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ABSTRACT

Visualization, a domain-specific yet widely used form of imagery, is an effec-
tive way to turn complex datasets into intuitive insights, and its value depends on
whether data are faithfully represented, clearly communicated, and aesthetically
designed. However, evaluating visualization quality is challenging: unlike natural
images, it requires simultaneous judgment across data encoding accuracy, infor-
mation expressiveness, and visual aesthetics. Although multimodal large language
models (MLLMs) have shown promising performance in aesthetic assessment of
natural images, no systematic benchmark exists for measuring their capabilities
in evaluating visualizations. To address this, we propose VISJUDGE-BENCH, the
first comprehensive benchmark for evaluating MLLMs’ performance in assessing
visualization aesthetics and quality. It contains 3,090 expert-annotated samples
from real-world scenarios, covering single visualizations, multiple visualizations,
and dashboards across 32 chart types. Systematic testing on this benchmark re-
veals that even the most advanced MLLMs (such as GPT-5) still exhibit significant
gaps compared to human experts in judgment, with a Mean Absolute Error (MAE)
of 0.553 and a correlation with human ratings of only 0.428. To address this issue,
we propose VISJUDGE, a model specifically designed for visualization aesthetics
and quality assessment. Experimental results demonstrate that VISJUDGE sig-
nificantly narrows the gap with human judgment, reducing the MAE to 0.421 (a
23.9% reduction) and increasing the consistency with human experts to 0.687 (a
60.5% improvement) compared to GPT-5.

1 INTRODUCTION

Visualization serves as an effective approach for transforming complex datasets into intuitive in-
sights (Shen et al., 2023; Qin et al., 2020; Ye et al., 2024). The value of a high-quality visualization
depends on whether its data is faithfully presented, whether information is clearly communicated,
and whether the design is aesthetically well-presented, as shown in Figure 1. These three dimensions
are closely interconnected and indispensable, posing challenges for visualization quality assessment.

Fidelity
Data Fidelity

Expressiveness
Information Clarity 

Aesthetics
Visual Aesthetics

✓ Clear Communication

✗ Information Overload

✓ Professional Design

✗ Poor Visual Design✗ Misleading Scale

✓ Accurate Representation

Figure 1: The “Fidelity, Expressiveness, and Aesthetics”
evaluation framework.

Although Multimodal Large Language
Models (MLLMs) have shown poten-
tial in aesthetic evaluation of natural
images (Murray et al., 2012; Li et al.,
2024), applying them to visualiza-
tion evaluation faces unique challenges.
Unlike natural images, visualization
evaluation requires simultaneous judg-
ment of data encoding accuracy, infor-
mation communication effectiveness,
and visual design appropriateness, as
shown in Figure 2. However, exist-
ing MLLMs benchmarks are insuffi-
cient for such comprehensive evalua-
tion, as detailed in Table 1. First, chart
question answering benchmarks (e.g.,
ChartInsights (Wu et al., 2024b)) eval-
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Artistic Assessment

Human

MLLM

(General Aesthetics) (Multi-Dimensional Evaluation)

 Good Art ✓ 

Assessment Requirement: 
Aesthetics 

VS 

5/5 Beautiful artistic composition

5/5 Stunning visual harmony

Visualization Aesthetics and Quality Assessment

Ground Truth Assessment 
Fidelity: 1/5 Purple-green gradient creates false boundaries

Expression: 1/5 Critical temporal axis information is absent

Aesthetics: 3/5 Visually appealing but functionally flawed

MLLM (w/o Domain Knowledge) 

Fidelity: 4/5 Effective data representation

Expression: 4/5 Intuitive market visualization

Aesthetics: 4/5 Visually striking and professional

VisJudge (with Domain Knowledge) 

Fidelity: 1/5 Gradient distorts data reading

Expression: 1/5 Time axis labels are missing

Aesthetics: 3/5 Aesthetic appeal without function

✕ Fails on Fidelity & Expression 
Only sees surface aesthetics 

✓ Accurately identifies all issues 
Domain expertise is essential

MLLM VisJudge

Multi-dimensional Assessment Required: 
Fidelity + Expressiveness + Aesthetics  

Expert

 Bad Chart : 1.7/5 

 Bad Chart : 1.7/5  Good Chart : 4/5 

!

(ours)

Figure 2: From natural images to visualization: the need for specialized visualization assessment.
Green and red denote positive and negative assessments, respectively, highlighting the contrast be-
tween MLLMs’ capabilities in general aesthetics versus visualization-specific evaluation.
uate models’ ability to understand chart information, rather than their overall design quality. Second,
natural image aesthetic evaluation benchmarks (e.g., ArtiMuse (Li et al., 2024)) focus on assessing
aesthetics, but ignore the core purpose of visualization to effectively communicate data. Finally, ex-
isting visualization evaluation benchmarks (e.g., VisEval (Fu et al., 2024)) mainly evaluate natural
language to visualization (NL2VIS) tasks (Luo et al., 2021), with the focus on assessing whether
generated visualizations accurately reflect natural language queries, rather than the aesthetics and
quality of visualizations. This leads to a critical research gap: we lack a systematic framework to
measure MLLMs’ comprehensive capabilities in evaluating visualization aesthetics and quality.

To address this challenge, we construct VISJUDGE-BENCH, the first comprehensive benchmark
based on the “Fidelity, Expressiveness, and Aesthetics” principles to assess MLLMs’ capabilities
in visualization aesthetics and quality evaluation. It contains 3,090 expert-scored samples from
real-world scenarios, covering single visualizations, multiple visualizations, and dashboards across
32 chart types. Using this benchmark, we conduct extensive testing on multiple MLLMs, includ-
ing GPT-5, finding that even the most advanced models show significant differences from human
experts (Mean Absolute Error as high as 0.553, correlation only 0.428). This finding clearly demon-
strates that general MLLMs cannot automatically acquire specialized evaluation capabilities in the
visualization domain, making the development of specialized optimization models necessary.

Based on this, we propose VISJUDGE, a model specifically designed for visualization aesthetics and
quality assessment, aimed at improving the consistency between general MLLMs and human expert
evaluation standards. Experimental results prove the effectiveness of this approach: VISJUDGE
significantly improves consistency with human experts, achieving a 23.9% reduction in MAE (to
0.421) and a 60.5% improvement in correlation (to 0.687) compared to GPT-5, performing best
among all tested models.

In summary, our main contributions are: (1) We construct VISJUDGE-BENCH, a comprehensive
benchmark based on “Fidelity, Expressiveness, and Aesthetics” principles to evaluate MLLMs’ ca-
pabilities in visualization assessment. (2) We systematically evaluate representative MLLMs, re-
vealing notable gaps with human expert standards. (3) We propose VISJUDGE, an optimized model
that significantly outperforms existing models and better aligns with human expert judgment.

2 RELATED WORK

Data Visualization Quality Assessment. Assessing the quality of data visualizations is a core
problem in visualization recommendation systems. Traditional methods fall into two main cate-
gories. The first is rule-based approaches, such as Voyager (Wongsuphasawat et al., 2017) and
Draco (Moritz et al., 2019), which use heuristic scoring based on established design principles.
However, their rules are often hard-coded and lack flexibility. The second category is learning-
based methods, like VizML (Hu et al., 2019), DeepEye (Luo et al., 2018), and HAIChart (Xie et al.,
2024). These methods train models on large annotated datasets to predict user preferences but are
limited by simplistic evaluation dimensions and a heavy reliance on expensive annotated data. With
the advent of large models, some works have begun to explore using LLMs for direct visualization
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Table 1: Comparison of related benchmarks across key evaluation dimensions.
Types Benchmark Input Data Types Evaluation Dimensions

Fidelity Expressiveness Aesthetics

Aesthetic Evaluation AVA (Murray et al., 2012) Images General Images × × ✓
ArtiMuse (Li et al., 2024) Images General Images × × ✓

Chart Understanding
ChartQA (Masry et al., 2022) Chart, Question Single Vis × ✓ ×
PlotQA (Methani et al., 2020) Chart, Question Single Vis × ✓ ×

ChartInsights (Wu et al., 2024b) Chart, Question Single Vis × ✓ ×

Visualization Evaluation
VisEval (Fu et al., 2024) Chart, NL, Data Single Vis × ✓ ×

VIS-Shepherd (Pan et al., 2025) Chart, NL, Data Single Vis × ✓ ×

VisJudge-Bench (Ours) Chart Single Vis, Multi Vis,
Dashboard ✓ ✓ ✓

Table 2: VISJUDGE-BENCH statistical information (Dash. = Dashboard).
Vis Type Count #-Subtype Subtype Details (Count)

Single Vis 1,041 22

Bar Chart 176 Pie Chart 129 Line Chart 100
Area Chart 75 Heatmap 55 Scatter Plot 49
Histogram 48 Donut Chart 47 Funnel Chart 45
Treemap 62 Sankey Diagram 61 Bubble Chart 29
... 10 more subcategories

Multi Vis 1,024 5 Comparison Views 670 Small Multiples 195 Coordinated Views 97
Other Multi View 59 Overview Detail 3

Dashboard 1,025 5 Analytical Dash. 743 Operational Dash. 122 Interactive Dash. 91
Strategic Dash. 62 Other Dash. 7

generation, such as ChartGPT (Tian et al., 2023), LIDA (Dibia, 2023), and LLM4Vis (Wang et al.,
2023). However, these studies primarily focus on the model’s ability to “write” code rather than
“judging” the quality of the chart design.

MLLM as a Judge. Recently, MLLMs have shown significant potential in emulating human ex-
pert judgment, a paradigm known as “MLLM-as-a-Judge” (Zheng et al., 2023; Chen et al., 2024).
As summarized in Table 1, these works can be categorized into three groups. The first is general
visual aesthetics assessment, where models evaluate the artistic quality of photographs, as seen in
AVA (Murray et al., 2012) and ArtiMuse (Cao et al., 2025). However, this overlooks the critical as-
pect of information communication efficiency in data visualization. The second is chart understand-
ing tasks, with examples like ChartQA (Masry et al., 2022) and ChartInsights (Wu et al., 2024b),
which assess the model’s data extraction accuracy. Yet, these works only focus on the ability to
“read” chart content. The third is visualization evaluation, where recent works like VisEval (Fu
et al., 2024) and VIS-Shepherd (Pan et al., 2025) have explored using MLLMs to judge visualiza-
tions in the context of NL2Vis tasks, focusing on whether the chart accurately reflects the natural
language query. However, they fall short of a comprehensive evaluation of the intrinsic “design qual-
ity”. This reveals a clear gap in existing research: the absence of a multi-dimensional framework for
holistically evaluating data fidelity, information effectiveness, and visual aesthetics. To address this,
we introduce VISJUDGE-BENCH, the first comprehensive benchmark designed to systematically
evaluate the capabilities of MLLMs as “visualization quality judges”.

3 VISJUDGE-BENCH: DESIGN AND CONSTRUCTION

To systematically evaluate the capability boundaries of MLLMs in visualization evaluation, we de-
sign VISJUDGE-BENCH. As shown in Figure 3, its construction follows a three-stage methodology:
(1) data collection and processing; (2) adaptive question generation; and (3) expert annotation and
quality control. We detail the specific implementation of each stage below.

3.1 BENCHMARK CONSTRUCTION PIPELINE

3.1.1 DATA COLLECTION AND PREPROCESSING

This stage constructs the visualization corpus through two key components: corpus construction and
data preprocessing.

Corpus Construction. To evaluate the performance of MLLMs across different visualization types,
we construct a corpus covering three main categories: single visualizations, multiple visualizations,
and dashboards. To ensure the authenticity and diversity of our corpus, we collect visualization
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Stage 3
Expert Validation

 Disagreement Analysis

 Quality Assurance

Stage 1
Initial Annotation

 3 Annotators
 Carefully Screened

Data Collection and Processing

Three-Stage Annotation Workflow

Single Vis Chart

(22 types)

Multi Vis Charts

(5 types)

Dashboard

(5 types)

Total: 3090 Real-World Samples

Customized Chart Information Evaluation Questions and Scoring 
Criteria

Adaptive Question Generation

Image Filtering Classification

Chart Metadata Extraction Question Rewriting

Chart Description:
This is a horizontal grouped bar 
chart showing sports injury data... + 5 additional customized questions...

Data Fidelity:
Does this horizontal bar chart 
accurately represent injury 
counts with proper zero baseline 
and proportional bar lengths ...

Scoring Criteria
1. Major distortions...

2. Noticeable issues...

(+3 more scores)

Web Crawling

Generic Evaluation Criteria
Fidelity- -Expressiveness Aesthetics

Data Fidelity Readability Insight Discovery

Design Style Composition Color Harmony

Original Chart

Chart Metadata:
Horizontal bar chart, Green and 
red color coding, ...

Stage 2
Quality Control

 Professional Annotators

 Candidate Resolution Strategies

Candidate Strategies
Remove total outlier

Remove sub-dim outlier

Filter malicious rating

Candidate Strategies
Remove total outlier

Remove sub-dim outlier

Filter malicious rating

Consistency Filter 
Check and Sort

Candidate 
Resolution 
Strategies

Evaluation Questions

Relevant-
Expertise Filter

Scoring Criteria

Expert Review
Apply Strategy or 

Expert 
Consensus

Adjust Scores

&

Crowdsourced 
Annotators

Figure 3: VISJUDGE-BENCH construction framework.

samples from search engines using web crawling methods with diverse query keywords (see Ap-
pendix A.1 for detailed crawling architecture and keyword generation strategy).

Data Preprocessing Pipeline. We design a three-stage data filtering process to curate the bench-
mark from over 300,000 initial images. (1) Initial Filtering: We employ automated scripts and
perceptual hash algorithms to eliminate non-visualization content and duplicates, yielding 80,210
candidate images (detailed algorithms in Appendix A.1). (2) Automated Classification: We lever-
age GPT-4o for visualization type classification and quality filtering, resulting in 13,220 valid visu-
alization samples after human verification (classification prompts and criteria in Appendix A.1). (3)
Stratified Sampling: We apply stratified random sampling to select the final 3,090 samples, ensuring
balanced distribution across categories. As shown in Table 2, the final corpus contains 1,041 single
visualizations, 1,024 multiple visualizations, and 1,025 dashboards, covering 32 distinct subtypes.
Detailed dataset statistics and distribution analyses are provided in Appendix A.2.

3.1.2 THE “FIDELITY, EXPRESSIVENESS, AND AESTHETICS” EVALUATION FRAMEWORK

To enable fine-grained visualization assessment, this stage first establishes a multi-dimensional eval-
uation framework, then implements an adaptive question generation process based on this frame-
work (as illustrated in the upper-right panel of Figure 3).

The “Fidelity, Expressiveness, and Aesthetics” Framework Design. To systematically evalu-
ate visualization quality, we construct a multi-dimensional evaluation framework. This framework
draws inspiration from classical translation theory principles of “Fidelity, Expressiveness, and Aes-
thetics” (illustrated with positive-negative examples in Figure 1), combined with established theories
in graphical perception (Cleveland & McGill, 1984), information visualization design (Munzner,
2014), and aesthetic evaluation (Li et al., 2024). We operationalize this core concept into six mea-
surable evaluation dimensions (as shown in Figure 3):

• Fidelity focuses on Data Fidelity. This dimension draws from Tufte’s design principles (Tufte,
1983) for avoiding “graphical lies” and recent research on visualization misleadingness is-
sues (Nguyen et al., 2013; Szafir, 2018; Lan & Liu, 2024b; McNutt et al., 2020). Since source
data for web-collected visualizations is typically unavailable, this dimension evaluates data pre-
sentation accuracy at the visual level. It assesses whether visual encodings accurately reflect the

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

displayed values, examining visually detectable distortions such as improper axis settings, scale
distortions, truncated baselines, disproportional encodings, or other misleading design patterns.

• Expressiveness focuses on the effectiveness of information communication. This dimension
evaluates how effectively visualizations convey information to users. It includes two progres-
sive sub-dimensions: First, (1) Semantic Readability evaluates the clarity of basic information
encoding, assessing whether users can unambiguously decode visual elements in charts (Pan
et al., 2025). Building on chart readability, (2) Insight Discovery further evaluates the analytical
value in revealing deep data patterns, trends, or outliers, helping users transition from “reading
information” to “gaining insights” (Wu et al., 2024a).

• Aesthetics focuses on Aesthetic Quality of visual design, integrating visualization perception
theory (Ware, 2021) with design practice. This dimension consists of three sub-dimensions
that collectively influence the overall visual experience: (1) Design Style evaluates the inno-
vation and uniqueness of design, measuring the degree of novel visual elements and distinctive
style (Dibia, 2023; Brath & Banissi, 2016); (2) Visual Composition focuses on the rationality
of spatial layout, evaluating the balance and order of element positioning, size proportions, and
spacing arrangements (Wu et al., 2023); and (3) Color Harmony evaluates the coordination
and functionality of color combinations, ensuring color palette choices balance aesthetics with
effective information communication (Harrower & Brewer, 2003; Gramazio et al., 2017).

In addition, this evaluation framework offers flexibility, with specific evaluation criteria and score
weights adaptively customized according to different visualization types (such as single visualiza-
tions (Wu et al., 2024a), multiple visualizations (Chen et al., 2020), and dashboards (Bach et al.,
2023)). Complete evaluation rules and customization details are provided in Appendix C.

Adaptive Question Generation Mechanism. Based on the evaluation framework, we have devised
an adaptive question generation process (detailed workflow shown in Figure 3). This process be-
gins by leveraging GPT-4o to extract metadata from the chart, such as its type and visual elements.
Subsequently, it rewrites questions by populating predefined templates based on this metadata, gen-
erating highly customized questions and their corresponding five-point scoring criteria for the six
evaluation sub-dimensions. For instance, under the data fidelity dimension, the generated question
specifically targets the chart’s data presentation accuracy, asking whether the “horizontal bar chart
accurately represents injury counts with a proper zero baseline and proportional bar lengths.” The
scoring criteria focuses on visually detectable issues: a score of 1 identifies “major distortions, such
as truncated axes or misleading scales that exaggerate differences,” whereas a score of 5 confirms a
“highly faithful representation where bar lengths are strictly proportional to the displayed values.”
This approach ensures that the evaluation questions are closely aligned with the specific visualiza-
tion content. For more detailed examples, please refer to Appendix C.1.

3.1.3 EXPERT ANNOTATION AND QUALITY CONTROL

To build reliable human ground truth, VISJUDGE-BENCH adopts a rigorous three-stage annotation
and quality control workflow (bottom panel of Figure 3) informed by benchmark construction ap-
proaches (Rein et al., 2024; Liu et al., 2025; Zhu et al., 2024). This systematic process ensures
high-fidelity and consistent scoring through careful review and expert judgment.

Stage 1: Initial Annotation. We recruited 603 highly qualified crowdsourcing workers through
the CloudResearch platform (CloudResearch, 2022). To ensure annotation quality, we set strict
screening criteria (see Appendix A.3.1 for details) and designed a dedicated annotation interface
(Appendix A.3.3). Crucially, we embedded validation checks to identify and filter out inattentive re-
sponses (examples in Appendix A.3.4). Each of the 3,090 samples was scored by three independent
annotators across six evaluation dimensions (task design details in Appendix A.3.2), generating an
initial scoring matrix.

Stage 2: Quality Control. To address scoring disagreements among annotators, we designed a sys-
tematic conflict identification and resolution mechanism based on established crowdsourcing quality
control and statistical evaluation theory (Gadiraju et al., 2015; Rousseeuw & Leroy, 2005; Brennan,
2001). The system first identifies high-disagreement samples by analyzing score variance, then al-
gorithmically generates candidate resolution strategies including outlier removal, malicious scoring
detection, and sub-dimensional bias correction. These algorithm-generated suggestions are pro-
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cessed and ranked before being submitted to the expert team for final review (complete algorithmic
details and parameters in Appendix A.3.4).

Stage 3: Expert Validation. Three experts with visualization analysis experience independently
reviewed all samples using a dedicated interface (Appendix A.3.5), selecting, modifying, or rejecting
algorithm-generated candidate solutions. For complex cases, the team reached consensus through
discussion. Through this rigorous process, we built a high-quality human scoring benchmark for
all 3,090 samples as the gold standard for model evaluation. Detailed annotation quality analysis is
provided in Appendix A.4.
4 VISJUDGE: A SPECIALIZED MODEL FOR VISUALIZATION EVALUATION
The primary goal of VISJUDGE-BENCH is to systematically evaluate MLLMs’ capabilities in visu-
alization aesthetics and quality assessment. Building on this benchmark, we explore a key question:
can domain-specific fine-tuning improve models’ visualization evaluation capabilities? To answer
this question, we develop VISJUDGE by fine-tuning multiple open-source multimodal architectures
at different parameter scales. In Section 5, we conduct unified evaluation of these fine-tuned models
alongside closed-source and open-source baselines on the same test set.

Training Setup. We use VISJUDGE-BENCH’s human-annotated data with a 70%/10%/20% train/-
validation/test split (2,163/279/648 samples) via stratified sampling to maintain consistent visual-
ization type distribution across all splits. Training data is kept separate from baseline evaluation to
prevent contamination.

