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ABSTRACT

Recently, many studies have demonstrated that exclusively incorporating OCR-
derived text and spatial layouts with large language models (LLMs) can be highly
effective for document understanding tasks. However, existing methods that in-
tegrate spatial layouts with text have limitations, such as producing overly long
text sequences or failing to fully leverage the autoregressive traits of LLMs. In
this work, we introduce Interleaving Layout and Text in a Large Language Model
(LayTextLLM) for document understanding. In particular, LayTextLLM projects
each bounding box to a single embedding and interleaves it with text, efficiently
avoiding long sequence issues while leveraging autoregressive traits of LLMs.
LayTextLLM not only streamlines the interaction of layout and textual data but
also shows enhanced performance in Key Information Extraction (KIE) and Visual
Question Answering (VQA). Comprehensive benchmark evaluations reveal signifi-
cant improvements, with a 27.2% increase on KIE tasks and 12.0% on VQA tasks
compared to previous state-of-the-art document understanding MLLMs, as well as
a 15.1% improvement over other SOTA OCR-based LLMs on KIE tasks.

1 INTRODUCTION

Recent research has increasingly focused on applying Large Language Models (LLMs) (Achiam
et al., 2023; Yang et al., 2023; Team et al., 2023; Anthropic, 2024; Reid et al., 2024; Bai et al., 2023;
Lu et al., 2024a; Young et al., 2024; Feng et al., 2023a;b; Hu et al., 2024; Liu et al., 2024c; Tang
et al., 2024a; Chen et al., 2024; Dong et al., 2024; Li et al., 2024; Liu et al., 2024a; Zhu et al., 2024;
Yang et al., 2024; Tang et al., 2024b; Liu et al., 2023; Lu et al., 2024b; 2023) to document-oriented
Visual Question Answering (VQA) and Key Information Extraction (KIE) scenarios. Efforts to build
a text-sensitive MultiModal Large Language Models (MLLMs) based on existing LLMs, particu-
larly aimed at enhancing Visually Rich Document Understanding (VRDU), have made significant
progress (Ye et al., 2023; Liu et al., 2024c; Bai et al., 2023). Although existing MLLMs show
promising results in document understanding, they often encounter challenges related to image
resolution. When the input image is of low resolution, it is too blurry to extract visual features
effectively. Conversely, high-resolution images require additional computational resources to capture
detailed textual information (Liu et al., 2024c).

Concurrently, another line of research employs off-the-shelf OCR tools to extract text and spatial
layouts, which are then combined with LLMs to address VRDU tasks. These approaches assume that
most valuable information for document comprehension can be derived from the text and its spatial
layouts, viewing spatial layouts as “lightweight visual information” (Wang et al., 2023). Following
this premise, several studies (Liu et al., 2024c; Perot et al., 2023; Luo et al., 2024; Chen et al., 2023a;
He et al., 2023) have explored various approaches that integrate spatial layouts with text for LLMs,
achieving results that are competitive with, or even surpass, those of MLLMs.

The most natural method to incorporate layout information is by treating spatial layouts as tokens,
which allows for the seamless interleaving of text and layout into a unified text sequence (Perot et al.,
2023; Chen et al., 2023a; He et al., 2023). For example, Perot et al. (2023) employ format such as

“HARRISBURG 78|09” to represent OCR text and corresponding layout, where “HARRISBURG” is
OCR text and “78|09” indicates the mean of the horizontal and vertical coordinates, respectively.
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Similarly, He et al. (2023) use “[x_min, y_min, x_max, y_max]” to represent layout information.
These approaches can effectively take advantage of autoregressive characteristics of LLMs and is
known as the “coordinate-as-tokens” scheme (Perot et al., 2023). In contrast, DocLLM (Wang
et al., 2023) explores interacting spatial layouts with text through a disentangled spatial attention
mechanism that captures cross-alignment between text and layout modalities.
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Figure 1: The performance against input sequence
length of different datasets across various OCR-
based methods where data is from Tab. 2 and 5.

However, we argue that both of the previous ap-
proaches have limitations. As shown in Fig. 1,
coordinate-as-tokens significantly increases the
number of tokens. Additionally, to accurately
comprehend coordinates and enhance zero-shot
capabilities, this scheme often requires few-shot
in-context demonstrations and large-scale lan-
guage models, such as ChatGPT Davinci-003
(175B) (He et al., 2023), which exacerbates is-
sues related to sequence length and GPU re-
source demands. Meanwhile, although Do-
cLLM does not increase sequence length and
integrates spatial layouts through attention, its
performance is limited.

To address these problems, this paper explores a
simple yet effective approach to enhance the in-
teraction between spatial layouts and text — In-
terleaving Layout and Text in a Large Language
Model (LayTextLLM) for document understand-
ing. Adhering to the common practice of in-
terleaving any modality with text (Huang et al.,
2023; Peng et al., 2023; Dong et al., 2024), we
specifically apply this principle to spatial lay-
outs. In particular, we maps each bounding box
to a single embedding, which is then interleaved
with its corresponding text. Then we propose a tailored pre-training task—Layout-aware Next Token
Prediction—a completely self-supervised task that enhances the alignment between layout and textual
modalities without using synthetic data. Finally, through the proposed Shuffled-OCR Supervised
Fine-tuning, LayTextLLM significantly improves performance on downstream document-related
VQA and KIE tasks. As shown in Fig. 1, LayTextLLM significantly outperforms the 175B models,
while only slightly increasing or even reducing the sequence length compared to DocLLM. Our
contributions can be listed as follows:

• We propose LayTextLLM for document understanding. To the best of the authors’ knowl-
edge, this is the first work to employ a unified embedding approach (Sec. 3.1.1) that
interleaves spatial layouts directly with textual data within a LLM. By representing each
bounding box with one token, LayTextLLM efficiently addresses sequence length issues
brought by coordiante-as-tokens while fully leveraging autoregressive traits for enhanced
document understanding.

• We propose two tailored training tasks: (1) Layout-aware Next Token Prediction (Sec. 3.2.1),
a completely self-supervised training task to enhance the alignment between layout and
textual modality; (2) Shuffled-OCR Supervised Fine-tuning task (Sec. 3.2.2) to better elicit
the model generalizability in downstream tasks.

