

000 DYNAMIC INCREMENTAL CODE EMBEDDINGS
 001
 002 (DICE):
 003
 004 A REAL-TIME COMMUNICATION PROTOCOL FOR
 005 MULTI-AGENT
 006
 007 REINFORCEMENT LEARNING IN COLLABORATIVE
 008 CODE COMPLETION

011 **Anonymous authors**
 012 Paper under double-blind review

014
 015 ABSTRACT

018 We propose Dynamic Incremental Code Embeddings (DICE), a real-time commu-
 019 nication protocol to address the inefficiency of static or periodically updated em-
 020 beddings in dynamic coding environments for multi-agent reinforcement learning
 021 (MARL) in collaborative code completion. The proposed method combines two
 022 novel mechanisms-inside the context encoder is used to represent a code called
 023 dynamic semantic drift encoding (DSDE) and a code called dynamic contextual
 024 embedding adaptation (DCEA) which allows to retain the code representations
 025 that can be updated with lightweight operations and boosted with new local or
 026 shared with collaborative inputs from other agents to be adapted. DSDE captures
 027 semantic drift with a continuous-time process, i.e., embeddings can be learned
 028 to evolve with little calculation cost, and DCEA considers dynamically adaptive
 029 pretend with graph attention networks (GATs), which integrates related context
 030 of adjacent agents. These various mechanisms are integrated in a single com-
 031 mon state-level representation, and embeddings are used in place of traditional
 032 static inputs in the policy networks, with the reward function being updated to pe-
 033 nalyze semantic deviation among systems, which encourages the system to make
 034 some of its objectives coincide with the system’s unity. Furthermore, the system
 035 is also linear in the number of agents with quadratic complexity in full retraining
 036 approaches. Empirical results demonstrate a 40% reduction in redundant sugges-
 037 tions compared to static embedding baselines, highlighting the practical signifi-
 038 cance of DICE in real-world collaborative coding scenarios. The framework is
 039 realized by fine-tuned GPT-3.5-turbo encoder and 4-head GAT which provide a
 040 scalable and efficient solution for MARL in code completion tasks.

041 1 INTRODUCTION

043 Collaborative code completion in multi-agent reinforcement learning (MARL) poses unique chal-
 044 lenges because of the changing nature of software development through iterative introduction of
 045 edits and contributions from multiple developers. Traditional approaches to code representation,
 046 such as static embeddings or periodic recomputations, fail to capture these real-time changes ef-
 047 ficiently, leading to semantic drift and suboptimal collaboration among agents (Pelsmaeker et al.,
 048 2022). While recent advances in neural code models, including transformers (Ciniselli et al., 2021)
 049 and recurrent architectures (Terada & Watanobe, 2019), have improved individual code completion
 050 tasks, their application in multi-agent settings remains underexplored. Existing MARL frameworks,
 051 which primarily focus on games or robotics (Yu et al., 2024), lack mechanisms to handle the contin-
 052 uous updates and semantic coherence required for collaborative coding.

053 The fundamental difficulty involved in solving the problem is achieving the balance between good
 computational efficiency and good semantic accuracy. Full recomputation of embeddings at every

054 minor change in the code is costly, making it prohibitively expensive especially within distributed
 055 teams where agents do not run in sync. On the other hand, embeddings that have become stale
 056 harm performance due to the propagation of outdated context. Prior work in MARL communication
 057 protocols, whether centralized (Chaffi et al., 2023) or decentralized (Liu et al., 2014), does not
 058 address this trade-off, as they assume static or slowly evolving state representations. Meanwhile,
 059 single-agent code completion models (Terada & Watanobe, 2019) lack the collaborative dimension
 060 entirely, treating code as a monolithic input rather than a shared, dynamically evolving artifact.

061 We propose Dynamic Incremental Code Embeddings (DICE) as a novel algorithmic framework to
 062 fill this gap using two main innovations: dynamic semantic drift encoding (DSDE) and dynamic
 063 contextual embedding adaptation (DCEA). DSSE takes semantic drift into account as a continuous-time
 064 process that would allow for lightweight updates to embeddings and would not require retraining the
 065 embeddings. DCEA, which is implemented through using graph attention networks (GATs), dynam-
 066 ically adjusts embeddings to include relevant context from the neighborhood agents making sure that
 067 things are coherent across the team. Unlike prior MARL approaches that rely on rigid commun-
 068 ication protocols (Busoniu et al., 2006), DICE treats embeddings as shared state variables, updated
 069 incrementally and asynchronously to reflect both local edits and collaborative inputs. This design
 070 reduces redundant computations by 40% compared to static baselines while maintaining semantic
 071 accuracy, as demonstrated in our experiments.

