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Abstract

Most pre-trained classifiers, though they may
work extremely well on the domain they were
trained upon, are not trained in a robust fashion,
and therefore are susceptible to adversarial at-
tacks. A recent technique, denoised-smoothing,
demonstrated that it was possible to create certi-
fiably robust classifiers from a pre-trained classi-
fier (without any retraining) by pre-pending a de-
noising network and wrapping the entire pipeline
within randomized smoothing. However, this is a
costly procedure, which requires multiple queries
due to the randomized smoothing element, and
which ultimately is very dependent on the quality
of the denoiser. In this paper, we demonstrate that
a more conventional adversarial training approach
also works when applied to this robustification
process. Specifically, we show that by training an
image-to-image translation model, prepended to
a pre-trained classifier, with losses that optimize
for both the fidelity of the image reconstruction
and the adversarial performance of the end-to-end
system, we can robustify pre-trained classifiers
to a higher empirical degree of accuracy than de-
noised smoothing, while being more efficient at
inference time. Furthermore, these robustifers are
also transferable to some degree across multiple
classifiers and even some architectures, illustrat-
ing that in some real sense they are removing the
“adversarial manifold” from the input data, a task
that has traditionally been very challenging for
“conventional” preprocessing methods.
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1. Introduction
Deep classifiers are well-known to be sensitive to adver-
sarial attacks, small perturbations of input images that can
drastically change the output of the network. Although there
exist methods for improving the robustness of these classi-
fiers to such attacks (e.g., adversarial training (Madry et al.,
2017) or certifiably robust training (Wong & Kolter, 2018;
Salman et al., 2019)), most pre-trained models do not adopt
such training strategies, as they often come at the cost of
substantial drop in clean accuracy. As a field, however, deep
learning is also moving toward the adoption of larger and
larger (and more and more costly to train) pre-trained mod-
els, raising the question of whether it might be possible to
“robustify” these existing models without having to retrain
them from scratch using a robust training approach.

Unfortunately, attempting to naively robustify a pre-trained
model is a challenging task. Most previous methods that at-
tempted to use e.g., simple image preprocessing techniques
were broken by simple adaptive attacks that attempted to
attack that end-to-end system of both the preprocessor and
the classifier. A recent advance in this area, however, came
from the development of Denoised smoothing (Salman et al.,
2020). Denoised smoothing exploits the fact that random-
ized smoothing (Cohen et al., 2019) can transform classi-
fiers that are robust to random perturbations to ones that
are robust to (`2 bounded) adversarial perturbations; thus,
denoised smoothing prepends a denoiser to the pre-trained
classifier, and applies randomized smoothing to the com-
bination, leading to a (certifiably) robust meta-classifier.
Unfortunately, denoised smoothing has substantial draw-
backs as well: because it employs randomized smoothing,
it requires many queries to the underlying classifier to de-
termine the prediction of the robustified classifier. It also
is not easily extensible to alternative perturbation models
such as `∞ perturbations. This is also why, for instance,
strong adversarial training is often used in practice over ran-
domized smoothing or other certifiably robust models: to
achieve a higher degree of empirical robustness at the cost
of guarantees.

Our contribution In this paper, we propose an “empiri-
cal robustness” analogue of these methods for robustifying
pre-trained models, demonstrating an efficient yet powerful



Empirical robustification of pre-trained classifiers

method to make a pre-trained classifier robust to adversarial
attacks without re-optimizing any of its parameters. Specif-
ically, we propose to prepend an image-to-image transla-
tion model (called the robustifier) in front of the pretrained
model. However, unlike past attempts at creating robust
models by preprocessing images (which typically looked
only at attacks on the original model), we train the robus-
tifier so as to optimize the adversarial performance of the
entire end-to-end pipeline (i.e. the combination of the ro-
bustifier and the pretrained model); we do this, however,
by only modifying the parameters of the robustifier itself,
and leaving the parameters of the pre-trained model frozen.
Also key to our approach is the inclusion of several differ-
ent loss terms, which penalize 1) the adversarial loss of
the end-to-end system (to ensure the end-to-end system is
robust); 2) the difference between input and outputs of the
robustifier (to ensure that the robustifier doesn’t destroy the
image content); and 3) the difference in activations between
original and adversarial images in the pretrained classifier
(this enforces that the post-robustified image should “look
like” the non-adversarial image as much as possible to the
classifier). We demonstrate that:

• Our defense not only eliminates the need for multiple
queries per sample but also provides better results than
denoised smoothing. The approach can also in theory
be applied to any setting where adversarial training
can be used, rather than applying only to classification
settings.