• Comprehensive experimental results demonstrate quantitatively that LayTextLLM signifi-
cantly outperforms previous state-of-the-art (SOTA) OCR-free MLLMs by a large margin in
zero-shot scenarios, particularly in KIE tasks with an improvement of 27.0%. Additionally,
we illustrate that LayTextLLM competes effectively or even surpasses previous SOTA OCR-
based methods in both zero-shot and SFT scenarios. Specifically, it surpasses DocLLM by
19.8% on VQA and 15.5% on KIE tasks (Sec. 4).

• Extensive ablations and visualizations demonstrate the utility of the proposed component,
with analysis showing that LayTextLLM not only improves performance but also reduces
input sequence length compared to current OCR-based models.
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2 RELATED WORK

2.1 OCR-BASED LLMS FOR DOCUMENT UNDERSTANDING

Early document understanding methods (Hwang et al., 2020; Xu et al., 2020; 2021; Hong et al.,
2022; Tang et al., 2022) tend to solve the task in a two-stage manner, i.e., first reading texts from
input document images using off-the-shelf OCR engines and then understanding the extracted texts.
Considering the advantages of LLMs (e.g., high generalizability), some recent methods endeavor to
combine LLMs with OCR-derived results to solve document understanding. For example, inspired
by the “coordinate-as-tokens” scheme proposed in ICL-D3IE (Perot et al., 2023), He et al. (2023)
propose to use “[x_min, y_min, x_max, y_max]” to introduce the layout information, which can
fuse the layout information and texts into a unified text sequence and fully exploit the autoregressive
merit of LLMs. To reinforce the layout information while avoiding increasing the number of tokens,
DocLLM (Wang et al., 2023) designs a disentangled spatial attention mechanism to capture cross-
alignment between text and layout modalities. Recently, LayoutLLM (Luo et al., 2024) utilizes
the pre-trained layout-aware model (Huang et al., 2022), to insert the visual information, layout
information and text information. However, the aforementioned methods neither suffer from the
computational overhead leading by the increasing tokens or hardly take advantage of autoregressive
characteristics of LLMs. Thus, it is an urgent problem to address how to better incorporate layout
information without significantly increasing the number of tokens.

2.2 OCR-FREE MLLMS FOR DOCUMENT UNDERSTANDING

Another approach to solve document understanding tasks is the OCR-free method. Benefiting from
the end-to-end training framework, it involves processing the text content of documents directly,
without relying on OCR engines. Donut (Kim et al., 2022) first presents an OCR-free method through
mapping a text-rich document image into the desired answers. Pix2Struct (Lee et al., 2023) is trained
to parse masked screenshots of web pages into simplified HTML, where variable resolution inputs
are supported. While these approaches eliminate the need for OCR tools, they still necessitate
task-specific fine-tuning. With the increasing popularity of LLMs/MLLMs (Feng et al., 2023b; Hu
et al., 2024; Liu et al., 2024c; Tang et al., 2024a; Chen et al., 2024; Dong et al., 2024; Li et al.,
2024; Liu et al., 2024a), various methods are proposed to solve the document understanding task
through explicitly training models on visual text understanding datasets and fine-tuning them with
instructions to perform a zero-shot prediction. LLaVAR (Zhang et al., 2023) and UniDoc (Feng
et al., 2023b) are notable examples that expand upon the document-oriented VQA capabilities of
LLaVA (Liu et al., 2024b) by incorporating document-based tasks. These models pioneer the use of
MLLMs for predicting texts and coordinates from document images, enabling the development of
OCR-free document understanding methods. Additionally, DocPedia (Feng et al., 2023a) operates
document images in the frequency domain, allowing for higher input resolution without increasing
the input sequence length. Recent advancements in this field, including mPLUG-DocOwl (Ye et al.,
2023), Qwen-VL (Bai et al., 2023), and TextMonkey (Liu et al., 2024c), leverage publicly available
document-related VQA datasets to further enhance the document understanding capability. Although
these OCR-free methods have exhibited their advantages, they still struggle with the high-resolution
input to reserve more text-related details.

3 METHOD

In this section, we present our LayTextLLM. First, we introduce a innovative Spatial Layout Projector
(Sec. 3.1.1) converts four-dimensional layout coordinates into a single-token embedding. To reduce
parameter overhead, we apply Partial Low-Rank Adaptation (Sec. 3.1.2). We also introduce two
training tasks: Layout-aware Next Token Prediction (Sec. 3.2.1) to align layouts with text during
pre-training, and Shuffled-OCR Supervised Fine-tuning (Sec. 3.2.2) to enhance the generalizability
of the model. An illustration of our approach is shown in Fig. 2.

3.1 MODEL ARCHITECTURE

LayTextLLM is built on the Llama2-7B-base model, which was originally designed to accept only
text inputs (Touvron et al., 2023; Gao et al., 2023). To enable the model to interleave spatial layouts

3
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Large Language Model

OCR-Engine Pre-processing

Q:"What is the
title of this paper?"

"A Bounding Box...." "Document Understanding"

A:"A Bounding Box is Worth One Token: Interleaving Layout and Text in a Large
Language Model for Document Understanding"

. . . . . . . . . 

SLP

. . . 

Tokenizer . . . TokenizerSLP

. . . . . . 

. . . 

Text Token
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Legend

Figure 2: An overview of LayTextLLM incorporates interleaving bounding box tokens (bi) with text
tokens (ti), where the superscripts represent the sequence positions of the tokens.

with text, we introduce a novel Spatial Layout Projector. This projector converts coordinates into
bounding box tokens. We also adopt the Partial Low-Rank Adaptation, a minimally invasive method
to incorporate additional modalities while preserving the LLM’s inherent knowledge intact.

3.1.1 SPATIAL LAYOUT PROJECTOR (SLP)

A key innovation in LayTextLLM is the Spatial Layout Projector (SLP), which transforms a spatial
layout into a singular bounding box token. This enhancement enables the model to process both
spatial layouts and textual inputs simultaneously. Each OCR-derived spatial layout is represented by
a bounding box defined by four-dimensional coordinates [x1, y1, x2, y2], these coordinates represent
the normalized minimum and maximum horizontal and vertical extents of the box, respectively. The
SLP maps these coordinates into a high-dimensional space that the language model can process
as a single token. The process can be computed as z = W · c + b, where c ∈ R4 is the vector of
the bounding box coordinates. W ∈ Rd×4 is a weight matrix with d represents the dimension of
the embedding, b ∈ Rd×1 is a bias vector, z is the resulting bounding box token represented as
an d-dimensional embedding. As illustrated in Fig. 2, the resulting bounding box token z will be
interleaved with corresponding textual embeddings to put into LLMs. Note that the SLP is shared by
all bounding box tokens so very limited number of parameters are introduced.

