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ABSTRACT

Forward regularization (-F) Azoury & Warmuth (2001) with unsupervised knowl-
edge was proposed to replace canonical Ridge regularization (-R) in online lin-
ear learners, which achieves lower relative regret bounds (Della Vecchia & Basu,
2023). However, we observe that -F cannot perform as expected in practice, even
possibly losing to -R for online learning tasks. We identify two main causes for
this: (1) inappropriate intervention penalty; (2) potential non-i.i.d nature in on-
line learning, both of which result in unstable posterior distribution and optima
offset of the learner. To improve these, we propose Variable Forward regulariza-
tion (-kF), a more general style with -F intensity modulated by a variable k. We
further derive -£F algorithm to online learning tasks, which shows holistic recur-
sive closed-form updates and superior performance compared to both -R and -F.
Moreover, we theoretically establish the relative regrets of -kF in online learning,
showing that it has a tighter upper bound than -F in adversarial settings. We also
introduce an adaptive -kF, termed -kF-Bayes, to curb unstable penalties caused
by non-i.i.d and mitigate intractable tuning of hard k£ based on Bayesian learn-
ing for online learning. In experiments, we adapted -kF and -kF-Bayes into class
incremental scenario, where it realized less forgetting and non-replay. Results
distinctly demonstrate the efficacy of using -kF and -kF-Bayes.

1 INTRODUCTION

Unlike offline training, the online learning (OL) scenario emphasizes progressive model updates
and delivers immediate decision-making on non-stationary data/task streams. Applications of OL
methodology include chatbots (Chowdhury et al., 2023), injection attack detection (Toyer et al.,
2024), and recommendation systems (Jiang et al., 2024) of scenes with real-time demands. During
the OL process, the backbone is expected to preserve previous knowledge without past replay and
reduce learning regrets (Buening et al.). In this paper, we study linear regression, one basic ele-
ment of connectionist models, equipped with a novel regularization and its characteristics in online
continual learning (CL) scenarios.

Forward regularization (-F) proposed in (Azoury & Warmuth, 2001; Vovk, 2001) was proven to
have better regret bounds compared to using canonical Ridge regularization (-R) in linear regression
with challenging adversarial bounded observations during OL Della Vecchia & Basu (2023). Specif-
ically, -F is realized by adding an extra Frobenius-norm penalty containing upcoming unsupervised
knowledge to -R, which leads the gradients of learnable weights to be more concerned with future
prediction. Besides the decrease in regret, the transductive method -F has low computation com-
plexity and regulates the learning rate in OL. As a result, -F is of practical relevance as it enhances
prediction accuracy by integrating unlabeled data.

However, we observe that -F could not perform as expected in experiments, even possibly failing
to -R during OL. We argue the reason is two-fold. (1) Improper regularization. -F defaults the
penalty intensity of the unsupervised term is constant 1.0, resulting in improper penalty intervention
in special tasks. (2) Non-i.i.d disturbance. Premise i.i.d is not held in OL, which incurs unstable
regularization due to varying distribution and batch volume. This causes residuals of empirical risk
minimization (ERM) and model optimum offsets, especially in learning long task streams.

To solve the problems, we first propose the Variable Forward regularization (-kF), adding a hard
threshold & to control the penalty strength for different tasks. The more general -kF is theoretically
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proven to have better performance and tighter regret bounds than -R and -F by two ways if the k£ can
be given properly. The -kF also generates one-shot closed-form incremental updates and variable
learning rate, and has less learning dissipation. Moreover, to curb unstable penalties caused by non-
i.i.d and mitigate intractable tuning of hard k during OL, we improve the -kF to -kF-Bayes style,
further enabling the soft & to be adaptively determined based on Bayesian learning and estimated
distribution.

Our algorithm is assessed within the framework of Continual Learning (CL), which is a sub-
set of OL. CL involves learning a sequence of () distinct tasks or episodes, denoted as 7 =
{1, T2, -+, T} T, = (X, Vy)}, and includes unseen classes (French, 1999). Among the various
scenarios of CL, Class Incremental Learning (CIL) poses the greatest challenge. In CIL, the learner
is required to integrate and retain knowledge of all previous classes, represented as ) = U?Zl Yy
without access to task identities during testing. To overcome catastrophic forgetting, EWC Kirk-
patrick et al. (2017) is a pioneer regularization-based work, restricting previous weights from wrong
skewing by imposing penalties. Many new methods, such as Online EWC Schwarz et al. (2018),
SI Zenke et al. (2017), CRNet Li & Zeng (2023), RanPAC McDonnell et al. (2024), NICE Gurbuz
et al. (2024) are born recent years. However, CIL assumes task-wise i.i.d and task boundary hinting
update opportunity, hardly meeting practical needs. The harsher online task-free CIL (OTCIL) is
expected to generate immediate decision-making with neither i.i.d nor boundary index in each task,
where one task comes in non-stationary batches rather than all at once in CIL. Related works include
GEM Lopez-Paz & Ranzato (2017), GSS Aljundi et al. (2019), and DYSON (He et al., 2024). We
also applied the proposed -kF and -kF-Bayes methodologies to OTCIL scenarios and provided an
in-depth analysis.

Contributions are summarized as follows:

1. Propose -kF and derive regret bound: To control the intervention rate of unsupervised
knowledge for improved performance, -F is extended to the more general -kF, incorporat-
ing a k-factored penalty. This enhancement aims to refine the learning gradients in linear
regression and reduce regrets in OL. We formulate the -kF algorithm with variable learning
rates and recursive closed-form updates, and demonstrate that it prevents learning dissipa-
tion while achieving tighter relative regret bounds compared to -F and -R.

2. Enhance -kF with Bayes: To curb unstable penalties caused by non-i.i.d and mitigate
intractable tuning of k of -kF during OL, we further propose -kF-Bayes, enabling the soft
k to be adaptively determined based on Bayesian learning and distribution estimation.

3. Practical application: We integrated -kF and -kF-Bayes into randomized learners and
evaluated them in (OT)CIL scenarios using both tabular and image datasets. The results
demonstrated the effectiveness of our methods.