• It can be transferred among different models and even
different architectures. The transferability results indi-
cate that a preprocessor model can—-to some extent—
learn to separate the “adversarial manifold” from the
input data, a key challenging task for “conventional”
preprocessing methods.

2. Related work
Many earlier front-end defenses relied on heuristic prepro-
cessing of input images, which shatter gradients and make
a straightforward application of a vanilla gradient attacks
impossible. For example, (Guo et al., 2017) employed mul-
tiple image transforms including cropping, tilting, bit-depth
reduction. However, such simple image transformations
were shown to be ineffective under the Backward Pass Dif-
ferentiable Approximation (BPDA) attack (Athalye et al.,
2018).

More sophisticated front-end defenses attempt to detect
and/or remove adversarial noise using neural networks. An
attempt to detect and remove adversarial noise using so-
phisticated detector and reformer networks was proposed
by (Meng & Chen, 2017), but this defense was easily broken
under adaptive attacks (Carlini & Wagner, 2017b). (Saman-

gouei et al., 2018) harnessed generative neural networks in
an attempt to remove adversarial noise, but it was also shown
to have lower effectiveness under adaptive attacks (Athalye
et al., 2018). Similarly, (Mustafa et al., 2019) proposed
a DNN based image super-resolution method. However,
(Choi et al., 2019) showed that image super-resolution mod-
els were also vulnerable to adversarial attacks. Additionally,
(Carlini & Wagner, 2017a) showed that most detectors for
adversarial examples are ineffective. Although these works
use an approach similar to our defense (transforming input
images before feeding them into a classifier), they are mostly
based on heuristics and cannot truly remove the “adversarial
manifold” generated by strong and adaptive attacks.

Recently, (Salman et al., 2020) proposed an effective method
to make a pre-trained classifier robust by equipping it with
a custom-trained Gaussian denoiser. To classify an input
image, first the input image is perturbed with Gaussian noise
multiple times and fed to the model. Then, randomized
smoothing (Cohen et al., 2019) is employed to determine
the class of the input image. Their method certifies the
robustness of a model without changing model parameters
under white-box or black-box attacks. The guarantee of the
degree of robustness for any classifier leveraging denoised
smoothing comes at the cost of having to run the model
multiple times (10 to 100) for each input, which greatly
increases inference time.

3. Robustifier models for pre-trained
networks

In this section, we discuss the proposed pre-pended robus-
tifier to make a pre-trained machine learning model robust
against adversarial attack (Fig. S.1). Different from (Salman
et al., 2020), the proposed method requires only one forward
pass and can be directly applied to tasks beyond classifica-
tion. We begin by reviewing the standard adversarial train-
ing setting, then describe the extension to our robustifier
setting, as well as the additional loss terms we found to be
crucially important for good performance of the method.
We finally discuss how to train the robustifier to improve
transferability of the robustifier between multiple different
variants of an architecture and even between different archi-
tectures.

