FairProof : Confidential and Certifiable Fairness for
Neural Networks

Chhavi Yadav'!, Amrita Roy Chowdhury', Dan Boneh?, Kamalika Chaudhuri'*
University of California, San Diego 2 Stanford University

Abstract

Machine learning models are increasingly used in societal applications, yet legal
and privacy concerns demand that they very often be kept confidential. Conse-
quently, there is a growing distrust about the fairness properties of these models
in the minds of consumers, who are often at the receiving end of model predic-
tions. To this end, we propose FairProof— a system that uses Zero-Knowledge
Proofs (a cryptographic primitive) to publicly verify the fairness of a model, while
maintaining confidentiality. We also propose a fairness certification algorithm for
fully-connected neural networks which is befitting to ZKPs and is used in this
system. We implement FairProof in Gnark and demonstrate empirically that our
system is practically feasible.

1 Introduction

Recent usage of ML models in high-stakes soci-
etal applications [37,[13}117] has raised serious

concerns about their fairness [4,/59,[16,160]. As % |

a result, there is growing distrust in the minds Sommimant

of a consumer at the receiving end of ML-based %— + i avery ,ﬁ — v/
decisions [20]]. To increase consumer trust there S,\E] . [preditions || B

is a need for developing technology that enables = Cufcas || Ciromeert
public verification of the fairness properties of Rntereyaey || Contosts

models. OnganzatonProver using Faeroot |

A major barrier to such verification is that legal Figure 1: Pictorial Representation of FairProof
and privacy concerns demand that models be

kept confidential by organizations. The resulting lack of verifiability can lead to potential misbehavior,
such as model swapping, wherein a malicious entity uses different models for different customers
leading to unfair behavior. Therefore what is needed is a solution which allows for public verification
of the fairness of a model and ensures that the same model is used for every prediction (model
uniformity) while maintaining model confidentiality. The canonical approach to evaluating fairness is
a statistics-based third-party audit [63,164} 48| 154]. This approach however is replete with problems
arising from the usage of a reference dataset, the need for a trusted third-party, leaking details about
the confidential model [14} 28] and lack of guarantees of model uniformity [22} 53]].

We address the aforementioned challenges by proposing a system called FairProof involving two parts:
1) a fairness certification algorithm which outputs a certificate of fairness , and 2) a cryptographic
protocol using commitments and Zero-Knowledge Proofs (ZKPs) that guarantees model uniformity
and gives a proof that the certificate is correct.

Given an input query, the fairness certification algorithm outputs how fair the model is at that point
according to a fairness metric. The metric we use is local Individual Fairness (IF) [19} 132, 18} 9],

*Corresponding author : cyadav@ucsd.edu

2nd Workshop on Regulatable ML at NeurIPS 2024.

which is desirable for two reasons. First, it evaluates fairness of the model at a specific data point
(rather than for the entire input space) — this allows us to give a personalized certificate to every
customer, as would be required by customer-facing organizations. Second, it works on the model
post-training, making it completely agnostic to the training pipeline.

How do we design a certification algorithm for the chosen metric? We observe that certifying local
IF can be reduced to an instantiation of certifying robustnessE] We then leverage techniques from
the robustness literature to design our algorithm. One of our key contributions is to design the
algorithm so that it is ZKP-friendly. In particular, the computational overhead for ZKPs depends on
the complexity of the statement being proved. To this end, we design a fairness certificate which
results in relatively low complexity statements.

Once fairness certificate has been computed, we want to enable the consumer to verify that the
certificate was indeed computed correctly, but without revealing the model weights. To do this, we
rely on Succinct Zero Knowledge Proofs [26, 25]]. This cryptographic primitive enables a prover
(eg. bank) to prove statements (eg. fairness certificate) about its private data (eg. model weights)
without revealing the private data itself. It provides a proof of correctness as an output. Then a verifier
(eg. customer) verifies this proof without access to the private data. In our case, if the proof passes
verification, it implies that the fairness certificate was computed correctly w.r.t the hidden model.

We design and implement a specialized ZKP protocol to efficiently prove and verify the aforemen-
tioned fairness certification algorithm. Doing this naively would be very computationally expensive.
We tackle this challenge with three insights. First, we show that verification of the entire certification
algorithm can be reduced to a few strategically chosen sub-functionalities, each of which can be
proved and verified efficiently. Second, we provide a lower bound on the certificate, i.e., a conserva-
tive estimate of the model’s fairness, for performance optimization. Third, we observe that certain
computations can be done in an offline phase thereby reducing the online computational overhead.

Our solution ensures model uniformity through standard cryptographic commitments. A crypto-
graphic commitment to the model weights binds the organization to those weights publicly while
maintaining confidentiality of the weights. This has been widely studied in the ML security litera-
ture (27} 111 34} 4111551 146} [45]].

Experiments. In this work we focus on fully-connected neural networks with ReLU activations as
the models. We implement and evaluate FairProof on three standard fairness benchmark datasets
to demonstrate its practical feasibility. For instance, for the German [30] dataset, we observe that
FairProof takes around 1.17 minutes on an average to generate a verifiable fairness certificate per
data point without parallelism or multi-threading on an Intel-i9 CPU chip. The communication cost
is also low — the size of the verifiable certificate is only 43.5KB.

2 Preliminaries & Setting

Fairness. Existing literature has put forth a wide variety of fairness definitions [44} 5] In this paper,
we focus on the notion of local individual fairness [32,119, 18] defined below, as it best aligns with our
application (see Sec. 2] for more details).

Definition 1 (Local Individual Fairness). A machine learning model f : R™ — Y is defined to be
e-individually fair w.r.t to a data point x* ~ D under some distance metric d : R™ x R" — R if

Vo : d(z,z") <e = f(a¥) = f(x) (1)

We say a model f is exactly e*-individually fair w.r.t 2* if €* is the largest value that satisfies Eq. [I}
In particular, €* is known as the local individual fairness parameter. For brevity we will be using ¢
to mean ¢* and fairness/individual fairness to refer to the notion of local individual fairness,
unless stated otherwise, throughout the rest of the paper.

Individual fairness formalizes the notion that similar individuals should be treated similarly; more
precisely, get the same classification. The similarity is defined according to a task dependent distance
metric d(-) that can be provided by a domain expert. Examples of such a metric could be weighted £,
norm where the weights of the sensitive features (race, gender) are set to zero [8].

?Certifiable Robustness quantifies a model’s resistance to adversarial attacks by measuring the extent to
which a data point can be perturbed without altering the model prediction.

Neural Networks. We focus on the classification task and consider neural network (NN) classifiers
f X — Y, where f is a fully-connected neural network with ReLU activations, X = R" is the input
space and) is a discrete label set. This NN classifier (pre-softmax) can also be viewed a collection
of piecewise linear functions over a union of convex polytopes [62, 29, 49| (15} 52]]. Here each linear
function corresponds to one polytope and each polytope corresponds to one activation pattern of the
nodes in the NN. A polytope P is represented by a set of linear inequalities, P = {x|Az < b} ; then
the collection of all such polytopes forms a partition of the input domain, X = |J P (App. Fig. @)

A facet is an (n — 1)-face of the polytope corresponding to the set {z|x € PN A;x = b;} where A;
and b; are the values of A and b at the 7" dimension. Two polytopes that share a facet are known as
neighboring polytopes. The decision region of f at a data point * is defined as the set of points for
which the classifier returns the same label as it does for =*, essentially the set {z|f(x) = f(z*)}.
This decision region can also be expressed as a union of convex polytopes [33]]. A facet that coincides
with the decision boundary of f is known as a boundary facet. See App. [Alfor details.

Cryptographic Primitives. We use two cryptographic primitives, namely commitment schemes and
zero knowledge proof, for verifying the individual fairness certification.

A Commitment Scheme commits to a private input w without revealing anything about w; its output
is a commitment string cOM,,. A commitment scheme has two properties:

1. Hiding: the commitment string com,, reveals nothing about the committed value w.
2. Binding: it is not possible to come up with another input w’ with the same commitment
string as w, thus binding w to com,,, (simplified).

Zero Knowledge Proofs [26] describe a protocol between two parties — a prover and a verifier, who
both have access to a circuit P. A ZKP protocol enables the prover to convince the verifier that
it possesses an input w such that P(w) = 1, without revealing any additional information about
w to the verifier. A simple example is when P,(w) = 1 iff ¢ is a SAT formula and p(w) = 1; a
ZKP protocol enables the prover to convince a verifier that there is a w for which ¢(w) = 1, while
revealing nothing else about w. A ZKP protocol has the following properties:

1. Completeness. For any input w such that P(w) = 1, an honest prover who follows the
protocol correctly can convince an honest verifier that P(w) = 1.

2. Soundness. Given an input w that P(w) # 1, a malicious prover who deviates arbitrarily
from the protocol cannot falsely convince an honest verifier that P(w) = 1, with more than
negligible probability.

3. Zero knowledge. If the prover and verifier execute the protocol to prove that P(w) = 1,
even a malicious verifier, who deviates arbitrarily from the protocol, can learn no additional
information about w other than P(w) = 1.