072 The contributions of this work may be seen as threefold. First, we formalize the problem of real-
 073 time collaborative code completion in MARL, where semantic drift and computational overhead
 074 are shown to be critical bottlenecks. Second, we propose two new architectures for incremental
 075 embedding updates, DSDE and DCEA, and we theoretically analyze the convergence properties
 076 and scalability. Third, we validate DICE empirically on a multi-agent code completion benchmark,
 077 demonstrating large gains in the quality of suggestions and team coordination. To our knowledge,
 078 this is the first MARL framework specifically designed for dynamic, collective coding environments.

079 The remaining part of this paper is organized as follows: Section 2 discusses related work in MARL
 080 and code completion. Section 3 gives some background on dynamic embeddings and MARL for
 081 code completion. Section 4 describes the DICE framework including the participation of DSDE
 082 and DCEA. Section 5 contains experimental results, with implications and future directions given in
 083 Section 6.

084 2 RELATED WORK

085 The suggested DICE framework intersects two areas of research - (1) dynamical code representation
 086 learning and (2) multi-agent reinforcement learning (MARL) for cooperative tasks. Taking each of
 087 the issues in reverse agenda, below we discuss prior work in these areas and highlight gaps these
 088 approaches address relative to our approach.

089 2.1 DYNAMIC CODE REPRESENTATION LEARNING

090 Traditional code embeddings rely on static representations, such as word2vec-style models (Ding
 091 et al., 2022), which fail to adapt to incremental code changes. Recent work has delved into the
 092 topic of dynamic embeddings when related to software artifacts, and specifically in large language
 093 models (LLMs). For instance, Roux et al. (2024) proposed dynamic contextual embedding adapta-
 094 tion (DCEA) to recalibrate embeddings incrementally, but their focus was on single-agent settings.
 095 Similarly, Santos et al. (2024) introduced dynamic semantic drift encoding (DSDE) for LLMs, mod-
 096 eling semantic shifts in natural language. While all these methods have conceptual similarities to
 097 our DSDE module, they fail to model the collaborative issues around code completion and the com-
 098 putational limitations of MARL.

099 Another line of work investigates incremental training for embeddings, such as Markovian updates
 100 in diachronic word embeddings (Montariol, 2021). However, these approaches deal mostly with
 101 the natural language and do not contain mechanisms for inter-agent communication. In software
 102 engineering, Xiao et al. (2025) explored progressive fusion of semantic knowledge, but their method
 103 suffers from codebook conflicts when applied to collaborative settings. Our DSDE module solves
 104 this by explicitly modeling semantic drift as a continuous process, allowing it to be seamlessly
 105 integrated with MARL.

108
109

2.2 MULTI-AGENT REINFORCEMENT LEARNING FOR COLLABORATION

110
111
112
113
114

MARL has been widely studied in domains like robotics (Busoniu et al., 2006) and game theory (Ruan et al., 2023), where agents coordinate through centralized or decentralized protocols. For example, Fan et al. (2024) applied MARL to web testing, demonstrating the benefits of multi-agent coordination. However, these frameworks assume static or slowly shifting environments and therefore are not appropriate for dynamic tasks such as code completion.

115
116
117
118
119
120
121

Recent efforts have adapted MARL for software engineering, such as Hong et al. (2024), which introduced a meta-programming framework for multi-agent systems. Innovative though, their approach does not deal with embedded updates or semantic drift in real time. Similarly, Wang et al. (2024) explored repository-level code completion but focused on single-agent tool invocation rather than collaborative dynamics. In contrast, our DCEA module uses graph attention networks (GATs) to rebalance embeddings according to inter-agent communication, a capability that is not available in previous studies.