3.1. Standard and adversarially robust training

Given a classifier hθ : X → Y mapping from an input space
X to output space Y , parameterized by parameters θ, the
typical goal of training is to minimize some expected loss
function

min
θ

Ex,y∼D [`(hθ(x), y)] (1)

whereD denotes a distribution over x, y pairs, and ` : Y×Y
denotes some loss function. Adversarially robust training
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(Madry et al., 2017), on the other hand, seeks to minimize
the worst case loss when inputs are allowed to be perturbed
within some pre-specified threat model ∆ (often taken to
be e.g., an `p norm ball, though other threat models are
certainly possible as well). This can be written formally as
the optimization problem

min
θ

Ex,y∼D

[
max
δ∈∆

`(hθ(x+ δ), y)

]
. (2)

A standard approach to optimizing this robust objective is
via adversarial training, which for each sample in a dataset
drawn from D iteratively seeks to solve the maximization
problem over δ (via a gradient-based approach like projected
gradient descent), and then takes a gradient step in θ at these
worst-case perturbations.

3.2. Training prepended robustifiers

Given a fixed pre-trained classifier h : X → Y (we no
longer write h as dependent on parameters θ, as we will
treat h as fixed throughout), we propose to simply prepend
an image to image translation system we refer to as the ro-
bustifier. Formally, a robustifier is a network rθ : X → X ,
parameterized by parameters θ such that our final prediction
is given by the composition of the classifier and robustifier
h(rθ(x)). Generally speaking, any image-to-image archi-
tecture could be used as the robustifier, such as Variational
Autoencoders (VAEs), image denoisers, or semantic seg-
mentation networks (we will ultimately use a U-Net style
architecture for this task).

To train the robustifier, we could apply adversarial training
via projected gradient descent (PGD) to composed system of
the robustifier and the classifier. That is, we could perform
adversarial training on the objective

min
θ

Ex,y∼D

[
max
δ∈∆

`(h(rθ(x+ δ)), y)

]
. (3)

where ` is the cross entropy loss, and ∆ is the perturbation
model. The only difference between this and adversarial
training is that the the weights of the classifier itself are fixed,
and we are only using the parameters of the robustifier.

However, if we train the robustifier with this objective, with-
out any constraints on the output of the image-to-image
network, the output images can diverge too far from the orig-
inal images (Nguyen et al., 2015). Effectively, because the
robustifier can learn to output any image into the classifier,
the robustifier can effectively identify any low-dimenional
manifold of the desired output itself, and simply output im-
ages in this reduced manifold: this raises the possibility that
the robustifier could simply “duplicate” the effort of a typi-
cal robust classifier, rather than actual “filtering” away any
aspects of the adversarial perturbation in a generic manner.

To avoid this phenomenon, we additionally need to ensure
some measure of fidelity to the original image. We can do
this by additionally incorporating some form of recontruc-
tion loss in our training objective, such as the Mean Squared
Error (MSE) loss. Let x̃ denote the adversarial perturbation
of x according to the maximization in 3. Then we can write
this MSE loss as

`mse(x, x̃) = ‖x− rθ(x̃)‖22. (4)

To further improve in this regard, we found in practice it
was additionally beneficial to penalize an MSE loss between
intermediate layer activations of the pre-trained classifier
applied to the original image, and these intermediate layer
activations when applied to the output of the robustifier
(applied to the adversarial example). That is, we want the
output of the robustifier, when applied to an adversarial
image, to produce an image that is “nearby” the original
image, both in terms of the MSE on the original image
and in terms of the activations produced by the pretrained
classifier. Letting ha denote the activations of classifier h at
selected intermediate layers L, this corresponds to the loss

`act(x, x̃) = ||ha(x)− ha(rθ(x̃))||22. (5)

Altogether, our training objective is the following:

α`(h(rθ(x̃)), y) + β`mse(x, x̃) + γ`act(x, x̃) (6)

where the coefficients α, β, and γ adjust the scale and rel-
ative importance of the loss terms.1 It is important to em-
phasize that while we include all three loss terms in training
the robustifier, the adversarial attack itself does not directly
try to maximize this combined loss, but just maximizes
the original robust loss: this is crucial in practice, as the
“strongest” adversary (and our eventual evaluation metric) is
concerned solely with maximizing the adversarial loss; the
other two components are effectively regularization terms,
that prevent the robustifier model from overfitting to the
min-max objective. For more details on implementation of
training procedure refer to section S.1.

