
[Re] On Adversarial Mixup Resynthesis

Narayanan Elavathur Ranganatha
Department of Computer Science and Engineering

Manipal Academy of Higher Education
Manipal, Karnataka 576104
naruarjun@gmail.com

Aniket Didolkar
Department of Computer Science and Engineering

Manipal Academy of Higher Education
Manipal, Karnataka 576104
adidolkar123@gmail.com

Abstract

In this paper we aim to reproduce the experiments of Beckham et al. [2019]. Beck-
ham et al. [2019] introduced a new data augmentation technique. They propose
a method for interpolating hidden state representations of images to produce an
image that belongs to one of the class labels in the dataset. They use adverserial
loss for training this system. The feature representations obtained through this
approach is tested on classification tasks on various datasets. The datasets used for
classification include MNIST, KMNIST and SVHN.

1 Introduction

Mixup is a data augmentation technique. Data augmentation greatly helps in improving generalization
performance. A practical intuition for why this is the case is that by generating additional samples,we
are training our model on a set of examples that better covers those in the test set.

Mixup Zhang et al. [2017] is a regularisation technique which encourages deep neural networks to
behave linearly between pairs of data points. These methods artificially augment the training set by
producing random convex combinations between pairs of examples and their corresponding labels
and training the network on these combinations. This has the effect of creating smoother decision
boundaries, which was shown to have a positive effect on generalisation performance. Arguably
however, the downside of mixup is that these random convex combinations between images may not
look realistic due to the interpolations being performed on a per-pixel level.

This paper explores mixup in the context of unsupervised learning. The authors propose to perform
mixup on the latent space representations of the images. The trained model is used for downstream
tasks where the models weights are frozen. These downstream tasks include classification on 3
datasets - MNIST, KMNIST, SVHN.

2 Methodology

The model introduced by the authors consists of an auto-encoder, a mixer and a discriminator. The
primary aim of the auto-encoder is to learn representations of the input data that are useful Bengio
[2011]. The reconstruction loss is defined as equation 1.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

min
F

Ex∼p(x)||x− g(f(x))||2 (1)

The authors use an adversarial auto-encoder Makhzani et al. [2015] with the adversary placed on
the reconstruction and the discriminator tries to distinguish between the reconstruction and the
real images as this leads to better reconstruction by the auto-encoder. This leads to the following
minimization objective:

min
F

Ex∼f(x)λ||x− g(f(x))||2 + lGAN(D(g(f(x))), 1)

min
D

Ex∼f(x)lGAN (D(x), 1) + lGAN (D(g(f(x)), 0)
(2)

here lGAN is a GAN-specific loss function. In our case, lGAN is the binary cross-entropy loss,which
is similar to Goodfellow et al. [2014].

The mixer Mix(h1, h2) is used to perform combinations of the latent representations of a pair of
inputs. Latent representations are generated by passing the image through the encoder f(.). The auto-
encoder tries to generate latent representations that when mixed and passed through the decoder g(.),
generates images indistinguishable from real images. Finally the minimization objective generated
is used to encourage the reconstruction of both the original latent representations and the mixed
latent representations to be as realistic as possible. The culmination of all these factors leads to the
following loss function for the training of the auto-encoder and the discriminator:

min
F

Ex,x′∼p(x) λ||x− g(f(x))||2︸ ︷︷ ︸
reconstruction

+ lGAN (D(g(f(x))), 1)︸ ︷︷ ︸
fool D with reconstruction

+ lGAN (D(g(Mix(f(x), f(x′)))), 1)︸ ︷︷ ︸
fool D with mixes

min
D

Ex,x′∼p(x) lGAN (D(x), 1)︸ ︷︷ ︸
label x as real

+ lGAN (D(g(f(x))), 0)︸ ︷︷ ︸
label reconstruction as fake

+ lGAN (D(g(Mix(f(x), f(x′)))), 0)︸ ︷︷ ︸
label mixes as fake

(3)

The authors have focused on two ways to combine the latent representations. Manifold Mixup Verma
et al. [2018] implements mixing in the hidden space through convex combinations:

Mixmixup(h1, h2) = αh1 + (1− α)h2 (4)

where α ∈ [0, 1] is sampled from a Uniform(0,1) distribution. We can interpret this as interpolating
along line segments, as shown in Figure 1.

The authors also explore a strategy in which some components of the hidden representation are
randomly retained from h1 and use the rest from h2, where h1 and h2 are latent representations of
2 images obtained from the encoder and in this case we would randomly sample a binary mask ∈
{0, 1}k (where k denotes the number of feature maps) and perform the following operation:

Mixbern(h1, h2) = mh1 + (1−m)h2 (5)

where m is sampled from a Bernoulli(p) distribution (p can simply be sampled uniformly) and
multiplication is element-wise.