2 PRELIMINARY AND ADVERSARIAL REGRET BOUNDS

Lemma 1. Bregman divergence is used to measure relative projection distance between distribu-
tions (Azoury & Warmuth, 2001). For a real-valued differentiable convex projection G : 8 € ® —
R, Bregman divergence A is defined as:

Ac(6,6) = G(8) - G(8) — (0 - 0)"VeG(0), ()
where the 0 is a vector, and Vg denotes the gradient operator on vector 6.
Lemma 2. Bregman divergence property.
1. The divergence is a linear operator. Y > 0, Ag, 1 ,6,(0,0) = Ag, (8,0) + uAc, (6, 0).
2. fG1(0) — G2(0) = wT0 + v,w € RI% v € R, then A, (6,0) = Ac,(6,0).

Setup: following the classical setups of linear regression in OL Azoury & Warmuth (2001), a
representation steam X = {x;}~ ; C R paired with corresponding observations ) = {y;}7_; C

R is received by the learner f one-by-one intrialst = 1, 2,..7". Joint domain distribution X' X)) ~ P
but drifting occurs across batches. In -R, f; is updated on visible (x¢, v ) and evolves to f;1, hoping

to predict ;41 close to y;11 based on 4. The oracle learner is defined as:

fryp=al0; +e 30; c®CRYL1<t<T )
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where the ¢, is Gaussian noise, 8* can be learnable weights, and © is weight space.

In the optimization target, the initial GG, incurred loss on x;, and forward predictive loss are respec-
tively designated to Uy(0) = 207 "0, £,(0) = 3||x76 — y||3, and Li11(0) = Lol (0 —
60)||3, where n, ! is a symmetric positive definite matrix and @y is the initial parameter.

Lemma 3. Offline learning refers to the learning behavior of an expert on global tasks. Online
learner is contrasted to the expert by relative regret bounds. Assume solutions always existin 8 € ©:

0o+1 = argmingUg41(0), 3)
where Ug11(0) = Ay, (0, 00)+L1..0(0), Og+1 represents the finally updated parameter for future
predictions after the last (-th task knowledge acquisition completed.

Lemma 4. Online-to-offline regret bounds are defined as the upper bounds of cumulative regrets
of an online learner over those of the offline expert, which quantify the gap to the best expert and be
regarded as the cost of hiding future data from the learner. The upper bound of the learner using -R:

o r : 1 2 a 2 TXZ@
> Luoy) - min ([0 — Boll3 + > L4(9)) < 2Y2dIn( D (4)
t=1

t=1

_ _ T . . .
where X,,, = 1IéltaéXT{| |Zt]|oo }> Yo = 11%1ta<XT{|yt|, |z; 0|}, and A is the penalty factor. This is based

on adversarial setups and highlights the prediction =} 8; € [—Y,,,, Y,,] for history value restraints.

The upper bound of the learner using -F:

d PVE BT 1., . TX2
> Lu(6]) —min(SN[|6][5 + Y £4(6)) < SYdIn(—" +1) ©)
t=1

t=1

where X,,, = 1r<nta<xT{\ |zt||oo s Yin = Stau<xT{|yt|}. Prediction range assumption is removed and

<t< 1<i<
only retains y; € [—Y;,,, Y] Note the -F bound is at least 4 times better than -R’s.

3 PROPOSED METHODOLOGY AND REGRET BOUND DERIVATION

3.1 ONLINE LEARNING FRAMEWORK FOR —kF STYLE

Theorem 1. Incremental offline learning using —kF. We define the —kF optimization target and
express an incremental offline pattern here. For 0 < ¢ < T, the following equations are optimized:

0,11 = argmingU;1(0) (6)
Uis1(0) = Ay, (0,00) + L1..4(6) + k- £t+1(9)

where £ is the estimated loss on upcoming data (reserved prior knowledge is also possible). —kF
integrates unsupervised knowledge and affects optimization gradients (also a posterior optimum)
when updating the present model. Note 8, = argming U, (0) = 6, when ¢t = 0.

Theorem 2. OL using —kF. For 0 < ¢ < T, with previous £ ;1 concentrated into Bregman
divergence AU;, we define the OL process of —kF as optimizing a recursive equation without replay.

0,11 = argmingAy,(0,0,) + Li(0) + k- L1y 1(0) — k- L,(0) (7

When 0 < k < 1, it can be regarded as partial forward knowledge intervention because ERM on x;
is larger than the forward penalty of x;, ;. Having k£ > 1 leads to an excess in forward regularization.
Proof: Please see Appendix A.1

3.2 ONLINE LEARNING ALGORITHM FOR —kF STYLE
Theorem 3. OL algorithm using —kF. The step-wise updates of learnable weight 8 in —kF follow:

01 =0, — (] +k-wx)y — k-] )0; — @y ®)
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where k is a constant, 8, = 0, symmetric positive defined 9 = (A- I )_1, and variable learning
rates My = (770_1 + Zle zixl + k- mt+1mf+1)’1. The step-wise updates of 17,1 follow:

T -1,..T
M =n =iz (I +a{nlz) =l ©)
T -1,..T
Ne+1 = 772—&-1 - "7tT+1k'9ct+1(I + k'wt+1772+1$t+1) wt+177;r+1
where ntT 1= (ng 14 Zle x;x7 )71 is maintained as an intermediate variable for computation.

This OL process of using —kF is non-replay, and the Bregman divergence term changes over time.

Proof: Please see Appendix A.2
Remark 1. Our —£F style is more general. If £ = 0, Theorem 2 degenerates to -R style:
0,11 = argmingAy, (0,0;) + L:(0) (10)
0141 =0, — 77t+1[93t$?9t — x4y
If £ = 1, Theorem 2 degenerates to -F style:
0,11 = argmingAy,(0,0y) + L4(0) + L1 1(0) — L4(0) (11)
Orp1 =6 — ny [ x] )0 — Te]

This further proves —kF style is more general and the performance of using —kF must not be inferior
to that of -R or -F if k is properly designed, and such k values exist with a high probability.