Theory suggests that it is possible to employ ZKPs to verify any predicate P in the class NP [25]].
Moreover, the resulting proofs are non-interactive and succinct. However, in practice, generating a
proof for even moderately complex predicates often incurs significant computational costs. To this
end, our main contribution lies in introducing a ZKP-friendly certification algorithm, to facilitate
efficient fairness certificate generation.

Problem Setting. A model owner holds a confidential classification model f that cannot be publicly
released. User supplies an input query z* to the model owner, who provides the user with a prediction
label y = f(x*) along with a fairness certificate ¢ w.r.t to 2*. This certificate can be verified by the
user & the user is also guaranteed that the model owner uses the same model for everyone.

The above setting needs three tools. First, the model owner requires an algorithm for generating
the fairness certificate with white-box access to the model weights. This algorithm is discussed
in Sec. E} Second, a mechanism is needed that enables the user to verify the received certificate
(public verification) without violating model confidentiality. This mechanism is discussed in Sec.
Ml Third, a mechanism is needed to guarantee that the same model is used for everyone (model
uniformity), also without violating model confidentiality. For ensuring uniformity, the model owner
should commit the model in the initially itself, before it is deployed for users. This has been widely
studied and implemented by prior work as discussed in the introduction and an actual implementation
of commitments is out of scope of this work.

A A
> >
[[
S S
= =
- -
© ©
& &
() ()
2 2
= =
k7 k7
=1 =1
[[
P Q
= =
o o
z. z.
S=a S=b S=c
Sensitive feature S Sensitive feature S
(a) Certifiable robustness (b) Certifiable fairness

Figure 2: Connection between robustness & fairness for n = 2 and one sensitive feature S with
values {a, b, c¢}. Final fairness certificate is the minimum of {e,, €, €. }. Red color denotes decision
boundary.

3 How to Certify Individual Fairness?

In this section we present an algorithm to compute a local individual fairness certificate. This
certificate is computed by the model owner with white-box access to the model weights and is specific
to each user query, thereby leading to a personalized certificate. The certificate guarantees to the user
that the model has certain fairness properties at their specific query.

Preliminaries. Starting with some notation, let S be the set of k sensitive features, S := {S1,- -, Sk}
where S; denotes the i*" sensitive feature. We assume that each sensitive feature S; has a discrete
and finite domain, denoted by domain(S;), which is in line with typical sensitive features in practice,
such as race (eg. black/white/asian), presence of a medical condition (yes/no). Let domain(S)
represent the set of all possible combinations of the values of sensitive features, domain(S) :=
domain(Sy1) x -+ x domain(Sy). Without loss of generality, any data point z € R™ is also
represented as * = x\s U xs, where 1\ s and xs are the non-sensitive and sensitive features of x.

For the distance metric in individual fairness (Eq. [I)), we consider a weighted £5-norm where the
non-sensitive features have weight 1 while the sensitive features have weight 0. This distance metric
is equivalent to the ¢5-norm sans the sensitive features. Thus, based on Def. [I} f is e-individually fair
w.r.t z* iff,

Vo [los —aisll: <€ = f(z") = f(2))

With this notation in place, observe that our fairness certificate € is essentially the value of the
parameter €. Intuitively it means that the model’s classification is independent of the sensitive features
as long as the non-sensitive features lie within an ¢y ball of radius e centered at x< s Eq can
also be equivalently viewed as follows: set the sensitive features of * and « to a particular value
s € domain(S) (so that they cancel out in the norm), then find the corresponding certificate €, and
repeat this procedure for all values in domain(S); the final certificate ¢ is the minimum of all €.

Next we propose an algorithm to compute this fairness certificate. Our algorithm is based on three
key ideas, as we describe below.

Idea 1: Reduction from fairness to robustness. Our first key observation is that in our setting,
certifiable fairness can be reduced to an instantiation of certifiable robustness, enabling us to re-use
ideas from existing robustness literature for our purpose. In particular, the reduction is as follows. A
model f is defined to be e-pointwise £2 robust (henceforth robustness) for a data point z*, if

Vo : ||z —a¥lla <e = f(z¥) = f(x) 3)
Comparing this definition to Eq[2]and its alternate view, we observe that once the sensitive features

have been fixed to a value s € domain(S), computing the corresponding fairness certificate e
is equivalent to solving the robustness problem in (n — k) dimensions where the k dimensions

corresponding to the sensitive features S are excluded. Let us assume there exists an algorithm which
returns the pointwise /5 robustness value for an input. Then the final fairness certificate e computation
requires |domain(S)| calls to this algorithm, one for each possible value of the sensitive features in
S. Fig. P)illustrates this idea pictorially for NNs.

For ReL.U-activated neural networks represented using n-dimensional polytopes, setting the values of
sensitive features implies bringing down the polytopes to (n — k) dimensions. Geometrically, this
can be thought of as slicing the n-dimensional polytopes with hyperplanes of the form z; = s; where
x; is the it" coordinate, set to the value s;.

Idea 2. Using an efficient certified robustness
algorithm. For ReL.U-activated neural networks
(see Sec[2), the naive algorithm for certifying
robustness is infeasible; it entails computing the
Inputs 2* € R”, f : ReLU-activated Neural distance between z* and all boundary facets
Network (facets coinciding with the decision boundary
Output €1, 5 : Our Fairness Certificate for z* of the model) induced by the model, which is
1: Construct the set of all polytopes P =|JP exponential in the number of hidden neurons.
for f where each polytope is expressed as Instead, we rely on an efficient iterative algo-

Algorithm 1 Individual Fairness Certification

P = {z|Az < b} rithm GeoCert (Alg. [2]in App. [B), proposed
2: E:=]] by [33]. This algorithm starts from the poly-
3: for s € domain(S1) x - -- x domain(Sk) tope containing the data point x* and iteratively
4: P’ := ReducePolyDim(P, s) (Alg. in Ap- searches for the boundary facet with the min-

pendix) imum distance from z*. A priority queue of
5: € := GeoCert(z*, P, dpro;) facets is maintained, sorted according to their
6: E.append(es) distance from x*. At each iteration, the facet
7: end for with the minimum distance is popped and its
8: e = min K neighbors (polytopes adjacent to this facet) are
9: Return ey p examined. If the neighboring polytope is previ-

ously unexplored, the distance to all of its facets
is computed and inserted them into the priority
queue; otherwise the next facet is popped. The algorithm terminates as soon as a boundary facet is
popped. Fig. 3] presents a pictorial overview of GeoCert. Additional details are in App.

Idea 3: Generate a lower bound ¢; 5 for ef-
ficient ZKP. GeoCert provides exact fairness

certificates €, by using a constrained quadratic =~ /" @ i
program solver to get the actual distance be- / \ .
tween the input point and a facet. However, ver-
ifying this solver using ZKPs would be a highly / £
computationally intensive task. Instead we pro- ¢ —— S /
pose to report a lower bound on the certificate, _____/ A4
erp < €, which considerably improves perfor-
mance. A lower bound means that the reported
certificate €, g is a conservative estimate — the
true measure of the model’s fairness could only
be higher. Instead of the exact distance, we com-
pute the projection distance between the input
point and the hyperplane containing the facet
(facet is a subset of the hyperplane), which gives a lower bound on the exact distance between z*
and the facet. The projection distance computation involves simple arithmetic operations which are
relatively computationally feasible for ZKPs (see Sec.] for more details). App. Fig. [7]shows this.

Figure 3: GeoCert’s behavior on point z*. Colored
facets are in the priority queue; red and solid black
lines denote boundary and non-boundary facets
respectively. Algorithm stops when the minimum
distance facet is a boundary facet (rightmost).

Theorem 3.1. Given a data point x* and a neural network f, Alg. |l|provides a lower bound e g of
the correct individual fairness parameter of x*.

Proof for this theorem is given in App. [C| Thm. [C.3] Our resulting fairness certification algorithm is
described in Alg[T]and detailed in App.

4 FairProof: Verification of the Individual Fairness Certificate

Without careful design choices ZKPs can impose significant computational overhead. To this end, we
design an efficient verification protocol named FairProof by combining insights from cryptography
and ML. Specifically, FairProof is based on three key ideas described below.

Idea 1: Strategic verification of sub-functionalities. A naive verification mechanism replicates
all the computations outlined in Alg[I] However, this would involve computing all the polytopes
during every proof generation — this is computationally expensive since the number of polytopes is
exponential in the number of hidden neurons in the model. In contrast, we show that the verification
can be streamlined by focusing on five strategically chosen sub-functionalities, each of which can be
checked using certain properties of polytopes and neural networks. Consequently, we only verify the
polytopes traversed by the certification mechanism.

Idea 2: Representative points. Certain numeric properties of a polytope can be efficiently proven if
one has access to a representative point in the interior of the polytope. We leverage this insight in
FairProof to efficiently verify our chosen sub-functionalities, discussed in the following sections.

Idea 3: Offline computation. We show that certain computations can be performed offline which
further reduces the time needed in the online phase.