Model Training. We fine-tuned four representative open-source multimodal models as base mod-
els: Qwen2.5-VL-7B-Instruct and Qwen2.5-VL-3B-Instruct (Bai et al., 2025), InternVL3-8B (Zhu
et al., 2025), and Llava-v1.6-mistral-7B (Liu et al., 2024). These models span different architectures
and parameter scales (3B to 8B), enabling comprehensive evaluation of our training approach’s
cross-architecture generalization. All models are trained to generate quality scores (1.0-5.0) and ra-
tionales aligned with human expert judgments. We employ reinforcement learning with the GRPO
algorithm (Shao et al., 2024), using a composite reward function combining accuracy reward (mini-
mizing prediction error) and format reward (ensuring structured outputs) (Shi et al., 2025; Wu et al.,
2025). Formal reward definitions are detailed in Appendix D.2. For parameter-efficient fine-tuning,
we adopted Low-Rank Adaptation (LoRA) (Hu et al., 2022). All models were trained using consis-
tent hyperparameter configurations across architectures. Training used 5 epochs with a learning rate
of 1e-5. Detailed configurations are in Appendix D.3.
5 EXPERIMENTS
5.1 EXPERIMENTAL SETTINGS

To evaluate existing MLLMs in visualization quality assessment and validate our VISJUDGE, we
conduct comprehensive experiments on VISJUDGE-BENCH.

Evaluation Setup. We evaluate 12 representative MLLMs: GPT-5, GPT-4o, Claude-4-
Sonnet, Claude-3.5-Sonnet, Gemini-2.0-Flash, Gemini-2.5-Pro, Qwen2.5-VL (3B/7B/32B/72B-
Instruct) (Bai et al., 2025), InternVL3-8B (Zhu et al., 2025), Llava-v1.6-mistral-7B (Liu et al., 2024),
and their corresponding fine-tuned variants, which we collectively refer to as VISJUDGE on a bal-
anced test set of 648 samples (see Appendix A.2.7 for distribution details). Each model provides
1-to-5 scores with justifications based on our evaluation framework. Following human annotation
procedures, we run each model three times and average the results. All inference uses vLLM on
four NVIDIA A6000 (48GB) GPUs with bfloat16 precision and a temperature of 0.8.

Evaluation Metrics. We assess model performance through correlation analysis using the Pear-
son coefficient and error metrics (MAE and MSE) compared to human scores. We also analyze
score distributions to identify systematic biases. Metrics are computed for each sub-dimension and
aggregated across the three main evaluation dimensions.

5.2 EXPERIMENTAL RESULTS AND ANALYSIS

5.2.1 CAN MLLMS ASSESS VISUALIZATION AESTHETICS AND QUALITY LIKE HUMANS?

Table 3 presents a comprehensive performance comparison of 12 representative models including
the latest GPT-5 across our evaluation framework, revealing significant capability differences and
systematic limitations in current MLLMs for visualization assessment.
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Table 3: Overall performance of MLLMs and the VISJUDGE on VISJUDGE-BENCH across different
evaluation metrics and dimensions.

Metric Type Model Overall Fidelity Expressiveness Aesthetics

Readability Insight Design Style Composition Color

MAE (↓)

Closed-
source

Claude-3.5-Sonnet 0.824 0.978 0.904 1.154 0.783 0.940 0.862
Claude-4-Sonnet 0.622 0.841 0.757 0.832 0.679 0.734 0.785
Gemini-2.0-Flash 0.682 0.829 0.912 0.820 0.638 0.729 0.798
Gemini-2.5-Pro 0.662 1.243 0.945 0.900 0.840 0.918 0.980

GPT-4o 0.610 0.988 0.806 0.744 0.609 0.695 0.657
GPT-5 0.553 0.862 0.781 0.778 0.649 0.699 0.682

Open-
source

Qwen2.5-VL-3B-Instruct 0.821 1.085 1.258 1.088 0.723 0.727 0.808
Qwen2.5-VL-7B-Instruct 0.847 1.171 1.296 0.858 0.756 0.812 0.772
Qwen2.5-VL-32B-Instruct 0.703 0.909 0.987 0.801 0.678 0.761 0.719
Qwen2.5-VL-72B-Instruct 0.702 0.999 0.926 0.811 0.663 0.735 0.717

InternVL3-8B 0.793 1.234 1.193 0.870 0.679 0.759 0.753
Llava-v1.6-mistral-7B 0.724 0.929 1.124 0.939 0.801 0.814 0.818

VisJudge
(Ours)

InternVL3-8B 0.541 0.797 0.769 0.691 0.608 0.645 0.616
Llava-v1.6-mistral-7B 0.496 0.767 0.695 0.775 0.643 0.574 0.598

Qwen2.5-VL-3B-Instruct 0.491 0.705 0.721 0.696 0.625 0.571 0.616
Qwen2.5-VL-7B-Instruct 0.421 0.661 0.648 0.677 0.580 0.545 0.604

MSE (↓)

Closed-
source

Claude-3.5-Sonnet 1.009 1.577 1.306 1.989 0.994 1.467 1.198
Claude-4-Sonnet 0.603 1.182 0.973 1.147 0.774 0.934 1.037
Gemini-2.0-Flash 0.720 1.182 1.326 1.120 0.673 0.925 1.057
Gemini-2.5-Pro 0.677 2.291 1.478 1.371 1.112 1.325 1.460

GPT-4o 0.577 1.562 1.063 0.921 0.627 0.823 0.729
GPT-5 0.486 1.219 0.989 0.970 0.720 0.862 0.810

Open-
source

Qwen2.5-VL-3B-Instruct 1.028 1.872 2.400 1.852 0.868 0.903 1.046
Qwen2.5-VL-7B-Instruct 1.045 2.051 2.413 1.177 0.938 1.093 0.996
Qwen2.5-VL-32B-Instruct 0.756 1.361 1.528 1.067 0.728 0.988 0.880
Qwen2.5-VL-72B-Instruct 0.762 1.626 1.373 1.092 0.713 0.932 0.870

InternVL3-8B 0.934 2.240 2.088 1.219 0.747 0.981 0.968
Llava-v1.6-mistral-7B 0.817 1.513 1.960 1.403 1.007 1.071 1.076

VisJudge
(Ours)

InternVL3-8B 0.437 1.068 0.951 0.822 0.638 0.736 0.655
Llava-v1.6-mistral-7B 0.383 0.919 0.752 0.952 0.642 0.541 0.619

Qwen2.5-VL-3B-Instruct 0.377 0.855 0.850 0.822 0.620 0.539 0.603
Qwen2.5-VL-7B-Instruct 0.286 0.747 0.690 0.756 0.545 0.498 0.578

Corr. (↑)

Closed-
source

Claude-3.5-Sonnet 0.395 0.325 0.492 0.365 0.455 0.137 0.259
Claude-4-Sonnet 0.465 0.393 0.550 0.452 0.421 0.163 0.228
Gemini-2.0-Flash 0.395 0.372 0.459 0.417 0.459 0.157 0.209
Gemini-2.5-Pro 0.265 0.178 0.379 0.353 0.445 0.193 0.208

GPT-4o 0.482 0.381 0.539 0.442 0.471 0.277 0.363
GPT-5 0.428 0.255 0.439 0.382 0.463 0.276 0.295

Open-
source

Qwen2.5-VL-3B-Instruct 0.272 0.199 0.222 0.275 0.338 0.130 0.155
Qwen2.5-VL-7B-Instruct 0.341 0.341 0.352 0.281 0.357 0.149 0.155
Qwen2.5-VL-32B-Instruct 0.435 0.348 0.468 0.408 0.449 0.200 0.268
Qwen2.5-VL-72B-Instruct 0.440 0.331 0.479 0.416 0.435 0.165 0.251

InternVL3-8B 0.409 0.323 0.407 0.344 0.419 0.216 0.170
Llava-v1.6-mistral-7B 0.180 0.201 0.137 0.160 0.188 0.064 0.076

VisJudge
(Ours)

InternVL3-8B 0.660 0.533 0.594 0.545 0.499 0.391 0.420
Llava-v1.6-mistral-7B 0.605 0.226 0.536 0.443 0.432 0.406 0.403

Qwen2.5-VL-3B-Instruct 0.648 0.533 0.581 0.579 0.504 0.490 0.402
Qwen2.5-VL-7B-Instruct 0.687 0.574 0.628 0.576 0.568 0.513 0.385

Hierarchical Capability Structure. Current MLLMs exhibit a clear hierarchical performance
structure across evaluation dimensions. Models perform relatively well on “Fidelity” dimensions
(average MAE 1.006), reflecting their fundamental capability in identifying obvious data errors
(e.g., proportion distortions, baseline issues). Within “Expressiveness” dimensions, models show
better performance on Insight Discovery (average MAE 0.883) compared to Semantic Readability
(average MAE 0.991). Most prominently, all models struggle significantly with “Aesthetics” dimen-
sions across all three aesthetic sub-dimensions, with average MAE around 0.755 and correlations of
0.408, 0.177, and 0.220 for Design Style, Composition, and Color respectively, highlighting the in-
herent challenges of subjective aesthetic assessment, which often involves nuanced cultural context
and abstract design principles that are difficult for current models to grasp.

Model-Specific Evaluation Characteristics. Through fine-grained analysis, we identify distinct
“evaluation personalities” across different models. GPT-5 demonstrates balanced performance
across dimensions with consistently competitive scores, particularly excelling in overall accuracy;
GPT-4o shows relative strength in Color Harmony assessment (MAE 0.657), reflecting sensitivity
to color aesthetics; Claude-4-Sonnet excels in Semantic Readability evaluation (MAE 0.757), show-
ing advantages in information communication assessment; while Gemini-2.0-Flash leads in Data
Fidelity (MAE 0.829), indicating focus on data accuracy. Among open-source models, Qwen2.5-
VL-72B-Instruct achieves the best overall performance (MAE 0.702, Corr. 0.440), approaching
commercial model capabilities, while smaller models like Qwen2.5-VL-3B-Instruct and Llava-
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Figure 4: Distribution and bias analysis of MLLM scores. Score distribution density curves showing
the rating patterns of different models compared to human experts on the 1–5 scale.
v1.6-mistral-7B show larger performance gaps. These differentiated capability distributions validate
VISJUDGE-BENCH’s diagnostic value and provide guidance for practical model selection.

Domain-Specific Fine-tuning Effectiveness. Our specialized VISJUDGE achieves superior per-
formance across all core metrics. The best-performing variant based on Qwen2.5-VL-7B-Instruct
reaches an overall MAE of 0.421 and correlation of 0.687. Among commercial models, GPT-5
achieves the best MAE performance (0.553) while GPT-4o reaches the highest correlation (0.482).
Compared to these strong baselines, VISJUDGE demonstrates substantial improvements: 23.9%
MAE reduction over GPT-5 (from 0.553 to 0.421) and 42.5% correlation improvement over GPT-
4o (from 0.482 to 0.687), demonstrating the substantial potential of domain-specific fine-tuning.
Notably, domain-specific fine-tuning consistently reduces MAE across different backbone archi-
tectures, yielding 30–40% error reductions on all three open-source families. Qwen2.5-VL-3B-
Instruct achieves a 40.2% reduction (from 0.821 to 0.491), InternVL3-8B 31.8% (0.793 to 0.541),
and Llava-v1.6-mistral-7B 31.5% (0.724 to 0.496), demonstrating robust generalization of our train-
ing methodology across diverse model families. In subsequent analyses, VISJUDGE refers to this
best-performing variant (Qwen2.5-VL-7B-Instruct based) unless otherwise specified.

5.2.2 DO MLLMS EXHIBIT HUMAN-LIKE SCORING BEHAVIORS?

To analyze systematic biases in model evaluation behavior, we examine score distribution patterns
across representative baseline models. Figure 4 reveals significant bias issues in current MLLMs
compared to human experts (µ = 3.13).

Systematic Biases in Current Models. Most models exhibit score inflation with rightward-shifted
distributions. Qwen2.5-VL-7B-Instruct and Claude-3.5-Sonnet show the most severe inflation
(µ = 3.89 and µ = 3.87), while Gemini-2.0-Flash, GPT-4o, Claude-4-Sonnet, and GPT-5 demon-
strate moderate inflation (µ = 3.64, µ = 3.53, µ = 3.56, and µ = 3.36 respectively). Notably,
GPT-5 shows relatively better control compared to other inflated models. Conversely, Gemini-2.5-
Pro exhibits overly conservative behavior (µ = 3.02). Additionally, models like Qwen2.5-VL-
7B-Instruct, Claude-3.5-Sonnet, and Gemini-2.0-Flash exhibit sharp peaks around 4.0, indicating
excessive score concentration that limits discriminative capability.

Effective Bias Correction through Fine-tuning. Our VISJUDGE achieves near-perfect alignment
with human scoring patterns (µ = 3.11) and maintains a broader, more balanced distribution. This
demonstrates that domain-specific fine-tuning effectively corrects both inflation and concentration
issues, achieving human-like evaluation behaviors.

5.2.3 HOW DOES VISUALIZATION COMPLEXITY AFFECT MODEL PERFORMANCE?

To understand model robustness across varying complexity, we analyze representative baseline mod-
els on three visualization types: single visualizations, multiple visualizations, and dashboards. Fig-
ure 5 shows the main trends.

Performance Degradation with Complexity. All models show consistent performance degrada-
tion: single visualizations > multiple visualizations > dashboards. VISJUDGE achieves the best
performance across all types with correlations of 0.577 (single visualizations), 0.565 (multiple vi-
sualizations), and 0.375 (dashboards), significantly outperforming baselines. This demonstrates the
effectiveness of domain-specific fine-tuning for complex multi-element interactions.

Stability in Complex Scenarios. Baseline models show significant instability in complex sce-
narios. For dashboards, most baselines experience substantial correlation drops, with Claude-3.5-
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Figure 5: Model–Human rating correlation across visualization types.
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Figure 6: Model evaluation examples on low-quality visualizations.
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Figure 7: Case study highlighting the conservative bias of Gemini-2.5-Pro.

Sonnet and GPT-5 even showing negative correlations in Data Fidelity (-0.031 and -0.013), while
VISJUDGE maintains consistency (0.224–0.482). Functional dimensions (Data Fidelity, Semantic
Readability) remain stable across types, but aesthetic dimensions struggle with complex layouts, par-
ticularly Visual Composition in dashboards (most models <0.2). These findings highlight the critical
importance of specialized training for robust visualization evaluation across diverse complexity lev-
els. For detailed error analysis of multi-visualization and dashboard cases, including systematic bias
patterns and failure modes across different models, see Appendix B.6.

5.2.4 HOW DO MODEL EVALUATION BEHAVIORS DIFFER IN PRACTICE?

To qualitatively analyze model evaluation behaviors, we conduct case studies on representative base-
line models to reveal two common biases: “score inflation” and “overly conservative” assessments.

Figure 6 illustrates score inflation on low-quality visualizations. For a chaotic treemap (human
rating: 1.67), baseline models give inflated scores. For instance, Qwen2.5-VL-7B-Instruct (3.67)
praises its “clear legend” while ignoring the confusing layout, and Claude-4-Sonnet (3.08) incor-
rectly highlights “excellent spatial organization”. In contrast, VISJUDGE’s score of 2.00 aligns with
human judgment, correctly identifying the “chaotic layout” that impairs interpretation.

Conversely, Figure 7 highlights the overly conservative bias of Gemini-2.5-Pro. For a high-quality
dashboard rated 4.17 by humans, Gemini-2.5-Pro gives a disproportionately low score of 2.94, fo-
cusing on a single data inconsistency while overlooking the chart’s overall effectiveness. Similarly,
for another chart (human rating: 3.56), it scores only 2.33 due to the use of dual Y-axes. While
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Table 4: MatPlotAgent quality improvement with different feedback models.
Generation Model Direct Decoding Qwen2.5-VL-7B Qwen2.5-VL-72B VISJUDGE

(Baseline) as Feedback as Feedback as Feedback

GPT-5 67.15 66.49 69.80 72.07
GPT-4o 62.71 58.49 63.53 71.62
Gemini-2.5-Pro 68.10 65.04 66.12 72.20
Claude-4-Sonnet 64.50 67.25 65.20 72.23
Claude-3.5-Sonnet 63.89 59.23 63.14 69.04
Qwen2.5-VL-72B-Instruct 61.18 58.70 60.30 67.32
Qwen2.5-VL-7B-Instruct 49.76 45.38 44.94 55.29

other models like GPT-5 and Claude-4-Sonnet provide scores closer to human ratings, VISJUDGE
also demonstrates more balanced evaluations (3.83 and 3.00, respectively). Additional case studies
across different quality levels and comprehensive model error analysis are provided in Appendix B.

5.2.5 CAN VISJUDGE GENERALIZE TO REAL-WORLD APPLICATIONS?

To validate practical generalization, we integrated VISJUDGE into two real-world visualization sys-
tems with significant distribution shifts from our training data (detailed setup in Appendix E.2).

Visualization Generation. VISJUDGE provides feedback to MatPlotAgent (Yang et al., 2024) for
iterative quality improvement. Table 7 shows consistent improvements across seven generation
models (+6.07 points average). Notably, base models without domain fine-tuning often degrade per-
formance (7B: -2.39, 72B: -0.61 average). This degradation stems from their systematic evaluation
biases (Section 5.2): score inflation and poor discriminative capability lead to misleading feedback
that misdirects generation models toward suboptimal outputs. In contrast, VISJUDGE’s accurate
quality assessment consistently improves all generators. Even state-of-the-art models like GPT-5
and Claude-4-Sonnet achieve +4.92 and +7.73 improvements, demonstrating that domain-specific
fine-tuning is essential for providing effective feedback.

Visualization Recommendation. VISJUDGE as a reward model in HAIChart (Xie et al., 2024)
improves recommendation accuracy on VizML dataset: +4.40% (Data Queries Hit@1), +2.50%
(Overall Hit@1), +5.30% (Overall Hit@3). While 7B and 72B base models show minimal to mod-
erate improvements, VISJUDGE achieves consistently larger gains across all metrics, outperforming
both base models and the baseline (detailed results in Appendix E.2). This validates VISJUDGE’s
broad applicability across generation and recommendation tasks.

6 CONCLUSION

This paper constructs VISJUDGE-BENCH and fine-tunes VISJUDGE to validate the effectiveness
of domain-specific training. Our research finds that existing MLLMs (including GPT-5) show sig-
nificant gaps with human experts in visualization evaluation, exhibiting issues like scoring bias.
VISJUDGE effectively mitigates these problems, achieving 23.9% MAE reduction and 60.5% cor-
relation improvement over GPT-5. VISJUDGE-BENCH provides a standardized evaluation platform
for the community, while VISJUDGE’s success demonstrates that domain-specific training is a viable
approach for improving MLLMs’ evaluation capabilities, supporting future work on finer evaluation
and higher-quality visualization generation.

7 LIMITATIONS AND FUTURE WORK

While VISJUDGE-BENCH demonstrates significant value in visualization quality assessment, it has
inherent limitations. The dataset primarily focuses on static visualizations with limited coverage
of dynamic evolution and interactive exploration. Additionally, since samples are mainly col-
lected from the web where raw data is often unavailable, our evaluation framework aligns with
real-world human assessment by primarily relying on visual presentation. Future work includes
expanding dynamic visualization samples with temporal evaluation dimensions, exploring chan-
nels to acquire samples with raw data for more comprehensive data fidelity verification, and in-
vestigating distribution-based evaluation methods to better capture the diversity of human prefer-
ences. To facilitate reproducible research and community development, we will publicly release
VISJUDGE-BENCH along with all annotations, quality control records, and the trained VISJUDGE
model weights. We welcome community contributions to improve benchmark quality and coverage.
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ETHICS STATEMENT

The VisJudge-Bench framework presented in this work aims to improve multimodal large language
models’ capabilities in visualization quality assessment and promote the development of automated
visualization evaluation technology. We believe this work will not produce direct negative social
impacts, but recognize that the framework should be used with caution and ethical oversight when
applied to sensitive domains or potentially harmful models. Although VisJudge-Bench aims to ob-
jectively assess visualization quality, the base models it relies on (such as Qwen2.5-VL-7B) or the
datasets used to construct the benchmark may inadvertently reflect biases. Future work could in-
vestigate the fairness implications of these evaluation features across different populations, cultural
backgrounds, and visualization styles. We particularly focus on the following ethical considerations:
(1) strict compliance with copyright and usage terms during data collection; (2) ensuring fair com-
pensation and voluntary participation for expert annotators; (3) avoiding content that may reinforce
stereotypes or biases in benchmark design; (4) open-source release aimed at promoting community
development rather than commercial monopoly. All research was conducted in strict compliance
with ICLR ethics guidelines.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide comprehensive documentation and resources. The com-
plete VisJudge-Bench construction process is detailed in Appendix A, covering data col-
lection, filtering, and expert annotation protocols. The six-dimensional evaluation frame-
work and VisJudge implementation are described in Appendices C and D, respectively. We
release the complete dataset with 3,090 expert-annotated samples across three categories
(single_vis, multi_vis, dashboard) at https://anonymous.4open.science/
r/visjudgebench_iclr2026-0925, where each sample includes visualization images, six-
dimensional scores, and evaluation prompts. All experimental configurations, evaluation metrics
(MAE, MSE, Pearson, Spearman correlations), and human consistency analysis methods are fully
documented to enable result reproduction.
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LLM USAGE STATEMENT

We used Claude-4-Sonnet for English grammar polishing and consulted Claude-4-Sonnet for sug-
gestions on figure layout and color design. During dataset construction, we used GPT-4o for auto-
mated adaptive question generation and chart metadata extraction. All code was written, reviewed,
and verified by the authors. All prompts contained no private or sensitive data. Large language
models did not provide any novel algorithmic ideas or academic claims; the authors take full re-
sponsibility for the content. Large language models are not authors of this paper.