3.1.2 LAYOUT PARTIAL LOW-RANK ADAPTATION

After using the SLP to generate bounding box tokens and a tokenizer to produce text tokens, these
two modalities are then interacted using a Layout Partial Low-Rank Adaptation (P-LoRA) module
in LLMs. P-LoRA, introduced in InternLM-XComposer2 (Dong et al., 2024), is originally used to
adapt LLMs to the visual modality. It applies plug-in low-rank modules specified to the visual tokens,
which adds minimal parameters while preserving the LLMs inherent knowledge.

Formally, for a linear layer in the LLM, the original weights WO ∈ RCout×Cin and bias BO ∈
RCout are specified for input and output dimensions Cin and Cout. P-LoRA modifies this setup by
incorporating two additional matrices, WA ∈ RCr×Cin and WB ∈ RCout×Cr . These matrices are
lower-rank, with Cr being considerably smaller than both Cin and Cout, and are specifically designed
to interact with new modality tokens, which in our case are bounding box tokens. For example, given
an input x = [xb, xt] comprising of bounding box tokens (xb) and textual tokens (xt) is fed into the
system, the forward process is as follows, where x̂t, x̂b and x̂ are outputs:

x̂t = W0xt +B0

x̂b = W0xb +WBWAxb +B0

x̂ = [x̂b, x̂t]

(1)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

LLMLLM

<s> ...

</s>...</s>...

<s> ...

(b) Layout-aware Next Token Prediction(a) Next Token Prediction
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Figure 3: Comparison of Layout-aware Next Token Prediction and normal Next Token Prediction.

3.2 TRAINING PROCEDURE

LayTextLLM is trained with innovative layout-aware training procedure, which consists of two stages:
Layout-aware Next Token Prediction pre-training and Shuffled-OCR Supervised Fine-tuning.

3.2.1 LAYOUT-AWARE NEXT TOKEN PREDICTION

Inspired by the next token prediction commonly used in current LLM pre-training (Achiam et al.,
2023; Yang et al., 2023; Team et al., 2023; Anthropic, 2024; Reid et al., 2024; Bai et al., 2023;
Lu et al., 2024a), we propose the Layout-aware Next Token Prediction (LNTP). Fig. 3 presents
the contrast of the proposed Layout-aware Next Token Prediction and the conventional next token
prediction task. The traditional next token prediction (Fig. 3(a)) relies solely on the textual content,
predicting each subsequent token based on the prior sequence of tokens without considering their
spatial layouts. Layout-aware next token prediction (Fig. 3(b)), however, interleaves the spatial
information encoded by SLP (i.e., bi) with the text tokens (i.e., ti). This integration considers both
the content and its layout within the document, leading to a richer, more precise understanding of
both the structure and the content.

Similarly, primary objective of LNTP is to maximize the likelihood of its predictions for the next
token. Thus the loss function is defined as

L = − 1

T

T∑
i=1

logP
(
ti | t1, t2, . . . , ti−1

)
(2)

where P
(
ti | t1, t2, . . . , ti−1

)
represents the probability of ith token ti given the sequence of preced-

ing tokens t1, t2, . . . , ti−1, as predicted by the model. Note that we compute the loss only for text
tokens, excluding bounding box tokens. During pre-training, our goal is to enhance the alignment
between spatial layouts and textual modality, while preserving the LLM’s inherent knowledge as
much as possible. Thus, we freeze the LLMs and only update the parameters of SLP and P-LoRA.

It is important to note that the proposed Layout-aware Next Token Prediction is a completely self-
supervised pre-training procedure, unlike previous works that require human annotations of document
structure data or synthetic data generated by larger LLMs such as GPT-4 (Luo et al., 2024). Thus,
LNTP facilitates the creation of large-scale, high-fidelity pre-training datasets at minimal cost.

Although the loss is not directly computed for the bounding box tokens, the SLP is still effectively
trained. In Fig. 3(b), the prediction of t2 relies on the hidden state of b1, allowing the supervision
signal to backpropagate through the SLP. Note that the goal is to understand the bounding boxes, not
to generate them, making it unnecessary to apply a loss function to the bounding box tokens.

3.2.2 SHUFFLED-OCR SUPERVISED FINE-TUNING

OCR engines typically process text from top to bottom and left to right. This order is also adopted
as the input sequence for current OCR-based LLMs (Wang et al., 2023; Luo et al., 2024). However,
modern LLMs often exhibit a strong inductive bias toward the positions of input tokens, influenced
by designs such as Rotary Position Embeddings (RoPE) (Su et al., 2024). Specifically, tokens
that are close together in the input sequence are likely to receive higher attention scores, which is
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advantageous for processing standard text sequences. Such inductive bias brings advantages and
disadvantages.

Figure 4: Receipt layout example.

Consider the example illustrated in Fig. 4, where the OCR
input text reads: “ ... Change, 1.30, GST%, Amt(RM),
GST(RM), Total(RM), SR, 6, 17.64, 1.06, 18.70 ... ”. If the
question posed is “What is the value of the field Change?”
(highlighted in a blue box), the model easily identifies

“1.30” as it is closely positioned to the word “Change” in
the sequence. However, for a more challenging query like

“What is the value of the field Total(RM)?” (highlighted
in a red box), the model struggles to determine the cor-
rect answer due to the presence of multiple subsequent
numbers closed to “Total(RM)”. LayTextLLM integrates
spatial layouts with textual data, reducing reliance on in-
put sequence order. Thus, we posit that shuffling the OCR
input order could enhance the resilience of LayTextLLM
in discerning relevant information irrespective of token
proximity in the sequence.

Specifically, we propose Shuffled-OCR Supervised Fine-tuning (SSFT) that randomly shuffles the
order of OCR-derived text in a certain proportion of examples. The range of exploration for the
shuffling ratio can be found in Tab. 7 and 20% shuffled ratio is applied. The training objective is
equivalent to predicting the next tokens, but in this scenario, only the tokens of the response are used
to compute loss. During SSFT, we unfreeze all parameters including those of LLMs. Experimental
results in Section 4.6 demonstrate that utilizing SSFT can further enhance model performance, making
it more robust to disruptions in input token order.

4 EXPERIMENTS

4.1 DATASETS

LNTP Data In training process, we exclusively use open-source data to facilitate replication. We
collect data from two datasets for pre-training: (1) IIT-CDIP Test Collection 1.0 (Lewis et al.,
2006) and (2) DocBank (Li et al., 2020). The IIT-CDIP Test Collection 1.0 comprises an extensive
repository of more than 16 million document pages. DocBank consists of 500K documents, each
presenting distinct layouts with a single page per document. For training efficiency, we sue the entire
DocBank dataset and only subsample 5 million pages from the IIT-CDIP collection 1.0.