3 Dataset

We use 3 datasets to evaluate the representations learned from the above method.

• MNIST: It consists of images of handwritten digits of size 28 * 28.

2

Figure 1: Left: mixup (Equation 4), with interpolated points in blue corresponding to line seg-
mentsbetween the three points shown in red. Middle: triplet mixup (Equation 6). Right: Bernoulli
mixup(Equation 5).

• KMNIST : A dataset which focuses on Kuzushiji (cursive Japanese). It is a drop-in replace-
ment for MNIST. It also has images of size 28*28.

• SVHN: This is the street view house number datset. It is similar to MNIST, it consists of
images of size 32 * 32.

For all the datasets, normalizing the images was the only preprocessing step that we applied.

4 Experiments and Results

The performance of the proposed concept is evaluated via downstream classification tasks. A
linear classifier probe is added to the end of encoder and is trained in unison with the auto-encoder
and discriminator but it does not contribute any gradients to the encoder. The accuracy is taken
as a measure to quantify the usefulness of the representation learned by the encoder. The datasets
employed for classification are MNIST,KMNIST and SVHN. We report the highest accuracy achieved
on the validation set.

Hyperparameter values are the same as those suggested by the authors and have not been changed for
correct reproduction of the results. We keep k constant and equal to two due to time and performance
constraints but we believe the results obtained are enough to validate the reproducibility of the task
at hand. We take encoding dimension dh = 32 for all the datasets. The learning rate is varied via a
scheduler for smoother training. We start with an intial learning rate of 0.01 and reduced by a factor
of 0.1 until 1e-7. Table 1 shows the performance results. For all the experiments we set λ = 10

Datset Mixup
Method

Accuracy

MNIST mixup 94.38
MNIST bernoulli 94.66
SVHN mixup 21.58± 0.98
SVHN bernoulli 21.55± 0.23
KMNIST mixup 0.6792
KMNIST bernoulli 0.6564

Table 1: Test error (%) of Vanilla, Input, Manifold, BC+ Manifold mixup models for different prune
percentages on MR dataset

3

Figure 2: Interpolations between SVHN digits(bottom) and MNIST digits(top). left-most and right-
most images are the original images, and images in between are interpolations. First 2 rows in each
image show interpolations using bernoulli mixup and the bottom 2 rows show interpolations using
manifold mixup. The interpolations are shown for α = {0.2, 0.4, 0.5, 0.6, 0.8}(left to right)

We also show max variation observed in SVHN(1k) after the accuracy seemed to have stabilized, The
accuracy was much more stable in the case of manifold mixup rather than bernoulli and higher as
well in case of MNIST.

Figure 2 shows the outputs of both the variants (bernoulli and mixup) for 2 pairs of images. These are
generated by combining the latent representatiions of the numbers via manifold mixup and varying α.
The results are reasonably close to the images observed in the paper in the case of MNIST and show
a reasonably smooth transition in SVHN but the model needs more fine tuning and training.

5 Compute

We used 1 NVIDIA GTX 1070 and 1 NVIDIA GTX 1060 for performing our experiments. Our code
is available at https://github.com/naruarjun/Adversarial-Mixup-Resynthesis.

6 Conclusion

In this paper we have tried to replicate the experiments in Beckham et al. [2019]. They explore
different ways of combining the representations learned in auto-encoders through the use of mixing
functions. We wrote the entire code from scratch and were able to achieve a performance comparable
to that of the original paper.

4

https://github.com/naruarjun/Adversarial-Mixup-Resynthesis

References
Christopher Beckham, Sina Honari, Alex Lamb, Vikas Verma, Farnoosh Ghadiri, R. Devon Hjelm,

and Christopher Joseph Pal. Adversarial mixup resynthesizers. ArXiv, abs/1903.02709, 2019.

Yoshua Bengio. Deep learning of representations for unsupervised and transfer learning. In Proceed-
ings of the 2011 International Conference on Unsupervised and Transfer Learning Workshop -
Volume 27, UTLW’11, pages 17–37. JMLR.org, 2011.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron C. Courville, and Yoshua Bengio. Generative adversarial networks. ArXiv, abs/1406.2661,
2014.

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, and Ian J. Goodfellow. Adversarial autoencoders.
CoRR, abs/1511.05644, 2015.

Vikas Verma, Alex Lamb, Christopher Beckham, Amir Najafi, Ioannis Mitliagkas, Aaron Courville,
David Lopez-Paz, and Yoshua Bengio. Manifold mixup: Better representations by interpolating
hidden states, 2018.

Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. CoRR, abs/1710.09412, 2017.

5

	Introduction
	Methodology
	Dataset
	Experiments and Results
	Compute
	Conclusion