A DATASET CONSTRUCTION DETAILS AND STATISTICAL ANALYSIS

A.1 DATA COLLECTION AND CONSTRUCTION PIPELINE

To build a large-scale and diverse visualization dataset, we designed and implemented a systematic
web crawling and data filtering pipeline. This process aims to collect a wide range of visualizations
from the web, spanning from poorly designed examples to professional exemplars, while ensuring
that all collected data is of high relevance and quality. The entire pipeline consists of three core
stages: keyword generation, a high-throughput crawling architecture, and multi-stage filtering.

Keyword Generation Strategy. The foundation of our data collection is a meticulously designed
keyword generation strategy to ensure broad coverage across visualization types, quality levels, and
application domains.

• Base Keyword Lexicon: We first established a base lexicon of over 200 professional vi-
sualization terms, such as “professional bar chart design,” “clean line graph visualization,”
and “business intelligence dashboard.”

• Visualization Type Expansion: Building on this, we systematically incorporated over
30 different chart types, covering basic charts (e.g., bar, line, pie charts), advanced visu-
alizations (e.g., Sankey diagrams, treemaps, radar charts), and interactive systems (e.g.,
interactive dashboards, animated charts).

• Quality Modifier Combination: To intentionally capture charts of varying quality lev-
els, we programmatically combined chart types with high-quality modifiers (e.g., “pro-
fessional,” “clean,” “effective,” “well-designed”) and low-quality modifiers (e.g., “poor,”
“confusing,” “cluttered,” “misleading”).

• Domain-Specific Terminology: We also integrated professional terminology from over
20 application domains (e.g., business, finance, healthcare, education) to generate context-
specific search queries, such as “financial dashboard,” “sales performance chart,” and
“COVID cases chart.”

This automated strategy ultimately generated over 2,000 unique, high-quality search keywords, lay-
ing a solid foundation for our large-scale data crawling efforts.

High-Throughput Crawling and Preliminary Filtering To efficiently collect a vast number of
candidate images from the web, we developed a high-throughput crawling architecture based on
Bing Image Search. This architecture utilizes multi-threaded, asynchronous requests to fetch up to
10 pages of search results for each keyword, maximizing data recall. High-resolution image URLs
were reliably extracted by parsing JSON data embedded within the web pages. During the crawling
phase, we implemented an initial round of automated preliminary filtering:

• Size Filtering: We strictly filtered images by size, requiring a minimum width of 400
pixels, a minimum height of 300 pixels, and a total area of at least 150,000 pixels. This
effectively eliminated low-resolution thumbnails and icons.

• Heuristic Content Pre-screening: We conducted a rapid pre-assessment of image con-
tent using programmatic analysis techniques. By employing an edge detection algorithm
(ImageFilter.FIND_EDGES) and color complexity analysis (counting the number of
unique colors), we discarded a significant number of images that were either too sim-
ple (e.g., solid-color backgrounds, blank images) or too complex (e.g., real-world pho-
tographs), as these typically do not represent data visualizations.
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This stage yielded a large-scale preliminary dataset containing tens of thousands of candidate im-
ages, laying the groundwork for subsequent fine-grained refinement.

Fine-Grained Filtering and Hierarchical Classification via Multimodal LLMs To precisely
filter high-quality, relevant visualizations from the preliminary dataset and organize them into a
structured classification, we designed a fine-grained filtering pipeline centered around an MLLM.

• Perceptual Hash Deduplication: Before semantic analysis, we first employed a Percep-
tual Hashing (pHash) algorithm to deduplicate all candidate images. This technique iden-
tifies visually identical or highly similar images, regardless of differences in size, format,
or compression. By setting a strict similarity threshold (Hamming distance < 5), we effec-
tively ensured the diversity of the final dataset and eliminated redundancy.

• Prompt-Based AI Semantic Filtering: We utilized an advanced MLLM (e.g., GPT-4o)
as our core classifier. We engineered a highly restrictive system prompt that defined the
model’s primary task as that of a strict filter rather than a simple classifier. This prompt
compelled the model to adhere to the following top-priority rules:

1. Reject Non-Screenshot Images: Any image appearing to be a photograph, con-
taining tilted perspectives or distortions, or including real-world environments (e.g.,
monitor bezels, keyboards, desks) was immediately classified as non-compliant
(non_visualization).

2. Reject Images with People: Any image containing human figures (including car-
toons) or body parts (e.g., hands, fingers) was strictly filtered out.

3. Reject Work-in-Progress and Development Interfaces: We mandated that only
“finished” visualizations be retained. Any screenshot depicting the visualization cre-
ation process—such as those including software UI elements (menus, toolbars, prop-
erty panels), code editors (like Jupyter Notebooks), or configuration windows—was
also classified as non-compliant.

The full content of this prompt is detailed in the “Prompt Template” box below.
• Hierarchical Content Classification: Only images that passed all the stringent screening

criteria and were identified as “clean, front-facing, person-free visualization screenshots”
proceeded to the classification stage. The model then categorized them into a hierarchical
system based on their structure and function, primarily including: single visualizations,
multiple visualizations, and dashboards.

Prompt Template: Fine-Grained Filtering and Classification via Multimodal LLM

You are a professional data visualization analysis expert. Your core mission is to strictly filter
and accurately classify data visualization images.

WARNING – Highest Priority Principle: Absolutely reject all photographs and any images
containing people.
Your primary duty is to act as a rigorous filter. Before evaluating the content of an image, you
must first assess its form.

• Is it a photograph? If yes, immediately classify as non_visualization.
• Does it contain people? If yes, immediately classify as non_visualization.
• Is it tilted or in perspective? If yes, immediately classify as non_visualization.

Only when an image perfectly meets the standard of a "clean, front-facing, person-free screen-
shot" can you proceed to analyze its content.

Strict Filtering Criteria (Classify as non_visualization if any condition is met):

1. Reject ALL Photographs:
• Characteristic: Reject any image that appears to be taken with a camera rather

than a direct screenshot.
• Clues:

– Tilted Angle/Perspective Distortion: The image is not flat and front-facing.
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– Device Bezels: Physical borders of a laptop, monitor, phone, or tablet are
visible.

– Real-World Environment: Backgrounds like desks, offices, conference rooms,
keyboards, or mice are visible.

– People or Body Parts: Any presence of people, hands, or fingers.
– Reflections or Screen Moire: Reflections of ambient light on the screen.

2. Reject ALL Images with People:
• Characteristic: Absolutely forbidden. Any image containing people in any form

(full body, portrait, cartoon) or body parts (hands, fingers) must be rejected.
3. Reject Marketing/Concept Images:

• Characteristic: Images that look like stock photos, promotional materials, web-
site banners, or stylized concept designs. These often have artistic effects, tilted
perspectives, or non-data elements and are not genuine analytical tool interfaces.

Content Classification Criteria (Applicable only to clean screenshots that pass the above filters):

1. Single Visualization (single_view): A pure, single, complete data chart.
• Ultra-Strict Prerequisites (All must be met):

(a) Pure Chart: The main subject of the image must be the chart itself, with no
external UI elements.

(b) No Editing Controls: It must absolutely not contain any UI elements for
configuring or editing the chart (e.g., toolbars, property panels, formatting
panes, pop-up menus). If such elements are present, it must be classified as
non_visualization.

(c) Front-facing, person-free, non-photograph screenshot.
2. Multiple Visualizations (multi_view): A pure composition of multiple data charts for

analysis.
• Ultra-Strict Prerequisites:

(a) Pure Chart Composition: The image must only contain data charts, with ab-
solutely no other types of elements.

(b) Multiple Charts: It must contain 2 or more independent data charts.
(c) Front-facing, person-free, non-photograph, non-editing interface screenshot.

3. Dashboard (dashboard): An end-user-facing interactive interface for data exploration
and monitoring.

• Ultra-Strict Prerequisites: Must be a front-facing, clean screenshot, absolutely
free of any people or device bezels.

• Core Features:
– Composed of multiple, coordinated data charts and KPI metrics. (A single

chart does not constitute a dashboard).
– Interactive elements are end-user-facing and intended for data consumption

(e.g., filtering, drilling down, switching views), not for chart creation or edit-
ing.

4. Non-Compliant Image (non_visualization): Any image that is not a pure, finished data
visualization product.

• This category serves as a "catch-all" to filter out all visualizations that do not meet
the strict criteria.

• Core Judgment: Is this image showing something "in progress" or is it a "finished
product"? Anything "in progress" is non-compliant.

Decision-Making Process (Strictly Adhered To):

1. Step 1: Check for "Non-Compliant Image" (non_visualization). (This is the highest-
priority filter).
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2. Step 2: Classify the "pure visualization products" that pass the first step.
3. Step 3: Differentiate between Multiple Visualizations and Dashboard.

Return Format: JSON object with the following structure:

{
"category": "Primary category in English (single_view/multi_view/
dashboard/non_visualization)",

"type": "Sub-type in English",
"confidence": "Confidence score (0-100)",
"reasoning": "Provide the core reason for the judgment, e.g., ’The
image is a photograph/contains people/is not front-facing, and is
therefore a non-compliant image.’"

}

This multi-stage pipeline, combining heuristic pre-screening, perceptual hash deduplication, and AI-
driven semantic refinement, enables the fully automated construction of a high-quality, structured
visualization dataset from vast web-scale data. It significantly reduces the manual annotation burden
while ensuring the relevance and quality of the collected data.

A.2 DATASET STATISTICS AND DISTRIBUTION ANALYSIS

A.2.1 OVERALL DATASET STATISTICS AND DISTRIBUTION

VISJUDGE-BENCH consists of 3,090 professionally assessed visualizations covering the full range
of modern visualization design. It was constructed to ensure broad coverage across visualization
types, evaluation dimensions, and quality levels, reflecting practices in business intelligence, aca-
demic research, and data journalism. The collected quality scores approximately follow a normal
distribution (mean = 3.13, std = 0.72, range = 1.00–4.89; see Figure 8a), capturing a broad range
from poor to exemplary designs. Figure 9 presents representative visualization examples across dif-
ferent quality score ranges (from 1–2 to 4–5), showcasing the diversity of visualization types and the
clear quality distinctions captured by our evaluation framework. All samples include complete six-
dimensional annotations, enabling users to study visualization quality holistically as well as across
specific types, subtypes, and evaluation dimensions.

A.2.2 VISUALIZATION TYPE AND SUBTYPE ANALYSIS

Visualization Classification. A hierarchical taxonomy organizes visualizations by structural com-
plexity and functional purpose. It includes three major categories: single visualizations (1,041
samples, 33.7%), multiple visualizations (1,024 samples, 33.1%), and dashboards (1,025 samples,
33.2%). These categories further expand into 22, 5, and 5 subtypes respectively, ensuring represen-
tation from basic charts (e.g., bar, pie, line) to advanced analytical dashboards. This classification
system allows users to study quality differences across visualization types and subtypes. Detailed
information can be found in Table 5, and Figure 8 illustrates the quality score distributions across
these three major categories, revealing distinct distribution patterns for each visualization type.

For the single visualizations (1,041 samples, 22 subtypes), we observe a clear head-tail distribution.
Four basic chart types, bar, pie, line, and area charts—account for 46.1% (480 samples), reflect-
ing their central role in practical visualization design. A second tier of commonly used analytic
charts (e.g., treemap, Sankey, heatmap, scatter, histogram, funnel, bubble) contributes 38.0% (396
samples). The remaining 15.9% (165 samples) consists of more specialized forms, where network
graphs make up about 2.2% and map-based views (choropleth and point maps) around 3.6%, with
the rest spread across other rare, domain-specific encodings. This skewed distribution is in line with
(Borkin et al., 2013) empirical studies of real-world visualization usage.

Reflecting real-world usage patterns, the distribution of our multi visualizations samples (1,024
samples, 5 subtypes) is heavily skewed towards Comparison views, which constitute the majority
(65.4%, 670 samples). Small multiples (19.0%) and coordinated views (9.5%) follow as key pat-
terns, with the remaining 6.1% covering overview–detail layouts and other forms. This composition
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(a) Overall Score Distribution (b) Single Visualization Score Distribution

(c) Multiple Visualization Score Distribution (d) Dashboard Score Distribution

Figure 8: Quality score distributions of the dataset across different visualization categories.

Comprehensive Visualization Evaluation Score：1-2

Comprehensive Visualization Evaluation Score：4-5

Comprehensive Visualization Evaluation Score：2-3

Comprehensive Visualization Evaluation Score：3-4

Figure 9: Representative samples from VISJUDGE-BENCH

aligns with established characterizations (e.g., (Chen et al., 2020)), ensuring our benchmark cap-
tures a representative cross-section of common multi-view configurations.
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Table 5: VISJUDGE-BENCH statistical detailed information.

Vis Type Count Proportion #-Subtype Subtype Details

Single Vis 1,041 33.7% 22

Bar Chart 176 Bubble Chart 29
Pie Chart 129 Choropleth Map 25
Line Chart 100 Radar Chart 24
Area Chart 75 Network Graph 23
Treemap 62 Candlestick Chart 20
Sankey Diagram 61 Gauge Chart 20
Heatmap 55 Box Plot 17
Scatter Plot 49 Point Map 12
Histogram 48 Word Cloud 1
Donut Chart 47 Violin Plot 1
Funnel Chart 45 Other Single View 22

Multi Vis 1,024 33.1% 5
Comparison Views 670 Overview Detail 3
Small Multiples 195 Other Multi View 59
Coordinated Views 97

Dashboard 1,025 33.2% 5
Analytical Dashboard 743 Strategic Dashboard 62
Operational Dashboard 122 Other Dashboard 7
Interactive Dashboard 91

Among the dashboard samples (1,025 samples, 5 subtypes), Analytical dashboards are overwhelm-
ingly dominant, constituting 72.5% (743 samples) of the dataset. The remainder consists of Oper-
ational (11.9%), Interactive (8.9%), and Strategic (6.0%) types, with a negligible fraction (0.7%)
classified as other forms. This distribution, heavily weighted towards analysis and decision oriented
tools, mirrors the real-world prevalence observed in genre analyses by (Sarikaya et al., 2019) and
design surveys by (Bach et al., 2023).

A.2.3 DESIGN STYLE DISTRIBUTION ANALYSIS

From a quantitative perspective, Figure 10 shows the score distribution for the design style dimen-
sion: this dimension has a mean score of 2.97, showing a relatively uniform distribution that indi-
cates the dataset covers diverse design styles ranging from low to high innovation.

To further understand the style diversity in our dataset, we refer to related work on chart de-
sign styles (Borkin et al., 2013; Bateman et al., 2010). Prior research has shown that visualiza-
tion design exhibits different orientations ranging from function-oriented to expression-focused ap-
proaches (Borkin et al., 2013), and that different visual styles can influence the aesthetic perception
and memory effects of visualizations (Bateman et al., 2010). Based on these studies, we conducted
manual inspection of all 3,090 samples in the dataset and identified the following main style cate-
gories: (1) Professional/Standard Style (53.3%), adopting clean and standardized designs commonly
found in business intelligence tools and academic publications, corresponding to function-oriented
design approaches; (2) Creative/Infographic Style (28.4%), demonstrating more creative design ap-
proaches prevalent in data journalism and marketing materials, reflecting expression-focused design
orientations; (3) Minimalist Style (18.3%), following minimalist design principles by reducing vi-
sual elements and using generous whitespace to emphasize data clarity.

We acknowledge that this style classification is coarse-grained and somewhat subjective, as design
style itself is multi-dimensional and context-dependent. A more systematic style classification sys-
tem would require dedicated annotation work, which is beyond the scope of this work. Nevertheless,
this preliminary analysis demonstrates that VisJudge-Bench covers diverse design approaches com-
monly found in real-world practice, ranging from function-oriented standardized designs to visually
engaging creative expressions.

A.2.4 APPLICATION DOMAIN DISTRIBUTION ANALYSIS
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Figure 10: Quality score distributions across six evaluation dimensions.

We annotated the dataset using high-level categories from the IPTC taxonomy ( (Li et al., 2025)).
About 6.2% of samples were grouped as "other" due to limited context. Since the dataset is con-
structed from real-world web sources through our systematic crawling pipeline (see Appendix A.1),
its domain distribution naturally reflects actual visualization demand and usage patterns. The an-
notated subset shows a clear concentration: economy, business and finance (26.3%), science and
technology (20.3%), and labor (15.7%) together account for 62.3% of all labels, aligning with high
practical demand in these fields. A middle tier includes society (6.6%) and domains like lifestyle
and leisure, health, and politics and government (ranging from 2.7% to 4.9%), while topics like
crime, law and justice and religion are rare (<1%). This concentration is even more pronounced in
dashboards, where the top three categories comprise 78.5% of the data, reflecting the dominant role
of business analytics in dashboard applications.

We further analyze the domain co-occurrence matrix to understand how topics are combined within
the same visualization or dashboard. Economy, business and finance plays a central role and most
often appears together with labor, science and technology, and society, reflecting typical themes such
as employment, productivity, and general economic conditions. Science and technology often co-
occurs with health, environment, and education, corresponding to topics such as medical research,
climate and energy, and science education. In addition, politics and government frequently appears
with economy, business and finance and society, while environment is closely linked to both sci-
ence and technology and weather. These co-occurrence patterns show that many visualizations in
our dataset address cross-domain topics rather than a single isolated domain, capturing common
interdisciplinary scenarios in practice.

A.2.5 QUALITY SCORE DISTRIBUTION

Quality Grade Distribution. To examine the overall quality of the dataset, we analyze the distri-
bution of quality scores across different visualization categories. Figure 8 presents the histograms
with fitted density curves, highlighting both the mean and median values for each category. This
analysis allows us to compare quality differences between single visualizations, multiple visualiza-
tions, and dashboards.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Quality Distribution Across Visualization Categories. The overall quality score distribution
(Figure 8a) exhibits a near-normal distribution with scores predominantly ranging from 2.0 to 4.0,
indicating balanced representation of both lower and higher quality samples.

Individual visualization categories show distinct patterns. Single visualizations (Figure 8b) and
multiple visualizations (Figure 8c) exhibit similar quality levels with means of 2.910 and 2.917 re-
spectively, both displaying broad distributions across the quality spectrum. In contrast, dashboards
(Figure 8d) show notably higher scores (mean: 3.555, median: 3.610) with a right-skewed dis-
tribution concentrated in higher quality ranges. This difference reflects that published dashboards
typically undergo more rigorous design review as polished, production-ready tools, while single and
multiple visualizations include more experimental designs with varying execution quality.

Quality Distribution Across Evaluation Dimensions. Figure 10 reveals distinct patterns across
the six evaluation dimensions, which align with our three-tier framework of Fidelity, Expressiveness,
and Aesthetics.

At the Fidelity level, data fidelity (mean: 3.138, median: 3.000) exhibits a balanced near-normal
distribution, indicating varied success in truthful data representation—a fundamental requirement
that shows substantial room for improvement across the dataset.

At the Expressiveness level, both semantic readability (mean: 2.983, median: 3.000) and insight
discovery (mean: 2.983, median: 3.000) center around 3.0 with broad distributions, reflecting the
persistent challenge of effective communication and analytical support. These similar patterns sug-
gest that clarity and insight facilitation remain equally difficult aspects of visualization design.

At the Aesthetics level, we observe a gradient in achievement: color harmony (mean: 3.369, me-
dian: 3.500) and visual composition (mean: 3.314, median: 3.500) show the highest scores with
right-skewed distributions, benefiting from well-established design guidelines and tool support. In
contrast, design style (mean: 2.972, median: 3.000) shows the lowest average with broader spread,
reflecting its subjective nature and the varying emphasis placed on stylistic sophistication versus
functional priorities.

This hierarchical distribution pattern—from foundational data accuracy, through communicative ef-
fectiveness, to aesthetic refinement—ensures that our benchmark evaluates models across the com-
plete spectrum of visualization quality assessment.

A.2.6 LOW-QUALITY SAMPLE DISTRIBUTION AND DESIGN FLAW ANALYSIS

We observe a distinct correlation between visualization granularity and quality stability. The pro-
portion of low-quality samples (score < 2) decreases markedly as complexity increases: from 12.5%
in single views (130/1041), to 9.2% in multi-views (94/1024), and down to just 1.3% in dashboards
(13/1025). A likely driver is: dashboards often represent mature, engineered products, whereas the
single-view dataset contains more exploratory, or structurally complex charts (e.g., network dia-
grams, treemaps, heatmaps) prone to design failures.

Single visualizations. Quality issues in this subset are unevenly distributed, clustering heavily
in complex or less common categories. Five specific categories, Treemaps, Scatter Plots, Net-
work Graphs, Heatmaps, and Pie Charts, collectively accountfor 57.7% of all low-quality instances.
Across dimensions, design style emerges as the primary bottleneck (mean 2.623, 34% low-score
rate), followed by semantic readability (2.831, 31%) and insight discovery (2.779, 32%). Our anal-
ysis reveals that the mechanisms of failure diverge significantly based on chart complexity. For
complex chart types, quality problems are typically multi-dimensional rather than isolated to a sin-
gle criterion. In Candlestick Chart, 55% of such samples fail on at least three dimensions simul-
taneously, as semantic illegibility triggers a chain reaction that degrades data fidelity and insight
discovery. Conversely, standard formats like Bar and Line charts generally maintain robust fidelity
and readability (mean approx 3.000) while suffering primarily from isolated lacks in aesthetic re-
finement rather than fundamental communicative breakdowns.