Remark 2. We further derive several equalities before the regret bound derivation. Given 7, +11 =
'+ (1—k) - zexl + k- 2zl and @ = 0, for 1 < ¢ < T we have:

01 = Mi41(n; 00 + Ty,) (12)

Oip1 = 0; — (@] + k- xppmly — k- @x] )01 — @y (13)
T

0°7 = (ny*t + Zizl wiw?)_ln{“ilaTJrl (14)

Proof: Please see Appendix A.3

3.3 RELATIVE REGRET BOUND FOR —kF STYLE

Theorem 4. Relative Regrets for —kF. For any X = {x;}L ; and any € ©, the cumulative
regrets of the online learner using —kF style relative to the offline expert can be calculated as follows:
T T

Zﬁf Of - Ienln (AUO(O 00 +Z£t (15)

t=1 t=1

T
= [Av,1 (06,0041) — k- Lip1(8:) + k- Lo(0)] + k- L141(0) — Auy,, (6,0741)
t=1

Proof: Please see Appendix A.4
Theorem 5. Relative Regret Bounds for —k:F The upper bound of the learner using —kF:
TX2

Eye
B3 £(6,) — min (v, (6,60) )+ 30 = vzam( s XFh-1)-X2)

t=1

(16)

here X, = Yo = . Lik 1 ill maintains th
where X, = max {I|zt||oo }> 1ré1ta§xT{\yt|}, and & > 0. Like (5), (16) still maintains the

advantages of border (i.e. ] 6; € [~Y,,,Yy]) removal. (16) corresponds to (5)’s form if k = 1.
Proof: Please see Appendlx A 5

Remark 3. Let E[Z L:(0:) — emm (Ay,(0,00) + Z L£:(0))] = E[I']. Assume the entire X
o

respects 1ndependent 1dentlcal Gaussian distribution in proof which allows us to involve approx-
imation E[z{, ;m;x¢] = 0. Such that the I is a complex random variable associated with data
distribution Py. Consequently, the regret bounds are fluctuating. How to choose the k is a game
problem, as shown in (16). One can explore the I' distribution and lead to the proper k’s range based
on a specific data environment.
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Remark 4. The actual E['] can be lower than that in (16), as we omit some negative penalty
terms in the calculation of (55). It will be complicated to obtain the proper k’s range by studying

1y2din(Em 1) - by2dIn(1 + %) > 0. To avoid this, we study the growth rates of
cumulatlve relatlve regrets
8 Y2dIn .S 1. X2
( +b =_Y2d —™ (17)
ot A 2.
2 X2 R
5't 27" N (k—1) X2 +tX2
Let (17)-(18)> 0, for 1 <t < T, we have:
0<k<1 (19)

where X, = 1 m<atX 1{”37&”00} Ym = 1H<132<{|y¢‘}

In conclusion, the &k that makes —kF have a tighter regret bound than -F’s exists.

3.4 ADAPTIVE —kF-Bayes STYLE

Potential non-i.i.d nature. In Lemma 3 and Theorem 1, impacts due to potential non-i.i.d are
negligible as all training data is available, and the severity of penalties entirely maintains balance at
time t. Inversely, the effects of non-i.i.d should be taken into account in Theorem 2 and 3, because
we emphasize OL and CL contexts including non-i.i.d data batch, off-diagonal covariance matrix,
invisible future data, and forbidden past replay. Merely setting sensitive k as fixed results in penalty
imbalance and offsets the learner’s optima during OL/CL process.

—kF uses hard threshold k. The & mediating contributed degrees of k - Ly 1(0) — k - £,(6)
determines performance of the learner using —kF style. Using gradient descent or evolutionary
algorithm to adjust &k at each step is unreasonable due to time-consuming and non-replay, and a
compromise hard k instead of synchronized one can be thrown even if global optimization for % is
allowed.

Although we present a range of k in (19), it still has a relatively loose upper limitation with respect
to k because we use X, in adversarial environment and approximation in Theorem 5, which cannot
generate specific values or accurate range. To improve this, we regard the Theorem 2 and Theorem 3

as Bayesian learning processes, and study how to suppress non-i.i.d impact on posterior distribution
by adaptively determined k, based on distribution estimation and penalty balance of prior terms.

Theorem 6. Adaptive —kF-Bayes style The step-wise updates of learnable weight 6 in —kF-Bayes
follow:

01 = 0 — e [(mi] + kigr - el — ki @] )0 — @y (20)
where k is a variable, 8, = 0, symmetric positive defined g = (A- I )*1, and variable learning
rates My = (7)0_1 + Zle :ma:zT + kg a:t+1a:tT+1)*1. The step-wise updates of 17,41 follow:

n =0l —nla(I + ! njz) ]
kip1 =k = :vtTntwt 21

Mer1 = Mo — Morkerr @ert (L + keraioml o) " efan)

where n;r = (g '+ Zle x;z!)~! is maintained as an intermediate variable for computation.
This OL process of using —kF-Bayes is still non-replay, can resist catastrophic forgetting, and adap-
tively determine the sensitive k factor.

Proof: Please see Appendix A.6
Remark 5. Given B = {z;}?_, containing b samples, (66) is enhanced to:
trace[(B, . m:Bl,, + O’I)_l]
b

trace[(B,n,BT +oI)" "
ke = k- ( [( tntbt ) ]) 1

kesr =k ( )~ (22)
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4 EXPERIMENT

We first examined online learners with different regularization styles, namely -R, -F, -kF, and -
kF-Bayes in numerical simulations. Then we integrated these online learners into Randomized
Neural Networks (Randomized NN) (Li & Zeng, 2023; Li et al., 2024) and conducted experiments
in CIL/OTCIL scenarios, including tabular and image datasets. Based on the results, we show the
efficacy of -kF and -kF-Bayes, and the great potential of Randomized learners equipped with them.

4.1 CASE 1: NUMERICAL SIMULATION

The numerical scenario was generated by the setups: T=1000, d = 12, &, ~ N(1,2), ¢y ~
Ny(61,%), A € {0.2,0.5,0.8,1.0,1.5,2.0,3.0}, & € {0.2,0.4,0.6,0.8}, and the regularization
styles included: -R, -F, -kF, -kF-Bayes. We repeated the learning processes of the online learners
20 times using different random seeds for each A. Results would be used to compute the mean and
standard deviation of online regrets relative to Oracle learner (defined in (2)) in multiple trials. We
assumed the learners had no prior knowledge before data came and started from 6 = 0.

105 -

Immediate Regret
Immediate Regret

~——— -Rk=0A=3.0 -Fk=1A=3.0

10° 10t 102 103 10° 10t 10? 103
Time t Time t

(a) Relative regrets of online learner using -R. (b) Relative regrets of online learner using -F.