SSFT data For document-oriented VQA, we select Document Dense Description (DDD) and
Layout-aware SFT data used in Luo et al. (2024), which are two synthetic datasets generated by
GPT-4. Besides, DocVQA (Mathew et al., 2021), InfoVQA (Mathew et al., 2022), ChartQA (Masry
et al., 2022), VisualMRC (Tanaka et al., 2021) is included following (Liu et al., 2024c). For KIE
task, we select SROIE (Huang et al., 2019), CORD (Park et al., 2019), FUNSD (Jaume et al., 2019),
POIE (Kuang et al., 2023) datasets following (Wang et al., 2023; Luo et al., 2024; Liu et al., 2024c).

4.2 IMPLEMENTATION DETAIL

The LLM component of LayTextLLM is initialized from the Llama2-7B-base (Touvron et al., 2023),
which is a widely-used backbone. Other parameters including SLP and P-LoRA are randomly
initialized. During pre-training, the LLM is frozen, and the parameters of SLP and P-LoRA modules
are updated. During SFT, all parameters are fine-tuned. Detailed setup can be found in Appendix B.

We implemented LayTexLLM using Llama2-7B, consistent with previous OCR-based methods like
DocLLM (Wang et al., 2023), which also use Llama2-7B. We also replicated the results of the
coor-as-tokens scheme using Llama2-7B for consistency. Noting the LayoutLLM (Luo et al., 2024)
utilizes Llama2-7B and Vicuna 1.5 7B, which is fine-tuned from Llama2-7B. Thus, for the majority
of our comparisons, the models are based on the same or similar LLM backbones, allowing for a fair
comparison between approaches.

6
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Other MLLM baselines use backbones like Qwen-VL (Bai et al., 2023), InternLM (Dong et al., 2024),
and Vicuna (Chiang et al., 2023), all with at least 7B parameters, excluding the visual encoder. This
also makes the comparison fair, at least in terms of model size.

In this work, we configure three versions of LayTextLLM for a side-by-side comparison under
different training settings. Aligned with the terminology used in (Luo et al., 2024), “zero-shot” refers
to models trained solely via Supervised Self-Fine-Tuning (SSFT) using Document Dense Description
(DDD) and Layout-aware SFT data. Our first version, LayTextLLMzero, follows this zero-shot
setup, trained exclusively with DDD and Layout-aware SFT data (Luo et al., 2024). Building upon
this, our second version, LayTextLLMvqa, introduces the DocVQA and InfoVQA training sets, as
in Liu et al. (2024c), while retaining the same SSFT process. Lastly, we create LayTextLLMall,
which, in addition to the VQA datasets, incorporates a comprehensive set of KIE datasets—FUNSD,
CORD, POIE, SROIE, ChartQA, and VisualMRC (Wang et al., 2023). All these versions share
the same pre-trained LayTextLLM weights, with the distinction that “supervised” (SFT) versions
(LayTextLLMvqa and LayTextLLMall) include additional downstream training sets.

We use word-level OCR from the respective datasets for a fair comparison, with the exception of the
ChartQA dataset, which does not provide OCR.

4.3 BASELINES

OCR-free baselines In the category of OCR-free MLLMs, we have chosen the following SOTA
models as our strong baselines due to their superior performance in both document-oriented VQA
and KIE tasks. These include UniDoc (Feng et al., 2023b), DocPedia (Feng et al., 2023a), Mon-
key (Li et al., 2023), InternVL (Chen et al., 2023b), InternLM-XComposer2 (Dong et al., 2024),
TextMonkey, and TextMonkey+ (Liu et al., 2024c).

OCR-based baselines For OCR-based baseline models, we implemented a basic approach using
only OCR-derived text as input. This was done using two versions: Llama2-7B-base and Llama2-
7B-chat. We also adapted the coordinate-as-tokens scheme from He et al. (2023) for these models,
resulting in two new variants: Llama2-7B-basecoor and Llama2-7B-chatcoor. It is important to note
that we did not employ the ICL strategy with these models, as it would significantly exceed their
maximum sequence length constraints. Additionally, we included results from a stronger baseline
using the ChatGPT Davinci-003 (175B) model (He et al., 2023), termed Davinci-003-175Bcoor. One
other recent SOTA OCR-based approach, DocLLM (Wang et al., 2023) is also considered in our
analysis. Finally, LayoutLLM and LayoutLLMCoT (Luo et al., 2024), which integrates visual cues,
text and layout is also included.

4.4 EVALUATION METRICS

To ensure a fair comparison with OCR-free methods, we adopted the accuracy metric, where a
response from the model is considered correct if it fully captures the ground truth. This approach
aligns with the evaluation criteria described by (Liu et al., 2024c; Feng et al., 2023a;b). To further
enhance the comparability with other OCR-based methods, we conducted additional evaluations
using original metrics specific to certain datasets, such as F1 score (Wang et al., 2023; He et al.,
2023), ANLS (Gao et al., 2019; Wang et al., 2023; Luo et al., 2024) and CIDEr (Vedantam et al.,
2015; Wang et al., 2023).

4.5 QUANTITATIVE RESULTS

Comparison with SOTA OCR-free Methods The experimental results shown in Tab. 1 demon-
strate the outstanding performance of the LayTextLLM series across various tasks. Note that the
results for ChartQA are reported in Appendix E due to concerns about fairness in comparison, as
the dataset does not include OCR-derived results and we used in-house OCR tools instead. Firstly,
LayTextLLMzero significantly outperforms previous SOTA OCR-free methods, such as TextMon-
key (Liu et al., 2024c), in zero-shot capabilities, even when these methods use the training set of the
dataset. For example, in the DocVQA and InfoVQA datasets, LayTextLLMzero achieves accuracies
of 72.1% and 35.7%, respectively, which are markedly higher than existing OCR-free methods
such as TextMonkey and InternLM-XComposer2. When fine-tuned with corresponding datasets,
LayTextLLM shows even greater performance improvements, particularly in document-oriented
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Document-Oriented VQA KIE
DocVQA InfoVQA Avg FUNSD SROIE POIE Avg