Multiple visualizations. While Comparison Views have a low-score rate (7.2%), their predom-
inance in the dataset means they contribute over half (51.1%) of all low-quality multi-views. A
critical finding here is the divergence between visual and semantic performance. Visual composi-
tion and color harmony achieve high stability (mean > 3.150, low-score rates < 12%), yet semantic

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 11: Quality score distributions across visulization subtype.

readability and insight discovery lag significantly (mean < 2.700, low-score rates > 33%). This
indicates that the core challenge in multi-view design is not layout or coloring, but semantic integra-
tion—users struggle to bridge information across views. Furthermore, these semantic failures are
strongly coupled with Data Fidelity: in Comparison Views, approximatlly 20% of cases fail on data
fidelity, semantic readability, and insight discovery simultaneously, pointing to a systemic inability
to convey trustworthy information.

Dashboards. Representing the most stable layer, dashboards exhibit high baseline scores, particu-
larly in visual dimensions (visual composition and color harmony mean > 3.650, low-score rates <
3.5%). The few remaining low-quality cases are concentrated in Analytical and Interactive subtypes
(38.5% of total failures). We observe significant error coupling in these high-stakes scenarios: for
instance, 12.1% of Interactive Dashboards suffer from joint failures in data fidelity and semantic
readability and 6.1% of Analytical Dashboards are simultaneously low on semantic readability and
insight discovery. This suggests that dashboard failures are rarely aesthetic but functional, mani-
festing in high-stakes decision-making scenarios as coupled deficits in semantic explanation, metric
summarization, and insight extraction.

To illustrate these design flaw patterns, we provide detailed case studies in Appendix B: Appendix
B.1, B.2, and B.3 present representative cases across high-score (>4), medium-score (2-4), and
low-score (<2) ranges for different visualization types; Appendix B.4 provides typical low-score
examples and problem analyses for the three core dimensions—data fidelity, expressiveness, and
aesthetics. These cases clearly demonstrate common quality issues and failure modes for each visu-
alization type.

A.2.7 TEST SET DISTRIBUTION ANALYSIS

To ensure reliable and comprehensive evaluation of model performance, we partitioned the dataset
into training (70%, 2,163 samples), validation (10%, 279 samples), and test (20%, 648 samples)
sets using stratified sampling based on visualization types. Table 6 presents the detailed distribution
of the test set across visualization types and subtypes, demonstrating that the stratified sampling
successfully maintains proportional representation consistent with the overall dataset.

The test set comprises 231 single visualizations (35.6%), 209 multiple visualizations (32.3%), and
208 dashboards (32.1%), closely mirroring the overall dataset distribution. Within single visual-
izations, the test set covers 20 distinct chart types, ranging from common charts like bar charts
(37 samples) and pie charts (27 samples) to specialized visualizations such as Sankey diagrams (14
samples) and network graphs (5 samples). Multiple visualizations include 135 comparison views,
41 small multiples, and 20 coordinated views, while dashboards predominantly feature analytical
dashboards (150 samples) alongside operational and interactive dashboards. The test set also pre-
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Table 6: Test set statistical detailed information (N=648, 20% of VISJUDGE-BENCH).

Vis Type Count Proportion #-Subtype Subtype Details

Single Vis 231 35.6% 20

Bar Chart 37 Bubble Chart 7
Pie Chart 27 Other Single View 6
Line Chart 21 Choropleth Map 6
Area Chart 15 Radar Chart 6
Treemap 14 Candlestick Chart 5
Sankey Diagram 14 Gauge Chart 5
Heatmap 12 Network Graph 5
Histogram 11 Point Map 4
Scatter Plot 11 Box Plot 4
Donut Chart 11
Funnel Chart 10

Multi Vis 209 32.3% 4 Comparison Views 135 Other Multi View 13
Small Multiples 41
Coordinated Views 20

Dashboard 208 32.1% 5
Analytical Dashboard 150 Other Dashboard 1
Operational Dashboard 25
Interactive Dashboard 19
Strategic Dashboard 13

Total 648 samples

serves domain diversity, covering all major application domains to ensure comprehensive evaluation
across different real-world contexts.

The test set maintains quality score distribution characteristics similar to the full dataset, with a mean
of 3.13 and standard deviation of 0.72, ranging from 1.11 to 4.89. Score distribution across quality
ranges shows 7.4% low-quality samples (1.0–2.0), 31.5% below-average samples (2.0–3.0), 49.5%
above-average samples (3.0–4.0), and 11.6% high-quality samples (4.0–5.0). This balanced distri-
bution ensures comprehensive evaluation across the full quality range, enabling robust assessment
of model performance on both challenging low-quality and high-quality visualizations.

A.3 ANNOTATION PROCESS

A.3.1 ANNOTATOR RECRUITMENT STANDARDS

To ensure high-quality responses and reduce the risk of careless or malicious submissions, we im-
plemented strict screening criteria during the annotator recruitment process.

To maintain annotation quality, we applied the following recruitment criteria:

• Education: Participants were required to have completed at least a Bachelor’s degree.
Preference was given to those with a Master’s, professional, or doctoral degree to ensure
familiarity with analytical and design tasks.

• Approval Rating: Only individuals with a historical approval rate between 97% and 100%
were permitted to participate, reflecting a track record of reliable and consistent task com-
pletion on the platform.

• Approved Projects Count: Annotators were selected from those who had completed be-
tween 100 and 10,000 approved projects, ensuring adequate experience with crowdsourcing
workflows.

• English Language: All participants were required to be native English speakers to guar-
antee accurate comprehension of visualization-related terminology and rubric-based ques-
tions.
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• Occupation Field: We targeted professionals working in relevant domains such as arts,
business, education, finance, STEM, public administration, and product design, to match
the content and context of visual analysis tasks.

• Job Classification: Participants were drawn from white-collar, creative, and IT-related
professions, including developers, designers, analysts, and content creators, all of whom
typically interact with visual content in their daily work.

• Last Project Completed: Annotators were required to have completed a project within the
past 180 days, ensuring recent and active engagement with the platform.

• Age: To maintain a cognitively active and professionally engaged participant pool, we
limited participation to those aged between 20 and 50 years.

• Technical Skills: We prioritized individuals proficient in data science, product design,
front-end development, computer science, and other related technical fields that support
informed and thoughtful visual reasoning.

A.3.2 ANNOTATION TASK DESIGN

Our VISJUDGE-BENCH contains 3,090 visualizations, each requiring evaluation across 6 dimen-
sions. To ensure annotation quality and allow annotators to familiarize themselves with the eval-
uation criteria, we organized the annotations into batches of 15 images per task, with each batch
carefully balanced to include 5 single visualizations, 5 multiple visualizations, and 5 dashboards.
Before starting each task, annotators were presented with detailed explanations of the evaluation
framework, including the meaning and significance of each dimension (Fidelity, Expressiveness,
and Aesthetics), enabling them to quickly understand the task requirements and evaluation stan-
dards. With 6 questions per image, each annotation task comprised 90 questions and typically took
30–60 minutes, depending on annotator familiarity with the criteria and visualization complexity.
Each task was independently annotated by three qualified participants to ensure reliability through
majority voting and enable inter-annotator agreement analysis. Based on an estimated hourly wage
of $10 USD, this process ensured high-quality data collection.

Each visualization is evaluated across six dimensions derived from our “Fidelity, Expressiveness,
and Aesthetics” framework: (1) Data Fidelity, which assesses whether the visual representation
accurately reflects the underlying data; (2) Semantic Readability, which evaluates whether infor-
mation is clearly conveyed; (3) Insight Discovery, which measures whether meaningful patterns
are discoverable; (4) Design Style, which assesses aesthetic innovation and uniqueness; (5) Visual
Composition, which evaluates spatial layout and balance; and (6) Color Harmony, which mea-
sures color coordination and effectiveness. For each dimension, annotators provide ratings on a 1–5
scale, where each rating level is accompanied by clear descriptive criteria to ensure consistent in-
terpretation across annotators (see Appendix C for detailed evaluation questions and scoring criteria
for each dimension).

A.3.3 ANNOTATION INTERFACE AND WORKFLOW

We designed a dedicated crowdsourcing interface to ensure annotators clearly understood the task,
followed a structured workflow, and submitted high-quality responses. Before beginning the eval-
uation, participants were presented with both a brief and an extended task introduction. The short
version stated:

Evaluate 15 data visualizations with 90 simple multiple-choice questions (6 per chart)
covering Fidelity (data accuracy), Expressiveness (information clarity), and Aesthetics
(visual aesthetics). Each question has clear 1–5 rating descriptions to make evaluation
straightforward. Please only participate if you can provide thoughtful responses—we’ve
designed this to be as simple as possible for you!

The extended version was shown in full on the task interface:

Welcome! Thank you for joining our study on data visualization quality. You will evaluate
15 data visualizations with 90 simple multiple-choice questions based on three classical
design principles:
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- Fidelity: Data Fidelity – whether the visual representation accurately reflects the
underlying data.

- Expressiveness: Semantic Readability, Insight Discovery – whether information is
clearly conveyed and meaningful patterns are discoverable.

- Aesthetics: Design Style, Visual Composition, Color Harmony – whether the visu-
alization has aesthetic appeal and professional design quality.

For each chart:

- View the image and its description

- Answer 6 straightforward questions (1 for Fidelity, 2 for Expressiveness, 3 for Aes-
thetics)

- Simply select your rating from 1 (Poor) to 5 (Excellent) – each option has clear
descriptions to guide your choice

We’ve designed this to minimize your effort while ensuring quality feedback. Please take
your time to carefully consider each visualization before making your selections. Please
consider the time commitment carefully and only proceed if you can provide thoughtful,
quality responses. If you’re not ready to participate seriously, feel free to skip this task.
We will check for quality and may reject careless or random responses. Your thoughtful
and careful feedback is important—thank you!

As illustrated in Figure 12, the annotation interface presented one chart at a time, along with a textual
description. Below the visualization, the six evaluation questions were displayed, customized based
on the chart content. To proceed, participants were required to complete all six questions. At the
end of each chart, annotators also rated their overall confidence in their answers and were optionally
allowed to flag any uncertain responses via a free-text input box. This structured flow encouraged
serious participation while enabling us to monitor annotation quality and filter out unreliable data.

A.3.4 CROWDSOURCING QUALITY CONTROL AND CANDIDATE STRATEGY GENERATION

Ensuring the reliability of collected annotations requires a two-stage quality control design.

Stage 1: Crowdsourcing Quality Control. During the crowdsourcing phase, we embedded vali-
dation checks into the annotation interface to identify inattentive or careless responses. Specifically,
a small number of chart-pair questions were designed where the superior or inferior chart was visu-
ally and functionally obvious. For instance, one pair compared a clean and readable pie chart against
an overly cluttered line chart. Annotators failing such checks were highly likely to be engaging in
random or inattentive behavior. These responses were flagged and either discarded or subjected
to further scrutiny, thereby improving the reliability of the collected scores. Figure 13 illustrates
examples of these validation questions.

Stage 2: Candidate Strategy Generation for Expert Review. In the expert adjudication stage, we
further designed a systematic conflict identification and resolution mechanism based on represen-
tative studies in crowdsourcing quality control, statistical outlier detection, and multi-dimensional
evaluation theory (Gadiraju et al., 2015; Rousseeuw & Leroy, 2005; Brennan, 2001). This mecha-
nism provides algorithmic candidate strategies to serve as reference signals for expert review, with-
out replacing expert judgment.

High-Disagreement Sample Identification. The system first calculates the standard deviation of
initial scores for each sample across all three annotators. Samples with standard deviation > 1.0 are
automatically identified as “high-disagreement samples” requiring further algorithmic analysis and
expert attention.

Algorithmic Candidate Strategy Generation. For high-disagreement samples, the system gen-
erates three types of candidate resolution strategies:

• Outlier Removal Strategy: When two annotators’ scores are close (absolute difference
≤ 2.0) but the third annotator’s score differs significantly from both (absolute difference
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> 1.5 from each), the system suggests removing the anomalous score and averaging the
remaining two scores. This strategy addresses cases where one annotator may have misun-
derstood the task or made systematic errors.

• Malicious Scoring Filter Strategy: The system identifies and flags abnormal rating be-
haviors where annotators assign identical scores across all six evaluation dimensions. Such
patterns are statistically unlikely for genuine evaluation and may indicate inattentive or
gaming behavior. Flagged annotations undergo additional scrutiny or removal.

• Sub-dimension Bias Correction Strategy: To address potential systematic biases in spe-
cific evaluation dimensions, the system independently applies a dual-threshold mechanism
(threshold = 2.0) to each of the six evaluation dimensions. When an annotator’s score in
any dimension deviates by more than 2.0 points from the other two annotators’ average, the
system flags this as a potential dimensional bias and suggests score normalization or expert
review.

Strategy Integration and Ranking. All candidate strategies are processed through a score inte-
gration and ranking module that evaluates their statistical validity and consistency with the overall
dataset distribution. The ranked strategies are then presented to the expert team as structured rec-
ommendations, along with confidence scores and rationale explanations.

The four complementary strategies mentioned include: (1) the standard evaluation process, which
provides baseline scores; (2) sub-dimension major deviation detection, which highlights dimen-
sional inconsistencies; (3) malicious or abnormal score filtering, which identifies problematic re-
sponses; and (4) major deviation detection, which flags overall inconsistencies.

Together, these two complementary mechanisms—validation checks during crowdsourcing and can-
didate strategies during expert adjudication—form a multi-layered quality control pipeline, ensuring
that the final dataset reflects trustworthy and rigorously validated quality scores.

A.3.5 EXPERT INTERFACE AND ANNOTATION

To streamline post-crowdsourcing adjudication, we developed an expert review interface that aggre-
gates all 3,090 tasks and presents them in a prioritized queue. Samples are ranked by their score
divergence (σ, the standard deviation across candidate scores), from high to low, enabling experts to
resolve highly contentious cases first.

For each task, the interface displays a chart preview, metadata (type, subtype, and modification
status), and the task description, which provide essential context for assigning a fair and informed
score. The interface also presents per-dimension evaluation scores together with the outputs of the
four candidate strategies—namely the standard evaluation process, sub-dimension major deviation
detection, malicious or abnormal score filtering, and major deviation detection. These auxiliary sig-
nals do not override expert judgment; rather, they support experts in detecting anomalies, validating
consistency, and ultimately determining the most reasonable final score. A screenshot of the expert
review interface is shown in Figure 14.

A.4 ANNOTATION QUALITY ANALYSIS

To validate the reliability and consistency of our annotation process, we conducted comprehensive
quality analysis across multiple dimensions of the collected annotations.

A.4.1 OVERALL ANNOTATION QUALITY ASSESSMENT

Crowd-Crowd MAE Analysis: We used the average rating from all crowd annotators as the base-
line and calculated the MAE between each annotator and this baseline to measure consistency and
noise levels among annotators. Results show that across the three visualization types, the internal
MAE was lowest for dashboards (0.6441), followed by single views (0.6842), and highest for multi-
views (0.6963). This indicates that under our task and experimental settings, annotators provided
more concentrated ratings with higher consistency for dashboards, while showing relatively larger
disagreements for multi-views.
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Crowd-Expert MAE Analysis: We used expert ratings as the gold standard and calculated the MAE
between each crowd annotator and the expert to assess the deviation between crowd annotations
and expert standards. Results showed a consistent pattern: the crowd-expert MAE was lowest for
dashboards (0.5451), slightly higher for single views (0.5534), and highest for multi-views (0.5854),
meaning crowd annotations were closest to expert ratings for dashboards and showed relatively
larger deviations for multi-views.

Notably, the crowd-expert MAE was lower than the corresponding crowd-crowd MAE for all three
visualization types. This indicates that the deviation between each annotator and the expert standard
was actually smaller than the deviations among annotators themselves, suggesting that expert ratings
have good representativeness and can effectively balance different annotator perspectives. For the
1–5 rating scale used in this study, our observed MAE values (crowd-crowd: 0.64–0.70, crowd-
expert: 0.54–0.59) are comparable to acceptable levels reported in prior crowdsourced visualization
studies (Lan & Liu, 2024a) and subjective evaluation task studies (Li et al., 2025), indicating that
annotation quality falls within a reasonable range.

A.4.2 ANNOTATION QUALITY ACROSS ANNOTATOR BACKGROUNDS

Crowdsourcing Platform and Geographic Distribution: Our crowdsourcing experiment was
conducted through CloudResearch, a leading online participant recruitment platform. Since the
CloudResearch platform primarily targets users in the United States and our experiment used En-
glish as the interface language, the majority of participants were from the U.S. In total, 603 partici-
pants were recruited for the annotation tasks. Specifically, the U.S. contributed the most participants
with 535 individuals (88.7%), followed by Canada (30 participants, 5.0%), New Zealand (24 par-
ticipants, 4.0%), the UK (11 participants, 1.8%), Ireland (2 participants, 0.3%), and Australia (1
participant, 0.2%). We acknowledge the limited geographic diversity and discuss this as a limitation
in the paper. Building on the overall MAE analysis, we further grouped annotators by background
information to examine quality and consistency across different backgrounds.

Professional Background Analysis: We divided annotators into professionals and non-
professionals based on whether they work in data visualization or data analysis-related fields, with
professionals accounting for 41% and non-professionals 59%. Results showed that the professional
group had an average within-group MAE of 0.4245, while the non-professional group had 0.4881,
a difference of approximately 0.0637. This indicates that under our task and experimental settings,
the professional group provided more concentrated ratings with slightly higher within-group consis-
tency than the non-professional group.

Educational Background Analysis: We divided annotators into undergraduate, master’s, and doc-
toral groups, accounting for 70%, 23%, and 7% respectively. The undergraduate group had an
average within-group MAE of 0.4825, the master’s group 0.4762, and the doctoral group 0.3944.
Overall, the graduate groups (especially doctoral) showed better within-group consistency than the
undergraduate group, with more concentrated ratings. However, due to the relatively small sample
size of the doctoral group, we take a cautious and conservative approach to interpreting this result in
the paper.

Combining both professional background and education level dimensions, we can draw three main
conclusions. First, MAE levels do differ somewhat across different background groups, with anno-
tators having relevant professional backgrounds and higher education showing certain advantages
in within-group consistency and alignment with expert standards. Second, the magnitude of these
differences is relatively limited overall, and after appropriate quality control measures and result
aggregation, the overall annotation results from non-professional or lower-education annotators still
maintain good reliability. Finally, and most critically, we observed consistent error patterns across all
background subgroups that matched the overall analysis (e.g., relative performance across different
visualization types remained consistent). This indicates that our main conclusions about crowd-
sourced annotation quality and effects under different visualization conditions are relatively robust
across different annotator backgrounds.

A.4.3 EXPERT QUALITY CONTROL IMPACT ANALYSIS

Experts reviewed all 3,090 samples individually. During the review process, approximately 11% of
samples underwent adjustments at the overall evaluation level, with 7% using the Malicious Scor-
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ing Filter Strategy and 4% using the Outlier Removal Strategy—these strategies remove abnormal
ratings before recalculating the base scores. Additionally, 16% of samples used the Sub-dimension
Bias Correction Strategy, removing outlier ratings for certain sub-dimensions with large disagree-
ments, particularly those where the standard deviation exceeded 1. Nearly 73% of samples retained
all original ratings and underwent further expert review based on these ratings. These results demon-
strate that our quality control process is rigorous and reliable, while also indicating that the overall
quality of crowd annotations is high, with the vast majority of samples not requiring quality control
through removal of abnormal ratings.

A.4.4 DIMENSION-SPECIFIC QUALITY ANALYSIS

We further analyzed expert adjustment patterns across different dimensions and found that adjust-
ment frequency is closely related to the objective/subjective characteristics of dimensions.

Overall Adjustment Patterns: Among the 511 samples requiring sub-dimension adjustments, the
most frequently adjusted dimensions were semantic readability (19.20%), data fidelity (18.04%),
and insight discovery (16.79%), which have strong objective characteristics. Semantic readability
concerns whether text and legends are clear and easy to read, data fidelity focuses on whether there
is misleading information or data distortion, and insight discovery examines whether visualizations
effectively convey key information. Because these aspects have relatively clear evaluation standards,
experts tend to apply stricter control over these dimensions to ensure annotation accuracy, resulting
in higher adjustment rates. In contrast, dimensions with lower adjustment frequencies include de-
sign style (17.05%), visual composition (14.73%), and color harmony (14.20%), which involve more
aesthetic judgments with strong subjective characteristics. Different annotators may provide differ-
ent ratings based on personal aesthetic preferences, and these differences often reflect the diverse
perspectives of real user populations. Experts made fewer adjustments to these dimensions, indicat-
ing that our quality control process ensures annotation accuracy while respecting and preserving a
certain degree of subjectivity and diversity, avoiding over-standardization of aesthetic criteria.

Adjustment Characteristics Across Visualization Types: Further analysis by visualization type
revealed different adjustment patterns:

Single View (159 samples, 31.1%): Data fidelity was adjusted most frequently (20.06%), followed by
semantic readability (18.58%), while aesthetics-related dimensions such as color harmony (14.75%),
design style (15.34%), and insight discovery (15.04%) had relatively lower adjustment rates. This
indicates that single views are most sensitive to data truthfulness and semantic interpretation.

Multi-View (153 samples, 29.9%): Semantic readability had the highest adjustment rate (20.46%),
followed by design style (19.02%) and data fidelity (18.73%), while color harmony had the lowest
adjustment rate (11.24%). This suggests that multi-view scenarios show the largest disagreements
in semantic communication and overall design, but relatively fewer color coordination issues.