Next, we detail our verification mechanism FairProof. Recall that in our setting model owner is the
prover and user is the verifier. The verification consists of two phases:

Phase 1: Pre-processing. All the operations in this phase are executed only once and before the
model is deployed to the users. The following two actions need to be taken by the model owner in
this phase.

1. Commit to the weights W of the model f, resulting in the commitment COMyy (We assume
that the architecture of f is known, i.e., f is a fully connected neural Inetwork with ReLU
activations).

2. Compute a representative point zp for each polytope P. Additionally, it computes a
representative point zx for every facet

Phase 2: Online verification. The online verification phase is executed every time a user submits a
query z* to the model owner for prediction. Verifying the computation of Algorithm [I]essentially
amounts to verifying GeoCert with some modifications and consists of five steps. The model owner
generates proofs for these five functionalities and the user validates them.

1. Verifying initial polytope (Alg. [5]). Recall that GeoCert starts from the polytope containing data
point z*. Hence, the verifier needs to check that the initial polytope (1) indeed contains the data point
x*, and (2) is one of the polytopes obtained from the model f. The key idea used in this function
is that each polytope is associated with a unique ReL U activation code. Verification for step (1)
involves computing the ReL.U activation code for z* using the committed weights cOmw and step
(2) involves deriving the corresponding polytope for this activation code from comyy .

2. Verifying distance to facets (Alg. [6). During its course GeoCert computes distance between z* and
various facets. Hence, the verifier needs to check the correctness of these distance computations. As
discussed in the preceding section, we compute a lower bound of the exact distance using projections,
which can be efficiently proved under ZKPs.

3. Verifying neighboring polytopes (Alg.[7). In each iteration GeoCert visits a neighboring polytope
adjacent to the current one; the two polytopes share the facet that was popped in the current iteration.
Verifying neighborhood entails checking that the visited polytope indeed (1) comes from the model f,
and (2) shares the popped facet. The key idea used here is that two neighboring polytopes differ in a
single ReLU activation corresponding to the shared facet (Fact[A.2). Specifically, the prover retrieves
the representative point corresponding to the visited polytope and computes its ReLU activation code,
R’, using the committed weights COmyy . Next, it computes the polytope corresponding to R’ from
comy to prove that it is obtained from the model f. This is followed by showing that the hamming

3A facet is also essentially a polytope, albeit in the (n — 1)-dimensional space.

4 Although the number of polytopes and facets are exponential in the number of the neurons in the model,
this is a one-time computation performed completely offline and can be parallelized. See Sec. [5|for empirical
overhead of this pre-processing step on models for standard datasets.

distance between R’ and R is one, where R is the activation code for the current polytope. Finally,
the prover shows that the current facet is common to both the polytopes.

4. Verifying boundary facet (Alg. [§)). Termination condition of GeoCert checks whether the current
facet is a boundary facet or not; we verify this in FairProof as follows. Let R denote the activation
code for the current polytope P and let fr(z) = Wgx + bg represent the linear function associated
with R. For the ease of exposition, let f be a binary classifier. In other words, fz(x) is the input to
the softmax function in the final layer of f (i.e., logits) for all data points € P. The key idea for
verification is that iff « lies on a boundary facet, fr(z) has the same value for both the logits. For
verifying this computation, we rely on the pre-computed representative point of a facet. Specifically,
the prover retrieves the representative point z for the current facet 7 = {x|Ax < b}. First, it proves
that z lies on F by showing Az < b holds. Next, the prover computes fr (i.e., the weights Wx and
br) from the committed weights using R and tests the equality of both the logits in fr(z).

5. Verify order of facet traversal (Alg. [9). The order in which the facets are traversed needs to be
verified — this is equivalent to checking the functionality of the priority queue in GeoCert. Standard
ZKP tools are built for verifying mathematical computations (expressed as an arithmetic or Boolean
circuit) and do not have built-in support for data structures, such as priority queues. We overcome
this challenge by leveraging the following key idea — correctness of the priority queue can be verified
by checking that the next traversed facet is indeed the one with the shortest distance.

Additional optimizations. We identify certain computations in the above algorithms that can
performed offline. Specifically, in VerifyNeighbor the proof of correctness for polytope construction
using representative points can be generated offline. Further, in VerifyBoundary proof for computation
of the linear function fr can also be generated offline. This leads to a significant reduction in the
cost of the online proof generation (see Sec. [5).

End-to-end verification mechanism is presented in Alg. 4} In the final step, the prover has to generate
an additional proof that the reported certificate of fairness corresponds to the smallest value among
all the lower bounds obtained for each element of domain(S) (VerifyMin , Alg. . Additionally,
the prover also needs to prove integrity of the inference, i.e., y = f(z*). For this, after computing
the linear function fg_, (z*) using the committed weights comwy (where R,- is the activation code
for *) we need to additionally prove that the label corresponds to the logit with the highest score
(Alg. Verifylnference). Next, we present our security guarantee.

Theorem 4.1. (Informal) Given a model f and a data point x*, FairProof provides the prediction
f(x*) and a lower bound ey, g on the individual fairness parameter for x* without leaking anything,
except the number of total facets traversed, about the model f.

Proof of the above theorem follows directly from the properties of zero-knowledge proofs and
theorems in App. [D] The formal guarantee and detailed proof is presented in App.

5 Evaluation

In this section we evaluate the performance of FairProof empirically. Specifically, we ask the
following questions:

1. Can our fairness certification mechanism distinguish between fair and unfair models?
2. Is FairProof practically feasible, in terms of time and communication costs?

Datasets. We use three standard fairness benchmarks. Adult [|7] is an income classification dataset,
where we select gender (male/female) as the sensitive feature. Default Credit [65)] is a loan defaults
prediction dataset, with gender (male/female) as the chosen sensitive feature. German Credit [30]] is
a loan application dataset, where Foreign Worker (yes/no) is the chosen sensitive feature.

Configuration. We train fully-connected ReLU networks with stochastic gradient descent in PyTorch.
Our networks have 2 hidden layers with different sizes including (4, 2), (2,4) and (8,2). All the
dataset features are standardized [1l]. FairProof is implemented using the Gnark [12] zk-SNARK
library in GoLang. We run all our code for FairProof without any multithreading or parallelism, on
an Intel-19 CPU chip with 28 cores.

Model Fairness We first evaluate if our certification mechanism can distinguish between fair and
unfair models. Prior work [31] has shown that overfitting leads to more unfair models while regular-

== Mean =841
—— Std.Dev.= 114

—= Mean = 2026 1
—=- std.Dev. =093

— = Mean =964 10
== Std. Dev. = 1.13

Frequency
Frequency
Frequency

o N & o ®

8 23 16

9 1 1 20 10 1 4
Individual Fairness Parameter & Individual Faimess Parameter & Individual Fairness Parameter &

Credit, Fair Adult, Fair German, Fair

== Mean =0.41
== Std. Dev. =0.38

—= Mean =033 == Mean =0.51
== Std. Dev. = 0.38

== Std. Dev. = 0.61

Frequency
Frequency
Frequency

0
000 025 050 075 100 125 150 175 2.00

0.0 05 10 15 2.0 25 30 1 2 3
Individual Fairness Parameter & Individual Fairness Parameter & Individual Fairness Parameter &

Credit, Unfair Adult, Unfair German, Unfair

Figure 4: Histogram of fairness parameter e for fair & unfair models, model size = (4,2). € values are
higher than those for unfair models.

ization encourages fairness. Thus, to obtain models with different fairness, we vary regularization by
changing the weight decay parameter in PyTorch. Then we randomly sample 100 test data points as
input queries and find the fairness parameter e for both types of models on these queries.

As demonstrated in Fig. [] unfair models have a lower e than corresponding fair models. This
consistent difference in € values across different model sizes & datasets shows that our certification
mechanism can distinguish between fair and unfair models. Results for other models are in App. [E]

=== Offline Proof Generation Time (in mins)
= Online Proof Generation Time (in mins)
= Verification Time (in secs)

Proof Size (in KB)

German (2,4) Credit (2,4) Adult (8,2) German (2,4) Credit (2,4) Adult (8,2)

() (b) ()

Figure 5: (a) Proof Generation (in mins) and Verification times (in secs) for different models. Offline
computations are done in the initial setup phase while Online computations are done for every new
query. Verification is only done online, for every query. (b) Breakdown of the proof generation time
(in mins) for the data point with the median time. (c) Total Proof Size (in KB) for various models.
This includes the proof generated during both online and offline phases.

Performance of FairProof Since computation is a known bottleneck in ZKPs, we next investigate
the overhead of FairProof in terms of time and communication costs. All reported numbers are
averages over a 100 random test points.

Fig.[5] (a) shows the proof generation costs for various models. Note that the proof generation time
varies with the models, due to its dependence on the number of traversed facets’| which in turn
depends on the model and query. On average, the adult model has a larger number of traversed facets
than others as shown in Table[T]in App. [E] leading to a higher proof generation time. We also observe
that performing some computations in an offline phase results in significant reductions in the online
time cost, the largest being 1.74x. See Table[T]and Fig[I3]in App/E]for details.