10° - 10° -

-kF-Bayes A=0.2
-kF-Bayes A=0.5
-kF-Bayes A=0.8
-kF-Bayes A=1.0
-kF-Bayes A=1.5
-kF-Bayes A=2.0
-kF-Bayes A=3.0

Immediate Regret
Immediate Regret

-kF k=0.6 A=1.0
-kF k=0.6 A=1.5
-kF k=0.6 A=2.0
-kF k=0.6 A=3.0

107 -

-

0° 10t 102 103 0° 10t 10? 103
Time t Time t

-

(c) Relative regrets of online learner using -0.6F.  (d) Relative regrets of online learner using -kF-Bayes.

Figure 1: Relative immediate regrets (shown in solid lines) and cumulative regrets (shown in dashed
lines) of online linear regression using different regularization styles. The shadows indicate ranges
within one standard deviation. -0.6F represents the best performance in all tested -kF, one can refer
to Appendix A.7 for other results.

As shown in Figure 1, learners using -R, also regarded as -OF style, suffer from low stability and
high immediate regrets at all As. Although it converges quickly at a later stage, it causes high
cumulative regrets in OL process. -F (i.e. —1.0F) style is more stable to -R and the cumulative error
decreases significantly. Here we roughly selected several points for studying k’s effects. The best
-0.6F style slightly reduces cumulative regrets and responds faster than -F. The effect is not obvious
because such a k exists but is difficult to determine and the same & is poorly adapted to different
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environments, i.e., it does not perform as expected for all A\s. Appendix A.7 also shows that k is
sensitive and an improper k results in a large loss. How to set a proper k is important because
the entire dataset is unavailable and real-time searching is unreasonable in practice. The -kF-Bayes
achieves rapid decreases of immediate regrets and lower cumulative loss with the ks adaptively set
in OL. The advantages of -kF-Bayes will become more apparent in difficult tasks. The % variation
curves are shown in Figure 2

—— -kF-Bayes A=0.2

\ -kF-Bayes A=0.5
I ——— -kF-Bayes A=0.8
| -kF-Bayes A=1.0

—— -kF-Bayes A=1.5

0.6- —— -kF-Bayes A=2.0
-kF-Bayes A=3.0

0.8-

0.4-

- |

Adaptive k Value

T
T .
Bl - o -

00 _ N i e e
0 200 400 600 800 1000
Time t

i3
<

Figure 2: k variation curves of online learners with -kF-Bayes in numerical simulations.

4.2 CASE 2: TABULAR DATASET

In order to examine linear regression learners using various regularization styles in more complex
tasks, we used -kF and -kF-Bayes algorithms to reconstruct a state-of-the-art Randomized NN, the
ensemble deep random vector functional link network (edRVFL) (Shi et al., 2021), and adapted
edRVFL-A to CIL/OTCIL scenarios, where A denotes varied styles. The datasets are listed in Table
1 and each one was treated as a single class incremental problem, namely learning on [Dataset]-
|V|/| Y| task stream.

Main methods involved in this experiment were as follows. (1) SMAC3 (Lindauer et al., 2022):
we used it to configure well-behaved hyper-parameters (HP) within the same searching space for
algorithms. (2) edRVFL (Shi et al., 2021): the original offline edRVFL network. (3) edRVFL-R,
edRVFL-kF and edRVFL-kF-Bayes: our built methods for comparisons. We assumed they had no
prior knowledge or update on any task, and always did one-pass training. We use N and L to denote
edRVFL’s numbers of layers and nodes per layer respectively. (4) EWC (Kirkpatrick et al., 2017):
the backbone of EWC for CIL was a BP-based MLP. (5) CRNet-I (Li & Zeng, 2023): a novel CIL
network based on Randomized NN and EWC. (6) DYSON (He et al., 2024): an OTCIL method
using compute-and-align paradigm. Some assess metrics containing ACC, BWT, and FWT are
list in Appendix A.8 Evaluation metrics.

During SMACS3 operation, every dataset was randomly partitioned into 4-folds for consistent results,
containing 60% for training, 15% for validation, and 25% for testing in each fold. We set trial times
to 200. In one trial, the algorithm configured by SMAC3 would be tested on 4-folds separately using
all different random seeds on task order and network initialization. The average acc.(T") on 4-folds
was set to be the cost of incumbents which guided SMAC3 to optimize. Note the k of -kF was
optimized while was adaptive in -kF-Bayes.

Testset performance of the above algorithms with HP and structures optimized by SMAC3 is shown
in Table 2 in Appendix A.8. Metrics are average acc.(T)% (for OTCIL), average ACC(Q)% (for
CIL), and std.% of 4-fold trials. The results show that: (1) edRVFL-KF and edRVFL-kF-Bayes
outperform other methods on most datasets; (2) although edRVFL-kF has favorable performance, it
relies on fatal HP & value optimized by SMAC3. Searching methods (e.g. PSO, grid searching) are
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usually time-consuming and difficult to optimize -kF synchronously in CIL, while the -kF-Bayes is
ready to be deployed and achieves impressive results (even a little worse than -kF occasionally); (3)
the -kF style using forward unsupervised information is not worse than -R and when & = 0 they
have similar results; (4) BP-based EWC and DYSON suffer from larger loss, and CRNet also shows
undesirable capability, especially on longer task stream (e.g. letters, plant margin). (5) our methods
are noticeably more stable as indicated by the low stds, and are better suited to this situation because
no learning dissipation in theory. These conclusions also encourage the extension of our methods to
the representative learning on image features transformed by pre-trained models (PTM).

We offer ACC curves on letters-26/26 as shown in Fig. 3. The optimized HP and structures were
still employed. Our methods were set to no prior knowledge and start by 8, = 0 and diagonal
19 during OTCIL, which resulted in accuracy lags at ¢ < 5. However, the hysteresis of edRVFL-
kF-Bayes is slightest compared to using -R or -kF, and all proposed methods arrive at the expected
accuracy as more tasks are learned. EWC and CRNets yield increasing loss on long task stream, and
DYSON gets around 20% more accuracy because of PTM and replay system. Note the optimization
process like using SMAC3 is almost necessary for -kF desired performance as its k requests careful
setting, while is needless for -kF-Bayes.
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Figure 3: ACC curves of methods in Table 2 (in Appendix A.8) on letters-26/26 in CIL. The
edRVFL-R, edRVFL-kF, and edRVFL-kF-Bayes learned one class in two batches without boundary.