Metric Accuracy %

OCR-free
UniDoc (Feng et al., 2023b) 7.7 14.7 11.2 1.0 2.9 5.1 3.0
DocPedia (Feng et al., 2023a) 47.1∗ 15.2∗ 31.2 29.9 21.4 39.9 30.4
Monkey (Li et al., 2023) 50.1∗ 25.8∗ 38.0 24.1 41.9 19.9 28.6
InternVL (Chen et al., 2023b) 28.7∗ 23.6∗ 26.2 6.5 26.4 25.9 19.6
InternLM-XComposer2 (Dong et al., 2024) 39.7 28.6 34.2 15.3 34.2 49.3 32.9
TextMonkey (Liu et al., 2024c) 64.3∗ 28.2∗ 46.3 32.3 47.0 27.9 35.7
TextMonkey+ (Liu et al., 2024c) 66.7∗ 28.6∗ 47.7 42.9 46.2 32.0 40.4

Text + Coordinates
LayTextLLMzero (Ours) 72.1 35.7 53.9 47.5 86.4 68.9 67.6
LayTextLLMvqa (Ours) 77.2∗ 42.1∗ 59.7 48.8 75.7 70.6 65.0

Table 1: Comparison with SOTA OCR-free MLLMs. ∗ denotes the use of the dataset’s training set.

Document-Oriented VQA KIE
DocVQA VisualMRC Avg FUNSD CORD SROIE Avg

Metric ANLS % / CIDEr F-score %

Text
Llama2-7B-base 34.0 182.7 108.3 25.6 51.9 43.4 40.3
Llama2-7B-chat 20.5 6.3 13.4 23.4 51.8 58.6 44.6

Text + Coordinates
Llama2-7B-basecoor (He et al., 2023) 8.4 3.8 6.1 6.0 46.4 34.7 29.0
Llama2-7B-chatcoor (He et al., 2023) 12.3 28.0 20.1 14.4 38.1 50.6 34.3
Davinci-003-175Bcoor (He et al., 2023) - - - - 92.6 95.8 -
DocLLM (Wang et al., 2023) 69.5∗ 264.1∗ 166.8 51.8∗ 67.6∗ 91.9∗ 70.3
LayTextLLMzero (Ours) 65.5 200.2 132.9 47.2 77.2 83.7 69.4
LayTextLLMvqa (Ours) 75.6∗ 179.5 127.6 52.6 70.7 79.3 67.5
LayTextLLMall (Ours) 77.2∗ 277.8∗ 177.6 64.0∗ 96.5∗ 95.8∗ 85.4

Table 2: Comparison with other OCR-based methods. ∗ denotes the use of the dataset’s training set.

VQA datasets. Specifically, its accuracies on DocVQA and InfoVQA increase to 77.2% and 42.1%,
respectively, demonstrating the model’s strong ability to leverage task-specific data. Additionally,
LayTextLLMzero excels in KIE datasets, particularly on the SROIE and POIE datasets, achieving
accuracies of 86.4% and 68.9%, respectively. These results significantly surpass those of previous
SOTA OCR-free model (i.e., TextMonkey+) by margins of 40.5% and 34.1%, respectively. This
significant performance gain is likely due to these datasets containing low-resolution images that are
too blurred for current MLLMs to extract visual features, whereas LayTextLLM shows robustness in
such challenging scenarios.

Comparison with SOTA OCR-based Methods For comprehensive comparison, we have also
conducted corresponding experiments to align with OCR-based methods (Wang et al., 2023; Luo
et al., 2024). The experimental results presented in Tab. 2 showcase significant performance im-
provements achieved by LayTextLLM models compared to pure OCR-based SOTA methods such
as DocLLM (Wang et al., 2023). Specifically, when comparing with DocLLM, LayTextLLMzero

demonstrates notably superior performance, with even its zero-shot capabilities being competitive
with SFT approaches.

We believe that the subpar performance of DocLLM is likely due to its use of cross-attention and
the masked span pre-training tasks (Raffel et al., 2020), which fail to leverage the autoregressive
features of LLMs effectively. Similarly, when contrasting with coordinate-as-tokens employed in
Llama2-7B, LayTextLLMzero again outperforms significantly. This disparity in performance can be
attributed to the following three reasons: (1) The coordinate-as-tokens approach tends to introduce an
excessive number of tokens, often exceeding the pre-defined maximum length of Llama2-7B (i.e.,
4096). Consequently, this leads to a lack of crucial OCR information, resulting in hallucination and
subpar performance. (2) When re-implementing the coordinate-as-tokens method with Llama2-7B,
we did not introduce the ICL strategy, as it would contribute additional length to the input sequence.
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Document-Oriented VQA KIE
DocVQA VisualMRC Avg FUNSD− CORD− SROIE− Avg

Metric ANLS %

Visual + Text + Coordinates
LayoutLLM (Luo et al., 2024) 72.3 - - 74.0 - - -
LayoutLLMCoT (Luo et al., 2024) 74.2 55.7 64.9 79.9 63.1 72.1 71.7

Text
Llama2-7B-base 34.0 25.4 29.7 42.1 46.7 60.6 49.8
Llama2-7B-chat 20.5 9.9 15.2 15.1 20.0 35.6 23.5

Text + Coordinates
Llama2-7B-basecoor (He et al., 2023) 8.4 6.7 7.5 4.3 33.0 47.2 28.1
Llama2-7B-chatcoor (He et al., 2023) 12.3 12.2 12.2 11.9 6.4 39.4 19.2
LayTextLLMzero (Ours) 65.5 37.4 51.5 72.0 45.5 82.0 66.5
LayTextLLMall (Ours) 77.2∗ 41.7∗ 59.5 81.0∗ 82.5∗ 96.1∗ 86.5

Table 3: Comparison with LayoutLLM. − indicates that the cleaned test set used in Luo et al. (2024).

(3) The coordinate-as-tokens approach necessitates a considerably larger-sized LLM to comprehend
the numerical tokens effectively.

In comparison to LayoutLLM (Luo et al., 2024), our approach exhibits discrepant performance in
different tasks, as shown in Tab. 3. In zero-shot scenarios, we outperform LayoutLLM in most KIE
datasets, validating our capability to leverage OCR-based results effectively. However, we fall short
on document-oriented VQA tasks since answering some questions that are strongly related to vision
information may challenge our approach. Two main reasons may well explain this performance
discrepancy: (1) The visual encoder in LayoutLLM provides additional visual information. (2)
LayoutLLM incorporates the Chain-of-Thought (CoT) mechanism to model contextual information
while it is not used in our approach. However, when fine-tuned with tailored data, LayTextLLM
significantly outperforms LayoutLLM, showcasing its strong ability to utilize task-specific data. More
qualitative example demonstrates can be found in Appendix A.