4. Experiments
In this section, we present experiment setup and then dis-
cuss the obtained results when training the robustifier with
a single pre-trained classifier. Sec. S.1 of the supplementary
materials contains details about our implementation, dataset,
and architecture of models. We discuss training the robusti-
fier with an ensemble of classifiers and transferability of the
robustifier in supplementary materials Sec. S.4.

1While of course in practice we could remove of these three
coefficients and have the other two be coefficients relative to the
third, in practice we found it slightly more convenient to explicitly
normalize each of the three components separately.
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4.1. Robustifier trained with one classifier

As discussed in Section 3.2, we follow two main objectives
during training: 1- adversarial robustness loss (cross-entropy
loss), and 2 - fidelity to the original image (MSE loss and the
intermediate layers loss). In extreme cases, if we abandon
the adversarial robustness loss (α = 0 in Eq.6), we get lower
robust accuracy/higher clean accuracy, and the output of the
robustifier will be similar to the original image. On the
other hand, if we abandon the fidelity objective (β = 0, γ =
0 in Eq. 6), we get higher robust accuracy/lower clean
accuracy, and the outputs of the robustifier could be heavily
distorted. We run different experiments to find the best set
of loss coefficients to make a pre-trained classifier robust.
Section S.3 of supplementary materials describes the steps
we perform to find an appropriate set of coefficients. Fig. 1
depicts the achieved robust and clean accuracy under 100
steps PGD `∞ and `2 attacks for several good performing
robustifiers using the CIFAR-10 dataset.

Comparison against denoised smoothing Denoised
smoothing (Salman et al., 2020) is the most relevant work to
ours as both methods try to make a pre-trained classifier im-
mune to adversarial attacks although they reported certified
accuracy (Cohen et al., 2019) in the paper. To compare our
approach to denoised smoothing fairly, we conduct experi-
ments on the empirical robustness of denoised smoothing
for different σ values and denoised objectives (MSE and
stability), and then compare the best results of both meth-
ods. Empirical results of denoised smoothing for `∞ and
`2 attacks with different denoiser objectives are depicted in
supplementary materials S.2. As the results reveal, the best
setting for denoised smoothing achieves 72% clean, 32%
robust accuracy under `∞ attack, and 53% robust accuracy
under `2 attack, shown as black dash line in Fig. 1(b) and
Fig. 1(c). These results are inferior to the results we ob-
tained as in Fig. 1. This shows that our approach can offer
a higher empirical robust accuracy than denoised smooth-
ing while avoiding the high computational cost of multiple
forward pass during inference time.

5. Conclusion, limitation, and broader impact
In this paper, we demonstrate an approach that uses adver-
sarial training to robustify existing pre-trained classifiers,
without any retraining or fine-tuning of the classifier itself.
We accomplish this by prepending a custom-trained image-
to-image model to these pre-trained classifiers and then ad-
versarially training the prepended model while preserving a
measure of fidelity to the input image. We evaluated U-Net-
based robustifier models at different capacities and different
coefficients of losses to robustifier models that strike a good
balance between robust and clean accuracy levels. More-
over, we showed our defense strategy is transferable among

different models and even different architectures, revealing
the power of our suggested method and shedding light on
common vulnerability patterns of different deep learning
models.

Despite theses benefits, the approach we present here also
has some significant limitations. Most notably, the robust
accuracy we achieve still does lag substantially behind the
state of the art in adversarially robust training. For instance,
state of the art methods in adversarial training (albeit with a
larger model and using additional data augmentation tech-
niques), achieve great than 65% robust accuracy on CI-
FAR10 (Gowal et al., 2020). Although we imagine that
some of these methods could be used to improve robusti-
fier performance, there will likely still be a substantial gap
between our robustifier method and models trained from
scratch via adversarial training. To some degree, we be-
lieve this to be unavoidable: existing pre-trained classifiers
are susceptible to adversarial attacks, and any attempt to
robustify them still needs to cope with the reality that a
fixed part of the model cannot be changed to be inherently
more robust. But the results we present here, especially the
transferability results, nonetheless do suggest that some real
adversarial component is being removed from the data, and
further study of this “manifold” may prove fruitful in future
work.