The incurred loss during OTCIL is shown in Fig. 4 (a), which demonstrates the superiority of
edRVFL-kF-Bayes in terms of accuracy, dynamic response, and regrets. The ks in -kF were un-
reasonably identical in layers and time-consuming to tune, which was avoided and ready-to-use in
-kF-Bayes. The dynamic adaptive process of k in -kF-Bayes is shown in Fig. 4 (b), and it pays more
attention to a future task compared to past ones. The k of -kF is sensitive and affected by multiple
facts, and its being in the range of the maximum and minimum k; of -kF-Bayes is interesting, which
highlights SMAC3’s choice and its effectiveness.

4.3 CASE 3: CIFAR IMAGE DATASET

For the CIFAR-100 dataset, we split it into CIFAR-100/10 to implement experiments. We stud-
ied selected methods, such as EWC (Kirkpatrick et al., 2017), CRNet (Li & Zeng, 2023) for the
regularization-based group, RanPAC (McDonnell et al., 2024), NICE (Gurbuz et al., 2024), DYSON
He et al. (2024) for the model-based methods, and GEM (Lopez-Paz & Ranzato, 2017), GSS
(Aljundi et al., 2019) for the replay-based branch. A standard resnet-56 was employed as PTM
and used to extract features from CIFAR-100, which inherited the setup in (Li & Zeng, 2023) for
fair comparison, and to allow benchmarks to learn image representations. We offered the same PTM
for all algorithms except when they are already equipped with one, such as for NICE and DYSON.
After resnet-56, the PTM F(-) was followed in our proposed methods for enhancement. The task
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(a) The letter testset immediate and cumulative (b) k; ;41 and k; ¢ variation curves of -kF-Bayes in OT-
regret(t) curves of edRVFL using -R, -kF, and -kF- CIL. X-axis denotes batch, Y-axis is the logarithmic
Bayes in OTCIL. -kF-Bayes has the minimum loss. value. Trends illustrate the effect of maintaining the bal-
X-axis denotes batch, and Y-axis is regret value. ance of penalties in changing optimization targets.

Figure 4: The regrets on testset in OTCIL and adaptive k variation curves of edRVFL-kF-Bayes.

order was randomly sorted and baselines were tested 10 times. No task boundary was given to OT-
CIL methods. Our methods still learned every task in one-pass, had no revisits, and we abode by
severe no prior update before the data arrival.

The task order and choice of classes in CIFAR-100/10 were randomized. From Figure 5 and Figure
6, the proposed edRVFL-kF-Bayes still maintains an obvious advantage in performance.

1.0-
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0.8
[
=
©
> 0.7
@]
Q
<
0.6 -
0.5 - GEM OTCIL ACC - CRNet-I CIL ACC ~ =~ edRVFL-kF-Bayes OTCIL
T = IL2M CIL ACC -® CRNet-ll CIL ACC edRVFL-0.2F OTCIL
—4— GSS OTCIL ACC -8 DYSON OTCIL ACC edRVFL-0.4F OTCIL
RanPAC CIL ACC ~~ edRVFLR OTCIL ~~ edRVFL-0.6F OTCIL
0.4 - ~® RanDumb CIL ACC edRVFL-kF OTCIL edRVFL-0.8F OTCIL
1 2 3 4 5 6 7 8 9 10

Number of tasks

Figure 5: ACC curves of methods on CIFAR-100/10 in CIL. Each task contained 10 classes. The
edRVFL-R, edRVFL-LF, and edRVFL-kF-Bayes learned tasks in OTCIL. X-axis is locally enlarged
in the inlaid subfigures.

5 CONCLUSION

In this study, we introduce Variable Forward regularization (-kF) as an enhancement to the ex-
isting Forward regularization (-F) for online linear learners. Our findings indicate that -F, while
theoretically promising, underperforms in practice due to inappropriate intervention penalties and
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Figure 6: The CIFAR-100/10 testset immediate regret(t) curves of edRVFL using -R, -kF, and -kF-
Bayes strategies in OTCIL process. -kF-Bayes has the minimum loss in the whole process. X-axis
denotes batch number, and Y-axis is regret and cumulative regret.

challenges posed by non-i.i.d nature in online learning. By modulating the intensity of -F with a
variable k, -kF achieves improved stability and lower relative regret bounds, surpassing both -F and
canonical Ridge regularization (-R). Additionally, we developed -kF-Bayes to dynamically adapt
the penalty based on Bayesian principles, further addressing the instability issues. Experimental re-
sults in class incremental learning scenarios confirm the efficacy of our methods, highlighting their
potential for reducing forgetting and enhancing performance in online learning tasks. Our future
studies will focus on concrete regret bounds of -kF under stochastic setups.
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A APPENDIX

A.1 THEOREM 2 PROOF

Proof: (7) can be expanded to:

0t+1 = argmingUt(O) — Ut(et) -+ Et(e) — (0 — Ot)TVUt(Ht) —+ k . ﬁt_t,.l(e) — k . ﬁt(ﬂ) (23)
The VU(0;) = 0 because of the latest convex optimization. (23) can be simplified to:

0:11 = argmingU;11(0) — Up(0:) = argming Ay, (6,00) + L1.+(0) + k - ﬁt+1(0) —c (24)

Solutions to both models (i.e. online learner (7) and offline expert (24)) remain the same at each
time point ¢ if designating the last target as Bregman divergence function. This also suggests that -kF
suffers no learning dissipation compared to the offline expert, because they have similar optimum at
each step.