5As mentioned in Thm. this information is leaked by FairProof.

We also breakdown the overall proof generation time in terms of different sub-functionalities. We
report this breakdown for the query with the median proof generation cost, in Fig. [5](b). As shown
in the figure, VerifyBoundary is the costliest sub-function for all the models; this is so since it is
executed in every iteration (every time a facet is popped) and involves costly non-linear comparison
operations (see Alg. [§). Other functionalities that are also executed multiple times based on number
of traversed facets but are not as expensive include VerifyNeighbor, VerifyDistance and VerifyOrder
(see Alg.[7L[6l 0). The least time is taken by VerifyMin which basically finds the minimum in a list;
this is so since the function is straight-forward and is ran only once per query (see Alg. [I0).

We also report the average verification times - time for checking the validity of the proof by the
verifier - in Fig. 5] (a). Note that the verification costs are orders of magnitude lower (in seconds)
than the proof generation costs (in minutes) for all models; as is standard in ZKPs. Fig[5](c) reports
the communication overheads, i.e. size of the generated proofs. The proof size is very small, only
certain kilobytes. Low verification time and communication cost is advantageous since it implies
quick real-time verification which does not require complex machinery at the customer end. For
detailed results on all models, refer to Fig. [I4]and Fig. [T3]in App. [E|

Discussion on Scalability For very large models, the number of traversed facets can be huge and
running FairProof on them may not be practically feasible anymore. In such cases, one solution can
be just verifying the fairness of the final layers. We leave this exploration to future work.

6 Related Work

Verifiable fairness with cryptography. Most of the prior work on verifying fairness while maintain-
ing model confidentiality [48,139, 157,51} 47] has approached the problem in the third-party auditor
setting. The closest to ours is a recent work by [S3]], which proposed a fairness-aware training pipeline
for decision trees that allows the model owner to cryptographically prove that the learning algorithm
used to train the model was fair by design. In contrast, we focus on neural networks and issue a
fairness certificate by simply inspecting the model weights post-training. Our system FairProof and
certification mechanism is completely agnostic of the training pipeline.

Another line of work has been using cryptographic primitives to verify other properties (rather than
fairness) of an ML model while maintaining model confidentiality — [68}, 42] focus on accuracy and
inference, while (69,23 156] focus on the training process.

A separate line of work uses formal verification approaches for verifying the fairness of a model
[3L 16} 158 24, [10]. However, these works focus on certification in the plain text, i.e., they do not
preserve model confidentiality and do not involve any cryptography.

Fairness Certification Mechanisms. Prior work on certification mechanisms for fairness can be
broadly classified into three categories. The first line of work frames the certification problem as an
optimization program [32, |8, [36]. The second line of research has leveraged the connection between
robustness and fairness, and proposed fairness-aware training mechanisms akin to adversarial training
[S0L 167, 138166, [18]. In contrast to both, we focus on local IF specifically for neural networks and
use an iterative algorithm rather than solving a complex optimization problem and are completely
agnostic of the training pipeline.

The final line of work is based on black-box query access learning theoretic approaches [63} 64} 43]].
Contrary to our work, these approaches however are replete with problems arising from the usage of a
reference dataset [22] 53], the need for a trust third-party, and lack of guarantees of model uniformity.
See App. Sec. [Ffor a further discussion on related works.

7 Conclusion

In this paper we proposed FairProof— a protocol enabling model owners to issue publicly verifiable
certificates while ensuring model uniformity and confidentiality. Our experiments demonstrate the
practical feasibility of FairProof for small neural networks and tabular data. While our work is
grounded in fairness and societal applications, we believe that ZKPs are a general-purpose tool and
can be a promising solution for overcoming problems arising out of the need for model confidentiality
in other areas/applications as well. We call for further research in this direction.

References

[1] Standarization. https://scikit-learn.org/stable/modules/generated/sklearn.
preprocessing.StandardScaler.html.

[2] Zator: Verified inference of a 512-layer neural network using recursive snarks. https://
github.com/lyronctk/zator/tree/main, 2023.

[3] Aws Albarghouthi, Loris D’ Antoni, Samuel Drews, and Aditya V. Nori. Fairsquare: Probabilistic
verification of program fairness. Proc. ACM Program. Lang., 1(OOPSLA), oct 2017.

[4] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirch-
ner. Machine bias. https://www.propublica.org/article/
machine-bias-risk-assessments-in-criminal-sentencing, 2016.

[5] Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and Machine Learning: Limita-
tions and Opportunities. fairmlbook.org, 2019. http://www.fairmlbook.org,

[6] Osbert Bastani, Xin Zhang, and Armando Solar-Lezama. Probabilistic verification of fairness
properties via concentration. Proc. ACM Program. Lang., 3(OOPSLA), oct 2019.

[7] Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5XW20.

[8] Elias Benussi, Andrea Patané, Matthew Wicker, Luca Laurenti, Marta Kwiatkowska University
of Oxford, and Tu Delft. Individual fairness guarantees for neural networks. In International
Joint Conference on Artificial Intelligence, 2022.

[9] Marianne Bertrand and Sendhil Mullainathan. Are emily and greg more employable than lakisha
and jamal? a field experiment on labor market discrimination. American Economic Review,
94(4):991-1013, September 2004.

[10] Sumon Biswas and Hridesh Rajan. Fairify: Fairness verification of neural networks. In 2023
IEEE/ACM 45th International Conference on Software Engineering (ICSE), pages 1546—1558,
2023.

[11] Fabian Boemer, Rosario Cammarota, Daniel Demmler, Thomas Schneider, and Hossein Yalame.
Mp2ml: A mixed-protocol machine learning framework for private inference. In Proceedings
of the 15th international conference on availability, reliability and security, pages 1-10, 2020.

[12] Gautam Botrel, Thomas Piellard, Youssef El Housni, Ivo Kubjas, and Arya Tabaie. Consen-
sys/gnark: v0.9.0, February 2023.

[13] Tim Brennan, William Dieterich, and Beate Ehret. Evaluating the predictive validity of the
compas risk and needs assessment system. Criminal Justice and Behavior, 36(1):21-40, 2009.

[14] Stephen Casper, Carson Ezell, Charlotte Siegmann, Noam Kolt, Taylor Lynn Curtis, Benjamin
Bucknall, Andreas Haupt, Kevin Wei, Jérémy Scheurer, Marius Hobbhahn, et al. Black-
box access is insufficient for rigorous ai audits. In The 2024 ACM Conference on Fairness,
Accountability, and Transparency, pages 2254-2272, 2024.

[15] Francesco Croce, Maksym Andriushchenko, and Matthias Hein. Provable robustness of relu
networks via maximization of linear regions. In the 22nd International Conference on Artificial
Intelligence and Statistics, pages 2057-2066. PMLR, 2019.

[16] J Dastin. Amazon scraps secret ai recruiting tool that showed bias against women, October
2018.

[17] Amit Datta, Michael Carl Tschantz, and Anupam Datta. Automated experiments on ad privacy
settings: A tale of opacity, choice, and discrimination. ArXiv, abs/1408.6491, 2014.

[18] Alice Doherty, Matthew Wicker, Luca Laurenti, and Andrea Patane. Individual fairness in
bayesian neural networks, 2023.

10

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://github.com/lyronctk/zator/tree/main
https://github.com/lyronctk/zator/tree/main
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
http://www.fairmlbook.org

[19] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness
through awareness. In Proceedings of the 3rd Innovations in Theoretical Computer Science
Conference, ITCS 12, page 214-226, New York, NY, USA, 2012. Association for Computing
Machinery.

[20] Cynthia Dwork and Martha Minow. Distrust of artificial intelligence: Sources & responses
from computer science & law. Daedalus, 151(2):309-321, 2022.

[21] Boyuan Feng, Lianke Qin, Zhenfei Zhang, Yufei Ding, and Shumo Chu. Zen: Efficient
zero-knowledge proofs for neural networks. IJACR Cryptol. ePrint Arch., 2021:87, 2021.

[22] Kazuto Fukuchi, Satoshi Hara, and Takanori Maehara. Faking fairness via stealthily biased
sampling, 2019.

[23] Sanjam Garg, Aarushi Goel, Somesh Jha, Saeed Mahloujifar, Mohammad Mahmoody, Guru-
Vamsi Policharla, and Mingyuan Wang. Experimenting with zero-knowledge proofs of training.
Cryptology ePrint Archive, Paper 2023/1345, 2023. https://eprint.iacr.org/2023/
1345|

[24] Bishwamittra Ghosh, D. Basu, and Kuldeep S. Meel. Justicia: A stochastic sat approach to
formally verify fairness. In AAAI Conference on Artificial Intelligence, 2020.

[25] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity
or all languages in np have zero-knowledge proof systems. J. ACM, 38(3):690-728, jul 1991.