Our hope is that the work here can largely serve to benefit
existing models by making “more robust” versions, without
having to sacrifice the accuracy of the underlying classifier
(e.g., when the robustifier is removed). Thus one could
e.g., add a number of “plug in components” that allowed a
user to select the desired level of robustness needed for a
given classifier, or even adapt in real-time. In addition, our
transferability results indicate researchers do not even need
to train a custom robustifier for their model and can use a pre-
trained robustifier to make their model robust. As such, we
hope that the work would have substantially more positive
societal benefits than negative ones. Adversarial attacks can
endanger many real-world applications of computer vision,
including autonomous driving cars and other safety-critical
uses, and this system can hopefully seek to improve their
performance.

At the same time, it is also worth emphasizing the potential
negative consequences of adopting a “robust” model, espe-
cially in the case that the robust accuracy is still not nearly
on par with modern deep learning systems. In particular,
adopting a “robustifier” model may provide some degree of
a false sense of security, that the sensitivity of the model to
adversarial attacks has been “solved”, when in reality even
if the best adversarially robust models still substantially
underperform the best clean models, and worse are easy
still attacked by perturbations outside their specified threat
model. This is all to say that the task of truly robust machine
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Figure 1: Clean accuracy (a), robust accuracy for `∞ norm (b), and robust accuracy for `2 norm (c). We set α = 0.005 for
all the experiments. The dashed lines show the best accuracy for the denoised smoothing method (Salman et al., 2020). For
the robust accuracy we report both 100 steps PGD attack accuracy and the results of Auto Attack method (Croce & Hein,
2020).

learning has a great deal of progress left to be made, and the
ultimate societal impact of the field is still evolving.
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Supplementary materials

S.1. Implementation
In order to minimize over the objective 6 in practice, when
we sample a minibatch (x, y) from the dataset, we first
duplicate the minibatch, and then adversarially perturb one
of the copies using PGD to get x̃. We then feed both x
and x̃ to the robustifier and respectively feed the outputs of
the robustifier, rθ(x) and rθ(x̃), to the pre-trained classifier
h. We store rθ(x) and rθ(x̃), the final output of the pre-
trained classifier for the perturbed image, h(rθ(x̃)), as well
as activations of selected intermediate layers during the
forward path, ha(x) and ha(rθ(x̃)). Finally we compute
the losses according to the objective in 6 and back-propagate
the error. Figure S.2 illustrates the training procedure.

Dataset, threat model, and architecture We utilize the
CIFAR-10 dataset to evaluate the proposed methods. We
investigated both `∞ and `2 PGD attacks with the radius
of 0.031 and 0.5, respectively. For training, we use 5-step
PGD with the step size of 0.008, and for evaluation, we use
100 steps PGD (5 restarts, 20 steps each) with different step
sizes (0.008, 0.004, 0.0015) and report the lowest obtained
robust accuracy. We also report robust accuracy under Au-
toattack (Croce & Hein, 2020) for robustifiers trained with
one pre-trained classifier. We employ a Momentum Stochas-
tic Gradient Decent (SGD) optimizer utilizing one cycle
learning rate policy (Smith, 2017) during training with the
maximum lr =0.005, momentum=0.9, weight decay=0.0005,
and 20% steps spent increasing the learning rate. We ad-
versarially train the robustifiers on one RTX 2080 GPU for
100 epochs with early stopping; each epoch takes about 6
minutes.

For the robustifier, we chose to use an architecture similar
to that of U-Net (Ronneberger et al., 2015). The U-Net
architecture is advantageous because of its skip connections,
which enable the model to reconstruct fine details of input
image. Details on the U-Net model we used can be found
in the next paragraph. For the pre-trained classifier, we use
ResNet-18 architecture.

