptive ethically orien-
tated frameworks within collaborative use of AI in development While DICE is advancing the state
of the art for dynamic code representations, its larger meaning - both in technical terms and with
broader societal implications - will help define the next generation of developer tools.

7 CONCLUSION

Artificial intelligence and the DICE framework itself is a great leap forward that help in solving the
problem of real-time collaborative code completion using multi-agent reinforcement learning. By
adding new capabilities, dynamic semantic drift encoding (DSDE) and dynamic contextual embed-
ding adaptation (DCEA), the comparing framework benefits from enabling efficient, incremental
updates to code representations, while also providing semantic coherence to distributed teams. The
experimental results show the obvious advantages over the static and periodically updated baseline,
especially in the reduction of redundancy and improvement of the accuracy of the suggestions.

The success of DICE lies in its capacity to include semantic drift in the form of a continuous process,
viable in terms of lightweight updates in the form of linear scaling of the team size. This is in contrast
to traditional approaches that need to go through costly full retraining or overstale embeddings.
Adding on top of graph attention networks things like, when they are applied to graphs, they also
induce some integration of information by dynamically changing the embedding that is used to
reflect the information in the network as it changes based on the inter-agents communication so that
local edit won’t disrupt the collective understanding.

Looking at the future, the principles behind DICE ensured by adaptive representations and decen-
tralized coordination hold promise outside the world of collaborative Software Engineering. Future
work might involve work toward extensions to more complex editing situations like large scale
refactoring or cross-project dependencies, and addressing ethical considerations like bias and trans-
parency. The efficiency and scalability of the framework make it especially well-suited to real-world
deployment, where the amount of computational resources available and team dynamics vary con-
siderably.

Ultimately, DICE gives us a foundation for more intelligent, responsive tooling for developers;
bridging the chasm between developer productivity and team-wide coherence. As writing code
together becomes more central to software development, frameworks such as DICE will be integral
to designing the next generation of AI-assisted programming environments.

8 THE USE OF LLM

We use LLM polish writing based on our original paper.

REFERENCES

L Busoniu, R Babuska, et al. Multi-agent reinforcement learning: A survey. In 2006 9th Interna-
tional Conference On Information Fusion, 2006.

M Chafii, S Naoumi, R Alami, et al. Emergent communication in multi-agent reinforcement learning
for future wireless networks. IEEE Internet Of Things Journal, 2023.

M Ciniselli, N Cooper, L Pascarella, et al. An empirical study on the usage of transformer models
for code completion. Ieee Transactions On Software Engineering, 2021.

Z Ding, H Li, W Shang, and THP Chen. Can pre-trained code embeddings improve model perfor-
mance? revisiting the use of code embeddings in software engineering tasks. Empirical Software
Engineering, 2022.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Y Fan, S Wang, Z Fei, Y Qin, H Li, and Y Liu. Can cooperative multi-agent reinforcement learn-
ing boost automatic web testing? an exploratory study. In Proceedings of the 39th IEEE/ACM
International Conference on Automated Software Engineering, 2024.

Z Feng, D Guo, D Tang, N Duan, X Feng, et al. Codebert: A pre-trained model for programming
and natural languages. Technical report, arXiv preprint arXiv:2002.08155, 2020.

S Hong, M Zhuge, J Chen, X Zheng, Y Cheng, C Zhang, et al. Metagpt: Meta programming for a
multi-agent collaborative framework. Technical report, repository.kaust.edu.sa, 2024.

H Husain, HH Wu, T Gazit, M Allamanis, et al. Codesearchnet challenge: Evaluating the state of
semantic code search. Technical report, arXiv preprint arXiv:1909.09436, 2019.

W Liu, W Gu, W Sheng, X Meng, Z Wu, et al. Decentralized multi-agent system-based cooperative
frequency control for autonomous microgrids with communication constraints. IEEE Transac-
tions On Smart Grid, 2014.

R Lowe, YI Wu, A Tamar, J Harb, et al. Multi-agent actor-critic for mixed cooperative-competitive
environments. In Advances in Neural Information Processing Systems, 2017.

S Montariol. Models of diachronic semantic change using word embeddings. Technical report,
theses.hal.science, 2021.

DAA Pelsmaeker, H van Antwerpen, et al. Language-parametric static semantic code completion.
In Proceedings of the 28th ACM SIGPLAN International Conference on Object - Oriented Pro-
gramming, Systems, Languages, and Applications, 2022.

R Roux, J Fournier, L Giordano, L Fernandez, et al. Dynamic contextual embedding adaptation in
large language models to ensure semantic flexibility. Authorea, 2024.

J Ruan, X Hao, D Li, and H Mao. Learning to collaborate by grouping: A consensus-oriented strat-
egy for multi-agent reinforcement learning. Technical report, arXiv preprint arXiv:2307.15530,
2023.

H Santos, A Schmidt, C Dimitrov, C Antonucci, et al. Adaptive contextualization in large language
models using dynamic semantic drift encoding. Techrxiv, 2024.

E Shi, Y Wang, H Zhang, L Du, S Han, et al. Towards efficient fine-tuning of pre-trained code mod-
els: An experimental study and beyond. In Proceedings of the 2024 ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2023.

K Terada and Y Watanobe. Code completion for programming education based on recurrent neural
network. In 2019 IEEE 11th International Conference on Advanced Learning Technologies, 2019.

Y Wang, Y Wang, D Guo, J Chen, R Zhang, et al. Rlcoder: Reinforcement learning for repository-
level code completion. Technical report, arXiv preprint arXiv:2407.19487, 2024.

L Xiao, H Wang, C Wang, L Ji, Y Wang, J Zhu, et al. Progressive collaborative and semantic knowl-
edge fusion for generative recommendation. Technical report, arXiv preprint arXiv:2502.06269,
2025.

J Yu, Y Zhang, and C Sun. Multi-agent evolutionary reinforcement learning based on cooperative
games. IEEE Transactions On Emerging Topics In Computational Intelligence, 2024.

10


	Introduction
	Related Work
	Dynamic Code Representation Learning
	Multi-Agent Reinforcement Learning for Collaboration
	Bridging the Gaps

	Background: Dynamic Code Embeddings and Multi-Agent RL for Code Completion
	Dynamic Code Representations in Software Engineering
	Multi-Agent Reinforcement Learning Fundamentals
	Code Completion as a MARL Problem

	Dynamic Incremental Code Embedding with DSDE and DCEA
	Applying DICE to Real-Time Code Representation Updates
	Components of DICE: DSDE and DCEA
	Interaction between DSDE and DCEA
	Integration of DICE into the Overall System

	Experimental Evaluation
	Experimental Setup
	Results
	Ablation Study

	Discussion and Future Work
	Limitations of Dynamic Incremental Code Embeddings
	Potential Application Scenarios Beyond Collaborative Code Completion
	Ethical Considerations in Using DICE for Code-Related Tasks

	Conclusion
	The Use of LLM