Proof finished. (]

A.2 THEOREM 3 PROOF

Proof: Concretizing Theorem 1 with the Setup. For 0 < ¢ < T" we have:
0:11 = argmingU;1(0) (25)

1 - b1 k
Ur1(0) = 5(0 — 6o) o ( 9*90)+Zi:1 §H$iT9*yiH§+§||93tT+1(9*90)H§

Convert (25) into the form of (7) described by Theorem 2 to avoid the retrospective retraining, and
derive variable learning rate via Lemma 2:

Ui0) + 1170 — yill3 + Sllafia (0 0013 — & 1af (6 — 00)]1 26)
= Un(0) ~ Un(80) — (0 — 00)VU(00) + Y- S1170 — will3 + & 1aF1(0 — 00) 3
= UL(0) ~ Uo(0) = 31! JllaT0 — il + & 1eF (0 — 00)| — 303 mg 60 — (0 00) g 6,
S U(0) — U(0) = 30 L1aT0— 3+ a7 (0.~ 00)3+ L6ny 00— 7m0,
= Ui0) - Tn(0) = 56" walo+ 0> -yl

— 07,0y + k(e 00) "zl (6 — 6y) + 90 no 6o

Based on Lemma 2, (26) can be simplified to:

U:(0) — (Up(0) + 1OT Ztil xixl 0 + ﬁ49T:1:75:1:75T0) =wlo+c. (27)
where w € R%. If set V; = %OT(Zf Vaal + k- x,xT)0, based on (27) and Lemma 1 we have:
AU, (0,0;) = Ay, 1v, (6, Ht) = Ay, (0,6;) + Ay, (0,6;) (28)
(0 0,) ng* + Z miw? + k- x2l)(0 — 6,)

(28) shows that it allev1ates the previous replay w1th all that knowledge absorbed in Bregman diver-

gence. The stepwise solution to (28) in OL will change with nt_ =no 1+ Zz 15 2l +k - azt;ctT,
also termed as the variable learning rate. The essence of OL algorithm using —kF is also to give
time-varying optimization targets to guide network optimum (a posterior from the Bayesian view)
updates on task streams. This optimization objective in Theorem 2 can be expressed further as:

01 = argmingAUt (0,6:) + L4(0) + k- ﬁm(e) — k- L4(6) (29)
= argming = (0 6,) " ngt + Z :L' xl +k-x,2l](0 - 6,)

1
+ 5120 = wills + vatTH(B —00)lI3 - §|\th(0— 00)I13

12
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(29) can be transformed to the following constrained optimization problem:

o1 T _ 1 k k
92%7115(9—90 ”h1(9—9t)+§\|§1||§+§||§2H§—§||§3||§ (30

stz 0 —y =&l (60— 0p) = &) (0 — 0) = &3, V¢
The Lagrangian function of problem (30) is:

1 _ 1 k k
U0,€1 290 111,2.8)) = 5(0 — ) (8 = 8) + S It + 3 Iallf - 3 Il G

+ (@] 0 — yp — &) + pa(xfy 1 (8 — 60) — &) + ps(x] (8 — Bo) — &3)

The Lagrangian function (31) can be tackled through Karush-Kuhn-Tucker (KKT) conditions, which
can be built into the following formulation:

00
%:Uént_l(efat)JrﬂlthrMmt“+M3wt:0
006,5,p) _ =

5, =0=& =14

000,&,1n) _

o, =0= k& =y

OUOE 1) _ g pe —

og, 0 M -
wzoéaa{@—yt:fl

8u1

000, &,

D) 0 a0 -00) = &

oL(0,¢&,

(alug))_()émf(é’go)—ﬁi‘a

Based on (32), we can obtain the recursive updating policy between 6; and 0,1 as follows:
01 =0, — (] +k-wx)y — k- xx])0;, — @y (33)
+ k- (zax]y, — o) )6

Without loss of generality, given 8y = 0, to allow the learner to start from a blank model (no prior
knowledge), (33) is rewritten as:

01 =0, — M1 [(Tef + kel — k- 2! )0 — zoyy] (34)

The variable learning rate n~!

law, as shown in (9).
Proof finished. 0

is also updated step-wise by using Sherman—-Morrison—Woodbury

A.3 REMARK 2 PROOF

Proof: (34) can be rewritten as:
Orr1 = 0; — N[y — m; D)0 — meys] = (12) 35)
(12) can be rewritten as:

77t77t1119t+1 = 0; + Ny

mny '+ (1—k) - wx! +k- xt+1xtT+1)9t+1 =0 + mxy = (13) (36)
Take the derivation of 25 to calculate 741 whent = T
oUr1(0) T ,
a0 s =0=07r41 = Nri1 Zi:l Ty = (14) 37
=0741
Proof finished. U
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A.4 THEOREM 4 PROOF
Proof: For 0 <t < T, we expand the divergence Ay, (0,0;41):

Av,41(0,0:41) = Upy1(8) = Up1(8141) — (0 = 0:41) " VoUrt1(8:11) (38)
= Up41(0) — Ur11(6141)

According to Theorem 2, we have:

Up1(0) = Uy (0) + L4(0) + k- L111(0) — k- L(0) (39)
Substitute (38) into (39), for 1 <t < T, we get:
L1(0) = Ay, (0,0041) + U1 (0141) — Uy(0) — k- L111(0) + k- L4(6) (40)

Let 8 = 0, in (40), we obtain:

L) =Au,, (01,0041) + Uiy1(0i41) — Ue(0;) — k- Et+1(0t) +k- ﬁt(at) (41)
Subtract (40) from (41), we have:

L4(8:) — L4(8) = A,y (01,0111) — k- Li41(8:) + K - L4(6y) (42)

+k-Li1(0) —k-Li(0) — Ay, ,(0,0:11) — U(6;) + U (6)
Substitute (38) into (42) again, we obtain:
L(6;) — L4(0) = Ay, (01,0,41) — k- L11(0;) + k- L,(6;) (43)
tk-Li1(0) —k-Ly(0) — Ay, ,(0,0:11) + Ay, (6,6,)

Integrate both sides of (43) over 1 < ¢ < T and subtract Ay, (0, 8y), we have:

T T T
Z L:(0:) — (Av, (0, 60) + Zﬁt(e)) = Z[AUt+1(9ta Out1) — k- Li1(0:) + k- L4(6,)]

t=1 t=1
+k- £T+1(0) —k- ﬁl(e) - AUT+1 (95 0T+1) + AU1 (9, 01) - AUo (07 00) (44)
Note that the last few terms in (44) are iteratively canceled out.
Lett = 0in (39) and 6, = 8y = 0, we have U1 (0) = Uy(0) + k - /31(0).
Av, (0,601) — Ay, (8,60) = U (8) — Uy (61) — Up(0) + Uy(80) = k - L1(6) (45)
Finally, we can obtain:

> Li(0:) — (Au, (6,60) + > L4(6)) (46)
t=1

t=1

T
Z[AUM(B,E, Or1) — k- Li41(0;) + k- L4(8,)] + k- L141(0) — Ay, (6,0711)

t=1

Proof finished. [l

A.5 THEOREM 5 PROOF

Proof: Use Lemma | and Setups to concrete the right part of (15) in Theorem 4:

[Av,.,(8¢,0041) — k- Lo1(8:) + k- Lo(0)] + k- Lri1(0) — Au,., (0,0741) (47

[M]=

~
Il

I
="

k

_ k
(0; — 6t+1)T"7t+11(0t —0r41) — 5”333;1015”% + §||$tT0t||g}

DN | =

[

~
Il

1

_ k
Chs 9T+1)T7ITJ1r1(9 —0r41) + §||x§+19|\§

N =

14
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Substitute (34) (12) (13) into the first term of (47):

1 _

(0 — 0r1) 11 (0 — 0,11) (48)
1

= i(at - 9t+1)T(k : mt+1mtT+19t +(1=k)- mtmtTOt — TYt)

1
=50~ 01:1)" (—k-@ia@ly 001 + (1 — k) - @2{ 6, — 21,

1
+ i(et —0,01)" (k- @] 1)(0:+ 0,11)
1
= 5[(1 —k)- mwtthOm +k- 17t-’£t+13331+10t+1 - ntwtyt}T
1
X [(L=k) - xx] 0 — k- @1 @{ 10,41 — Tog] + 5(9t —01) (k- 2] )) (01 + 0i11)
1

= 5[(1 - k)20£1wtwfntwtw39t - k(l - k) : 0?+1$t$$nt$t+l$z+19t+1
— (1= k)0 ! myweyy + k(1 — k) - 0] @z o] 6,

— k0w xl maaal 000 — k- 00wl myxy

- (1- k) : ytiBtTTItiBtiBtTet +k- ytil?tTﬂthtHthTﬂetH + ththnt-’Bt}

1 1
+ k- §9tT$t+1thT+19t —k- 59?+1wt+1th+19t+1

Substitute (14) into the last two terms of (47) and let ., = (9 ' + ZiT:1 zixl)7l = 67 —
0141 =k-nxrpxd 0701, we obtain:

50600 (0~ 0r) + 60 9)
= _%kz : 0%+1wTJrlfU%HTI*TIilH77*5'3T+193%+19T+1

+ SBEFH(I +k-xrier ) erper g (k- neraet)0ra

= _%kQ ) 9%+1(£”T+1w%+1)277* (I+k- W*$T+1w%+1)9T+1

k
+ 59%+1$T+1CB%+1(I + k- meer @y ,) 00

k
= 59%+1$T+1w§+1(1 + k- neer @7, ,)0r
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Substitute (48) and (49) back into (47), we get:

T
D [Av,, (04,0141) — k- Loy1(0;) + k- Lo(6:)] + k- L141(0) — Ap,,, (6,0741) (50)

t=1

l\D\»—l

T
Z 207 @] mewix] 0, — k(1 — k) - 0] weaw] mewea ), 10011
-(1- k)9t+1$t$t mxye + k(1 — k) -0zl mexix] 0,
— k- 0) ] el 01 — (1— k) -] memex] 0, + g myxy

k
+ k-0l w0, — k-0 xiaxly041] + 59%13@%11’%1(1 + k- nxrp@r )0

=3 (= k0L z@! ] 6, — k(1 — k) - 07 ma! mai a0,

—(1- k)0?+1$t$?nt$tyt + k(1 - k) ’ 9?+1wt+1w$+1nt$t$?0t

2 T T T T T 2 T

— k- 0t+1$t+1$t+1ntwt+1wt+19t+1 — (1= k) - yexy mexixy 0; + yix; ntwt}
k? T T T

+ 59T+193T+1$T+177*93T+1$T+19T+1

Try to simplify (50) further. When ¢ = 7" and using Sherman—Morrison—Woodbury law, we have:

2 2
% O A TT T BT 1 T O — % 07 T T N Ty 001 (5]
k2 T T T
=9 O 1 Tr 1T [N — Nr]Tri @, 0
k2

= 0L, x b [—(1 = K)nrerzinr|e xl .0
2[1 + (1 - k)zgnrar] T 271271 [ ( INTTTTrNT|TT 1T 410741

According to the property of the symmetric definite matrix, given 0 < k < 1 and « # 0, (51)< 0.
So the initial two terms in (51) can be eliminated in (50) as we target the upper restrictions. The (50)
can be rewritten as:

T
Z[AUt+1 (0t7 0t+1) —k- ‘ét+1(0t) + k- ‘ét(at)] +k- £T+1(0) - AUT+1 (97 6T+1) (52)

t=1

l\.')\)—l

T
§ T T T T T
t+1xtwt TT Ty 9t — k(]. — ]ﬂ) . 0t+1:ct:ct ntwt+1wt+10t+1

—(1- k)9t+1wtwt nexeye + k(1 —k) - Gﬂlwtﬂwﬁmmw%t
5 > 0L mpal w10,

-(1-k)- ytmtTntl‘tmtTOt + yfthmwt] -

Given X ~ Py and {z;}L_; respects the i.i.d premise,

E[(l - k)20a1$t$;nt$t$;9t + k(1 - k) ) 9$+1wt+1m?+lnt$t$?9t] (53)
< ]E[(l - k)Qez:THthth??tCBtthet + k(l - k) : 0tT+1th+1thT+177twt+1$tT‘9t+1]
=E[(1 k) - 0 zx] mea,x] 0,

E((1—k)- 0/ zix{ mzix] 0, — (1 — k) - yoo] ma,a] 6] 4
=E[(1 —k)- 0}, zix mxix] 0, — (1 — k) - O], zsz] M) 6]
=0
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Substitute (53) and (54) back into (52), we obtain:

T
E[D [Av,,,(00,60011) — k- L111(8,) + k- Lo(0:)] + K - L111(0) — Avy,, (6,0741)] (59
t=1
1 T
=E[5 k(= k) - 0L ma! ma @l 1000 — (1— K)0L ! may, + yie! mia]
t=1
k2 = T T T
T Z O, 1T 1T M T4 1Ty 1 O]
t=1
| I g2 Tl
=E[; > (= k! mawy; + yia! mw]) - 5 >0l wnal maax] 10,14
t=1 t=1