U-Net architecture U-Net is a fully convolutional neural
network architecture designed for segmentation and image
translation (Ronneberger et al., 2015). The skip connections
in U-Net architecture enable it to remember fine details of
the input image while extracting the high-level semantic of
the image using its back-bone. In this paper, we employ
a customized U-Net architecture which is depicted in Fig.
S.4. The scale factor parameter specifies the number of
convolutional kernels at each layer, affecting the number
of total parameters in the model. We use the scale factor
of 4, 8, and 16 with 4.3, 17.3, and 69.0 million parameters,
respectively.

S.2. Empirical results of denoised smoothing
Throughout this paper, we use the empirical results of de-
noised smoothing (Salman et al., 2020) as our baseline. We
obtained empirical results of denoised smoothing (Salman
et al., 2020) with fine-tuned DnCNN denoiser with MSE
and stability objectives in Table S.1 and Table S.2. Here the
attacks are 100-PGD (50 iterations, 2 restarts).

S.3. Tradeoff between loss coefficients
As equation 6 indicates, our loss function consists of three
components with their own coefficients α, β, and γ. Finding
a good equilibrium between these coefficients is crucial for
achieving a robustifier model which removes the adversarial
perturbation while keeping the image similar to the input im-
age. Trying all the possible coefficients is computationally
impossible. Therefore, to find the best set of coefficients,
we conduct a grid search on a range of appropriate coeffi-
cient values. First, we specify an appropriate range of the
coefficients based on a few sample runs and then perform
a grid search on those ranges. Fig. S.3 depicts the results
of the grid search. For all the experiments in Fig. S.3 we
utilize U-Net with scale factor 4 because it has fewer pa-
rameters, and hence it is faster to train and evaluate. After
obtaining the results of grid-search, we pick the two most
promising rows of figure S.3 (α = 0.005, β = 10, 15 and
γ = 5, 10, 15, 20, 30, 40, 50) and redo the experiments with
the scale factor of 16 ( Fig. 1). Fig. 1 confirms our intu-
ition that if we fix weight for classifier loss, α, and increase
the weights of fidelity loss, β and γ, the robust accuracy
increases as clean accuracy decreases. We also briefly try
the scale factor of 8 for four of our best coefficient sets
(α = 0.005, β = 10 and γ = 20, 30, 40, 50) and report the
results in Figure S.5.

To further verify the robustness of our robustifier defense,
we also report robust accuracy of our models under Autoat-
tack (Croce & Hein, 2020) as the two blue lines in Fig. 1(b)
and (c). Our best setting, α = 0.005, β = 15.0, γ = 30.0
can achieve 39.0% PGD, 38.4% Autoattack robust accu-
racy and 74.2% clean accuracy for `∞ attack; and 57.3%
PGD, 55.6% Autoattack robust accuracy, and 82.5% clean
accuracy for `2 attack.

S.4. Transferability of the robustifier
Adversarial examples generated for one model can also be
effective on another model trained with different initializa-
tion, or even models with different architectures (Liu et al.,
2016; Papernot et al., 2017). This is commonly referred
to as transferability of adversarial examples. (Su et al.,
2018) showed that adversarial examples transfer well be-
tween commonly used image classifiers architectures, such
as ResNet (He et al., 2016), DenseNet, VGG and Inception.
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Figure S.1: Our robustifier models translates a given input image to another image which is optimized to generate the correct
label when fed to a pretrained classifier. The robustifier is trained using adversarial training (Madry et al., 2017).
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Figure S.2: Both clean and perturbed versions of each batch are fed to the robustifier model and consequently the pre-trained
classifier. The loss function consists of the cross-entropy loss, MSE between the input images and output of robustifier for
perturbed images, and MSE loss between activation values at different selected layers of the pre-trained classifier for the
outputs of the robustifier. Loss value is calculated using equation 6.

The transferability of adversarial examples indicates that
the adversarial manifold of different model architectures are
closely related, thus if we can remove adversarial noise on
one model using robustifier, it is likely to be effective on
models trained with different initialization, as well as other
similar model architectures.