Dashboard (199 samples, 38.9%): Adjustment rates across dimensions were relatively balanced,
with semantic readability (18.66%), insight discovery (18.20%), and data fidelity (17.05%) slightly
higher, while aesthetic dimensions such as design style (16.82%), color harmony (16.13%), and
visual composition (14.29%) had relatively lower adjustment rates. This indicates that dashboards
show certain disagreements across all dimensions but are overall more balanced.

This finding validates the rationality of our quality control strategy: applying strict control over
objectively verifiable dimensions such as data fidelity, semantic readability, and insight discovery,
while maintaining appropriate tolerance for subjective aesthetic dimensions such as color harmony
and visual composition, thereby achieving a balance between annotation consistency and perspective
diversity. This balance is crucial for building a visualization quality assessment dataset that reflects
the diverse preferences of real users.

In summary, our annotation process produced reliable and consistent evaluation data suitable for
training and evaluating visualization quality assessment models. To facilitate reproducible re-
search and further academic exploration, we will publicly release all annotation data, quality control
records, and related statistical analysis results to enable the research community to verify and extend
our work.
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Five other sub-dimensionss omitted...

... ..
.

Figure 12: Crowdsourcing interface for expert annotation process.
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Validation Check

Figure 13: Examples of validation checks embedded in the crowdsourcing interface.

Some tasks are omitted...

High Score Divergence 
(σ = 1.072)

Figure 14: Expert review interface.
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B CASE STUDIES

B.1 HIGH-SCORE CASE STUDIES: HUMAN-MODEL ALIGNMENT

We define High-Score visualizations as those that achieve strong performance across the three
dimensions of fidelity, expressiveness, and aesthetics. Such visualizations demonstrate professional
design principles and convey information in a manner that is both accurate and visually engaging.

As illustrated in Figure 15, we present a representative high-score case along with the correspond-
ing human ratings and VISJUDGE output. This example demonstrates that, when the visualization
adheres to established best practices, the model’s evaluation is largely consistent with human judg-
ment.

B.2 MEDIUM-SCORE CASE STUDIES: HUMAN-MODEL ALIGNMENT

We define Medium-Score visualizations as those that perform adequately across fidelity, expres-
siveness, and aesthetics, but fall short of excellence in at least one of these dimensions. Such visu-
alizations generally succeed in conveying information correctly and remain interpretable, yet they
may exhibit shortcomings in specific aspects, most often in visual aesthetics or design refinement.

As shown in Figure 16, we present a representative medium-score case, where the visualization
fulfills its communicative purpose but does not achieve high-quality standards in every dimension.

B.3 LOW-SCORE CASE STUDIES: HUMAN-MODEL ALIGNMENT

We define Low-Score visualizations as those that exhibit clear deficiencies across one or more of
the three dimensions of fidelity, expressiveness, and aesthetics. Such visualizations often distort or
obscure the underlying data, employ ineffective or misleading encodings, or suffer from poor design
choices that hinder interpretability.

As illustrated in Figure 17, we present a representative low-score case, where both human ratings
and VISJUDGE outputs highlight significant problems that severely compromise the effectiveness of
the visualization.

B.4 DIMENSION-SPECIFIC CASE STUDIES: VALIDATING EVALUATION CRITERIA

To facilitate a clearer understanding of the three evaluation dimensions—fidelity, expressiveness,
and aesthetics—we provide representative low-score case studies for each dimension. Specifically,
Figure 18 illustrates a case with low fidelity, Figure 19 presents a case with low expressiveness, and
Figure 20 shows a case with low aesthetics. These targeted examples highlight how deficiencies in
individual dimensions manifest in practice and demonstrate that VISJUDGE’s evaluations align with
human ratings along the intended criteria.

B.5 MODEL ERROR ANALYSIS CASES

While evaluating visualizations along the three dimensions of fidelity, expressiveness, and aesthetics,
we observe that certain base models fail to correctly identify the deficiencies of low-quality charts
and consequently assign them undeservedly high scores. To illustrate these issues, we present two
complementary types of error analysis:

• Overview Analysis: Figure 21 provides a high-level overview of typical failure patterns
across different models, summarizing where and how the evaluations deviate from expert
judgment.

• Detailed Case Studies: Figures 22, Figure 23, Figure 24 and Figure 25 present represen-
tative detailed cases, each showing the full output of a model and highlighting the specific
reasons for misalignment with human evaluations.

Together, these analyses reveal both the systematic error modes of existing models and the necessity
of explicitly evaluating visualizations along the dimensions of fidelity, expressiveness, and aesthet-
ics.
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B.6 ERROR ANALYSIS OF MULTI VISUALIZATIONS AND DASHBOARD

Our evaluation identifies a distinct negative correlation between visualization complexity and model
performance. As visualization complexity increases, from single charts to multi-view compositions
and dashboards, the efficacy of current multimodal models notably declines. In the analyzed subset
comprising 139 multi visualization sets and 94 dashboard cases, quality scores on visual composition
and color harmony drop sharply. In dashboards, this degradation extends beyond aesthetic metrics,
significantly impacting in insight discovery and semantic readability. Based on our analysis, we
attribute that degradation is the lack of cross-view visual understanding. The models tend to process
each view as an isolated visualization and rely heavily on local visual cues (e.g., grid alignment
or color consistency) while failing to construct the cross-view semantic connections and analytical
pathways characteristic of human expert interpretation.

Visual Composition and Color Harmony Evaluation. Regarding aesthetic dimensions, the mod-
els exhibit a problematic dual bias. They tend to overestimate layout regularity, assigning high
scores as long as views are arranged in a standard grid with consistent styling, while disregard-
ing redundancy or the absence of meaningful cross-view relationships (see Figure 6, left). For
instance, in the multi visualization subset, this positive bias is widespread: InternVL3, Claude-3.5-
Sonnet, and Qwen2.5-VL rated visual composition higher than human experts in roughly 90% of
the cases (89.2%–92.1%), inflating scores by over 1.1 points on average. This tendency persists
in Dashboards, where Claude-3.5-Sonnet continued to overestimate Color Harmony in 75.5% of
cases, inflating the metric by 1.09 points. Simultaneously, they are overly strict about practical de-
sign trade-offs. The models tend to enforce strict encoding rules, penalizing visualizations that make
necessary compromises, such as minor inconsistencies in color encoding or redundant legends(see
Figure 7, right). Gemini-2.5-Pro, for example, strictly penalized color harmony, underestimating
scores in 44 multi visualization cases and 29 dashboard cases, with negative deviations nearing 1
point. This indicates that models perform surface-level pattern matching rather than comprehending
the functional intent behind design decisions.

Data Fidelity Evaluation. In terms of data fidelity, we find that the models often confuse struc-
tural completeness with content validity. Charts containing only axes and frames, but no actual data
marks, often receive high fidelity scores merely because they adhere to visualization design stan-
dards (Figure 25). This hallucination is pervasive across both open-source and proprietary models.
In the multi visualization subset, Qwen2.5-VL and InternVL3 overestimated data fidelity in 95.0%
and 96.4% of cases, respectively. Proprietary models like GPT-4o and Claude-3.5-Sonnet followed
a similar pattern, inflating fidelity scores in 87.8% of cases with an average increase exceeding 1.50
points. In contrast, simplified schematic views, such as those omitting detailed axis labels to em-
phasize trend comparison, are frequently deemed unreliable by GPT-5 and Gemini-2.5-Pro due to
their deviation from standard forms. This suggests current models prioritize structural conformity
to standard charts over the accurate conveyance of underlying data.

Dashboard Insight Discovery and Semantic Readability Evaluation. In dashboards, we ob-
serve that models tend to equate interface completeness with analytical depth. Dashboards featur-
ing diverse chart types within a unified visual style often receive high insight discovery and se-
mantic readability scores, even when lacking logical coherence or narrative structure (e.g., Figure
19, top). Qwen2.5-VL exhibited the most extreme positive bias in semantic readability, inflating
scores in 90.4% of the Dashboard cases with an average increase of 1.28. Conversely, complex and
information-rich dashboards are frequently unfairly penalized by GPT-5 and Gemini-2.5-Pro, which
misinterpret their high density as “visual clutter” or “data distortion”. GPT-5 underestimated seman-
tic readability in 33 cases (average decrease of 0.78 points), while Gemini-2.5-Pro showed an even
stronger negative bias, lowering scores in 67 cases by an average of 1.15 points. This underscores a
critical limitation: current models lack a robust understanding of narrative logic within visualization
interfaces and struggle to distinguish between visually polished artifacts and functionally effective
analytical tools.
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Human baseline

Fidelity

1. Data Fidelity: 4.50

The bar chart accurately represents the percentage of U.S. adults who read printed book versus 
e-books across the years 2011, 2015, and 2019. The chart uses appropriate baselines and 
consistent encodings.

Data Fidelity

Semantic Readability

Insight Discovery

Design Style

Visual Composition

Color Harmony

Overall Score

4.00

4.50

4.00

4.00

4.00

4.00

4.08 VisJudge Overall Score: 3.92

Expressiveness

2. Semantic Readability: 4.00

The chart is clear about the meaning of the colors and percentages, allowing users to understand 
the information about book reading preferences over the years. 
3. Insight Discovery: 4.00 

The chart effectively shows the higher preference for printed books compared to e-books across 
the years. This is a significant insight with practical value.

Aesthetics 
4. Design Style: 3.00

The design is straightforward, using a basic bar chart format with no unique elements, 
compromising some originality. 
5. Visual Composition: 4.00

The layout is well-executed with appropriately placed elements and balanced proportions, 
enhancing clarity and ease of understanding. 
6. Color Harmony: 4.00

The choice of two shades of blue to represent printed and e-books is well-coordinated, with clear 
distinction highlighting the subject matter.

High-Score Case Single Visualization Chart

Human baseline

Fidelity

1. Data Fidelity: 4.00

The 'Before' and 'After' bar charts have accurate labels and values, clearly representing the data 
on the number of people living with major illnesses by age group. The data appears consistent 
and there are no significant distortions.

Data Fidelity

Semantic Readability

Insight Discovery

Design Style

Visual Composition

Color Harmony

Overall Score

4.00

3.50

4.00

3.50

4.50

3.50

3.83

VisJudge Overall Score: 3.56

Expressiveness

2. Semantic Readability: 3.33

The color encodings for age groups (purple for 20-69 years old, blue for 70 years or older) are 
clear, and the percentage change indicators in the 'After' view are informative, but there might be 
some confusion due to the small font size. 
3. Insight Discovery: 3.33 

The 'Before' and 'After' views allow for the identification of trends in the data, such as the increase 
in the number of people living with major illnesses across age groups from 2010 to 2040. The 
percentage change indicators in the 'After' view further highlight significant growth.

Aesthetics 
4. Design Style: 3.00

The design style is informative with a 'Before' and 'After' comparison, but it does not stand out as 
particularly innovative. The balance between the two views could be improved to ensure the 
overall design style is more cohesive. 
5. Visual Composition: 3.67

The visual composition is reasonable, with well-proportioned 'Before' and 'After' sections. 
However, the visual flow could be improved by enhancing the spacing and alignment between the 
various elements. 
6. Color Harmony: 4.00

The purple and blue color encodings for age groups are appropriate and easy to differentiate. 
The color harmony is consistent across the 'Before' and 'After' sections, ensuring that each age 
group is visually distinct.

Multiple Visualization Charts

Human baseline

Fidelity

1. Data Fidelity: 4.00

The dashboard accurately represents the business data as it provides clear and detailed KPIs with 
appropriate color highlights indicating positive or negative changes. The bar chart shows trends 
over time appropriately, and the gauge indicates percentage values with reasonable accuracy.

Data Fidelity

Semantic Readability

Insight Discovery

Design Style

Visual Composition

Color Harmony

Overall Score

VisJudge Overall Score: 4.00

Expressiveness

2. Semantic Readability: 4.00

The dashboard elements, such as the KPIs and bar graphs, are clear and their meanings are 
understandable within the business context. The % signs and the increase/decrease indicators 
further enhance readability. 
3. Insight Discovery: 4.00 

The dashboard effectively highlights key insights by prominently displaying KPIs and the trends in 
the bar chart. The audience and engagement rate are clearly identified, allowing for business 
decisions.

Aesthetics 
4. Design Style: 4.00

The dark theme with green highlights creates a modern and professional look. However, the 
repeated use of green in different elements could be considered slightly overwhelming. 
5. Visual Composition: 4.00

The spatial arrangement of the components is well-organized, with appropriate proportions and 
spacing. The key performance indicators are easily visible, and the notifications are distinct and 
prominent. 
6. Color Harmony: 4.00

The color scheme of primarily dark green creates a cohesive look and is effective in highlighting 
important elements. However, the use of black for the entire background might be too stark for 
prolonged viewing.

Dashboard

High-Score Case

High-Score Case

4.67

4.67

4.33

4.67

4.33

4.67

4.56

Figure 15: High score cases.
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Human baseline

Data Fidelity

Semantic Readability

Insight Discovery

Design Style

Visual Composition

Color Harmony

Overall Score

4.00

4.00

3.50

2.00

4.00

3.00

3.42

Fidelity

1. Data Fidelity: 3.67

The bars accurately represent the frequency of responses with a clear zero baseline.

VisJudge Overall Score: 3.50

Expressiveness

2. Semantic Readability: 4.33

Bar colors and labels are clear, indicating response categories and their frequency. 
3. Insight Discovery: 3.67

The chart reveals a skewed distribution with 'Good' being the most frequent response, but less 
insight into the total sample size.

Aesthetics 
4. Design Style: 2.00

The design is standard with no unique elements, potentially less engaging or creative. 
5. Visual Composition: 3.33

The layout is orderly with appropriately aligned bars and labels, though there's room for 
improvement in spacing. 
6. Color Harmony: 4.00

A single blue color is not harmonious, potentially overwhelming for the viewer but can be 
improved with additional visual hierarchy.

Medium-Score Case Single Visualization Chart

Human baseline

Fidelity

1. Data Fidelity: 3.67

The bar and line charts in the dashboard display clear data segments, with distinct colors used 
consistently throughout. However, there is no indication of units for the axes, which could obscure 
the scale of data.

Data Fidelity

Semantic Readability

Insight Discovery

Design Style

Visual Composition

Color Harmony

Overall Score

3.33

4.00

4.00

3.67

3.67

4.00

3.78

VisJudge Overall Score: 3.50

Expressiveness

2. Semantic Readability: 3.33

The bar and line charts in the dashboard display clear data segments, with distinct colors used 
consistently throughout. However, there is no indication of units for the axes, which could obscure 
the scale of data. 
3. Insight Discovery: 3.33

The charts provide some insight into trends over time, with a clear trend of increased popular 
days for buying weed and an increase older mothers. However, the data lacks depth due to 
limited charted values.

Aesthetics 
4. Design Style: 3.33

The dashboard follows a simple FiveThirtyEight design style with appropriate graphing elements. 
However, the design style could be more innovative to create a uniquely strong impression. 
5. Visual Composition: 3.33

The layout is organized with a balanced and aligned arrangement of dashboards. There is a 
good use of space to separate each chart, but some more can be done with space handling or 
information density. 
6. Color Harmony: 4.00

The color palette is adequate for distinguishing different data segments, with a good contrast 
between blue, red, green, and yellow. However, the color combinations for line charts lack 
aesthetic depth.

Dashboard

Human baseline

Fidelity

1. Data Fidelity: 3.67

The slices closely match the labeled percentages, though there are slight variations, maintaining 
a fair level of accuracy.

Data Fidelity

Semantic Readability

Insight Discovery

Design Style

Visual Composition

Color Harmony

Overall Score

4.00

4.33

4.00

2.00

4.00

3.33

3.61 VisJudge Overall Score: 3.39

Expressiveness

2. Semantic Readability: 3.67

The labels are clear and provide percentages, which are a standard encoding for pie charts, 
making the data easy to understand. 
3. Insight Discovery: 3.67 

While the pie charts show changes in percentage distribution, it is not always easy to visually 
understand these changes due to the lack of a comparative line or legend, especially for nuclear 
and other sources.

Aesthetics 
4. Design Style: 2.33

The design is simple and functional but lacks innovative elements; the style is straightforward 
without much creativity. 
5. Visual Composition: 4.00

The charts are well-aligned and spaced evenly, with a clear distinction between the two years, 
which aids in comparative analysis. 
6. Color Harmony: 3.00

The colors are distinct, contributing to increased readability, though the palette seems a bit 
monotone and could be improved for a more engaging look.

Multiple Visualization ChartsMedium-Score Case

Medium-Score Case

Figure 16: Medium score cases.
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Human baseline

Fidelity

1. Data Fidelity: 1.00

The chart lacks axis labels and any visible scale along the axes, making it impossible to 
accurately interpret the data based on the provided information.

Data Fidelity

Semantic Readability

Insight Discovery

Design Style

Visual Composition

Color Harmony

Overall Score

1.00

1.33

1.33

2.00

2.00

2.33

1.67 VisJudge Overall Score: 1.89

Expressiveness

2. Semantic Readability: 1.67

The chart uses a single color gradient without any distinguishable markers or legends, making it 
hard to understand the different data series or trends. 
3. Insight Discovery: 1.67

The chart fails to reveal any significant insights or trends due to the lack of axis labels, unclear 
data series representation, and failure to highlight any specific pattern over the time period.

Aesthetics 
4. Design Style: 2.00

The design is ordinary, employs a monochromatic purple gradient without any distinguishing 
features, and the overall look does not offer innovation or originality. 
5. Visual Composition: 2.33

The spatial layout of the stacked areas is somewhat cluttered, as there are overlapping layers 
and no clear distinction between different series, although it isn't the most chaotic layout. 
6. Color Harmony: 2.67

The color scheme of multiple shades of purple does not provide much contrast, making it hard to 
differentiate between the different layers and the exact values each represents.

Low-Score Case Single Visualization Chart

Human baseline

Fidelity

1. Data Fidelity: 1.67

The stacked histogram and box plots are difficult to interpret due to the small size and lack of 
detailed labeling, which makes it hard to understand the exact distribution across the 'attended' 
categories.

Data Fidelity

Semantic Readability

Insight Discovery

Design Style

Visual Composition

Color Harmony

Overall Score

1.00

2.00

1.00

1.00

1.67

1.50

1.36 VisJudge Overall Score: 1.83

Expressiveness

2. Semantic Readability: 2.00

The colors used for the histogram are not distinctly different, which makes it hard for the viewer 
to distinguish between the two categories. The box plots are also somewhat cluttered and lack 
proper labeling, which hinders their readability. 
3. Insight Discovery: 1.00

The synergy between the histogram and box plots is minimal as the viewer cannot easily discern 
meaningful patterns or insights from the visualization due to the cluttered and poorly labeled 
nature.

Aesthetics 
4. Design Style: 1.33

The design style does not show any innovation, using common chart types in a basic layout 
without any unique elements. 
5. Visual Composition: 2.00

The spatial layout is not well organized. The histogram and box plots are separated and have an 
awkward arrangement, making the overall composition look chaotic and unbalanced. 
6. Color Harmony: 3.00

The color choices are somewhat appropriate for the two categories, but the poor legibility and 
sizing make the harmony difficult to achieve across the views.

Multiple Visualization Charts

Human baseline

Fidelity

1. Data Fidelity: 2.00

The scatter plot appears to represent data points reasonably well, but the bar chart may not 
accurately reflect the comparison against a global average as the X-axis seems to depict the 
feature but not the model or the data point itself.

Data Fidelity

Semantic Readability

Insight Discovery

Design Style

Visual Composition

Color Harmony

Overall Score

1.33

1.67

1.67

1.67

1.67

1.67

1.61 VisJudge Overall Score: 2.28

Expressiveness

2. Semantic Readability: 2.33

The meanings of the colors in the scatter plot are unclear without additional labels or legends. 
The dropdowns and color scheme toggle are not clearly explained, which can be confusing. 
3. Insight Discovery: 2.00

Insights are not clearly highlighted. With limited data points and the absence of detailed labels 
for the axes and legend, it's difficult to derive meaningful trends or key data points.

Aesthetics 
4. Design Style: 2.00

The dashboard uses common dropdowns and radio buttons without any unique or innovative 
style. The overall design lacks visual flair. 
5. Visual Composition: 2.33

The layout is somewhat cluttered. The scatter and bar plots are indicated to be beside each other, 
but placement could be improved for better integration. The spacing between the elements could 
be optimized. 
6. Color Harmony: 3.00

The color harmony is somewhat lacking as the use of blue and red could be more balanced in 
terms of their frequency and contrast. It doesn't appear perfectly harmonious.

Dashboard

Low-Score Case

Low-Score Case

Figure 17: Low score cases.
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Human baseline

Data Fidelity

Semantic Readability

Insight Discovery

Design Style

Visual Composition

Color Harmony

Overall Score

1.00

1.33

1.33

2.00

1.33

1.50

1.42 VisJudge Overall Score: 2.50

Expressiveness

2. Semantic Readability: 2.67

The meanings of the colors are basic, but without clear labels or legends, they become less 
distinguishable. 
3. Insight Discovery: 2.33

The chart does not have sufficient details or clarity for users to discover significant insights about 
book sales trends.