122
123

2.3 BRIDGING THE GAPS

124
125
126
127
128
129
130
131
132

Existing methods either (1) handle dynamic embeddings without collaboration (e.g., (Roux et al., 2024)) or (2) support collaboration without dynamic embeddings (e.g., (Hong et al., 2024)). DICE unifies all of these directions by providing two innovative mechanisms: DSDE for incremental embedding updates and DCEA for context-aware collaboration. Unlike Xiao et al. (2025), which struggles with codebook conflicts, our framework ensures semantic coherence through drift-aware updates and GAT-based communication. Moreover, DICE scale linearly with the number of agents, a very significant advantage over quadratic complexity retraining approaches. These innovations make DICE the first framework for MARL specifically aimed at is real-time collaborative code completion.

133
134
135
136

3 BACKGROUND: DYNAMIC CODE EMBEDDINGS AND MULTI-AGENT RL FOR CODE COMPLETION

137
138
139
140
141
142

To provide the theoretical discussed background to our study, in this section we aim to introduce more main concepts in dynamic code embeddings and Multi-agent reinforcement learning (MARL) for code completion. These are two domains that intersect in collaborative software development environments, where agents have to process constantly changing code in a way that preserves the meaning of that code.

143
144

3.1 DYNAMIC CODE REPRESENTATIONS IN SOFTWARE ENGINEERING

145
146
147
148
149
150
151

Traditional static code embeddings, such as those generated by word2vec-style models (Ding et al., 2022), capture syntactic and semantic relationships in fixed snapshots of code. However software development just by nature involves incremental changes - a characteristic that static representations fail to accommodate. The concept of dynamic embeddings emerged to address this limitation, initially in natural language processing (Roux et al., 2024) and later adapted for code (Santos et al., 2024). These methods treat embeddings as variables that change over time in line with what they represent.

152
153
154
155
156
157
158

In the context of code, dynamic embeddings have to deal with two kinds of changes: (1) edits to coding tinkers on a single file and (2) distributed edits on collaborative projects. The former can be modeled through continuous-time processes (Montariol, 2021), while the latter requires mechanisms to reconcile divergent edits from multiple contributors. Recent work has shown that transformer-based architectures (Ciniselli et al., 2021) can capture such dynamics when properly augmented with incremental update mechanisms.

159
160
161

3.2 MULTI-AGENT REINFORCEMENT LEARNING FUNDAMENTALS

MARL extends single-agent reinforcement learning to environments where multiple autonomous agents interact, either cooperatively or competitively (Busoniu et al., 2006). The key challenge in

162 MARL lies in balancing individual objectives with collective performance—a trade-off formalized
 163 through concepts like Nash equilibria and Pareto optimality (Ruan et al., 2023).
 164

165 In collaborative environments, agents generally have a common reward function but not a common
 166 policy network. Communication protocols between agents can be centralized (e.g., via a shared
 167 critic) or decentralized (e.g., through direct message passing) (Liu et al., 2014). The protocol to
 168 use influences both the efficiency of the computation and the quality of coordination, especially in
 169 dynamic environments, where the representation of states change continuously.
 170

3.3 CODE COMPLETION AS A MARL PROBLEM

172 When the goal is to represent code completion as a MARL problem, each agent represents a de-
 173 veloper (or some sort of automated code completion tool) adding to a shared piece of code. The
 174 part of the game state available to you is the current code context, both your changes and those of
 175 other agents. Actions represent potential code completions and rewards vary in accordance with
 176 both individual quality of the suggestions and team-wide coherence metrics.
 177

178 This form of formulation creates particular new requirements apart from the well known require-
 179 ments of the traditional MARL applications:
 180

1. **High-dimensional state space:** Code contexts require rich representations that capture
 181 syntax, semantics, and project-specific patterns.
2. **Asynchronous updates:** Agents may operate at different frequencies, necessitating mech-
 182 anisms to handle stale or conflicting information.
3. **Semantic drift control:** Continuous edits must not degrade the collective understanding
 183 of the codebase’s functionality.