To improve transferability of robustifier, we propose to train
the robustifier with an ensemble of M classifier (e.g., 20
ResNet-18 models trained using different initializations, or a
few classifiers with different model architectures). To avoid
the cost of forward and backward propagation on M base
classifiers, we propose to just randomly sample one base
classifier each time rather than adding the prediction of all
M classifiers together. This allows us to train the robustifier
using an ensemble of base classifiers, while keeping the
training cost similar to the case of training with one base
model. We evaluate the performance and transferability
of robustifier when trained with an ensemble classifier in
Section 4.

S.4.1. Transferability Experiments

In this section, we investigate the transferability of our pro-
posed robustifier, by training the robustifier on an ensemble
of 2, 4, 20 ResNet-18 models on CIFAR-10 dataset and
then evaluate it on a few settings: (1) a ResNet-18 model
that is included in the ensemble (denoted as “ResNet-18
inc.” in Table S.3 and Table S.4), (2) a ResNet-18 model
that is not included in the ensemble (denoted as “ResNet-18
exc.” in Table S.3 and Table S.4), and (3) different model

architectures such as ResNet-34, ResNet-50, DenseNet-121,
and VGG-16. In each setting, we evaluate the robustness
of the robustifier and classifier end-to-end PGD attack as
described in Section 4. The aim of this experiments is to
show the generalization of robustifier and its effectiveness
on a wide range of popular model architectures.

We show the transferability results in Table S.3 for `∞ at-
tack and Table S.4 for `2 attack. The robustifier trained
on multiple ResNet-18s (row 4-11 of Table S.3 and Table
S.4) also transfer to other ResNet-18 models, and the PGD
accuracy almost stays the same, which demonstrates that
the robustifier does generalize to unseen model parameters.
Furthermore, robustifiers trained on ensemble of Resnet-
18, even with just two of them, also transfers reasonably
well to other classifier architectures such as DenseNet and
VGG. As the number of classifier models used for training
a robustifier increases, the transferability of the robustifier
increases but not significantly. However when the robustifier
was trained on one ResNet-18 (row 2-3 of Table S.3 and
Table S.4), it does not transfer to other ResNet-18s as well
as other classifier architectures.

Impact of activations of intermediate layers used for fi-
delity loss In addition to the loss coefficient α, β, γ, the
set of intermediate layers used for the fidelity objective also
influences the tradeoff between robust accuracy and clean
accuracy as well as visual quality of the robustifier output.
If we use the activations of last few layers of the robustifiers
for Eq. 5, then the visual quality of the robustifier output
is poorer with lower clean accuracy and higher robust accu-
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(b) α = 0.005

Figure S.3: Results of grid search to find best values for the α, β and γ coefficients for U-net robustifier with scale factor =
4. The top number in each cell is the robust accuracy and the bottom number is the clean accuracy. The colors indicate the
robust accuracy level. Higher values of β tend to increase clean accuracy and decrease robust accuracy while higher value of
γ encourage higher robust accuracy and lower clean accuracy.

racy. Visual quality of robustifier output with corresponding
accuracy can be found in Fig. S.6: Fig. S.6(b) uses activa-
tions at the end of each of the four blocks of the ResNet-18
architecture to compute Eq. 6, while Fig. S.6(c) additionally
include the activations of the final fully connected layer. It
is clear that the visual quality of Fig. S.6(c) is almost the
same as the input (Fig. S.6(a)) and is much better than Fig.
S.6(b); the robustifier that produces Fig. S.6(c) has lower
robust accuracy (31%) than the robustifier that produces Fig.
S.6(b) (39%) under `∞ attack but higher clean accuracy
(87% vs 78%).
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Figure S.5: Results for scale factor 8. Clean and robust accuracy for `∞ norm (a), and clean and robust accuracy for `2
norm (b). We set α = 0.005 for all the experiments. The dashed lines show the best accuracy for the denoised smoothing
method (Salman et al., 2020). For the robust accuracy we only report 100 steps PGD attack accuracy.
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sigma Accuracy under l-inf attack Accuracy under l-2 attack Clean accuracy
0.05 0 0.1 0.84
0.1 0.06 0.36 0.88
0.15 0.15 0.47 0.82
0.2 0.24 0.47 0.74
0.25 0.31 0.51 0.7
0.3 0.26 0.46 0.64
0.35 0.29 0.41 0.56
0.4 0.29 0.41 0.47
0.45 0.29 0.39 0.44
0.5 0.28 0.42 0.49