Low Fidelity Example Single Visualization Chart

Human baseline

Data Fidelity

Semantic Readability

Insight Discovery

Design Style

Visual Composition

Color Harmony

Overall Score

1.00

1.50

1.50

2.00

3.00

3.50

2.08 VisJudge Overall Score: 2.33

Expressiveness

2. Semantic Readability: 2.00

The histogram and curve symbols are undecipherable without labels, making it challenging to 
understand the chart. 
3. Insight Discovery: 2.67

The lack of axes and labels prevents users from identifying specific trends or anomalies.

Aesthetics 
4. Design Style: 2.67

The gradient color scheme lacks innovation and does not provide a unique design element that 
enhances visual appeal. 
5. Visual Composition: 2.67

The bars and curve are improperly aligned, affecting readability and making it hard to interpret. 
6. Color Harmony: 3.00

The dark background shades slightly overshadow the gradient effect, affecting overall clarity.

Low Fidelity Example Single Visualization Chart

Aesthetics 
4. Design Style: 2.00

The design style is quite ordinary, not innovative and does not stand out. 
5. Visual Composition: 2.67

The bars are reasonably spaced, but the irregular placement of the labels for the years affects 
readability. 
6. Color Harmony: 3.00

The colors, though distinguishable, do not have a harmonious combination and some might be 
perceived as too similar.

Fidelity

1. Data Fidelity: 2.33

The chart has non-zero baselines for bar segments, which may exaggerate differences and make 
exact values hard to read accurately.

Fidelity

1. Data Fidelity: 1.00

Without axes, labels, and titles, it is impossible to confirm the true data values and understand 
the underlying data.

Figure 18: Low fidelity cases.
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Human baseline

Fidelity

1. Data Fidelity: 1.00

The lack of labels or legends makes it impossible to determine the exact data proportions. Its 
relationship to the underlying data is undetermined if these are not provided.

Data Fidelity

Semantic Readability

Insight Discovery

Design Style

Visual Composition

Color Harmony

Overall Score

2.00

1.00

1.00

2.00

3.00

1.30

1.75 VisJudge Overall Score: 1.89

Aesthetics 
4. Design Style: 2.00

The chart uses a standard gray scale with no distinctive features, making it looks ordinary and 
lacking in innovation. 
5. Visual Composition: 3.00

The bars and curve are improperly aligned, affecting readability and making it hard to interpret. 
6. Color Harmony: 2.67

The dark background shades slightly overshadow the gradient effect, affecting overall clarity.

Low Expression Example

Human baseline

Fidelity

1. Data Fidelity: 2.00

The map is stylized and may not accurately represent geographical data, and the indicators are 
not clearly labeled, making it difficult to interpret the underlying data accurately.

Data Fidelity

Semantic Readability

Insight Discovery

Design Style

Visual Composition

Color Harmony

Overall Score

2.00

2.00

2.67

3.00

3.00

2.67

2.56 VisJudge Overall Score: 2.78

Aesthetics 
4. Design Style: 4.00

The design is futuristic and innovative, with a professional aesthetic that conveys a sense of 
advanced technology. 
5. Visual Composition: 3.00

The spatial layout is generally reasonable with an acceptable arrangement, but the many 
elements make it overcrowded and difficult to focus on any single aspect of the visualization. 
6. Color Harmony: 3.67

The color scheme, primarily using deep purples and fiery oranges, is relatively appropriate for a 
professional aesthetic, but the saturation and tone unity are not strong.

Low Expression Example Dashboard

Single Visualization Chart

Expressiveness

2. Semantic Readability: 2.00

The dashboard uses a very complex and cluttered design with many elements, making it difficult 
for users to easily understand the meaning of the map, gauge, and indicators.

3. Insight Discovery: 2.00

The dashboard does not use prominent indicators to highlight key insights, and the overall design 
makes it difficult to quickly discover significant business trends.

Expressiveness

2. Semantic Readability: 1.00

The lack of labels makes it impossible to discern the meanings of the gray shades or make sense 
of the chart without additional information. 
3. Insight Discovery: 1.67

Due to the lack of labels, it is difficult to identify any meaningful insights from the chart. The 
chart is chaotic without labels to provide context.

Figure 19: Low expressiveness cases.
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Human baseline

Fidelity

1. Data Fidelity: 1.67

The scatter plot lacks clear labels and axes, and the geographical maps and heatmaps are not 
described in the text, making it difficult to verify the data fidelity accurately.

Data Fidelity

Semantic Readability

Insight Discovery

Design Style

Visual Composition

Color Harmony

Overall Score

2.00

2.00

2.33

2.00

2.33

1.50

2.03 VisJudge Overall Score: 2.22

Expressiveness

2. Semantic Readability: 2.00

The visual elements are not clearly labeled, and the specific meaning behind the scattered points, 
the color coding of the USA map and the heatmaps, or the patterns on the globe are not 
described.  
3. Insight Discovery: 2.00

Due to the lack of clear labels and the chaotic nature of the views, it is difficult to discover 
insightful information about the relationships between the data represented in the different 
views.

Low Aesthetics Example

Human baseline

Fidelity

1. Data Fidelity: 1.67

The data fidelity is low due to the lack of axis labels, scaled axes, and unclear correspondence 
between the heatmap and the dendrograms.

Data Fidelity

Semantic Readability

Insight Discovery

Design Style

Visual Composition

Color Harmony

Overall Score

2.00

1.33

1.50

1.00

1.00

1.50

1.39

Expressiveness

2. Semantic Readability: 1.67

The semantic readability is poor as the labels are not clear, and there are no annotations 
explaining the heatmap's colors and dendrograms. 
3. Insight Discovery: 1.67

The insight discovery is limited due to the lack of proper labeling and association between the 
heatmap, dendrograms, and histogram, making it difficult to derive meaningful insights.

Low Aesthetics Example Multiple Visualization Charts

Multiple Visualization Charts

VisJudge Overall Score: 1.89

Aesthetics 
4. Design Style: 2.00

The design style is ordinary, as there is no innovation in the combination of elements. The 
heatmap, dendrograms, and histogram are basic and lack a cohesive, novel style. 
5. Visual Composition: 1.67

The visual composition is poor, with chaotic proportions and uneven spacing between the 
heatmap, dendrograms, and histogram, leading to a confusing arrangement. 
6. Color Harmony: 1.00

The color harmony is somewhat appropriate as the red-to-blue gradient is used across the 
heatmap and histogram, but the overall color matching is not well-coordinated.

Aesthetics 
4. Design Style: 2.67

The combination of a scatter plot, map, globe, and heatmaps is somewhat innovative and offers 
a varied view, but the overall design does not seem cohesive or unified. 
5. Visual Composition: 2.67

The arrangement of the views appears somewhat jumbled and unbalanced. The proportions and 
spacing between the views do not create a harmonious whole. 
6. Color Harmony: 2.33

The color choices in the heatmaps and on the globe are somewhat unify, but the color of the 
scatter plot and the lighting of the globe are quite stark and do not achieve a unified tone.

Figure 20: Low aesthetics cases.
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Figure 21: Overview of error cases.
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Human baseline

Data Fidelity

Semantic Readability

Insight Discovery

Design Style

Visual Composition

Color Harmony

Overall Score

2.00

1.67

1.67

1.67

1.67

1.33

1.67 Overall Score: 3.67

Aesthetics 
4. Design Style: 3.67

The chart uses a consistent color scheme and layout, which contributes to a modern and 
identifiable design. However, it does not adopt a highly innovative approach. 
5. Visual Composition: 4.00

The treemaps are satisfactorily , ensuring 
that the overall layout is harmonious and functional. 
6. Color Harmony: 4.00

The use of red and blue creates a contrast that is visually appealing and helps in distinguishing 
different sectors. The color choices are .

arranged with reasonable proportions and spacing

consistent and enhance readability

MODEL ERROR ANALYSIS CASES Qwen2.5-VL-7B-Instruct

Fidelity

1. Data Fidelity: 4.00 

The chart  using color gradients and rectangle sizes to reflect 
the underlying values for different sectors. The legend provides clear information about the color 
scales, enhancing faithfulness.

accurately represents the data

Expression

2. Semantic Readability: 3.33

The usage of color and size variations . 
The legend is also clear, aiding users in understanding the data representations. 
3. Insight Discovery: 3.00

The treemap allows for some basic insights, such as comparing the relative sizes and colors, but 
it's less effective in revealing complex correlations or refining deeper data patterns.

makes the visualization readable and interpretable

✗

✗

✗

✗

✗

Human baseline

Data Fidelity

Semantic Readability

Insight Discovery

Design Style

Visual Composition

Color Harmony

Overall Score

3.00

1.00

1.50

2.00

3.50

3.50

2.42

Overall Score: 3.83

Expression

2. Semantic Readability: 4.00

Positive and negative values are clearly distinguished by teal and red and reinforced by signed 
data labels. The waterfall stepping is understandable from the connectors. However, the absence 
of a legend or explicit annotation explaining color semantics and the generic axis titles slightly 
reduce clarity. 
3. Insight Discovery: 4.00

The chart makes : B provides the largest increase, F the largest decrease, 
and the cumulative peak occurs at C followed by declines. While informative, it does not reveal 
deeper relationships beyond these straightforward observations.

key insights easy to see

Aesthetics 
4. Design Style: 2.00 

The design follows a conventional waterfall template with standard colored bars and labels. 
There are no notable innovative elements or unique stylistic touches beyond basic conventions. 
5. Visual Composition: 4.00

Bars are evenly spaced and properly aligned with clear stepping and adequate margins; labels 
are legible and not cluttered. The layout is orderly and supports reading, though not 
exceptionally refined. 
6. Color Harmony: 4.00 

Teal and red provide clear, balanced contrast for positive and negative contributions without 
causing visual fatigue. The palette is harmonious against the neutral background, though not 
exceptional or nuanced.

MODEL ERROR ANALYSIS CASES GPT-5
Fidelity

1. Data Fidelity: 5.00

The y-axis starts at zero and uses a consistent linear scale suitable for bar magnitudes. Each step 
bar begins at the previous cumulative level with dashed connectors, and data labels match the 
encoded values (e.g., +2000, −1500). There is no aspect-ratio distortion or misleading baseline; 
the cumulative transitions are faithfully rendered.

✗

✗

Figure 22: Qwen2.5-VL-7B–Instruct and GPT-5 error cases.
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Human baseline

Data Fidelity

Semantic Readability

Insight Discovery

Design Style

Visual Composition

Color Harmony

Overall Score

2.00

1.50

1.00

1.67

1.50

3.00

1.58 Overall Score: 3.67

Expression

2. Semantic Readability: 3.00

The meaning is , or data points. However, the lack of 
legend makes precise understanding difficult. 
3. Insight Discovery: 4.00


 like the concentration of people are clearly identifiable in the 
eastern US and some major cities are discernible. This map effectively shows 

.

basically clear in representing population

Obvious population insights
population density 

relative to geography

Aesthetics 
4. Design Style: 3.00 

The design has some innovative elements by using minimalist approach, but overall is pretty 
conventional, presenting a basic scatter plot. 
5. Visual Composition: 4.00

The spatial layout is quite reasonable, as 

. Spacing and balance are generally good. 
6. Color Harmony: 4.00 

The Color choice is relatively coordinated, with a shade of blue that stands out enough to 
highlight data points without causing confusion.

the data points are reflective of actual geography 
and populated areas

MODEL ERROR ANALYSIS CASES Gemini-2.0-Flash

Fidelity

1. Data Fidelity: 4.00

The map appears to have accurate representation with appropriate scaling and no visible 
distortions. The map boundaries align well with the scatter points.

Human baseline

Data Fidelity

Semantic Readability

Insight Discovery

Design Style

Visual Composition

Color Harmony

Overall Score

2.00

1.67

2.00

2.67

3.00

2.67

2.33

Overall Score: 4.39

Expression

2. Semantic Readability: 5.00

The visualization uses universally recognized radar display conventions - white dots for targets, 
concentric circles for distance, and a sweeping green sector for scanning. All elements are 
immediately interpretable without need for explanation. 
3. Insight Discovery: 3.67

The chart effectively reveals the spatial distribution and relative positions of tracked objects. The 
scanning beam helps highlight temporal changes, though with a static image we can't see the 
full dynamic insights.

Aesthetics 
4. Design Style: 4.00 

The design shows strong innovation with its clean, modern interpretation of radar aesthetics. The 
scanning beam effect and grid system are well-executed, though still following established radar 
visualization conventions. 
5. Visual Composition: 5.00

The spatial arrangement is excellent with perfectly concentric circles, evenly spaced radial lines, 
and a well-balanced overall composition. The scanning sector and tracked objects are positioned 
with precise geometric alignment. 
6. Color Harmony: 4.67 

The color scheme uses a carefully controlled palette of dark green background with brighter 
green accents, creating clear visual hierarchy without causing fatigue. The white dots provide 
perfect contrast for tracked objects.

MODEL ERROR ANALYSIS CASES Claude-3.5-Sonnet
Fidelity

1. Data Fidelity: 4.00 

The radar visualization maintains accurate spatial relationships with clearly positioned white 
dots representing tracked objects. The concentric circles and radial lines provide a consistent 
coordinate system for precise position tracking without any apparent distortion.

✗

✗

✗

✗

✗

✗

Figure 23: Gemini-2.0-Flash and Claude-3.5-sonnet error cases.
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Human baseline

Data Fidelity

Semantic Readability

Insight Discovery

Design Style

Visual Composition

Color Harmony

Overall Score

1.50

1.50

2.00

2.50

2.00

1.50

1.83

Overall Score: 2.94

Expression

2. Semantic Readability: 2.00

While the , the visualization lacks essential explanatory 
elements like legends, titles, or axis labels. Users cannot determine what the yellow/blue 
segments represent in the bar chart, what the dots signify on the city map, or what metrics are 
being shown in the heat maps. This severely hampers understanding. 
3. Insight Discovery: 2.33

The multi-view approach has potential for revealing insights across different geographic scales 
and data types, but without proper labeling and legends, users cannot easily extract meaningful 
patterns or understand relationships between the views. The synergistic potential exists but is not 
realized due to lack of context.

visual elements are technically clear

Aesthetics 
4. Design Style: 3.33 

The visualization demonstrates good innovation by combining different chart types (bar chart, 
detailed map, global heat map, choropleth map) in a coordinated multi-view approach. Each 
view uses appropriate visualization techniques for its data type, and the overall style shows 
originality in the multi-scale geographic analysis approach. 
5. Visual Composition: 4.00

The four-panel layout is well-organized with appropriate size proportions for each view type. The 
spacing between panels is adequate, and the arrangement 

. The composition 
effectively utilizes the available space. 
6. Color Harmony: 2.67

While each individual view uses appropriate color schemes for its purpose, the overall color 
coordination across views could be better. The yellow-blue, blue dots, red-orange, and pink 
schemes don't create a strongly unified visual tone, though they don't clash severely either. More 
coordination would enhance the overall aesthetic unity.

creates a logical flow from 
temporal data (bar chart) to increasingly detailed geographic views

MODEL ERROR ANALYSIS CASES Claude-4-Sonnet
Fidelity

1. Data Fidelity: 3.33 

The visualization appears to maintain data fidelity across all four views. The bar chart uses 

, the maps appear to use standard projections, and the color encodings 
seem consistent within each view. However, without legends or clear labels, it's difficult to verify 
complete consistency across views, preventing a perfect score.

proper zero baselines

Human baseline

Data Fidelity

Semantic Readability

Insight Discovery

Design Style

Visual Composition

Color Harmony

Overall Score

3.00

2.00

1.50

1.00

3.50

2.50

2.25 Overall Score: 3.56

Expression

2. Semantic Readability: 3.00

While most chart elements are clear, users might find the purpose and scale of the error bars 
requiring additional context to fully understand their significance. 
3. Insight Discovery: 3.67

The chart allows users to identify a clear upward trend, and the error bars provide insight into 
data variability, offering significant and practical insights.

Aesthetics 
4. Design Style: 2.00 

The design is quite standard for a bar chart, with blue bars and black error bars, lacking 
innovative elements that would distinguish it from conventional designs. 
5. Visual Composition: 4.00

The spatial layout is well-organized with appropriate spacing and alignment of bars and error 
bars, contributing to overall readability of the chart. 
6. Color Harmony: 3.67 

The color scheme is basic yet effective, with blue bars and black error bars providing sufficient 
contrast, but lacking in vibrancy or uniqueness.

MODEL ERROR ANALYSIS CASES GPT-4o

Fidelity

1. Data Fidelity: 5.00 

The chart accurately represents the data with a clear zero baseline and appropriate error bars, 
reflecting data variability precisely. The axes are correctly labeled, ensuring fidelity to the 
underlying data.

✗

✗

✗

✗

✗

Figure 24: Claude-4-sonnet and GPT-4o error cases.
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Human baseline

Data Fidelity

Semantic Readability

Insight Discovery

Design Style

Visual Composition

Color Harmony

Overall Score

1.00

1.00

1.00

2.00

3.00

3.00

1.83

Overall Score: 3.89

Expression

2. Semantic Readability: 4.00

The meaning of the visual elements (X-axis, Y-axis, grid lines) is very clear due to standard 
conventions. Users with basic mathematical knowledge can immediately understand the structure 
and its potential use for plotting 2D data. However, it falls short of a perfect score because it lacks 
any title, numerical labels, or context, which would provide more detailed explanation and 
remove any potential ambiguity for a novice user. The purpose is broadly inferable but not 
explicitly detailed. 
3. Insight Discovery: 3.33

Although the grids are empty and thus offer no direct insights, the structure itself has high 
potential. The use of a 2x2 small multiples layout with identical, perfectly aligned grids is a 
powerful design pattern for comparative analysis. If different datasets or scenarios were plotted 
on each grid, this uniform framework would make it easy for a user to compare them and 
discover patterns, trends, or anomalies. The potential for clear insight discovery is therefore high.

Aesthetics 
4. Design Style: 1.00 

The design is completely standard and conventional. It is a basic, unadorned representation of a 
Cartesian coordinate system, replicated four times. There are no unique stylistic elements, 
innovative treatments, or any attempt at originality. It is a purely functional template that 
adheres strictly to the most common and generic form, thus scoring the lowest for design style 
and innovation. 
5. Visual Composition: 5.00

The visual composition is excellent. The four grids are arranged in a perfectly symmetrical 2x2 
layout. The spacing (gutters) between the grids appears uniform, and the alignment is precise 
both horizontally and vertically. This creates a highly ordered, balanced, and visually harmonious 
presentation that is easy to scan and aesthetically pleasing. 
6. Color Harmony: 5.00 

The color choices are highly effective and harmonious. The use of black for the primary axes 
creates strong, clear structural lines. The muted, desaturated blue for the secondary grid lines 
allows them to serve as a guide without visually competing with data that might be plotted. This 
creates a clear visual hierarchy. The palette is minimalist, professional, and consistent across all 
four views, resulting in excellent unity and readability.

MODEL ERROR ANALYSIS CASES Gemini-2.5-ProFidelity

1. Data Fidelity: 5.00 

The visualization consists of four identical Cartesian grids that are perfectly formed. The X and Y 
axes are clearly labeled and consistently oriented across all four views. The grid lines imply a 
uniform and consistent scale, both within each grid and between the grids. There is no warping, 
distortion, or error in the representation of these coordinate systems. This represents a highly 
faithful template for plotting data.

✗

✗

✗

✗

Figure 25: Gemini-2.5-Pro error case.
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C EVALUATION FRAMEWORK AND CRITERIA

C.1 DETAILED EVALUATION QUESTIONS AND SCORING CRITERIA

This appendix provides comprehensive details on the evaluation framework underlying VISJUDGE-
BENCH, including specific evaluation questions and scoring criteria for each visualization type and
evaluation dimension.

Evaluation Framework Overview Our evaluation framework is inspired by the classical Fidelity,
Expressiveness, and Aesthetics principles, operationalized into six orthogonal sub-dimensions:

• Fidelity:
– Data Fidelity: Evaluating visual-level data presentation accuracy and detecting mis-

leading design patterns.
• Expressiveness:

– Semantic Readability: Clarity of information communication.
– Insight Discovery: Effectiveness in revealing meaningful patterns.

• Aesthetics:
– Design Style: Innovation and uniqueness.
– Visual Composition: Spatial layout and organization.
– Color Harmony: Color coordination and visual appeal.

To support context-aware evaluation tailored to specific visualizations, we design a evaluation ques-
tions and scoring criteria rewriting prompt template that transforms generic evaluation criteria
into more concrete versions. An example rewriting is shown in Figure 26, which illustrates a set
of customized sub-dimension evaluation questions and scoring criteria tailored to a specific single
visualization chart.

This rewriting process incorporates: sub_dimension_name (the sub-dimension name under
three classical principles), sub_dimension_text (the standard evaluation question and scor-
ing criteria definitions). The resulting prompt enables the generation of chart metadata and adapted
evaluation rubrics that are grounded in the specific context of the visualization being evaluated.

Prompt Template: Evaluation Questions and Scoring Criteria Rewriting

You are a professional data visualization evaluation expert. You need to generate targeted evalu-
ation questions and specific scoring criteria for each metric based on the provided visualization
chart and {sub_dimension_name} evaluation metrics.