[26] S Goldwasser, S Micali, and C Rackoff. The knowledge complexity of interactive proof-systems.
In Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing, STOC
"85, page 291-304, New York, NY, USA, 1985. Association for Computing Machinery.

[27] Kanav Gupta, Neha Jawalkar, Ananta Mukherjee, Nishanth Chandran, Divya Gupta, Ashish
Panwar, and Rahul Sharma. Sigma: secure gpt inference with function secret sharing. Cryptology
ePrint Archive, 2023.

[28] Faisal Hamman, Jiahao Chen, and Sanghamitra Dutta. Can querying for bias leak protected
attributes? achieving privacy with smooth sensitivity. In Proceedings of the 2023 ACM
Conference on Fairness, Accountability, and Transparency, pages 1358-1368, 2023.

[29] Boris Hanin and David Rolnick. Deep relu networks have surprisingly few activation patterns.
Advances in neural information processing systems, 32, 2019.

[30] Hans Hofmann. Statlog (German Credit Data). UCI Machine Learning Repository, 1994. DOI:
https://doi.org/10.24432/C5NC77.

[31] Rashidul Islam, Shimei Pan, and James R Foulds. Can we obtain fairness for free? In
Proceedings of the 2021 AAAI/ACM Conference on Al, Ethics, and Society, pages 586—596,
2021.

[32] Philips George John, Deepak Vijaykeerthy, and Diptikalyan Saha. Verifying individual fairness
in machine learning models, 2020.

[33] Matt Jordan, Justin Lewis, and Alexandros G. Dimakis. Provable Certificates for Adversarial
Examples: Fitting a Ball in the Union of Polytopes. Curran Associates Inc., Red Hook, NY,
USA, 2019.

[34] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. {GAZELLE}: A low
latency framework for secure neural network inference. In 27th USENIX Security Symposium
(USENIX Security 18), pages 1651-1669, 2018.

[35] Daniel Kang, Tatsunori Hashimoto, Ion Stoica, and Yi Sun. Scaling up trustless dnn inference
with zero-knowledge proofs, 2022.

[36] Mintong Kang, Linyi Li, Maurice Weber, Yang Liu, Ce Zhang, and Bo Li. Certifying some
distributional fairness with subpopulation decomposition, 2022.

11

https://eprint.iacr.org/2023/1345
https://eprint.iacr.org/2023/1345

[37] Amir E. Khandani, Adlar J. Kim, and Andrew W. Lo. Consumer credit-risk models via
machine-learning algorithms. Journal of Banking & Finance, 34(11):2767-2787, 2010.

[38] Haitham Khedr and Yasser Shoukry. Certifair: A framework for certified global fairness of
neural networks, 2022.

[39] Niki Kilbertus, Adria Gascon, Matt Kusner, Michael Veale, Krishna Gummadi, and Adrian
Weller. Blind justice: Fairness with encrypted sensitive attributes. In Jennifer Dy and Andreas
Krause, editors, Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pages 2630-2639. PMLR, 1015 Jul
2018.

[40] Seunghwan Lee, Hankyung Ko, Jihye Kim, and Hyunok Oh. vcnn: Verifiable convolutional
neural network. IJACR Cryptol. ePrint Arch., 2020:584, 2020.

[41] Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. Oblivious neural network predictions via
minionn transformations. In Proceedings of the 2017 ACM SIGSAC conference on computer
and communications security, pages 619-631, 2017.

[42] Tianyi Liu, Xiang Xie, and Yupeng Zhang. zkcnn: Zero knowledge proofs for convolutional
neural network predictions and accuracy. Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, 2021.

[43] Pranav Maneriker, Codi Burley, and Srinivasan Parthasarathy. Online fairness auditing through
iterative refinement. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining, KDD °23, page 1665-1676, New York, NY, USA, 2023. Association
for Computing Machinery.

[44] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. A
survey on bias and fairness in machine learning. ACM Comput. Surv., 54(6), jul 2021.

[45] Payman Mohassel and Peter Rindal. Aby3: A mixed protocol framework for machine learning.
In Proceedings of the 2018 ACM SIGSAC conference on computer and communications security,
pages 35-52, 2018.

[46] Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-preserving
machine learning. In 2017 IEEE symposium on security and privacy (SP), pages 19-38. IEEE,
2017.

[47] Saerom Park, Seongmin Kim, and Yeon-sup Lim. Fairness audit of machine learning models
with confidential computing. In Proceedings of the ACM Web Conference 2022, WWW 22,
page 3488-3499, New York, NY, USA, 2022. Association for Computing Machinery.

[48] Sikha Pentyala, David Melanson, Martine De Cock, and Golnoosh Farnadi. Privfair: a library
for privacy-preserving fairness auditing, 2022.

[49] Haakon Robinson, Adil Rasheed, and Omer San. Dissecting deep neural networks. arXiv
preprint arXiv:1910.03879, 2019.

[50] Anian Ruoss, Mislav Balunovic, Marc Fischer, and Martin Vechev. Learning certified individu-
ally fair representations. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin,
editors, Advances in Neural Information Processing Systems, volume 33, pages 7584—7596.
Curran Associates, Inc., 2020.

[51] Shahar Segal, Yossi Adi, Benny Pinkas, Carsten Baum, Chaya Ganesh, and Joseph Keshet.
Fairness in the eyes of the data: Certifying machine-learning models. In Proceedings of the
2021 AAAI/ACM Conference on Al, Ethics, and Society, AIES *21, page 926-935, New York,
NY, USA, 2021. Association for Computing Machinery.

[52] Thiago Serra, Christian Tjandraatmadja, and Srikumar Ramalingam. Bounding and counting

linear regions of deep neural networks. In International Conference on Machine Learning,
pages 4558-4566. PMLR, 2018.

12

[53] Ali Shahin Shamsabadi, Sierra Calanda Wyllie, Nicholas Franzese, Natalie Dullerud, Sébastien
Gambs, Nicolas Papernot, Xiao Wang, and Adrian Weller. Confidential proof of fair training of
trees. ICLR, 2023.

[54] Ioana Baldini Soares, Chhavi Yadav, Payel Das, and Kush Varshney. Keeping up with the
language models: Robustness-bias interplay in nli data and models. In Annual Meeting of the
Association for Computational Linguistics, 2023.

[55] Wenting Zheng Srinivasan, PMRL Akshayaram, and Popa Raluca Ada. Delphi: A cryptographic
inference service for neural networks. In Proc. 29th USENIX Secur. Symp, pages 2505-2522,
2019.

[56] Haochen Sun and Hongyang Zhang. zkdl: Efficient zero-knowledge proofs of deep learning
training, 2023.

[57] Ehsan Toreini, Maryam Mehrnezhad, and Aad van Moorsel. Verifiable fairness: Privacy-
preserving computation of fairness for machine learning systems. 2023.

[58] Caterina Urban, Maria Christakis, Valentin Wiistholz, and Fuyuan Zhang. Perfectly parallel
fairness certification of neural networks. Proc. ACM Program. Lang., 4(OOPSLA), nov 2020.

[59] N Vigdor. Apple card investigated after gender discrimination complaints., November, 2019.

[60] Sheridan Wallarchive and Hilke Schellmannarchive. Linkedin’s job-matching ai was biased. the
company’s solution? more ai., June, 2021.

[61] Jiasi Weng, Jian Weng, Gui Tang, Anjia Yang, Ming Li, and Jia-Nan Liu. Pvcnn: Privacy-
preserving and verifiable convolutional neural network testing. Trans. Info. For. Sec.,
18:2218-2233, mar 2023.

[62] Shaojie Xu, Joel Vaughan, Jie Chen, Aijun Zhang, and Agus Sudjianto. Traversing the local
polytopes of relu neural networks: A unified approach for network verification. arXiv preprint
arXiv:2111.08922, 2021.

[63] Chhavi Yadav, Michal Moshkovitz, and Kamalika Chaudhuri. A learning-theoretic framework
for certified auditing with explanations, 2022.

[64] Tom Yan and Chicheng Zhang. Active fairness auditing, 2022.

[65] I-Cheng Yeh. default of credit card clients. UCI Machine Learning Repository, 2016. DOI:
https://doi.org/10.24432/C55S3H.

[66] Samuel Yeom and Matt Fredrikson. Individual fairness revisited: Transferring techniques from

adversarial robustness. In Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IICAI’20, 2021.

[67] Mikhail Yurochkin, Amanda Bower, and Yuekai Sun. Training individually fair ml models with
sensitive subspace robustness. In International Conference on Learning Representations, 2020.

[68] Jiaheng Zhang, Zhiyong Fang, Yupeng Zhang, and Dawn Song. Zero knowledge proofs for
decision tree predictions and accuracy. In Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’20, page 2039-2053, New York, NY, USA,
2020. Association for Computing Machinery.

[69] Lingchen Zhao, Qian Wang, Cong Wang, Qi Li, Chao Shen, and Bo Feng. Veriml: Enabling
integrity assurances and fair payments for machine learning as a service. IEEE Transactions on
Parallel and Distributed Systems, 32(10):2524-2540, 2021.

13

A Background Cntd.