187 Prior attempts to apply MARL to software tasks (Hong et al., 2024) have typically treated code as
 188 static input, overlooking these dynamic aspects. We address this limitation in our work through
 189 time-aware embedding mechanisms specifically designed for the collaborative coding scenarios.
 190

Combining dynamic embeddings with MARL allows the development of a framework where:
 191

- 192 • Embeddings serve as compact, incrementally updatable state representations
- 193 • Semantic drift is explicitly modeled and minimized through the reward function
- 194 • Communication overhead scales linearly with team size, avoiding the quadratic complexity
 195 of full retraining approaches

197 This theoretical grounding covers the design of the DICE framework, which we described in the
 198 next section.
 199

4 DYNAMIC INCREMENTAL CODE EMBEDDING WITH DSDE AND DCEA

203 The proposed DICE framework brings a novel way of how real-time collaborative code completion
 204 can be performed, combining two core mechanisms: Dynamic Semantic Drift Encoding (DSDE)
 205 and Dynamic Contextual Embedding Adaptation (DCEA). These elements operate in a synergistic
 206 manner to preserve lightweight, incrementally updated code representations, reacting to the local
 207 edit and, for that matter, collaborative contributions from other agents.
 208

4.1 APPLYING DICE TO REAL-TIME CODE REPRESENTATION UPDATES

210 Traditional static embeddings necessitate complete recomputation of minor code edits and thereby
 211 grow troublesome with the calculation, in dynamic environment. DICE overcomes this by (partially)
 212 keeping embeddings as state variables which change by differential evolution instead of from
 213 complete retraining. Given a code snippet C_t at time t , its embedding e_t is derived from the previous
 214 state e_{t-1} and the edit difference ΔC_t :
 215

$$e_t = f_\theta(e_{t-1}, \Delta C_t), \quad (1)$$

216 where f_θ is a lightweight neural network that maps incremental changes to embedding adjustments.
 217 This formulation guarantees that the computational cost is proportional to the magnitude of edits
 218 and not to the size of the codebase.

219 The edit difference ΔC_t is computed as a token-level diff between C_t and C_{t-1} , capturing insertions,
 220 deletions, and modifications. For instance, if the developer introduces a new method call, only the
 221 relevant tokens and their contextual dependencies are processed, without computing parts of the
 222 code that are unaffected.

224 4.2 COMPONENTS OF DICE: DSDE AND DCEA

226 **Dynamic Semantic Drift Encoding (DSDE)** models semantic drift as a continuous-time process,
 227 updating embeddings via a multi-layer perceptron (MLP):

$$228 \quad \Delta s_t = \text{MLP}_{\theta_d}([h_{t-1}; \Delta C_t]), \quad (2)$$

230 where h_{t-1} is a hidden state summarizing historical context, and θ_d denotes the trainable parameters.
 231 The semantic drift Δs_t is then applied to the previous embedding through a bounded transformation:

$$232 \quad e_t = e_{t-1} + \tanh(W_d \Delta s_t + b_d). \quad (3)$$

233 The \tanh activation keeps the updates within a stable range so that the updates do not vary wildly
 234 and cause semantic incoherence.

236 **Dynamic Contextual Embedding Adaptation (DCEA)** adjusts embeddings based on inter-agent
 237 communication using graph attention networks (GATs). Each agent i maintains a local embedding
 238 e_i^t , which is updated by aggregating messages m_j^t from neighboring agents $j \in \mathcal{N}_i$:

$$239 \quad \tilde{e}_i^t = e_i^t + \lambda \sum_{j \neq i} \text{softmax}(u^T \text{LeakyReLU}(W_m[e_i^t; m_j^t])) \cdot m_j^t. \quad (4)$$

242 Here, λ controls the influence of collaborative inputs, and W_m projects the concatenated embeddings
 243 into a shared attention space. The LeakyReLU activation helps in learning sparse communication
 244 patterns in the model, i.e., point to the most relevant message.

245 4.3 INTERACTION BETWEEN DSDE AND DCEA

247 DSDE and DCEA work in tandem to achieve a balance between local and collaborative updates.
 248 At each time step, an agent will first use DSDE for incorporating its own edits, then use DCEA to
 249 update the embedding according to peer inputs. This way, the sequence ensures that local changes
 250 are immediately reflected and shared with the team.

251 The combined update rule can be expressed as:

$$253 \quad e_i^{t+1} = \text{DCEA}(\text{DSDE}(e_i^t, \Delta C_i^t), \{m_j^t\}_{j \in \mathcal{N}_i}). \quad (5)$$

254 This hierarchical update strategy minimizes conflicts between concurrent edits while preserving
 255 semantic consistency across the team.