{sub_dimension_name} evaluation metrics information:
{sub_dimension_text}

Task Requirements:
1. Carefully observe the provided {image_type} type visualization chart
2. Based on the specific content of the chart (such as chart type, data content, visual elements,

design features, etc.)
3. Combine the requirements and scoring criteria of each evaluation metric above
4. For each metric, generate:

• A specific, targeted evaluation question
• Custom scoring criteria (1–5 scale) that is specifically adapted to this chart’s features

Question Format Requirements:
• Questions should clearly point out specific features of the chart (e.g., “This bar chart

uses blue and red contrast...”)
• Questions should relate to the core points of the evaluation metric
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       {"questions":{

        " ": {

            "question": " ",

            "custom_scoring": {

              

}},

        " ": {

            "question": " ",

            "custom_scoring": {

              

}},

        " ": {

            "question": " ",

            "custom_scoring": {

              

}},

        " ": {

            "question": " ",

            "custom_scoring": {

             

}},

        " ": {

            "question": " ",

            "custom_scoring": {

              

}},

        " ": {

            "question": " ",

            "custom_scoring": {

              

}}}}

data_fidelity
Does this horizontal stacked bar chart accurately represent the data with appropriate axes, scales, and labels without any distortion or missing elements?

"1": "Severe misrepresentation, such as missing axes or labels, or misleading scales that make it impossible to judge the data accurately.",

              "2": "Important issues like missing or inappropriate percentage labels or axis scales that could mislead the viewer.",

              "3": "Basically acceptable with minor uncertainties such as slightly unclear tick marks or minor label readability issues.",

              "4": "Accurate representation with appropriate scales and labels, and no visible distortion.",

              "5": "Highly faithful representation with clear and accurate axes, scales, and labels, ensuring precise data interpretation."

Are the meanings of the colors and labels in this chart clear and easy to understand, allowing users to accurately grasp the data distribution?

"1": "Chart element meanings are completely unclear, and users cannot understand what the colors or labels represent.",

              "2": "Meanings are vague and unclear, with insufficient explanations, causing difficulty in understanding the data categories.",

              "3": "Meanings are basically clear, but there might be some confusion about the color shades or label interpretation.",

              "4": "Meanings are clear and definite, with appropriate explanations for the visual encoding and labels.",

              "5": "Meanings are completely clear, with detailed and accurate explanations, allowing users to fully understand the chart without any barriers."

Does this horizontal stacked bar chart facilitate the easy identification of significant data insights, such as trends or patterns in chart type usage frequency?

"1": "Completely unable to provide any valuable insights, with a chaotic presentation that fails to highlight any significant patterns.",

              "2": "Difficult to identify meaningful insights, with most information being trivial or obvious.",

              "3": "Some basic data patterns or trends are identifiable, but the insights' significance is average.",

              "4": "Clear identification of useful data insights and trends with practical significance.",

              "5": "Profound and significant data insights are intuitively revealed, highlighting key patterns with important guiding value."

Does this chart with its use of gradient blues introduce any innovative or unique design elements that make it stand out from typical charts of this kind?

 "1": "The chart design is highly conventional with no unique elements, resembling many typical stacked bar charts without any distinct features.",

              "2": "The chart design is somewhat standard, with minor attempts at uniqueness that do not significantly differentiate it from common designs.",

              "3": "The chart includes some innovative elements such as color gradient usage, but overall maintains a conventional layout typical of stacked bar charts.",

              "4": "The chart exhibits a unique style with the use of color gradients and layout, providing a fresh take on stacked bar charts.",

              "5": "The chart design is highly innovative, incorporating novel elements and a distinctive style that clearly sets it apart from standard visualizations."

How well does the spatial layout of elements in this stacked bar chart facilitate an orderly and comprehensible presentation?

"1": "The spatial layout is chaotic with misaligned bars and poorly placed legend, making comprehension difficult.",

              "2": "The spatial layout has clear issues, with some misaligned elements and suboptimal legend placement affecting readability.",

              "3": "The spatial layout is mostly reasonable, with acceptable alignment and legend placement, though some minor improvements could be made.",

              "4": "The spatial layout is well-organized with appropriately aligned elements and a clearly placed legend, ensuring readability.",

              "5": "The spatial layout is exemplary, with perfectly aligned bars and a well-integrated legend, maximizing clarity and space efficiency."

Evaluate the harmony of blue gradient color used to differentiate frequency categories. Does the color prevent visual fatigue while guiding understanding?

"1": "The color scheme is chaotic with poorly chosen contrasting blues, causing significant visual fatigue and confusion.",

              "2": "The color scheme lacks sufficient harmony, with too many similar blues causing some visual fatigue and hindering category distinction.",

              "3": "The color scheme is mostly harmonious, though the range of blues might cause slight complexity and minor comprehension issues.",

              "4": "The color scheme is harmonious with a well-chosen gradient, effectively differentiating categories and minimizing visual confusion.",

              "5": "The color scheme is perfectly harmonious, with a limited, well-contrasted gradient that completely avoids visual fatigue and enhances comprehension."

semantic_readability

insight_discovery

design_style

visual_composition

color_harmony

{"chart_description": "

", 

    "key_elements": [" ", "

", " ", "
", " "] }

This is a horizontal stacked bar chart representing how 
often different chart types are used in reports. It uses different shades of blue to 
indicate frequency categories from 'Very often' to 'Never'. The chart includes a 
legend at the top to decode the colors.

Horizontal stacked bar chart Shades of blue for different 
frequencies Legend indicating frequency categories Percentage axis from 0% 
to 100% Labels for each chart type

Generated Customized Questions

Chart Metadata 

Aesthetics

Expressiveness

Fidelity

chart metadata extraction

question rewriting

How often do you use these charts to 

visualize data in your report?

Figure 26: Rewriting result of customized evaluation questions and scoring criteria for a single
visualization chart.

• Questions should guide evaluators to think about the specific performance of that met-
ric

• Questions should end with: “Please provide a 1–5 score based on the scoring criteria.”

Scoring Criteria Format Requirements:
• For each question, provide a custom 1–5 rating scale
• Each score description should specifically reference elements in this chart
• Score 1 should describe the worst-case scenario for this chart
• Score 5 should describe the ideal implementation for this chart
• Scores 2–4 should provide meaningful intermediate levels

Return Format: JSON object with the following structure:

{
"chart_description": "Brief description of the chart (chart type,
main features, etc.)",

"key_elements": ["Observed element 1", "Observed element 2", "..."],
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"questions": {
"sub_dimension_name": {
"question": "Specific question text...",
"custom_scoring": {
"1": "Score 1 description specific to this chart...",
"2": "Score 2 description...",
"3": "Score 3 description...",
"4": "Score 4 description...",
"5": "Score 5 description..."

}
},
...

}
}

C.1.1 SINGLE VISUALIZATION EVALUATION CRITERIA

Data fidelity evaluation questions and scoring criteria: The following prompt is designed to
guide the generation of scoring rubrics for the Data Fidelity dimension, using a 1–5 scale. It focuses
on ensuring that visual representations truthfully and accurately reflect the underlying data.

Prompt: Single Visualization - Data Fidelity Evaluation Questions and Scoring Criteria
(1-5 Scale)

Description:
Evaluates whether the visual encodings faithfully represent the data without misleading distor-
tions. Focus on: appropriate axes and baselines (e.g., zero baseline for bar charts), reasonable
scale ranges and tick intervals, consistency between encodings (position/length/angle/area/-
color) and numeric labels, and absence of aspect-ratio deformation, cropping/stretching, 3D
distortion, or improper broken axes.

Scoring criteria:
S 1. Severe misrepresentation or impossible to judge due to missing/unreadable key ele-

ments (titles, legends, axes/ticks/labels, units, data labels, baselines, etc.), or clear dis-
tortions (e.g., non-zero baseline in bars exaggerating differences, 3D effects causing
misread, obvious aspect-ratio deformation).

S 2. Important issues likely to mislead: inappropriate baseline/scale range, inconsistent en-
coding vs labels, selective ranges that exaggerate differences, or partial key elements
missing causing notable uncertainty.

S 3. Basically acceptable with minor uncertainties: some elements may be missing or hard
to read but no obvious distortion; scales and encodings are mostly reasonable and
roughly consistent with labels.

S 4. Accurate and standardized: axes/baselines are appropriate, scale ranges and ticks
are reasonable, encodings match labels, and no visible distortion or manipulation is
present.

S 5. Highly faithful representation: all relevant elements are present and clear; axes/base-
lines and scale choices are well-justified (e.g., proper zero baseline for bars, appro-
priate linear/log choice), encodings and labels are fully consistent, with no cropping,
deformation, or 3D misuse.

Semantic readability evaluation questions and scoring criteria: The following prompt guides
the generation of scoring rubrics for the Semantic Readability dimension. It evaluates how clearly
the chart communicates information through its visual encodings and annotations.
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Prompt: Single Visualization - Semantic Readability Evaluation Questions and Scoring
Criteria (1-5 Scale)

Description:
Based on complete and clear chart elements, evaluates whether users can understand the mean-
ing of these elements and the information the chart conveys, including clarity of visual encoding
(whether meanings of colors, shapes, sizes are clear) and clarity of information communication
(whether users can accurately understand chart content).

Scoring criteria:
S 1. Chart element meanings are completely unclear, cannot understand what visual encod-

ing represents, users cannot obtain meaningful information.
S 2. Chart element meanings are vague and unclear, insufficient visual encoding explana-

tions, users have difficulty understanding and need extensive guessing to understand
chart content.

S 3. Chart element meanings are basically clear, users can understand main information,
but still have understanding barriers in some encoding or labeling aspects.

S 4. Chart element meanings are clear and definite, visual encoding has appropriate expla-
nations, users can smoothly understand the information conveyed by the chart.

S 5. Chart element meanings are completely clear, visual encoding explanations are de-
tailed and accurate, users can understand all chart information without any barriers.

Insight discovery evaluation questions and scoring criteria: The following prompt guides the
generation of scoring rubrics for the Insight Discovery dimension. It assesses the chart’s ability to
reveal meaningful patterns, trends, or non-obvious findings.

Prompt: Single Visualization - Insight Discovery Evaluation Questions and Scoring Cri-
teria (1-5 Scale)

Description:
Evaluates whether the chart can easily identify significant and meaningful data insights, trends,
patterns, or anomalies that must have actual value and guiding significance for users, rather than
trivial or obvious general information.

Scoring criteria:
S 1. Completely unable to provide any valuable insights, chaotic information presentation,

no significant or meaningful discoveries, insight delivery completely failed.
S 2. Difficult to identify meaningful insights, most presented information is trivial or obvi-

ous, lacking practical value, insight discovery difficult.
S 3. Can identify some basic data patterns or trends, but the significance and practicality of

insights are average, with limited guiding value for users.
S 4. Can clearly identify obvious and useful data insights and trends, discovered patterns or

anomalies have certain practical significance and reference value.
S 5. Very intuitively reveals profound and highly significant data insights, can discover

significant trend changes, important anomalies, or key patterns that have important
guiding value for decision-making or understanding.

Design style evaluation questions and scoring criteria: The following prompt guides the gen-
eration of scoring rubrics for the Design Style dimension. It reflects the level of visual creativity,
uniqueness, and design innovation present in the chart.
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Prompt: Single Visualization - Design Style Evaluation Questions and Scoring Criteria
(1-5 Scale)

Description:
Evaluates whether the chart design has innovation and uniqueness, whether it can stand out from
many visualization works through novel design elements and unique style characteristics.

Scoring criteria:
S 1. Design completely lacks innovation, style is outdated or shows obvious imitation, no

uniqueness or originality.
S 2. Design lacks innovation, style is quite ordinary, basically uses common design tech-

niques, insufficient uniqueness.
S 3. Design has some innovative elements, but overall is relatively conventional, uniqueness

not prominent enough, innovation level is average.
S 4. Design has strong innovation, style is quite unique, has novel design elements, with

certain originality.
S 5. Design is extremely innovative, style is unique and novel, uses innovative design ele-

ments or expression techniques, with strong originality and recognizability.

Visual composition evaluation questions and scoring criteria: The following prompt guides the
generation of scoring rubrics for the Visual Composition dimension. It focuses on the spatial ar-
rangement and organization of visual elements for effective communication.

Prompt: Single Visualization - Visual Composition Evaluation Questions and Scoring Cri-
teria (1-5 Scale)

Description:
Evaluates whether the spatial layout of chart elements is reasonable, including whether element
positions, size proportions, spacing distribution and other spatial relationships are appropriately
and orderly arranged.

Scoring criteria:
S 1. Spatial layout is seriously unreasonable, element positions are chaotic, proportions

severely unbalanced, spacing distribution is disorderly.
S 2. Spatial layout has obvious unreasonable aspects, improper element positions, unbal-

anced proportions, uneven spacing distribution.
S 3. Spatial layout is basically reasonable, element positions are acceptable, proportional

relationships are basically coordinated, but may have small layout issues.
S 4. Spatial layout is quite reasonable, element positions are appropriate, good proportional

relationships, reasonable spacing distribution, proper space utilization.
S 5. Spatial layout is very reasonable, element positions are perfect, proportions are coor-

dinated, spacing distribution is even, space utilization efficiency is extremely high.

Color harmony evaluation questions and scoring criteria: The following prompt guides the gen-
eration of scoring rubrics for the Color Harmony dimension. It evaluates how effectively the color
scheme supports readability, aesthetic appeal, and visual coherence.

Prompt: Single Visualization - Color Harmony Evaluation Questions and Scoring Criteria
(1-5 Scale)

Description:
Evaluates whether chart color choices are coordinated, contrast is appropriate, color quantity is
reasonable, and whether it avoids too many colors causing visual fatigue.
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Scoring criteria:
S 1. Color choices are chaotic, extensive use of uncoordinated colors, serious visual fatigue,

completely unable to effectively guide user understanding, color use severely affects
information delivery.

S 2. Color choices are not coordinated enough, using too many colors (5 or more), inappro-
priate contrast, causing obvious visual fatigue and understanding difficulties.

S 3. Color choices are basically coordinated, but color quantity is excessive (4-5 colors),
may cause slight visual complexity, somewhat affecting understanding.

S 4. Color choices are relatively coordinated, appropriate contrast, reasonable color quan-
tity control (3-4 colors), basically avoiding visual confusion, well guiding user under-
standing.

S 5. Color choices are very coordinated, appropriate contrast, limited color scheme (usually
1-3 main colors), colors are simple and unified, completely avoiding visual fatigue,
effectively maintaining user attention focus.

C.1.2 MULTIPLE VISUALIZATION EVALUATION CRITERIA

Data fidelity evaluation questions and scoring criteria: The following prompt is designed to
guide the generation of scoring rubrics for the Data Fidelity dimension, using a 1–5 scale. It focuses
on ensuring that visual representations truthfully and accurately reflect the underlying data.

Prompt: Multiple Visualization - Data Fidelity Evaluation Questions and Scoring Criteria
(1-5 Scale)

Description:
Evaluates whether multiple coordinated views faithfully represent data without distortion indi-
vidually and in combination. Check appropriate axes/baselines, reasonable scale ranges, consis-
tency between encodings and labels, and cross-view consistency (e.g., comparable scales where
appropriate), avoiding aspect-ratio deformation, cropping, 3D misuse, or improper broken axes.

Scoring criteria:
S 1. Severe misrepresentation or impossible to judge due to missing/unreadable key ele-

ments in one or more views, or clear distortions (non-zero bar baseline where required,
3D effects, obvious deformation), leading to unreliable reading.

S 2. Important issues exist in one or more views (inappropriate baseline/scale, inconsistent
encoding vs labels, selective ranges), or partial key elements missing causing notable
cross-view uncertainty.

S 3. Basically acceptable overall: minor uncertainties or small issues in some views, but no
obvious distortion; scales and encodings are mostly reasonable across views.

S 4. Accurate and standardized across views: appropriate axes/baselines and scales; encod-
ings match labels; no visible distortion; reasonable cross-view scale alignment where
needed.

S 5. Highly faithful multi-vis representation: all views present complete, clear elements;
well-justified axes/baselines and scale choices; full consistency between encodings
and labels; no cropping/deformation/3D misuse; coherent cross-view comparability.

Semantic readability evaluation questions and scoring criteria: The following prompt guides
the generation of scoring rubrics for the Semantic Readability dimension. It evaluates how clearly
the chart communicates information through its visual encodings and annotations.
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Prompt: Multiple Visualization - Semantic Readability Evaluation Questions and Scoring
Criteria (1-5 Scale)

Description:
Based on complete and clear chart elements, evaluates whether users can understand the mean-
ing of these elements and the information the chart conveys, including clarity of visual encoding
(whether meanings of colors, shapes, sizes are clear) and clarity of information communication
(whether users can accurately understand chart content).

Scoring criteria:
S 1. Chart element meanings are completely unclear, cannot understand what visual encod-

ing represents, users cannot obtain meaningful information.
S 2. Chart element meanings are vague and unclear, insufficient visual encoding explana-

tions, users have difficulty understanding and need extensive guessing to understand
chart content.

S 3. Chart element meanings are basically clear, users can understand main information,
but still have understanding barriers in some encoding or labeling aspects.

S 4. Chart element meanings are clear and definite, visual encoding has appropriate expla-
nations, users can smoothly understand the information conveyed by the chart.

S 5. Chart element meanings are completely clear, visual encoding explanations are de-
tailed and accurate, users can understand all chart information without any barriers.

Insight discovery evaluation questions and scoring criteria: The following prompt guides the
generation of scoring rubrics for the Insight Discovery dimension. It assesses the chart’s ability to
reveal meaningful patterns, trends, or non-obvious findings.

Prompt: Multiple Visualization - Insight Discovery Evaluation Questions and Scoring Cri-
teria (1-5 Scale)

Description:
Evaluates whether the entire multi-vis visualization can easily identify significant and mean-
ingful data insights, and whether multiple views synergize to reveal deeper and more valuable
comprehensive insights than single views.

Scoring criteria:
S 1. Completely unable to provide any valuable comprehensive insights, lack of coordina-

tion between views, no significant or meaningful discoveries, insight delivery com-
pletely failed.

S 2. Difficult to identify meaningful comprehensive insights, most information presented
by multiple views is trivial or independent, lacking synergistic value, insight discovery
difficult.

S 3. Can identify some basic multi-vis insights, but the significance and practicality of in-
sights are average, limited cooperation between views, guiding value not prominent
enough.

S 4. Can clearly identify obvious and useful multi-dimensional insights, good cooperation
between views, discovered comprehensive patterns have certain practical significance
and reference value.

S 5. Very intuitively reveals profound and highly significant comprehensive insights, per-
fect synergy between multiple views, can discover significant cross-dimensional pat-
terns, important correlations, or key anomalies with important guiding value.

Design style evaluation questions and scoring criteria: The following prompt guides the gen-
eration of scoring rubrics for the Design Style dimension. It reflects the level of visual creativity,
uniqueness, and design innovation present in the chart.
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Prompt: Multiple Visualization - Design Style Evaluation Questions and Scoring Criteria
(1-5 Scale)

Description:
Evaluates whether the overall design of multi-vis visualization has innovation and uniqueness,
whether it can stand out from many visualization works through novel design elements, unique
style characteristics, and coordinated style language.

Scoring criteria:
S 1. Multi-vis design completely lacks innovation, style is outdated or views have chaotic

styles, no uniqueness or originality.
S 2. Multi-vis design lacks innovation, style is quite ordinary, basically uses common de-

sign techniques, insufficient uniqueness.
S 3. Multi-vis design has some innovative elements, but overall is relatively conventional,

style characteristics not prominent enough, innovation level is average.
S 4. Multi-vis design has strong innovation, style is quite unique, coordinated style among

views with certain originality.
S 5. Multi-vis design is extremely innovative, style is unique and novel, views maintain

unified style while showing strong originality and recognizability.

Visual composition evaluation questions and scoring criteria: The following prompt guides the
generation of scoring rubrics for the Visual Composition dimension. It focuses on the spatial ar-
rangement and organization of visual elements for effective communication.

Prompt: Multiple Visualization - Visual Composition Evaluation Questions and Scoring
Criteria (1-5 Scale)

Description:
Evaluates whether the spatial layout of individual sub-views and the overall arrangement of
multiple views are reasonable, including element composition within individual views, size
proportions between multiple views, arrangement methods, spacing distribution, etc., forming
a harmonious and orderly visual whole.

Scoring criteria:
S 1. Sub-view layouts are chaotic or overall multi-vis arrangement is seriously unreason-

able, size proportions severely unbalanced, spacing distribution is disorderly.
S 2. Sub-view layouts or multi-vis arrangement have obvious unreasonable aspects, inap-

propriate size proportions, uneven spacing distribution.
S 3. Sub-view layouts are basically reasonable, overall multi-vis arrangement is acceptable,

but may have small issues in proportional relationships or spacing handling.
S 4. Sub-view layouts are good, overall multi-vis arrangement is reasonable, appropriate

size proportions, proper spacing distribution, good space utilization.
S 5. Sub-view layouts are perfect, overall multi-vis arrangement is extremely reasonable,

coordinated size proportions, even spacing distribution, extremely high space utiliza-
tion efficiency.

Color harmony evaluation questions and scoring criteria: The following prompt guides the gen-
eration of scoring rubrics for the Color Harmony dimension. It evaluates how effectively the color
scheme supports readability, aesthetic appeal, and visual coherence.
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Prompt: Multiple Visualization - Color Harmony Evaluation Questions and Scoring Cri-
teria (1-5 Scale)

Description:
Evaluates whether color choices in multi-vis are appropriate, including color combinations
within each sub-view, coordination of color schemes between multiple views, unity of over-
all tone, and appropriate control of color quantity and saturation.