A.1 Polytopes

~

Figure 6: A neural network with ReLU activations partitions the input space into polytopes.

The polytopes described succinctly by their linear inequalities (i.e., they are H-polytopes), which
means that the number of halfspaces defining the polytope, denoted by m, is at most O(poly(n)), i.e.
polynomial in the ambient dimension.

Next, we present a lemma which states that slicing a polyhedral complex with a hyperplane also
results in a polyhedral complex.

Lemma A.1. Given an arbitrary polytope P := {z|Az < B} and a hyperplane H := {x|c'x = d}
that intersects the interior of P, the two polytopes formed by the intersection of P and the each of
closed halfspaces defined by H are polyhedral complices.

Fact A.2. Two ReLU activation codes of two neighboring polytopes differ in a single position and
the differing bit corresponds to the facet common to both.

B Individual Fairness Certification Cntd.

Algorithm.

In this section, we describe the concrete algorithm to compute the local individiual fairness parameter
for a data point 2* (Algorithm[I)). Our construction is based on the Geocert algorithm by Jordan
et. al (Algorithm 2] Section 2)) for computing the pointwise ¢, robustness of neural networks with
two key distinctions. First, we run on all the union of (n — k)-dimensional polytopes each of which
corresponds to a fixed value of the sensitive feature set S. Second, for each of these complices,
we compute a lower bound on the pointwise ¢, robustness. The final certificate of fairness is the
minimum over all the above bounds.

Figure 7: Projection of 2* onto the hyperplane H containing facet F gives a lower bound on the /5
distance between x* and F, i.e., dpro;(*, F) < dg, (z*, F).

14

In the following, we describe the working of the algorithm[I]in more detail. First, we compute the
polyhedral complex P for the model f (Step 1). Next for a fixed value of the set of the sensitive
features S (Step 3), we compute the corresponding (n — k)-dimensional polyhedral complex P’
from the original n-dimensional polyhedral complex (ReducePolyDim function Alg. [3). The key
idea is to fix the corresponding values of the features in S in the linear constraints of the polytopes
in P. In the next step, we compute a lower bound on the pointwise /o robustness of x* for the
polyhedral complex P’ using the Geocert algorithm (Step 5-6). In particular, instead of minimizing
the ¢/, distance to a facet F, we compute the projection of z* onto a hyperplane H, where F lies
entirely on H. The above computation is repeated for all the values of the set of sensitive features S.
The final certificate of fairness is the minimum of all the lower bounds as computed above (Step 8).

In what follows, we briefly describe how to compute of the pointwise /5 robustness of a point . The
problem essentially boils down to computing the largest /5 ball centered at x that fits within the union
of n-dimensional polytopes defined by f.

Algorithm 2 Geocert: Pointwise {5 Robustness

Input z* - Data point for pointwise ¢, robustness certification; f - Neural network; dist -
Distance Metric;
Output ¢ - Pointwise /5 robustness certificate on z*;
1: Compute all the polytopes for f
2: Setup priority queue Q <+ []
3: Setup list of seen polytopes C' + {P(x)} > P(x) denotes the polytope containing x
4: For Facet F € P(z) do
5: Q.push(ComputeDistance(F, z*), F, dist)
6: End For
7: While Q # 0 do
8 (d, F) + Q-pop()
9: If IsBoundary(F) ==

10: Return d
11: Else
12: For P € N(F)\ C do
> N(F) denote the two polytopes sharing the facet F
13: For F € P do
14: Q.push(ComputeDistance(F, z*), F, dist)
15: End For
16: End For
17: End If

18: End While

Algorithm 3 ReducePolyDim : Construct (n — k)-dimensional polytopes from n-dimensional poly-
topes

Inputs P = [JP : Set of Polytopes where each polytope P is expressed as {z|Az < b}, s =

(s1,+-+,8k): Values of k sensitive features
Output P’ : Set of (n — k)-dimensional Polytopes

P =1}

2: forPcP

3: for i € |row(A)|

4 for j € [k +1,n]

5: A'li][j — k] = A'[i][j]

6: end for .

7: b'[i] = bi] =325, Alillj] - 5,

8: end for

9: Express P/ = {z|A'z < b’}

10: P =P uUp

11: end for

12: Return P/

15

Algorithm 4 FairProof: Verifiable Individual Fairness Certification

Input 2* - Data point for fairness certification; W - Weights of the piecewise linear neural
network;
Output ¢ - Local individual fairness parameter for x; comw - Commitment to the weights of
the model; ZK proof that the e is indeed a lower bound on ¢
Pre-Processing Offline Phase

1: Construct the polyhedral complex P =JP from W where each polytope is expressed as
P = {z|Az < b}

2: Compute a reference point z; for each polytope P; € IP such that z; € P;

3: Commit to the model weights comw; and release them publicly
Online Phase

4. E=1]

5: for (s1,- -, sx) € domain(S1) X - -+ x domain(Sk)

6: forP P

7: for i € [row(A)]

8: for j € [+ 1,n]

9: A[i][j — k] = A[i][j]

10: end for .

1 b'li] = bli] = >2;_; Ali[j] - s;
12: end for

13: Express P’ = {z|A’z < b’}

14: P=PUpP

15: end for

16: (€,P1,((Fi,d1), -+, (Fn,dn))) = GeoCert(z*,P’, dpro;)
> Py is the first polytope traversed

> ((Fi,d1), -, (Fn,dy)) is the ordered sequence of the visited facets and their corresponding
distances
17: Prover proves that P; is the polytope in P’ containing x* > Using VerifyPolytope

18: Initialize the list of seen facets T = | |

19: for facet F € N (P1)

20: Prover proves that the computation of the distance d from x* to F is correct > Using
VerifyDistance

21: T.insert((F,d));

22: end for

23: fori e [m —1]

24: Prover proves that F; is indeed the facet with the smallest distance in 7> Using VerifyOrder

25: Prover proves that F is not a boundary facet > Using VerifyBoundary

26: for P EN(]:;)

27: Prover proves that P is a neighboring polytope sharing facet / > Using VerifyNeighbor

28: for 7 € N (P)

29: Prover proves that the computation of the distance d from z* to F is correct > Using
VerifyDistance

30: T.insert((F,d))

31: end for

32: end for

33: T.remove((F;, d;))

34: end for

35: Prover proves that F,, is indeed the facet with the smallest distance in 75> Using VerifyOrder

36: Prover proves that F,,, is a boundary facet > Using VerifyBoundary

37: E.insert (dm)

38: end for

39: Prove that e = min & > Using VerifyMin

16

Algorithm 5 VerifyPolytope

Input z* - Data point for fairness certification; comvy - Committed weights of the piecewise
linear neural network; (s1,-- - , s) - Values of the sensitive features;

Output P’ - Polytope corresponding to W containing z*; R - ReLU activation code of z*; 7 -
ZK proof of the computation;

Evaluate £* on cOomyy to obtain ReLU activation code R

: Compute the n — k-dimensional polytope P = {z|Az < b} corresponding to R on comyy

with (s1,- -, si) as the values of the sensitive features
Generate proof 7 of the above computation
return (P, R, 7)

Algorithm 6 VerifyDistance

Bl A e

Input 2* - Data point for fairness certification; F - Facet;
Output d - Projected distance; 7 - ZK proof of the computation;

Let F be represented as a’ -z = b
Compute d = (‘b - aTx*)/||a||‘

Generate proof 7 of the above computation
return (d, 7)

Algorithm 7 VerifyNeighbor

Input comyy - Weights of the piecewise linear neural network; F - Facet; P - Current polytope;
R - ReLU activation code for P; z - Representative point for neighboring polytope; (s1,- - , k)
- Values of the sensitive features;

Output P’ - Neighboring polytope; R’ - ReLU activation code of P’; w - ZK proof of the
computation

. (PR, 7") + VerifyPolytope(z,comwy, (s1, - , Sk))

> Can be performed apriori in a pre-processing stage for efficiency

Dif(R—R/|1 #1) > Check hamming distance 1 between two binary vectors

return |

Cif (FEN(P) A (F EN(P))) > Check facet F is common to both the polytopes

return |

: Generate proof 7 of the above computation
: return (P, R/, (7, 7))

Algorithm 8 VerifyBoundary

o]

AR A

Input z* - Data point for fairness certification; comwy - Weights of the piecewise linear neural
network; F - Current facet represented as {x|Az < b}; P - Current polytope; R - ReLU
activation code for P; z - Representative point for current facet F (s1,- - , s;) - Values of the
sensitive features;

Output b - Bit indicating boundary condition; 7 - ZK proof of the computation

Compute the linear function fg corresponding to activation code R on comwy with (sq,- - , Si)
as the values of the sensitive features
> Can be performed apriori in a pre-processing stage for efficiency

if (Az > b)

return |
end if
b=1
fori e [1,|Y| —1]

b<b- (fr(2)[0] == fr(2)[d)

end for
Generate proof 7 of the above computation
return (b, (m, 7))

o> Testing that fg(2) is equal on all of its elements

17

Algorithm 9 VerifyOrder

Input (F,d) - Current facet with distance d; F = {(F1,d1),- -+, (F,dk)} - List of all previ-
ously unseen facets and their distances;
Output 7 - ZK proof of the computation

for 7, € F
if (d > d;)
return L
end if
end for
Generate proof 7 of the above computation
return m

A A e

Algorithm 10 VerifyMin

Input E - List of values; €* - Individual fairness parameter;
Output 7 - ZK proof of the computation

forec E
if (¢* > ¢€)
return L
end if
end for
Generate proof 7 of the above computation
return m

A A Sl

Algorithm 11 Verifylnference

Input z* - Data point for fairness certification; comyy - Committed weights of the piecewise
linear neural network f;
Output y - The prediction f(z*); 7 - ZK proof of the computation;

Evaluate x* on cOmyy to obtain ReLU activation code R

Compute the linear function fgr corresponding to activation code R on comwy
Compute fr(z*)

y = argmax;c(y)) fr(z")

Generate proof 7 of the above computation

return (y, 7)

A S T

18

C Correctness of FairProof

In this section, we prove the correctness of FairProof given in Alg. 4] First, we re-state the correctness
of GeoCert.