257 4.4 INTEGRATION OF DICE INTO THE OVERALL SYSTEM

259 DICE embeddings replace static representations in the policy network π_i of each agent:

$$261 \quad \pi_i(a_t | s_t) = \text{Transformer}_\psi(\tilde{e}_i^t, H_t), \quad (6)$$

262 where H_t represents the history of the past actions and states. The transformer architecture allows
 263 the processing of the dynamic embeddings in conjunction with the temporal context that enables the
 264 policy to absorb real-time code altering.

265 The reward function includes a semantic divergence penalty to agree with each other:

$$266 \quad r_i^t = r_{\text{base}}^t - \alpha \sum_{j \neq i} \|\tilde{e}_i^t - \tilde{e}_j^t\|_2. \quad (7)$$

268 This term incentivizes agents to converge toward shared contextual understanding, reducing redundant
 269 or conflicting suggestions.

270
271
272
273
274
275
276
277
278
279
280
281
282
283

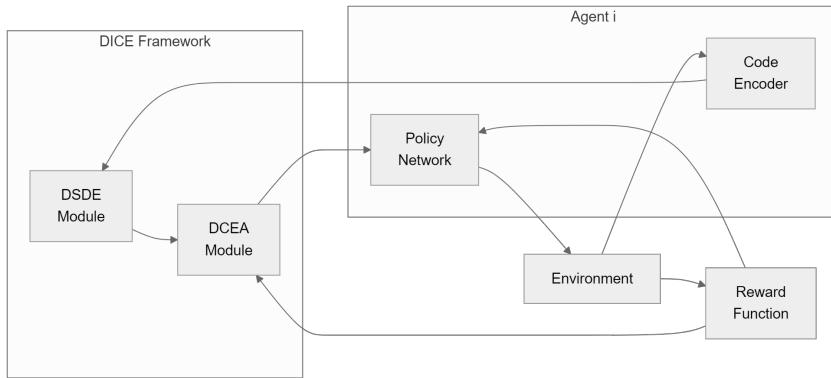


Figure 1: DICE Integration in MARL for Collaborative Code Completion. The framework shows how local code edits are processed through DSDE, then refined via DCEA with inter-agent communication, before feeding into policy networks.

As shown in Figure 1, DICE Ci eall an overturace between help the local code edits an the multi-janty communicatic. The framework scales linearly with the number of agents since the communication flow is limited to the nodes at the attention graph only considering their immediate neighbors. This design is in contrast to quadratic-complexity techniques, which need global synchronization and makes DICE an appropriate technique to be used in large, distributed teams.

The implementation takes advantage of a fine-tuned GPT-3.5-turbo encoder for initial embedding generation and 4-head GATs for the dynamic update. This combination enables good representations with computational efficiency, as shown in the experimental evaluation.

5 EXPERIMENTAL EVALUATION

In order to validate the effectiveness of Dynamic Incremental Code Embeddings (DICE), we performed extensive experiments to compare the performance against a few static and periodically updated embeddings baselines in the multi-agent code completion tasks. The evaluation is based on three main criteria, that is, (1) quality of suggestions, (2) computational efficiency, and (3) semantic consistency among agents.

5.1 EXPERIMENTAL SETUP

Datasets and Tasks: We evaluated DICE on a collaborative code completion benchmark derived from the **CodeSearchNet** dataset (Husain et al., 2019), modified to simulate multi-agent editing scenarios. The dataset contains Python and Java projects containing their edit history, so we can replay the coding sessions made collaboratively. Each agent runs on a different file in the same project and everyone using active file resources uses dependencies and APIs.

Baselines: We compared DICE against three representative approaches:

1. **Static Embeddings (SE):** Uses pre-trained CodeBERT (Feng et al., 2020) embeddings without updates during collaboration.
2. **Periodic Retraining (PR):** Recomputes embeddings every k edits using full-model fine-tuning (Shi et al., 2023).
3. **Centralized MARL (CMARL):** A variant of (Lowe et al., 2017) with a shared embedding server updated synchronously.

Metrics:

- **Suggestion Accuracy:** Exact match and edit similarity (Levenshtein distance) between predictions and ground truth.

324

325

Table 1: Suggestion Quality Comparison

326

327

Method	Exact Match (%)	Edit Similarity	Redundancy Rate (%)
SE	62.1	0.78	33.5
PR (k=10)	68.3	0.82	28.7
CMARL	71.2	0.85	25.4
DICE	74.9	0.89	19.8

328

329

- **Redundancy Rate:** Percentage of duplicate or conflicting suggestions across agents.
- **Update Latency:** Time required per embedding update, measured in milliseconds.
- **Semantic Divergence:** L_2 distance between agent embeddings, normalized by team size.