Scoring criteria:
S 1. Sub-view color choices are very inappropriate, overall color matching among multiple

views is chaotic, tone conflicts or color use is seriously inappropriate.
S 2. Sub-view color choices are not appropriate enough, overall color matching among

multiple views is not coordinated enough, tone not unified or color use inappropriate.
S 3. Sub-view color choices are basically appropriate, overall color matching among mul-

tiple views is acceptable, but may have small issues in tone unity or saturation.
S 4. Sub-view color choices are relatively appropriate, overall color schemes among multi-

ple views are quite coordinated, tone basically unified, appropriate color use.
S 5. Sub-view color choices are very appropriate, overall color schemes among multiple

views are highly coordinated and unified, perfect tone matching, appropriate control
of color quantity and saturation.

C.1.3 DASHBOARD EVALUATION CRITERIA

Data fidelity evaluation questions and scoring criteria: The following prompt is designed to
guide the generation of scoring rubrics for the Data Fidelity dimension, using a 1–5 scale. It focuses
on ensuring that visual representations truthfully and accurately reflect the underlying data.

Prompt: Dashboard - Data Fidelity Evaluation Questions and Scoring Criteria (1-5 Scale)

Description:
Evaluates whether the dashboard faithfully represents business data in each component and in
the overall composition. Focus on appropriate axes/baselines, reasonable scale ranges, con-
sistency between encodings and numeric labels, avoidance of aspect-ratio deformation, crop-
ping/stretching, 3D distortion, or improper broken axes; also consider consistency of compara-
ble metrics across components.

Scoring criteria:
S P 1. Severe misrepresentation or impossible to judge due to missing/unreadable key el-

ements in important components, or clear distortions (e.g., improper bar baselines,
distorted 3D, obvious deformation), undermining data fidelity.

S 2. Important issues likely to mislead in one or more components: inappropriate baseli-
nes/scales, inconsistent encoding vs labels, selective ranges, or missing key elements
causing notable uncertainty at the dashboard level.

S 3. Basically acceptable overall: minor issues or uncertainties in parts, but no obvious
distortion; most components use reasonable scales/encodings consistent with labels.

S 4. Accurate and standardized: components and overall dashboard use appropriate ax-
es/baselines and reasonable scales; encodings match labels; no visible distortion.

S 5. Highly faithful: all components present complete and clear elements; axes/baselines
and scales are well-justified; encodings and labels fully consistent; no cropping/defor-
mation/3D misuse; consistent comparability across related components.

Semantic readability evaluation questions and scoring criteria: The following prompt guides
the generation of scoring rubrics for the Semantic Readability dimension. It evaluates how clearly
the chart communicates information through its visual encodings and annotations.
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Prompt: Dashboard - Semantic Readability Evaluation Questions and Scoring Criteria
(1-5 Scale)

Description:
Based on complete and clear dashboard elements, evaluates whether users can understand the
meaning of these elements and the information the dashboard conveys, including clarity of
visual encoding (whether meanings of colors, shapes, sizes, gauge pointers, status indicators
are clear) and clarity of information communication (whether users can accurately understand
various parts and overall business meaning).

Scoring criteria:
S 1. Dashboard element meanings are completely unclear, cannot understand what charts,

indicators, color encoding represent in business terms, users cannot obtain meaningful
information.

S 2. Dashboard element meanings are vague and unclear, insufficient business indicator
explanations, unclear color encoding and status indication, users have difficulty under-
standing and need extensive guessing to understand content.

S 3. Dashboard element meanings are basically clear, users can understand main business
information and indicator meanings, but still have understanding barriers in some en-
coding or labeling aspects.

S 4. Dashboard element meanings are clear and definite, business indicators have appro-
priate explanations, clear visual encoding, users can smoothly understand the business
information conveyed by the dashboard.

S 5. Dashboard element meanings are completely clear, business indicator explanations are
detailed and accurate, all visual encoding has clear interpretation, users can understand
all business information in the dashboard without any barriers.

Insight discovery evaluation questions and scoring criteria: The following prompt guides the
generation of scoring rubrics for the Insight Discovery dimension. It assesses the chart’s ability to
reveal meaningful patterns, trends, or non-obvious findings.

Prompt: Dashboard - Insight Discovery Evaluation Questions and Scoring Criteria (1-5
Scale)

Description:
Evaluates whether the entire dashboard can easily identify significant and business-valuable key
insights, whether key business indicators (KPIs) prominently display important information,
and whether it can quickly discover business issues or opportunities that require attention.

Scoring criteria:
S 1. Completely unable to provide any valuable business insights, key indicators not promi-

nent, no significant or meaningful business discoveries, insight delivery completely
failed.

S 2. Difficult to identify meaningful business insights, insufficient highlighting of key in-
dicators, most presented business information is trivial or obvious, lacking decision
value.

S 3. Can identify some basic business insights, key indicators have some prominence, but
the significance and business value of insights are average, with limited guiding effects.

S 4. Can clearly identify obvious and useful business insights, key indicators prominently
displayed, discovered business patterns or anomalies have certain practical value and
decision reference significance.

S 5. Very intuitively reveals profound and highly business-valuable insights, key indica-
tors extremely prominent, can quickly discover significant business trends, important
anomalies, or key opportunities with important guiding significance for business deci-
sions.
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Design style evaluation questions and scoring criteria: The following prompt guides the gen-
eration of scoring rubrics for the Design Style dimension. It reflects the level of visual creativity,
uniqueness, and design innovation present in the chart.

Prompt: Dashboard - Design Style Evaluation Questions and Scoring Criteria (1-5 Scale)

Description:
Evaluates whether the overall design of the dashboard has innovation and uniqueness, whether it
can show attractive visual effects and business professionalism through novel design elements,
unique style characteristics, and professional design language.

Scoring criteria:
S 1. Dashboard design completely lacks innovation, style is outdated or chaotic, no unique-

ness, seriously insufficient professionalism.
S 2. Dashboard design lacks innovation, style is quite ordinary, basically uses common

design techniques, insufficient uniqueness and professionalism.
S 3. Dashboard design has some innovative elements, but overall is relatively conventional,

style characteristics not prominent enough, average professionalism.
S 4. Dashboard design has strong innovation, style is quite unique and professional, with

certain originality and good business sense.
S 5. Dashboard design is extremely innovative, style is unique, novel, and professional,

overall presents strong originality and high business aesthetics, leaving deep impres-
sions.

Visual composition evaluation questions and scoring criteria: The following prompt guides the
generation of scoring rubrics for the Visual Composition dimension. It focuses on the spatial ar-
rangement and organization of visual elements for effective communication.

Prompt: Dashboard - Visual Composition Evaluation Questions and Scoring Criteria (1-5
Scale)

Description:
Evaluates whether the spatial layout of dashboard components and overall arrangement are
reasonable and beautiful, including size proportions of various blocks, alignment relationships
between components, spacing distribution, information density control, etc., forming a harmo-
nious, orderly, and beautiful visual whole.

Scoring criteria:
S 1. Component layouts are chaotic or overall arrangement is seriously unreasonable, size

proportions severely unbalanced, spacing distribution is disorderly, poor information
density handling.

S 2. Component layouts or overall arrangement have obvious unreasonable aspects, inap-
propriate size proportions, uneven spacing distribution, or information too crowded.

S 3. Component layouts are basically reasonable, overall arrangement is acceptable, but
may have small issues in proportional relationships, spacing handling, or information
density.

S 4. Component layouts are good, overall arrangement is reasonable and beautiful, appro-
priate size proportions, proper spacing distribution, good information density control.

S 5. Component layouts are perfect, overall arrangement is extremely reasonable and beau-
tiful, coordinated size proportions, aesthetic spacing distribution, appropriate informa-
tion density control, extremely high space utilization efficiency.

Color harmony evaluation questions and scoring criteria: The following prompt guides the gen-
eration of scoring rubrics for the Color Harmony dimension. It evaluates how effectively the color
scheme supports readability, aesthetic appeal, and visual coherence.
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Prompt: Dashboard - Color Harmony Evaluation Questions and Scoring Criteria (1-5
Scale)

Description:
Evaluates whether color choices in the dashboard are appropriate and beautiful, including color
combinations within various components, coordination of overall color schemes, unity of tone,
and appropriate control of color quantity and saturation, ensuring both beauty and compliance
with business professional requirements.

Scoring criteria:
S 1. Component color choices are very inappropriate, overall color matching is chaotic,

tone conflicts or color use is seriously inappropriate, very poor aesthetic effect.
S 2. Component color choices are not appropriate enough, overall color matching is not

coordinated enough, tone not unified or color use inappropriate, affecting aesthetic
effect.

S 3. Component color choices are basically appropriate, overall color matching is accept-
able, but may have small issues in tone unity, saturation, or business sense.

S 4. Component color choices are relatively appropriate, overall color schemes are quite
coordinated, tone basically unified, appropriate color use, good business sense.

S 5. Component color choices are very appropriate, overall color schemes are highly coor-
dinated and unified, perfect tone matching, appropriate control of color quantity and
saturation, presenting excellent business aesthetics.

C.2 EVALUATION PROMPT TEMPLATES

To guide consistent evaluation of visualizations, we present a structured prompt template built upon
the classical Fidelity, Expressiveness, and Aesthetics principles, operationalized into six orthogonal
sub-dimensions. The prompt is generated based on the rewritten evaluation questions and scoring
criteria from Appendix C.1.

The following prompt template outlines how evaluators are instructed to conduct evaluation using
these customized inputs. The prompt includes the following components:

• The {total_count} field specifies the total number of evaluation criteria distributed
across the three main dimensions.

• The {custom_count} field indicates how many of these criteria adopt customized scor-
ing guidelines tailored to the chart.

• The {chart_description} field provides metadata about the visualization, such as
chart type and design structure.

• The {fidelity_section} field includes rewritten evaluation questions and scoring
criteria aligned with the data fidelity sub-dimension.

• The {expressiveness_section} field covers the semantic readability and insight
discovery sub-dimensions.

• The {aesthetics_section} field captures design-related sub-dimensions, including
style, spatial composition, and color harmony.

Prompt Template: Visualization Evaluation

You are a rigorous data visualization evaluation expert. You must strictly judge each visual-
ization based on the “Fidelity, Expressiveness, and Aesthetics” framework and the 1–5 scoring
criteria for each metric.

Chart description: {chart_description}
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Note: This chart has {total_count} evaluation metrics across three dimensions, of which
{custom_count} use custom scoring criteria.

The evaluation follows the “Fidelity, Expressiveness, and Aesthetics” principle:
• Fidelity: Data accuracy and truthfulness
• Expressiveness: Information clarity and understandability
• Aesthetics: Visual aesthetics and refinement

For each evaluation question, provide a score from 1 to 5 and a reasoning based on the scoring
criteria.

{fidelity_section}

{expressiveness_section}

{aesthetics_section}

Return Format: JSON object with the following structure:

{
"data_fidelity": {"score": 1-5, "reasoning": "Your explanation here.
"},

"semantic_readability": {"score": 1-5, "reasoning": "Your
explanation here."},

"insight_discovery": {"score": 1-5, "reasoning": "Your explanation
here."},

"design_style": {"score": 1-5, "reasoning": "Your explanation here."
},

"visual_composition": {"score": 1-5, "reasoning": "Your explanation
here."},

"color_harmony": {"score": 1-5, "reasoning": "Your explanation here.
"},

"average_score": "the average of the above six scores, rounded to 2
decimals"

}

Where for each metric, score should be an integer from 1 to 5 based on the above metric de-
scriptions and the 1–5 scoring criteria, and reasoning should explain your choice. average_score
is the average of all six scores rounded to 2 decimal places. Do not include any additional text,
only the JSON object.
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D MODEL IMPLEMENTATION AND TRAINING DETAILS

D.1 SOFTWARE ENVIRONMENT

The training framework is based on the open-source library SWIFT (Scalable lightWeight Infrastruc-
ture for Fine-Tuning)1, utilizing PyTorch and DeepSpeed (ZeRO Stage 2) for distributed training and
memory optimization.

D.2 REWARD FUNCTION

As described in the main text, our composite reward function, Rcomposite, is a weighted combina-
tion of an accuracy reward (Racc) and a format reward (Rformat), with weights of 0.9 and 0.1,
respectively.

Accuracy Reward (Racc) This component measures the proximity between the model’s predicted
scores across the six dimensions and the average score, and the human-annotated ground-truth val-
ues. We employ a smooth exponential decay function to calculate the reward for each individual
score:

Racc_single = exp

(
−
|scorepredicted − scoreground-truth|

0.5

)
(1)

The final accuracy reward is the average of the rewards calculated for all dimensional scores and the
overall average score.

Format Reward (Rformat) This component ensures the model produces a complete and parsable
JSON structure. The reward is 1.0 if the model’s output contains all required fields (i.e., the score
and reasoning for each of the six dimensions, plus the average_score); otherwise, the re-
ward is 0.

D.3 HYPERPARAMETER SETTINGS

We fine-tuned four representative open-source multimodal models: Qwen2.5-VL-7B-Instruct,
Qwen2.5-VL-3B-Instruct, InternVL3-8B, and Llava-v1.6-mistral-7B. All models employed Low-
Rank Adaptation (LoRA) for parameter-efficient fine-tuning with consistent hyperparameter con-
figurations across architectures. Specifically, we set the LoRA rank and alpha to 128 and applied
it to all linear layers. For reinforcement learning, we used the Group Relative Policy Optimization
(GRPO) algorithm with a beta parameter of 0.01. The models were trained for 5 epochs with a
learning rate of 1e-5, using a Cosine Annealing scheduler with a warmup ratio of 0.1. We used the
AdamW optimizer with a weight decay of 0.01. The global batch size was 16 (per-device batch size
of 1 with 4 gradient accumulation steps, across 4 GPUs). For computational efficiency, we utilized
bfloat16 mixed-precision training.

1https://github.com/modelscope/swift
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Figure 27: Impact of training data scale on VISJUDGE model performance.

E EXTENDED EXPERIMENTS

E.1 HOW DOES TRAINING DATA SCALE AFFECT MODEL PERFORMANCE?

To evaluate data scaling effects and guide deployment strategies, we analyze VISJUDGE perfor-
mance across different training data scales with a single training epoch. To ensure fairness, data
samples are proportionally extracted based on visualization types and score distributions. Figure 27
reveals clear mathematical patterns as data scale increases.

Predictable Scaling Laws. Model performance follows well-defined trends: human–model correla-
tion shows logarithmic growth (R²=0.678) from 0.341 to 0.639 as the training data scale increases to
2,442 samples, while prediction errors exhibit exponential decay with MAE decreasing from 0.847
to 0.440 (R²=0.964) and MSE from 1.045 to 0.309 (R²=0.981). The 500–1,000 sample range pro-
vides the most efficient improvement, contributing 41.7% of total correlation gains, while beyond
1,000 samples, marginal returns diminish but remain valuable for continued enhancement.

E.2 GENERALIZATION TO REAL-WORLD APPLICATIONS

To validate the practical generalization capability of VISJUDGE, we integrate it into two real-world
visualization systems: MatPlotAgent (visualization generation) and HAIChart (visualization rec-
ommendation). These scenarios differ significantly from our training set, providing rigorous OOD
evaluation.

E.2.1 EXPERIMENTAL SETUP

MatPlotAgent (Visualization Generation). We integrate VISJUDGE into MatPlotAgent (Yang
et al., 2024) as a feedback mechanism for iterative quality improvement. We test seven generation
models (GPT-5, GPT-4o, Claude-4-Sonnet, Claude-3.5-Sonnet, Gemini-2.5-Pro, Qwen2.5-VL-72B-
Instruct, Qwen2.5-VL-7B-Instruct), comparing baseline (no feedback) against feedback from 7B
base model, 72B base model, and VISJUDGE. Final visualizations are automatically evaluated using
GPT-4o on a 0-100 scale, following the original MatPlotAgent evaluation setup, where higher scores
indicate better overall visualization quality.

HAIChart (Visualization Recommendation). We integrate VISJUDGE into HAIChart (Xie et al.,
2024) as a reward model to re-rank candidate visualizations. We evaluate on the VizML dataset con-
taining real user-created Plotly visualizations, which represents a significant distribution shift from
our training data. We compare the original system against versions using 7B, 72B, and VISJUDGE as
reward models, measuring Hit@1 and Hit@3 accuracy on data queries, design choices, and overall
recommendation tasks, where higher values indicate better top-k recommendation accuracy.

E.2.2 RESULTS AND ANALYSIS

MatPlotAgent Results. Table 7 shows that VISJUDGE achieves consistent quality improvements
across all seven generation models, with an average gain of +6.07 points (range: +5.53 to +8.91). In
stark contrast, base models without domain-specific fine-tuning often degrade performance: the 7B
base model averages -2.39 points while the 72B base model averages -0.61 points. This degradation
is attributable to their systematic evaluation biases documented in the main paper: score inflation
(7B model µ = 3.89 vs. human µ = 3.13) and sharp score concentration around 4.0 limit dis-
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Table 7: MatPlotAgent quality improvement with different feedback models.
Generation Model Direct Decoding Qwen2.5-VL-7B Qwen2.5-VL-72B VISJUDGE

(Baseline) as Feedback as Feedback as Feedback

GPT-5 67.15 66.49 69.80 72.07
GPT-4o 62.71 58.49 63.53 71.62
Gemini-2.5-Pro 68.10 65.04 66.12 72.20
Claude-4-Sonnet 64.50 67.25 65.20 72.23
Claude-3.5-Sonnet 63.89 59.23 63.14 69.04
Qwen2.5-VL-72B-Instruct 61.18 58.70 60.30 67.32
Qwen2.5-VL-7B-Instruct 49.76 45.38 44.94 55.29

Table 8: Visualization recommendation performance in HAIChart integration on VizML dataset.
VISJUDGE as reward model improves recommendation accuracy across different tasks, outperform-
ing larger base models.

Task Metric HAIChart Qwen2.5-VL-7B Qwen2.5-VL-72B VISJUDGE
(Baseline) as a Reward as a Reward as a Reward

Data Queries Hit@1 79.30% 80.30% 82.80% 83.70%
Hit@3 91.90% 90.70% 92.10% 93.20%

Design Choices Hit@1 48.70% 45.90% 46.50% 48.80%
Hit@3 81.50% 80.70% 79.80% 82.70%

Overall Hit@1 36.90% 36.30% 39.10% 39.40%
Hit@3 67.40% 69.10% 70.20% 72.70%

criminative capability, leading them to praise flawed visualizations while failing to identify genuine
quality issues. Such biased feedback actively misleads generation models, directing iterative refine-
ment toward suboptimal outputs. This demonstrates that domain-specific fine-tuning is not merely
beneficial but essential—simply scaling model size without domain expertise can harm rather than
help. Even state-of-the-art commercial models benefit significantly from VISJUDGE’s feedback:
GPT-5 +4.92, Claude-4-Sonnet +7.73, Gemini-2.5-Pro +4.10. This suggests that current generation
models can effectively improve their outputs when provided with accurate quality assessments, and
VISJUDGE provides this critical evaluation signal.

HAIChart Results. Table 8 shows VISJUDGE significantly improves recommendation accuracy
across all metrics: Data Queries Hit@1 from 79.30% to 83.70% (+4.40%), Overall Hit@1 from
36.90% to 39.40% (+2.50%), and Overall Hit@3 from 67.40% to 72.70% (+5.30%). The 7B and
72B base models show minimal to moderate improvements, while VISJUDGE achieves larger gains.
Notably, the VizML dataset represents a significant distribution shift from our training data (real
Plotly community visualizations), yet VISJUDGE generalizes effectively, validating that it learns
generalizable quality assessment principles rather than memorizing training patterns.

E.2.3 CROSS-ARCHITECTURE GENERALIZATION

Beyond application scenarios, we validate that our fine-tuning methodology generalizes across di-
verse model architectures. We fine-tuned four different base models using the same training pro-
cedure: Qwen2.5-VL-7B-Instruct (correlation improves from 0.341 to 0.687, +101.5%), Qwen2.5-
VL-3B-Instruct (from 0.272 to 0.648, +138.2%), InternVL3-8B (from 0.409 to 0.660, +61.4%), and
LLaVA-1.6-mistral-7B (from 0.180 to 0.605, +236.1%). All models show substantial improvements
after fine-tuning, with an average correlation increase of +0.334 (corresponding to +134.3% relative
improvement), validating the robustness of our training methodology across diverse architectures.

The improvements are observed across models with different architectural designs (Qwen, In-
ternVL, LLaVA), parameter scales (3B to 8B), and base capabilities, demonstrating that VISJUDGE-
BENCH provides effective training signals that benefit diverse model families. Interestingly, mod-
els with weaker initial performance (e.g., LLaVA-1.6-mistral-7B with 0.180 baseline correlation)
achieve larger relative improvements (+236.1%) compared to stronger base models, suggesting that
VISJUDGE-BENCH is particularly valuable for enhancing models with limited initial visualization
assessment capabilities.
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E.2.4 DISCUSSION

Our generalization experiments reveal key insights. VISJUDGE substantially outperforms both 7B
and 72B base models across applications, demonstrating that domain-specific fine-tuning is more
effective than model scaling. The model shows strong OOD performance on MatPlotAgent’s gen-
erated visualizations and HAIChart’s Plotly community data, validating that it learns generalizable
quality assessment principles rather than memorizing training patterns.

The consistent improvements across diverse architectures and two distinct applications (generation
and recommendation) validate VISJUDGE’s practical utility and readiness for deployment in produc-
tion visualization systems. These findings collectively demonstrate the value of VISJUDGE-BENCH
for developing robust, deployable visualization assessment capabilities.
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