4.6 ANALYSIS

Document-Oriented VQA KIE
SLP P-LoRA LNTP+SSFT DocVQA InfoVQA VisualMRC Avg FUNSD CORD SROIE POIE Avg

71.5 31.9 31.1 44.8 50.5 90.2 91.6 54.1 71.6
✓ 74.7 35.7 32.5 47.6 55.1 94.9 94.6 68.3 78.2
✓ ✓ 76.5 38.0 30.6 48.4 54.3 95.9 95.3 70.6 79.0
✓ ✓ ✓ 78.8 42.7 34.4 52.0 63.0 95.9 95.2 62.1 79.1

Table 4: Ablations on each component of LayTextLLM (Accuracy).

Ablations To better assess the utility of each component in LayTextLLM, an ablation study was
conducted, the results of which are presented in Tab. 4. Detailed information on the training setup for
all variants is provided in Appendix B. The results clearly show that incorporating interleaved spatial
layouts and texts significantly enhances the performance, evidenced by a 2.8% improvement in VQA
and a 6.6% increase in KIE compared to the plain version, indicating that SLP is a critical component.
Furthermore, enabling P-LoRA results in a modest performance increase of 0.8% in both VQA and
KIE tasks. Finally, the enabling of LNTP+SSFT leads to a significant improvement in VQA and KIE
tasks, with an increase of 3.6% and 0.1%.

Advantage of Interleaving Layout and Text

We visualize the attention patterns between input and output tokens in Fig. 5. The attention pattern is
insightful with the specific question, “What is the quantity of - TICKET CP?<0x0A>”

As shown in Fig. 5(a), when the model begins predicting the answer “Final”, “<0x0A>”(newline
symbol) is heavily focusing on layout information, as seen by the significant attention on the bounding
box embedding “<unk>” token before “(Qty”. This highlights the model’s effort to orient itself
spatially and understand the structural context of the tokens. At this stage, the model is developing a
cognitive understanding of how the elements are laid out on the page. We extract and visualize the
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attention scores that “<0x0A>” assigns to each bounding box in Fig. 5(c). The visualization shows
that the model focuses most on “Qty”, followed by “-TICKET” and “2.00”, which reflects the layout
information essential for making the prediction. In the final layer (Fig. 5(b)), the model’s attention
shifts dramatically towards the “Qty” token, which holds the semantic meaning necessary to answer
the question. This shift from layout-based cognition to content-based reasoning illustrates how the
bounding box tokens act as spatial anchors that help the model pinpoint and organize the relevant
information (such as “Qty”) to make the correct prediction.

<u
nk

> ( Q ty
<u

nk
> 2 . 0 0

<u
nk

> ED C
<u

nk
> C

Source Token

What
is

the
quantity

of
-
T

IC
K

ET
CP

?
...

<0x0A>
Final

answer
:

2
.

Ta
rg

et
 To

ke
n

LayTextLLM Attention Map

0.2

0.4

(a) Attention map of the first layer.
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Figure 5: Visualization of attention maps of LayTextLLM. Best viewed in color and with zoom.
“<unk>” is the placeholder for the bounding box token.

The attention of LayTextLLM exhibits a distinct pattern compared to models like DocLLM, which
uses block infilling to predict missing blocks from both preceding and succeeding context. In contrast,
LayTextLLM adheres to an auto-regressive approach, focusing its attention solely on preceding
information. Furthermore, interleaving bounding box and text embeddings creates strong attention
connections between textual and spatial representations, as shown in Fig.5. In contrast, DocLLM
integrates spatial information into the calculation of attention score which is implicitly. As shown
in Tab. 2, LayTextLLM significantly outperforms DocLLM, again underscoring the advantage of
interleaving bounding box and text embeddings. Also, we found that the spatial information can be
decoded back into coordinates even without inputing visual information, as discussed in Appendix F.

Sequence Length Tab. 5 presents statistics on the average input sequence length across differ-
ent datasets. Intriguingly, despite interleaving bounding box tokens, LayTextLLM consistently
exhibits the shortest sequence length in three out of four datasets, even surpassing DocLLM,
which is counterintuitive. We attribute this to the tokenizer mechanism. For example, using
tokenizer.encode(), a single word from the OCR engine, like “International” is encoded
into a single ID [4623]. Conversely, when the entire OCR output is processed as one sequence,
such as “... CPC,International,Inc...”, the word “International” is split into two IDs [17579, 1288],
corresponding to “Intern” and “ational” respectively. This type of case occurs frequently, we provide
further discussion in Appendix C.

Dataset LayTextLLM DocLLM (Wang et al., 2023) Coor-as-tokens (He et al., 2023)

DocVQA 664.3 827.5 4085.7
CORD 137.9 153.2 607.3

FUNSD 701.9 847.5 4183.4
SROIE 529.2 505.1 1357.7

Table 5: Average sequence length of each data for different methods using Llama2 tokenizer.

5 CONCLUSION

We propose LayTextLLM for VRDU tasks, interleaving spatial layouts and text to improve predictions
through an innovative Spatial Layout Projector and the LNTP and SSFT training processes. Extensive
experiments confirm the effectiveness of LayTextLLM.
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APPENDIX

A QUALITATIVE EXAMPLES

Qualitative examples of document-oriented VQA (upper row) and KIE (bottom row) are shown in
Fig. 6. The results indicate that LayTextLLM is highly effective in utilizing spatial layout information
to make more accurate predictions for these challenging examples. For example, in the upper
right figure, many numeric texts in the receipt act as noise for the baseline method. In contrast,
LayTextLLM integrates layout information to accurately predict the total price, as demonstrated by
the other examples, underscoring the utility of LayTextLLM.

B IMPLEMENTATION DETAIL

All training and inference procedures are conducted on eight NVIDIA A100 GPUs.

Training LayTextLLM is initialized with Llama2-7B-Base model, the pre-training, SFT, and other
model hyper-parameters can be seen in Tab. 6. Please note that all variants of LayTextLLM, including
those utilized in ablation studies, are trained in accordance with the SFT settings. All baseline results
are sourced from their respective original papers, with the exception of the Llama2-7B series and the
Llama2-7Bcoor series. These were re-implemented and can be referenced in (He et al., 2023; Luo
et al., 2024).

