
Ontology Design Metapattern for RelationType Role
Composition
Utkarshani Jaimini1, Ruwan Wickramarachchi1, Cory Henson2 and Amit Sheth1

1Artificial Intelligence Institute, University of South Carolina, Columbia, SC, USA
2Bosch Center for Artificial Intelligence, Pittsburgh, PA, USA

Abstract
RelationType is a metapattern that specifies a property in a knowledge graph that directly links the
head of a triple with the type of the tail. This metapattern is useful for knowledge graph link prediction
tasks, specifically when one wants to predict the type of a linked entity rather than the entity instance
itself. The RelationType metapattern serves as a template for future extensions of an ontology with more
fine-grained domain information.

Keywords
ontology design pattern, link prediction, metapattern, relation type

1. Introduction

RelationType is a metapattern that specifies a role composition for a common path in a knowl-
edge graph linking the head of a triple with the type of the tail. Given a triple <head, relationName,
tail> that links two instances (head, tail) through an object property (relationName) and another
triple that links the tail with its associated class (tailClass), <tail, rdf:type, tailClass>, then this
implies a relationNameType triple that directly links the head with the class of the tail (tailClass):
<head, relationNameType, tailClass>.

< head, relationName, tail > (𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑙𝑖𝑛𝑘) (1)

< tail, rdf:type, tailClass > (𝑡𝑦𝑝𝑒 𝑙𝑖𝑛𝑘) (2)

< head, relationNameType, tailClass > (𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑁𝑎𝑚𝑒𝑇𝑦𝑝𝑒 𝑙𝑖𝑛𝑘) (3)

The RelationType metapattern is useful for many practical knowledge graph (KG) link
prediction applications. KG link prediction is the task of predicting new links in a KG using a
machine learning model trained on the existing links. For example, given a head node (head)
and an object property (relationName) in the KG, a link prediction model can predict a tail node
(tail) such that the triple <head, relationName, tail> has a high likelihood of representing a true
link in the KG. Link prediction algorithms are becoming more widespread and useful for various

WOP’24: Workshop on Ontology Designs and Patterns, ISWC 2024,November 11-15, 2024. Maryland, USA
$ ujaimini@email.sc.edu (U. Jaimini); ruwan@email.sc.edu (R. Wickramarachchi); cory.henson@us.bosch.com
(C. Henson); amit@sc.edu (A. Sheth)
� 0000-0002-1168-06843 (U. Jaimini); 0000-0001-5810-1849 (R. Wickramarachchi); 0000-0003-3875-3705
(C. Henson); 0000-0002-0021-5293 (A. Sheth)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:ujaimini@email.sc.edu
mailto:ruwan@email.sc.edu
mailto:cory.henson@us.bosch.com
mailto:amit@sc.edu
https://orcid.org/0000-0002-1168-06843
https://orcid.org/0000-0001-5810-1849
https://orcid.org/0000-0003-3875-3705
https://orcid.org/0000-0002-0021-5293
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Figure 1: The image on the left represents a driving scene with included entities of various types, such
as a car, stop line marking, pedestrian, bicycle, etc. The RelationType metapattern is used to directly
link the scene instance node with the Pedestrian class node (i.e. with the includesType relation).

applications and tasks. In large KGs, with potentially millions of instance nodes, the search
space for finding a correct node (e.g., tail) with link prediction is exceedingly large, resulting
in a complex prediction problem. In practice, however, many practical use-cases require only
predicting a type of a node rather than an instance node. For example, given the scene shown in
Figure 1, we may be interested in predicting the type of entity (e.g. Pedestrian) included in the
scene rather than predicting the specific entity instance (e.g. MarySue) included in the scene.
Notice, however, that the scene node and the entity class nodes (e.g. Pedestrian) are not directly
linked and therefore cannot be predicted by most KG link prediction algorithms. In this case, a
solution to the issue would be to use the RelationType metapattern to create triples that directly
link the scene instance node with the classes of entity nodes included in the scene, e.g.:

<scene, includes, MarySue> (relation link)
<MarySue, rdf:type, Pedestrian> (type link)

<scene, includesType, Pedestrian> (relationNameType link)

These additional relationNameType triples (e.g. <scene, includesType, Pedestrian>) can be used
to train a KG link prediction model that can predict the entity types included in the scene. The
proposed metapattern has been used across multiple use-cases for predicting entities in driving
scenes, discussed in section 2.1 and for causal link prediction discussed in section 2.2

The paper is organized as follows: In section 2, a use case is introduced for a driving scene
knowledge graph along with competency questions. The proposed RelationType metapattern is
defined and discussed in section 3, including its primary concepts and axioms. Discussion of
the RelationType metapattern along with future work and conclusion is outlined in section 4.