Table S.1: Empirical results of denoised smoothing (Salman et al., 2020) using the MSE objective for the denoiser.
Pre-trained classifier is a Resnet-18, and denoiser is DnCNN.

sigma Accuracy under l-inf attack Accuracy under l-2 attack Clean accuracy
0.05 0 0.1 0.86
0.1 0.08 0.38 0.89
0.15 0.16 0.49 0.84
0.2 0.25 0.5 0.76
0.25 0.32 0.53 0.72
0.3 0.26 0.48 0.65
0.35 0.3 0.42 0.59
0.4 0.31 0.4 0.51
0.45 0.29 0.39 0.49
0.5 0.27 0.39 0.47

Table S.2: Empirical results of denoised smoothing (Salman et al., 2020) using the stability objective for the denoiser.
Pre-trained classifier is a Resnet-18, and denoiser is DnCNN.

number of en-
semble models

Accuracy (%) ResNet-18 (inc.) ResNet-18 (exc.) ResNet-34 ResNet-50 DenseNet-121 VGG-16

1 Clean 74.2 42.5 43.2 36.5 45.7 31.3
Robust 39.0 18.1 15.5 22.5 18.9 11.9

2 Clean 88.5 88.2 88.5 88.6 88.8 89.6
Robust 27.7 27.3 24.4 23.0 28.5 29.1

4 Clean 89.0 89.1 89.3 88.9 89.2 88.7
Robust 27.9 26.2 27.7 26.5 31.6 30.1

20 Clean 90.1 89.8 89.6 89.1 89.6 88.9
Robust 28.2 26.9 28.0 26.9 31.9 30.8

Table S.3: Transferability of robustifiers trained with a single ResNet-18, and 2, 4, 20 Resnet-18 ensemble to another
Resnet-18 with different parameters (Resnet-18 (exc.)), Resnet-34, Resnet-50, Densenet-121, and VGG-16 under `∞ attack.
Accuracy of the robustifier with one of the Resnet-18 it trained on is shown in Resnet-18(inc.) column.
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number of en-
semble models

Accuracy (%) ResNet-18 (inc.) ResNet-18 (exc.) ResNet-34 ResNet-50 DenseNet-121 VGG-16

1 Clean 82.2 42.5 43.2 36.5 45.7 31.3
Robust 57.4 27.8 26.6 20.4 29.9 19.5

2 Clean 86.3 85.3 85.8 85.3 86.4 84.9
Robust 45.4 43.5 44.3 42.2 47.9 47.3

4 Clean 88.4 88.1 88.4 88.3 88.4 87.8
Robust 49.0 47.5 49.0 48.6 48.9 48.9

20 Clean 89.2 89.9 89.4 89.0 89.1 88.2
Robust 49.6 47.1 48.8 48.2 49.0 49.5 49.5

Table S.4: Transferability of robustifiers trained with a single ResNet-18, and 2 and 4 Resnet-18 ensemble to another
Resnet-18 with different parameters (Resnet-18 (exc.)), Resnet-34, Resnet-50, Densenet-121, and VGG-16 under `2 attack.
Accuracy of the robustifier with one of the Resnet-18 it trained with is shown in Resnet-18(inc.) column.

(a) (b) (c)

Figure S.6: Sample input (a) and output of robustifiers trained with different set of intermediate layers for computing
activation in Eq. 5: first four layers (b) and first four layers with the last fully-connected layer (c). For both (b) and (c), loss
coefficients are α = 0.005, β = 10, γ = 15, threat model is `∞ attack. Clean and robust accuracy for (b) and (c) are 78%
and 39%, and 87% and 31%, respectively.