Backbone Plora rank Batch size Max length Precision Train params Fix params
Pretrain Llama2-7B-base 256 128 2048 bf16 648 M 6.7 B
SFT Llama2-7B-base 256 256 4096 bf16 7.4 B 0B

Learning rate Weight decay Scheduler Adam betas Adam epsilon Warm up Epoch
Pretrain 1.0e-04 0.01 cosine [0.9, 0.999] 1.0e-08 0.005 2
SFT 2.0e-05 0.01 cosine [0.9, 0.999] 1.0e-08 0.005 2

Table 6: LayTextLLM trainng Hyper-parameters.

Inference For the document-oriented VQA test set, we use the original question-answer pairs as
the prompt and ground truth, respectively. For Key Information Extraction (KIE) tasks, we reformat
the key-value pairs into a question-answer format, as described in (Wang et al., 2023; Luo et al.,
2024; Liu et al., 2024c). Additionally, for the FUNSD dataset, we focus our testing on the entity
linking annotations as described in (Luo et al., 2024).

To eliminate the impact of randomness on evaluation, no sampling methods are employed during
testing for any of the models. Instead, beam search with a beam size of 1 is used for generation across
all models. Additionally, the maximum number of new tokens is set to 512, while the maximum
number of input tokens is set to 4096.

C DISCUSSION OF INPUT SEQUENCE LENGTH

As mentioned in Section 4.6, it is intriguing that LayTextLLM has fewer input sequences than
DocLLM, which is counterintuitive given that LayTextLLM interleaves bounding box tokens, typ-
ically resulting in longer sequence lengths. We attribute this to the Byte Pair Encoding (BPE)
tokenizers (Sennrich et al., 2016) prevalently used in modern LLMs such as Llama2.
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What is the date in this receipt?

2003

Anwsered  by LayTextLLM (Ours)

Anwsered  by Llama-7B-base

29 JUN 18

What is the total price in this receipt?

100.00

Anwsered  by LayTextLLM (Ours)

Anwsered  by Llama-7B-base

79.50✓

✖

✓

✖

what is the 10th service provided
under the 'services provided by
child welfare staff'?

Anwsered  by LayTextLLM (Ours)

Anwsered  by Llama-7B-base

✖

10th service provided under the 'services
provided by child welfare staff' is 'Licenses
children's institutions, agencies and day

✓
licenses independent full time and day
care homes

Which is the last financial year
(FY) listed under sub-heading
"Funding"?

1977

Anwsered  by LayTextLLM (Ours)

Anwsered  by Llama-7B-base

 FY 1978 ✓

✖

Figure 6: Qualitative comparison with the baseline method.

BPE operates by building a vocabulary of commonly occurring subwords (or token pieces) derived
from the training data. Initially, it tokenizes the text at the character level and then progressively
merges the most frequent adjacent pairs of characters or sequences. The objective is to strike a
balance between minimizing vocabulary size and maximizing encoding efficiency.

Thus, when tokenizing a single word like “International” on its own, the tokenizer might identify it
as a common sequence in the training data and encode it as a single token. This is especially likely if

“International” frequently appears as a standalone word in the training contexts. However, when the
word “International” is part of a larger sequence of words such as including in a long sequence of
OCR-derived texts like “...335 CPC,International,Inc...”, the context changes. The tokenizer might
split “International” into sub-tokens like “Intern” and “ational” because, in various contexts within
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the training data, these subwords might appear more frequently in different combinations or are more
useful for the model to understand variations in meaning or syntax.

When using LayTextLLM, we input word-level OCR results into the tokenizer, typically resulting in
the former situation, where words are encoded as single tokens. Conversely, with DocLLM, the entire
OCR output is processed as one large sequence, leading to the latter situation and a longer sequence
length than in LayTextLLM. This difference underscores the utility of LayTextLLM in achieving
both accuracy and inference efficiency due to its shorter sequence length.

D SHUFFLE RATIO EXPLORATION

Tab. 7 presents the results of exploring training and testing shuffling ratios on the FUNSD and
DocVQA dataset using two different models: Llama2-7B-base and LayTextLLM. The table shows
the performance of these models at various shuffling ratios (100%, 50%, 20%, and 0%).

LayTextLLM consistently outperforms Llama2-7B-base across all levels of shuffling, which further
underscores the significance of interleaving spatial layouts with text. Particularly at the 100% shuffle
level, Llama2-7B-base demonstrates limited accuracy at only 20.3 (FUNSD) and 34.8 (DocVQA),
while LayTextLLM maintains a relatively higher performance. It is also interesting to note that
Llama2-7B-base generally improves as the shuffling percentage decreases, whereas LayTextLLM
performs best when 20% of the examples with OCR-derived text are shuffled. This observation
suggests that LayTextLLM effectively utilizes spatial layouts and is less dependent on the sequence of
input tokens. Therefore, a certain proportion of shuffled examples can serve as adversarial examples
to enhance the model’s robustness, addressing situations such as errors in the text order from the
OCR engine, which are caused by subtle differences in horizontal or vertical coordinates.

FUNSD DocVQA

Ratio Llama2-7B-base LayTextLLM Llama2-7B-base LayTextLLM

100% 20.3 44.7 34.8 53.1
50% 49.1 62.1 63.1 72.8
20% 50.2 65.4 64.7 73.4
0% 52.3 65.1 65.5 73.0

Table 7: Shuffling ratio exploration in FUNSD and DocVQA dataset.

E RESULTS OF CHARTQA

As shown in Fig. 7, the question-answer pairs in ChartQA (Masry et al., 2022) tend to involve the
visual cues for reasoning. However, with only text and layout information as input, the proposed
LayTextLLM inevitably have difficulties in reasoning visual-related information. Thus, on the
ChartQA dataset, LayTextLLM can hardly achieve better performance than previous methods that
include visual inputs. Although the visual information is not used in LayTextLLM, it can still exhibit
better zero-shot ability than UniDoc (Feng et al., 2023b). After incorporating the training set of
ChartQA, the performance of LayTextLLM can be boosted to 35.4%. Considering the importance of
visual cues in ChartQA-like tasks, we will try to involve the visual information into LayTextLLM in
future work.

F DECODING BOUNDING BOX COORDINATES

Although LayTextLLM is not explicitly designed to generate bounding boxes, we found that it can still
do so. We believe this behavior arises from the chain-of-thought examples in the Layout-ware SFT
dataset used by Luo et al. (2024). This ability is triggered by the prompt Please think step-by-step.”,
as shown in the example in Tab. 9. In response to the question, “What is the content in the "NUMBER
OF PAGES INCLUDING COVER SHEET:" field?”, the model accurately outputs the bounding box
for the region of interest, as demonstrated in Fig. 8. Notably, the model only uses bounding box
tokens as input, without visual information. Even more intriguing is that the input OCR texts and
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Question: What is the difference between
the highest and the lowest green bar?