Theorem C.1 (Correctness of GeoCert [33l]). For a fixed polyhedral complex P, a fixed point x*
and a distance function ¢ that satisfies ray monotonocity, GeoCert returns a boundary facet with the
minimum distance.

Fact C.2. The projection of a given point ©* onto a hyperplane H where F C H gives a lower
bound on its {5 distance to F, i.e., dpro;(x, F) < dg,(x, F).

Theorem C.3. Let f be a piecewise-linear neural network. Replacing in Algorithm [Z] with dg, (+)
distance with dpy.;(-) gives a lower bound on the individual fairness guarantee, i.e., €dpro; < €dy,-

Proof. We will prove by contradiction. Let P be the polyhedral complex associated with the model
f. Let us assume that there exists a boundary facet 7* such that dy,(F,z) < €gq,,,;. Now if
the corresponding polytope Pr- was traversed by GeoCert(x, P, dpro;), then all the facets in Pr-
including F* were checked. Then from the correctness of GeoCert (Thm. [C.I), this leads to a
contradiction of [C.2] Now let us consider the alternative case where Px- was not traversed by
GeoCert(z, P, dpyo5). From Thm. [C.1]this means that there exists another boundary facet F* such
that dpoj(x, F*) < dproj(x, F). Then by Fact [C.2, dproj(F*,2) = €a,,,; < dproj(F,z) <
dg, (F, x) which contradicts our assumption. O

Theorem C.4 (Correctness of FairProof). For a given data point x*, FairProof (Algorithm H))
generates € such that € < ep.

Proof. The proof of the above theorem follows directly from Theorem [C.I} Theorem [C.3]and Fact
O

D Security Proof

1. Completeness
Vo, W 4)

pp < FairProof.KeyGen(1*)

comwy < FairProof.Commit(W, pp,)
(y, €,) « FairProof.Prove(W, z,pp,)
FairProof Nerify(comw, z, y, €, m,pp) = 1

Pr =1 5)

2. Soundness

pp <+ FairProof.-KeyGen(1*)
(W, comw-, X, e, y*, 7", 7) < A(1*, pp)
comwy~ <— FairProof.Commit(W*, r))
FairProof Verify(comyy -, z, y*, €*, m*, pE) =1| < negl(A) (6)
(32,d(2,7) < e N F(W*,X) # f(W*, X))

vy # f(W*,X)

Pr

3. Zero-Knowledge Let)\ be the security parameter obtained from A pp <+
FairProof. K eyGen(1*)

[Pr[Reals,w(pp) = 1] — Pr[ldeal 4 s4 (pp) = 1|
<negl(A) (7)

Proof Sketch. Completeness. The completeness guarantee follows trivially from our construction.

Soundness. £(x) denotes the leakage function for FairProof, specifically, L(x) = {n1,--- ,ns},
where n; denotes the number of facets traversed for the i-th value of the sensitive attribute S.

Recall, the functioning of GeoCert can be summarized as follows:

19

Real.4,w (pp) :
1. comy < FairProof.Commit(W, pp,)

2. = + A(comw, pp)

3. (y, €, m) < FairProof.Prove(W, z,pp, r)
4. b+ A(comw,z,y,¢€,7,Pp)

5. Output b

Ideal 4 s4(pp, k) :
1. com + S;(1*, pp,7)
2. x + A(com, pp)
3. (y, Ly, €,7) < Ss*(com, x, pp, r) given oracle access to
y=pred(W,z), L, = L(z) and e = [Fp(W, z)
4. b+ A(comw,x,y, L, €, 7,ppP)
5. Output b

Figure 8: Zero-knowledge games

. Start traversing from the polytope containing x*.

. Compute the distances to all the facets of the current polytope and store them.
. Select the hitherto unseen facet with the smallest distance.

. Stop if this is a boundary facet.

. Else, traverse next to the neighboring polytope that shares the current facet.

DN W~

A malicious prover can cheat in any (or a combination) of the above steps. We will consider each of
them separately as follows.

Lemma D.1 (Soundness of VerifyPolytope). Let P = {x|Axz < B} be the correct polytope obtained
from the piecewise-linear neural network with weights W for a given value of the sensitive features.
For any polytope P' = { A’z < b’} such that (A # A’) V (b # b'), we have

Pr[FairProof.Verify(comw-, z,y*, €*, 7%, pp) = 1] < negl()) (8)
Proof Sketch. As shown in Alg. 5] the verification process re-computes the correct polytope from the

committed model weights. The only way the prover can cheat is if they can produce a P’ such that
Open(comp) = P’ which violates the binding property of the commitment scheme. O

Lemma D.2 (Soundness of VerifyDistance). For a given facet F = { Az < b}, data point x*, and

value d' such that d' # % , we have:
Pr[FairProof.Verify(comw=, z,y*, ", 7", pp) = 1] < negl()))

Proof Sketch. The verification process (Alg. [6) re-computes the correct distance. Hence, the only
way the prover can cheat is if they can produce a d’ such that Open(com,) = d’ which violates the
binding property of the commitment scheme. O

Lemma D.3 (Soundness of VerifyOrder). Letd = {dy,--- ,d}} be a set of values such that d;,, =
min; d;. For any value d' such that d' > d;,, we have:

Pr[FuairProof.Verify(comw, x, y*, €*, 7%, pp) = 1] < negl(A) (10)
Proof Sketch. The verification checks the minimality of the given value against all values in d (Alg.

[9). The only way to cheat would require producing a d with a different minimum which violates the
binding property of the commitment scheme. O

Lemma D.4 (Soundness of VerifyBoundary). Consider a piecewise-linear neural network with
weights W. For any facet F such that which is not a boundary facet, we have

Pr[FairProof Verify(comw, z,y", €*, 7", pp) = 1] < negl(\) (11)

20

Proof Sketch. The verification algorithm computes the linear function corresponding to the given
activation code (Alg. [8] A prover can cheat here only if they can compute a different linear function
/" which would require violating the binding property of the commitment scheme. O

Lemma D.5 (Soundness of VerifyNeighbor). Let P = {z|Ax < b} be a polytope belonging to the
polyhedral complex of the piecewise-linear neural network with weights W and let F € N'(P). Let
P = {z|Ax < b} and P be neighboring polytopes, sharing the facet F, i.e., P € N(F)\ P. Let
z € R" be a data point. For any polytope P' = {x|A’x < b’} such that (A # A') A (b # b'), we
have

Pr[FuairProof.Verify(comw, x, y*, €*, 7%, pp) = 1] < negl(A) (12)

Proof Sketch. The verification algorithm first checks whether P contains the reference point z (Alg.
[7). The soundness of this follows from VerifyPolytope. Cheating on the next steps (checking the
hamming distance and facet intersection) means that the prover is essentially able to generate a
polytope P’ such that Open(comp) = P’ which violates the binding property of the commitment
scheme. O

Zero-Knowledge. The zero-knowledge property follows directly from the commitment scheme and
the zero-knowledge backend proof system we use. We note that the zero-knowledge proof protocol
itself is not the focus of this paper; instead, we show how we can use existing zero-knowledge proof
protocols to provide verifiable individual fairness certification in a smart way for high efficiency. [

E Evaluation Cntd.

Dataset-Model | Online (in mins) | Offline (in mins) | Improvement | Traversals

German (4,2) 4.90 £0.12 3.61 £0.19 1.74 % 40+3
German (2,4) 1.17 £ 0.02 0.67 £ 0.03 1.57 x 13+ 1
Credit (4,2) 3.52 £0.08 231 £0.10 1.66 % 28 £2
Credit (2,4) 2.08 = 0.04 1.11 £0.07 1.49 x 25+1
Adult (4,2) 3.94 +£0.10 1.72 + 0.08 1.43 x 41 +3
Adult (8,2) 3.94 +£0.30 1.34 + 0.08 1.36 x 38+8

Table 1: Time for proof generation averaged over 100 randomly sampled data points. Mean and
standard error are reported for each dataset-model. Offline computations are done in the initial setup
phase of FairProof while Online computations are done for every new query. Improvement = (Online
time + Offline time)/ Online time. Traversals gives the total number of iterations (also total number
of popped facets) of GeoCert ran by FairProof.