2. Use case: Driving Scene Knowledge Graph

We exemplified the RelationType metapattern using the driving scene knowledge graph (DSKG)
[1]. An example of entity types present in the driving scenes include building, vegetation, car,



pedestrian, road signs, sidewalk, etc. Some of the entities have associated activity attributes,
such as a car can be moving, parked, or stopped and a pedestrian can be walking, standing, or
sitting, etc. The DSKG can be used for downstream task such as link prediction, entity prediction,
scene clustering, scene classification, etc. In this paper, we will focus on the prediction task
with competency question of form: For a give entity (head of the triple) and its <relationName>
predict the entity type of the tail of the triple.

2.1. Predicting entities in a driving scene

Having to make decisions with incomplete information is an inherent problem in autonomous
driving. While humans use their experiences and background knowledge to infer missing
information, the autonomous car’s ability to do so is only limited to its training data. For
example, if not present in training data, computer vision models cannot yet understand that an
observation of a ball in a residential scene may indicate the presence of a child following that
ball. [1] formalized a solution for this as knowledge-based entity prediction (KEP) to predict
the class of missing entities in DSKG using the RelationType metapattern. It allows answering
the following types of competency questions in the entity prediction scenario:

CQ2.1.1 What unique types of entities are included in a given scene?
CQ2.1.2 What additional types of entities can be predicted that are not currently

included in the scene (i.e., the KEP problem)?

Note that RelationType metapattern is especially useful when the prediction, inference, or
querying task is performed directly on a sub-symbolic transformation of a KG (e.g., knowledge
graph embedding). For example, when the above competency questions are modeled as KG link
prediction tasks, the CQ2.1.1 corresponds to a querying task that seeks information about all
unique entity types included in a scene, whereas CQ2.1.2 corresponds to a prediction task that
provides additional information about potentially missing entity types.

2.2. Predicting causal entities in a scene

Humans have an intuitive understanding of the notion of causality in the world around us. In
the autonomous driving scene, there exists a causal relation between a stop line marking, a
pedestrian and a vehicle. A stop line marking causes a pedestrian to walk and cross the road, and
causes a vehicle to come to a stop. The DSKG can be enriched with the above causal concepts
and relations among the entities. In a downstream task of prediction, we are interested in
predicting the type of the causal entity given a causal relation. The below competency questions
take into account the existing causal relationship among the entities in Figure 1.

CQ 2.2.1 What is the pedestrian activity caused by a stop line marking in a scene?

CQ 2.2.2 What is the pedestrian activity caused by the red car stopped in a scene?

CQ 2.2.3 What is the vehicle activity caused by a stop line marking in a scene?



Figure 2: The RelationType metapattern illustrating the <relationName>Type link.

3. RelationType Metapattern

RelationType is a metapattern that represents a role composition, as shown in equations 4 and
illustrated in Figure 2.

<relationName> ∘ rdf:type ⊑ <relationName>Type (4)

In this role composition, relationName is an object property linking the head and tail of
a triple (i.e.<head, relationName, tail>), rdf:type is the RDF type1 property linking the tail
of the triple with its associated class (i.e.<tail, rdf:type, tailClass>), and relationNameType is
a property linking the head of the triple with the class of the tail (i.e.<tail, relationName-
Type, tailClass>). The scoped domain and range restrictions of these properties are defined below.

relationName: The head and tail of a relationName link can be an instance of any class.

∃<𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑁𝑎𝑚𝑒>.⊤ ⊑ ⊤ (𝑆𝑐𝑜𝑝𝑒𝑑𝐷𝑜𝑚𝑎𝑖𝑛) (5)

⊤ ⊑ ∀<𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑁𝑎𝑚𝑒>.⊤ (𝑆𝑐𝑜𝑝𝑒𝑑𝑅𝑎𝑛𝑔𝑒) (6)

relationNameType: The head of a relationNameType link can be an instance of any class, the
tail can be any class.