GroundTruth: 6

Our Prediction: 40

Figure 7: A failure case of LayTextLLM on ChartQA.

ChartQA

OCR-free
UniDoc (Feng et al., 2023b) 10.9
DocPedia (Feng et al., 2023a) 46.9∗

Monkey (Li et al., 2023) 54.0∗

InternVL (Chen et al., 2023b) 45.6∗

InternLM-XComposer2 (Dong et al., 2024) 51.6∗

TextMonkey (Liu et al., 2024c) 58.2∗

TextMonkey+ (Liu et al., 2024c) 59.9∗

Text + Coordinates
LayTextLLMzero (Ours) 22.8
LayTextLLMvqa (Ours) 23.4∗

LayTextLLMall (Ours) 35.4∗

Table 8: Comparison with SOTA OCR-free MLLMs on ChartQA. ∗ denotes the use of the dataset’s
training set.

bounding boxes are word-level and disordered, such as ...<unk> NUMBER<unk> OF<unk> IN-
CLUDING<unk> COVER<unk> SHEET:<unk> PAGES<unk> 3<unk> SENDER<unk>...”. Despite
this, the model accurately combines coordinates to produce a block-level bounding box.
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Input:
given document <document><unk> ATT.<unk> GEN.<unk> ADMIN.<unk> OF-
FICE<unk> Fax:<unk> 614<unk> -466<unk> -5087<unk> Dec<unk> 10<unk>
’98<unk> 17<unk> :46<unk> P.<unk> 01<unk><unk> Attorney<unk> General<unk>
D.<unk> Betty<unk> Montgomery<unk> CONFIDENTIAL<unk> FACSIMILE<unk>
TRANSMISSION<unk> COVER<unk> SHEET<unk> FAX<unk> NO.<unk>
(614)<unk> 466-<unk> 5087<unk> TO:<unk> George<unk> Baroody<unk>
FAX<unk> NUMBER:<unk> (336)<unk> 335-<unk> 7392<unk> PHONE<unk>
NUMBER:<unk> (336)<unk> 335-<unk> 7363<unk> DATE:<unk> 12<unk>
/10<unk> /98<unk> NUMBER<unk> OF<unk> INCLUDING<unk> COVER<unk>
SHEET:<unk> PAGES<unk> 3<unk> SENDER<unk> /PHONE<unk> NUM-
BER:<unk> June<unk> Flynn<unk> for<unk> Eric<unk> Brown/<unk> (614)<unk>
466-<unk> 8980<unk> SPECIAL<unk> INSTRUCTIONS:<unk> NOT<unk>
OF<unk> THE<unk> PAGES<unk> IF<unk> YOU<unk> DO<unk> RECEIVE<unk>
ANY<unk> PROPERLY,<unk> PLEASE<unk> CONTACT<unk> SENDER<unk>
AS<unk> SOON<unk> AS<unk> POSSIBLE<unk> NOTE:<unk> THIS<unk> MES-
SAGE<unk> IS<unk> INTENDED<unk> ONLY<unk> FOR<unk> THE<unk>
USE<unk> OF<unk> THE<unk> INDIVIDUAL<unk> OR<unk> ENTITY<unk>
TO<unk> WHOM<unk> IT<unk> IS<unk> ADDRESSED<unk> AND<unk>
MAY<unk> CONTAIN<unk> INFORMATION<unk> THAT<unk> IS<unk> PRIVI-
LEGED.<unk> CONFIDENTIAL,<unk> UNDER<unk> AND<unk> EXEMPT<unk>
FROM<unk> DISCLOSURE<unk> APPLICABLE<unk> LAW.<unk> If<unk>
the<unk> reader<unk> of<unk> this<unk> message<unk> is<unk> not<unk>
the<unk> intended<unk> recipient<unk> of<unk> the<unk> employee<unk> or<unk>
agent<unk> responsible<unk> for<unk> delivering<unk> the<unk> message<unk>
to<unk> the<unk> intended<unk> recipient,<unk> you<unk> are<unk> hereby<unk>
notified<unk> that<unk> any<unk> dissemination,<unk> distribution,<unk> copy-
ing,<unk> or<unk> conveying<unk> of<unk> this<unk> communication<unk>
in<unk> any<unk> manner<unk> is<unk> strictly<unk> prohibited.<unk> If<unk>
you<unk> have<unk> received<unk> this<unk> comunication<unk> in<unk> er-
ror,<unk> please<unk> notify<unk> us<unk> immediately<unk> by<unk> tele-
phone<unk> and<unk> return<unk> the<unk> 82092117<unk> original<unk> mes-
sage<unk> to<unk> us<unk> at<unk> the<unk> address<unk> below<unk> via<unk>
the<unk> U.<unk> S.<unk> Postal<unk> Service.<unk> Thank<unk> you<unk>
for<unk> your<unk> cooperation.<unk> State<unk> Tower<unk> /<unk> 30<unk>
East<unk> Broad<unk> Street/<unk> Columbus,<unk> Ohio<unk> 43215<unk>
-3428<unk> Office<unk> www<unk> ag<unk> state<unk> oh<unk> us<unk>
An<unk> Equal<unk> Opportunity<unk> Employer<unk><unk> Primed<unk>
an<unk><unk></document>, answer following question: what is the content in
the "NUMBER OF PAGES INCLUDING COVER SHEET:" field? P lease think
step-by-step.
Output:
## answer: Step 1 (Question Analysis): The question is about "key-value extraction".
And the question asks for the content in the "NUMBER OF PAGES INCLUDING
COVER SHEET" field in the given document.
Step 2 (Relevant Area Concentration): The answer can be found in the area: [142, 438,
635, 453].
Step 3 (Answer Formation): Based on the first two steps, regarding the question "what
is the content in the "NUMBER OF PAGES INCLUDING COVER SHEET:" field?",
the answer can be found in the sentence "NUMBER OF PAGES INCLUDING COVER
SHEET: 3". The content in the "NUMBER OF PAGES INCLUDING COVER SHEET"
field is "3".
Final answer: 3.

Table 9: FUNSD example with chain-of-thought and bounding box generation.
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Figure 8: FUNSD example with bounding box generated by LayTextLLM.
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