T
== Mean=9.64 == Mean = 20.26 14

== Std.Dev. =113 == Std. Dev. =0.93

=114

8

10
Individual Fairy

(a) Credit, wd=2.5 (b) Adult, wd=0.2 (c) German, wd=10

Figure 9: Histogram of fairness parameter e for fair models of size (4,2). ‘wd’ represents the values
of the Weight decay parameter.

21

== Mean =041

—= Mean =033 —= Mean =0.51
== Std. Dev. = 0.38

~= Std. Dev. = 0.61 10

== Std. Dev. = 0.38

Frequency
Frequency
Frequency

0
000 025 050 075 100 125 150 175 200
Individual Fairmess Parameter £

1 2 3
Individual Fairmess Parameter £ Individual Faimess Parameter £

(a) Credit (b) Adult (c) German

Figure 10: Histogram of fairness parameter e for unfair models of size (4,2). Weight decay is set to
zero here for all.

—= Mean =10.72 == Mean =10.42

175 == Mean=1535
== Std. Dev. = 1.04 == Std.Dev. =124

== Std. Dev. = 1.15

125

Frequency
Frequency
>
Frequency
>

13

16 18 8 13 14 9

) 9 10 10 1
Individual Fairmess Parameter £ Individual Fairmess Parameter £ Individual Fairmess Parameter £

(a) Credit, wd=3 (b) Adult, wd=0.2 (c) German, wd=10

Figure 11: Histogram of fairness parameter e for fair models of size (8,2). ‘wd’ represents the values
of the Weight decay parameter.

—= Mean = 0.65 —= Mean =037

== Mean =0.25 12
—= std. Dev. = 054 == Std. Dev.=0.29

== Std.Dev.=0.24

Frequency
Frequency

0
000 025 050 075 1.00 125 150 175 2.00
Individual Fairmess Parameter £

0
000 025 050 075 1.00 125 150 175 2.00 10
Individual Fairmess Parameter £ Individual Faimess Parameter £

(a) Credit (b) Adult (c) German

Figure 12: Histogram of fairness parameter e for unfair models of size (8,2). Weight decay is set to
zero here for all.

22

--- Mean =183
== Std. Dev. = 0.44
25 === Online
= Offline

Bl | — j __________

15
1.0
05
0.0

Time (in mins)
Time (in mins)
Time (in mins)

i

(a) Credit (2,4) (b) Adult (8,2) (c) German (2,4)

-=-- Mean=583 --- Mean =851
—— Std. Dev. =164 2 —— Std. Dev. =272
8 == Online == Online
= Offline 10 = Offline
5 26 Fr 1 B S
£ & A R R i o == = e Jr 2o z £ g
£ £ E
g g e
F F
4
2 2
2
0 0 0

(d) Credit (4,2) (e) Adult (4,2) (f) German (4,2)

Figure 13: Proof generation time for 100 random data points.

—= Mean =209 H
== std. Dev. = 1.06

—= Mean =298 8
== std. Dev. = 1.66

== Mean=0.78
== Std. Dev. =0.38

«

Frequency
Frequency
Frequency

-~

ok N o w

[1 7 s

2 3 a 2 3 4 s 6
Total Verification Time (in sec) Total Verification Time (in sec)

1.0 2.0
Total Verification Time (in sec)

(a) Credit (2,4) (b) Adult (8,2) (c) German (2,4)

—= Mean=321
== Std. Dev. =121

«

—~= Mean=458
== Std. Dev. =181

IS

1

1

1

1

1 a4

1

|
g i g
gs | z g3
H g §
g | H g
E H 2 g
g | g g
Z, B &

o

2]

2 3 4 5 4 6
Total Verification Time (in sec) Total Verification Time (in sec)

(d) Credit (4,2) (e) Adult (4,2) (f) German (4,2)

3 4 5 6 7
Total Verification Time (in sec)

Figure 14: Distribution of verification time for 100 random data points.

23

Frequency

Frequency

~= Mean=5155
== std. Dev. = 23.82

.
| T 1

o 120

8
Total Proof Size (in KB)

(a) Credit (2,4)

Frequency

—= Mean = 18055
== 5td. Dev. = 219.20

0 200 400 600 800 1000 1200 1400
Total Proof Size (in KB)

(b) Adult (8,2)

Frequency

~= Mean = 43.46
—= Std. Dev. = 16.51

—al 1.4

30 40 50 60 70 80
Total Proof Size (in KB)

(c) German (2,4)

~

~= Mean =76.34

== Std. Dev. = 39.83

200

10¢ 150
Total Proof Size (in KB)

(d) Credit (4,2)

== Mean = 100.25
== Std. Dev. = 65.56

Frequency

50 10 150 200 250 300 350 400
“Total Proof Size (in KB)

(e) Adult (4,2)

Frequency

== Mean =98.16
== Std. Dev. = 55.42

Total Proof Size (in KB)

() German (4,2)

Figure 15: Distribution of communication cost (proof size) for 100 random data points.

24

F Related Work

Certifiable fairness. Prior research on certifying fairness of a ML model can be classified into three
types. The first line of work issues a certificate of fairness directly from the model weights by framing
it as an optimization problem. [32] presented optimization based mechanisms for certifying the
(global) individual fairness of linear classifiers and kernelized classifiers with polynomial/rbf kernels.
[8]] extended the results to neural networks by encoding (global) individual fairness certification as a
mixed-integer linear programming problem. [36] proposed a notion of distributional fairness and
give a framework to compute provable certificates for the same.

The second line of research has leveraged the connection between robustness and fairness, and
proposed fairness-aware training mechanisms akin to adversarial training. [50] deviced a mechanism
for training individually fair representations which can be used to obtain a certificate of individual
fairness for the end-to-end model by proving local robustness. SenSR [67] introduced a distri-
butionally robust optimization approach to enforce individual fairness on a model during training.
CertiFair [38]] enabled certification of (global) individual fairness using off-the-shelf neural network
verifiers. Additionally, the authors proposed a fairness aware training methodology with a modified
reguralizer. [66] applied randomized smoothing from adversarial robustness to make neural networks
individually fair under a given weighted ¢,, metric. [[18]] estimated the (global) individual fairness
parameter for Bayesian neural networks by designing Fair-FGSM and Fair-PGD - fairness-aware
extensions to gradient-based adversarial attacks for BNNs.

The final line of work is based on learning theoretic approaches [63], 164, 43]] where a third-party
audits the fairness of a model in a query-efficient manner.

The problem of fairness certification has also garnered attention from the formal verification commu-
nity. FairSquare [3]] encoded a range of global fairness definitions as probabilistic program properties
and provides a tool for automatically certifying that a program meets a given fairness property. Veri-
Fair [6]] used adaptive concentration inequalities to design a probabilistically sound global fairness
certification mechanism for neural networks. [S8] proposes a static analysis framework for certifying
fairness of feed-forward neural networks. Justicia [24] presents a stochastic satisfiability framework
for formally verifying different group fairness measures, such as disparate impact, statistical parity,
and equalized odds, of supervised learning algorithms. A recent work, Fairify [10], generates a
certificate for the global individual fairness of a pre-trained neural network using SMT solvers. It is
important to note that all the aforementioned approaches focus on certification in the plain text, i.e.,
they do not preserve model confidentiality.

Verifiable machine learning. A growing line of work has been using cryptographic primitives
to verify certain properties of a ML model without violating its confidentiality. Prior research has
primarily focused on verifying the inference and accuracy of models. For instance, [68] proposed a
zero-knowledge protocol for tailored for verifying decision trees, while zZkCNN [42]] introduced an
interactive protocol for verifying model inference for convolutional neural networks. Several other
works have focused on non-interactive zero-knowledge inference for neural networks, including
[61L 2L 35, 156} 21 140]. VeriML [69] enabled the verification of the training process of a model
that has been outsourced to an untrusted third party. [23] proposed a mechanism for generating a
cryptographic proof-of-training for logistic regression.

Most of the prior work on verifying fairness while maintaining model confidentiality [48, 39,157, 51,
47|] has approached the problem in the third-party auditor setting. A recent work [53]] proposed a
fairness-aware training pipeline for decision trees that allows the model owner to cryptographically
prove that the learning algorithm used to train the model was fair by design. In contrast, FairProof al-
lows a model owner to issue a certificate of fairness of neural networks by simply inspecting the
model weights post-training.

25

	Introduction
	Preliminaries & Setting
	How to Certify Individual Fairness?
	FairProof: Verification of the Individual Fairness Certificate
	Evaluation
	Related Work
	Conclusion
	Background Cntd.
	Polytopes

	Individual Fairness Certification Cntd.
	Correctness of FairProof
	Security Proof
	Evaluation Cntd.
	Related Work