∃<𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑁𝑎𝑚𝑒>𝑇𝑦𝑝𝑒.𝑜𝑤𝑙 : 𝐶𝑙𝑎𝑠𝑠 ⊑ ⊤ (𝑆𝑐𝑜𝑝𝑒𝑑𝐷𝑜𝑚𝑎𝑖𝑛) (7)

⊤ ⊑ ∀<𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑁𝑎𝑚𝑒>𝑇𝑦𝑝𝑒.𝑜𝑤𝑙 : 𝐶𝑙𝑎𝑠𝑠 (𝑆𝑐𝑜𝑝𝑒𝑑𝑅𝑎𝑛𝑔𝑒) (8)

Note that since RelationType is a metapattern, the defined axioms should be viewed as a
template and not a concrete reusable component. In addition, relationName is a place holder
for more concrete property names. To use this metapattern, in other words, one would need
to instantiate it by replacing relationName in the axioms with a concrete property name. The
relationNameType property is renamed by concatenating the concrete name of the relationName

1https://www.w3.org/TR/rdf12-schema/#ch_type



Figure 3: Illustrative diagrams of the RelationType metapattern used for the driving scene use cases,
with the includesType and causesType relations.

with "Type". For example, in the use-case depicted in Figure 1 the relationName linking a scene
with an entity is named "includes". So, in this case relationNameType is named as "includesType"
(Figure 3).

The RelationType metapattern can be applied to links between instances of any type (i.e.
of type owl:Thing2), including objects, places, agents, events, etc. The concept owl:Thing
can be 1) an object that is composed of another object, 2) an event which includes sub events,
3) an agent which refers to a person or an organization. For the use case of a driving scene
knowledge graph, the types of entities can include driving scenes, objects such as vehicles and
stop line markings, agents such as pedestrians, and events such as walking pedestrians and
stopping vehicles, etc. Figure 2 illustrates the RelationType metapattern. In this figure, two
instances (of any class) are linked through the relationName property, and the tail of this link is
associated with its class through rdf:type. The head of the link and the tail class are connected
through the relationNameType property.

Figure 3 illustrates the RelationType metapattern for the driving scene use case (as shown
in Figure 1). The scene, red car stopped, stop line marking, MarySue walking are instances of in
the knowledge graph. In this case, scene is a context or situation in time and space with the
presence of objects and occurence of events, car and stop line marking are objects, and MarySue
walking is an event. The Car, Pedestrian Walking and Car Stopped are defined as classes (i.e. of

2https://www.w3.org/TR/2004/REC-owl-semantics-20040210/#owl _Thing



type owl:Class) and linked to their member instances using relation rdf:type, as shown in the
Figure 3. An instance scene is connected to an instance red car using the includes property. The
RelationType metapattern introduces the includesType property. This property can be used to
train KG link prediction models in order to predict the type of entities included in a scene, such
as a Pedestrian, Car, etc. and hence answering the competency questions in Section 2.1.

As another example, the stop line marking in a driving scene causes a car to stop momentarily.
The stop line marking and a stopped car causes a pedestrian MarySue to walk across the street.
Hence the instance of stop line marking is linked to the instance of MarySue walking and red car
stopped using <relationName>, causes. The relationNameType property, causesType, is added to
the above triples to help satisfy the competency questions in Section 2.2.

4. Discussion and Conclusion

A role composition ∘, used in RelationType metapattern, is a complex role inclusion axiom
[2] which is a composition of two relations in description logic. It has been used to represent
knowledge within complex structured domains such as medical terminology and chemical
engineering [3, 4], which includes propagation relations such as part-whole, location, etc. At
times, the complex domains require propagation of one property to another which can be
introduced as path reification to be used for inference at a later stage.

The RelationType metapattern represents path using role composition axioms. RelationType
is a type of metapattern which can have different instantiations for different class types de-
pending on the use case. The metapattern was exemplified using a driving scene scenario. The
RelationType is modular and generalizable metapattern. It can be further extended or reused by
existing patterns which follows the above relational constraint.

References

[1] R. Wickramarachchi, C. Henson, A. Sheth, Knowledge-infused learning for entity prediction
in driving scenes, Frontiers in big Data 4 (2021) 759110.

[2] I. Horrocks, U. Sattler, Decidability of shiq with complex role inclusion axioms, Artificial
Intelligence 160 (2004) 79–104.

[3] A. Rector, I. Horrocks, Experience building a large, re-usable medical ontology using a
description logic with transitivity and concept inclusions, in: Proceedings of the Workshop
on Ontological Engineering, AAAI Spring Symposium (AAAI’97), Stanford, CA, 1997, pp.
321–325.

[4] U. Sattler, Description logics for the representation of aggregated objects, in: ECAI, volume 9,
2000, pp. 239–243.


	1 Introduction
	2 Use case: Driving Scene Knowledge Graph
	2.1 Predicting entities in a driving scene
	2.2 Predicting causal entities in a scene

	3 RelationType Metapattern
	4 Discussion and Conclusion