To prevent the model from potential attacks, in the adversarial setting, we assume x; 6; lies in
[<Y,, Y] for -R style as shown in Lemma 4. Obviously, our general —kF style removes this and
avoids clipping or Y,,, updates. To constrain (55) further, according to the Matrix Spectral Theorem,
it can be proved that €,,4.(A) = sup(p? Ap| ||p||2 = 1) is a convex function of A, where €4,
serves as the maximum eigenvalue of real-valued symmetric matrix A, (55) can be transformed to:

T
k
E[; Z viw) ma] (56)

l\D\N

a x] T
t
El5 > vill@el 3y me ]

2 ]l "

k‘

Y2X2 dzemaw nt

Y,lefnd inf[——]]

“3 Z emm ()

where X, = 1ré1ax {llze|loo }s Yo = 1r<naux {Je]}, and sup(emin(m; * —mp 1)) < X2,(t — 14+ k)
because Y e;(n; ' —ny') = trace(n; ' —ny'). Continue to simplify (56), we obtain:

Y,ZXQ d) inf[——]] (57)
2 Z emm(nt )
k 1
<E[-YZ2X2
[2 m ’"d/o A+X,2n(t—1+k)dt]
T
= E[ﬁyn%bd/ A;]
2 o t+ 5+ k—1
ko TX2
= g YmdInl+ S xe)

Proof finished. O

A.6 THEOREM 6 PROOF

Proof: To enable —kF to adaptively mediate the Forward regularization intensity for robust perfor-
mance in OL/CL, the hard constant k is replaced with soft variables. We will study the dynamic
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updating process and introduce an algorithm for generating time-varying k values. (6) in Theorem
1 can be written as:

011 = argmingU;1(0) (58)
Ur1(8) = Ay, (0,80) + L£1.4(8) + ker1 - Li11(0)
Based on (58), we represent Theorem 2 as follows:
9t+1 = argmingAUt (0, 0t) + ,Ct(e) + kt+1 . £t+1(9) - kt . ﬁt(e) (59)

Similar to the proof of Theorem 3, we can obtain:

0:11 = argming— (9 0t Ly Z :l:szT + ki - xpxy ](0 6,) (60)
kt+1 t
+5l27 0 — w3+ 2 el 1 (0~ B0l — 5 - llaF (6~ 60)l
where the novel variable learning rate n; =1y Ly ZZ 1T 33 + ki - wtwt (34) is refreshed to:
9t+1 =6, — ﬂt+1[(iﬂtiﬂf + ki1 $t+1$t+1 — k- Ly )9t - wtyt] (61)

where the novel variable learning rate 7,_ +11 =17y 4 Z§=1 il + k- a:t+1a:tT+1.
From the perspective of Bayesian learning:

p(0t+1|y17 yt) o0 P(yt|9t+17 Y1, ~~~yt71) ‘p(0t+1|y1a ~~~yt71)7 (62)

the OL/CL can be regarded as a process of consecutively updating the posterior distribution of
learnable weights based on current empirical risk and the prior distribution.

In (60), the prior Gaussian distribution of @ can be:

p(0iy1) ~ N(0:,m:) (63)

Such that estimated distribution:

p(xf10111) ~ N (@100, 2] miwis1) (64)
p(x] O41) ~ N(x{ 0, ] myxy)

Given x; and x4 are drawn from P, the k; 1 and k; can be:
ki1 = ke = zf mexe (65)
To avoid the zero solution and allow manual adjustment, (65) is modified as follows:
kiy1 =ki =k (:BtT'I)t:Et +0) (66)

where o is a small positive number (e.g. 10~°) and & is a positive constant (e.g. 1.0).
Proof finished. U

A.7 OTHER RESULTS OF NUMERICAL SIMULATION

Figures are shown in Figure 7.

A.8 SUPPLEMENTARY MATERIAL TO CASE 2

Evaluation metrics: We introduced 6 metrics that characterized immediate testset accuracy, incre-
mental task accuracy, knowledge retention ability, degree of knowledge loss, immediate regret, and
Kullback-Leibler divergence (KL).

Average task accuracy (ACC) is defined in CL literature as the average accuracy of all previously
learned tasks.

1 Q
ACC = — R 67
Q] 20 R ©n

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Immediate Regret

Immediate Regret

Immediate Regret

105 -

103

102

Time t

(a) Relative regrets of online learner using -0.2F.
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Figure 7: Supplementary material to Figure 1.
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Table 1: Description of 8 UCI tabular classification datasets

DATASET | X ld| |V
page blocks 5473 10 5
glass 214 9 7

image segmentation 2310 9 7
wine quality white =~ 4898 117

pendigits 10992 16 10
yeast 1484 8 10
letters 20000 16 26
plant margin 1600 64 100

where R 4 is the classification accuracy of the learner on task ¢ after learning on task Q(Q > q).
It reflects the task-wise accuracy variation in both CIL and OTCIL processes.

Backward transfer (BW'T) is defined as the average difference between the accuracy of all tasks
completion and the first learning of one task:

1 Q-1
BWT = o1 ZFl Ro.q — Ryq (68)

BWT indicates the knowledge retention ability of the algorithm where larger values are desired.
Forward transfer (FW'T') is defined as the average difference between the accuracy of the first

learning of one task and using an independent expert on it:

1 Q@ ind
FWT = o1 Zq:g Ryq— Rl (69)

where Rf]"d denotes the testing accuracy of an independent expert trained only on task ¢q. Higher
FWT indicates the learner can acquire more knowledge from newly seen tasks.

Immediate accuracy (acc.(t)) denotes the immediate testing accuracy on entire testset after the
learner finishing ¢ — th learning on 7 in OTCIL.

acc.(t) =Ri1.q9 1<t<T (70)

It is used to study the dynamic learning performance of using -kF and -kF-Bayes strategies precisely.
Note that usually acc.(T)) < ACC for OTCIL algorithms.

Immediate regret (regret(t)) is defined as the real-time testset loss incurred by the learner:

S E L softmaz(X;4004) — L - Yie

2
(71
L' |Xte| ||F

regret(t) = ||

where 1 < ¢t < T and the subscript still denotes Frobenius norm. Also, we offer cumulative regret
to describe the total incurred loss on testset in OTCIL process. Values may be given in logarithm.
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