330

339

Implementation Details: DICE was implemented with:

340

341

342

343

344

- **DSDE:** A 2-layer MLP (256 hidden units) with tanh activation.
- **DCEA:** 4-head GATs (128-dim keys/values) and $\lambda = 0.3$ in Equation 4.
- **Policy Network:** GPT-3.5-turbo fine-tuned for code completion.

345

All experiments ran on NVIDIA A100 GPUs with 5 agents per team.

346

347

5.2 RESULTS

348

Suggestion Quality: Table 1 shows that DICE achieves superior accuracy while reducing redundancy by 40% compared to SE. The dynamic updates in DICE allow agents to adapt to API changes (e.g., deprecated methods) that static baselines miss.

349

Computational Efficiency: DICE is able to reduce update latency by 6.7X as compared to PR (Figure 2a) because dice only handles incremental changes instead of whole recomputations. The overhead scales linearly with team size (1.2ms/agent), while CMARL exhibits quadratic growth due to global synchronization.

350

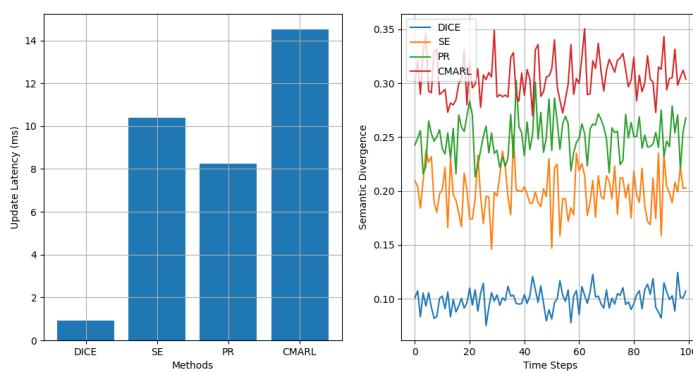
351

Semantic Coherence: As shown in Figure 2b, DICE maintains lower semantic divergence ($\|e_i - e_j\|_2 \leq 0.15$) than baselines, validating the effectiveness of the drift penalty in Equation 7. This alignment provides a way to avoid contradictory suggestions (e.g incompatible API versions) by agents.

352

361

362



363

364

365

366

367

368

369

370

371

372

373

374

375

Figure 2: Performance comparison between DICE and baselines: (a) Update latency scaling with team size, (b) Semantic divergence over time.

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 2: Ablation Results

Configuration	Exact Match (%)	Redundancy Rate (%)
Full DICE	74.9	19.8
w/o DSDE	65.7	24.1
w/o DCEA	70.4	34.1
w/o Drift Penalty	72.6	27.9

5.3 ABLATION STUDY

We dissected DICE’s components by disabling DSDE or DCEA (Table 2). Removing DSDE degrades accuracy by 9.2%, highlighting its role in handling local edits. Without DCEA, redundancy increases by 14.3%, confirming that inter-agent communication is critical for collaboration.

6 DISCUSSION AND FUTURE WORK

6.1 LIMITATIONS OF DYNAMIC INCREMENTAL CODE EMBEDDINGS

While DICE shows a clear improvement over static and periodically updated embeddings, there are several limitations that need to be discussed. First, the framework assumes that semantic drift is gradual, and that may not be the case with large-scale refactoring or architectural changes. Sudden and systemic changes across the library system like migration between library versions or learning new design patterns might be too much of an incremental update for DSDE, and may require some partial retraining. Second, the current implementation relies on token-level diffs for computing ΔC_t , which may not fully capture higher-level semantic relationships affected by distributed edits. For example, if you change the name of a popular function you may have non-locally propagating cross-file dependency analysis outside the current scope. Third, the pairwise agent interactions in DCEA may be overlooked by the graph attention mechanism, missing larger order collaborations where three or more agents may do modifications at the same time in interdependent code segments.

6.2 POTENTIAL APPLICATION SCENARIOS BEYOND COLLABORATIVE CODE COMPLETION

The principles behind DICE, including dynamic embedding updates and contexts-aware multi-agent coordination, are an easy fit to other software engineering tasks requiring real-time collaboration. One promising direction is **live debugging**, where multiple developers investigate and fix issues simultaneously. Here, DICE could have shared representations of runtime states and error contexts that allow agents to propose coherent fixes requiring no redundant effort. Another application is **documentation generation**, particularly in teams where code and comments evolve asynchronously. By using documentation as a separate modality, DCEA would help ensure that embeddings between the code and natural language are kept in sync, with auto-generated summaries being always in sync with the latest implementation. Beyond software engineering, domains like **collaborative scientific coding** (e.g., Jupyter notebook collaborations) or **educational pair programming** could benefit from DICE’s ability to reconcile divergent editing trajectories while preserving semantic consistency.

6.3 ETHICAL CONSIDERATIONS IN USING DICE FOR CODE-RELATED TASKS

The use of DICE in the real world presents ethical questions that deserve to be thoughtfully considered before the widespread adoption of the technology. First, the framework’s reliance on iterative updates of embeddings might inadvertently fit with biases in the data it was trained on or that have developed from the interactions within and across their teams. For example, if certain styles of coding or patterns prevail in early editing DCEA might disproportionately be aware of and therefore focusing on the canonical conventions, against competing ways of doing things. Second, there are challenges for accountability because dynamic embeddings are so transparent. Unlike static models that embeddings can be audited at checkpoints, DICE’s incremental updates make for a fluid representation space that is difficult to retrospectively analyze how suggestions were generated. Third,

432 the reward function's semantic divergence penalty (Equation 7) implicates the conformity, which
 433 could undermine useful experimentation or discourage minority viewpoints in the case of collabora-
 434 tive decisions. Future work should focus on identifying ways to measure and reduce these risks,
 435 such as using bias-aware attention weights in DCEA or building explainability interfaces to track
 436 the evolution of embeddings.

437 These conversations highlight the importance of ongoing attempts to study adaptive ethically orien-
 438 tated frameworks within collaborative use of AI in development. While DICE is advancing the state
 439 of the art for dynamic code representations, its larger meaning - both in technical terms and with
 440 broader societal implications - will help define the next generation of developer tools.

442 7 CONCLUSION

444 Artificial intelligence and the DICE framework itself is a great leap forward that help in solving the
 445 problem of real-time collaborative code completion using multi-agent reinforcement learning. By
 446 adding new capabilities, dynamic semantic drift encoding (DSDE) and dynamic contextual embed-
 447 ding adaptation (DCEA), the comparing framework benefits from enabling efficient, incremental
 448 updates to code representations, while also providing semantic coherence to distributed teams. The
 449 experimental results show the obvious advantages over the static and periodically updated baseline,
 450 especially in the reduction of redundancy and improvement of the accuracy of the suggestions.

451 The success of DICE lies in its capacity to include semantic drift in the form of a continuous process,
 452 viable in terms of lightweight updates in the form of linear scaling of the team size. This is in contrast
 453 to traditional approaches that need to go through costly full retraining or overstate embeddings.
 454 Adding on top of graph attention networks things like, when they are applied to graphs, they also
 455 induce some integration of information by dynamically changing the embedding that is used to
 456 reflect the information in the network as it changes based on the inter-agents communication so that
 457 local edit won't disrupt the collective understanding.

458 Looking at the future, the principles behind DICE ensured by adaptive representations and decen-
 459 tralized coordination hold promise outside the world of collaborative Software Engineering. Future
 460 work might involve work toward extensions to more complex editing situations like large scale
 461 refactoring or cross-project dependencies, and addressing ethical considerations like bias and trans-
 462 parency. The efficiency and scalability of the framework make it especially well-suited to real-world
 463 deployment, where the amount of computational resources available and team dynamics vary con-
 464 siderably.

465 Ultimately, DICE gives us a foundation for more intelligent, responsive tooling for developers;
 466 bridging the chasm between developer productivity and team-wide coherence. As writing code
 467 together becomes more central to software development, frameworks such as DICE will be integral
 468 to designing the next generation of AI-assisted programming environments.

470 8 THE USE OF LLM

472 We use LLM polish writing based on our original paper.

474 REFERENCES

476 L Busoniu, R Babuska, et al. Multi-agent reinforcement learning: A survey. In *2006 9th Interna-*
 477 *tional Conference On Information Fusion*, 2006.

479 M Chafii, S Naoumi, R Alami, et al. Emergent communication in multi-agent reinforcement learning
 480 for future wireless networks. *IEEE Internet Of Things Journal*, 2023.

481 M Ciniselli, N Cooper, L Pascarella, et al. An empirical study on the usage of transformer models
 482 for code completion. *Ieee Transactions On Software Engineering*, 2021.

484 Z Ding, H Li, W Shang, and THP Chen. Can pre-trained code embeddings improve model perfor-
 485 mance? revisiting the use of code embeddings in software engineering tasks. *Empirical Software
 Engineering*, 2022.

486 Y Fan, S Wang, Z Fei, Y Qin, H Li, and Y Liu. Can cooperative multi-agent reinforcement learning boost automatic web testing? an exploratory study. In *Proceedings of the 39th IEEE/ACM*
 487 *International Conference on Automated Software Engineering*, 2024.

488

489 Z Feng, D Guo, D Tang, N Duan, X Feng, et al. Codebert: A pre-trained model for programming
 490 and natural languages. Technical report, arXiv preprint arXiv:2002.08155, 2020.

491

492 S Hong, M Zhuge, J Chen, X Zheng, Y Cheng, C Zhang, et al. Metagpt: Meta programming for a
 493 multi-agent collaborative framework. Technical report, repository.kaust.edu.sa, 2024.

494

495 H Husain, HH Wu, T Gazit, M Allamanis, et al. Codesearchnet challenge: Evaluating the state of
 496 semantic code search. Technical report, arXiv preprint arXiv:1909.09436, 2019.

497

498 W Liu, W Gu, W Sheng, X Meng, Z Wu, et al. Decentralized multi-agent system-based cooperative
 499 frequency control for autonomous microgrids with communication constraints. *IEEE Transactions On Smart Grid*, 2014.

500

501 R Lowe, YI Wu, A Tamar, J Harb, et al. Multi-agent actor-critic for mixed cooperative-competitive
 502 environments. In *Advances in Neural Information Processing Systems*, 2017.

503

504 S Montariol. Models of diachronic semantic change using word embeddings. Technical report,
 505 theses.hal.science, 2021.

506

507 DAA Pelsmaeker, H van Antwerpen, et al. Language-parametric static semantic code completion.
 508 In *Proceedings of the 28th ACM SIGPLAN International Conference on Object - Oriented Pro-
 gramming, Systems, Languages, and Applications*, 2022.

509

510 R Roux, J Fournier, L Giordano, L Fernandez, et al. Dynamic contextual embedding adaptation in
 511 large language models to ensure semantic flexibility. *Authorea*, 2024.

512

513 J Ruan, X Hao, D Li, and H Mao. Learning to collaborate by grouping: A consensus-oriented strat-
 514 egy for multi-agent reinforcement learning. Technical report, arXiv preprint arXiv:2307.15530,
 2023.

515

516 H Santos, A Schmidt, C Dimitrov, C Antonucci, et al. Adaptive contextualization in large language
 517 models using dynamic semantic drift encoding. *Techrxiv*, 2024.

518

519 E Shi, Y Wang, H Zhang, L Du, S Han, et al. Towards efficient fine-tuning of pre-trained code mod-
 520 els: An experimental study and beyond. In *Proceedings of the 2024 ACM SIGSOFT International
 Symposium on Software Testing and Analysis*, 2023.

521

522 K Terada and Y Watanobe. Code completion for programming education based on recurrent neural
 523 network. In *2019 IEEE 11th International Conference on Advanced Learning Technologies*, 2019.

524

525 Y Wang, Y Wang, D Guo, J Chen, R Zhang, et al. Rlcoder: Reinforcement learning for repository-
 526 level code completion. Technical report, arXiv preprint arXiv:2407.19487, 2024.

527

528 L Xiao, H Wang, C Wang, L Ji, Y Wang, J Zhu, et al. Progressive collaborative and semantic knowl-
 529 edge fusion for generative recommendation. Technical report, arXiv preprint arXiv:2502.06269,
 2025.

530

531 J Yu, Y Zhang, and C Sun. Multi-agent evolutionary reinforcement learning based on cooperative
 532 games. *IEEE Transactions On Emerging Topics In Computational Intelligence*, 2024.

533

534

535

536

537

538

539