
Unitary convolutions for learning on graphs and
groups

Bobak T. Kiani∗ Lukas Fesser† Melanie Weber‡

Data with geometric structure is ubiquitous in machine learning often arising from fundamental
symmetries in a domain, such as permutation-invariance in graphs and translation-invariance in
images. Group-convolutional architectures, which encode symmetries as inductive bias, have shown
great success in applications, but can suffer from instabilities as their depth increases and often
struggle to learn long range dependencies in data. For instance, graph neural networks experience
instability due to the convergence of node representations (over-smoothing), which can occur after
only a few iterations of message-passing, reducing their effectiveness in downstream tasks. Here, we
propose and study unitary group convolutions, which allow for deeper networks that are more stable
during training. The main focus of the paper are graph neural networks, where we show that unitary
graph convolutions provably avoid over-smoothing. Our experimental results confirm that unitary
graph convolutional networks achieve competitive performance on benchmark datasets compared to
state-of-the-art graph neural networks. We complement our analysis of the graph domain with the
study of general unitary convolutions and analyze their role in enhancing stability in general group
convolutional architectures.4

1 Introduction

In recent years, the design of specialized machine learning architectures for structured data has
received a surge of interest. Of particular interest are architectures for data domains with inherent
symmetries, such as permutation-invariance in graphs and sets, translation-invariance in images, and
other symmetries that arise from fundamental laws of physics in scientific data.
Group-convolutional architectures allow for explicitly encoding symmetries as inductive biases,
which has led to performance gains in scientific applications [ESM23, WWY20]; theoretical stud-
ies have analyzed the impact of geometric inductive biases on the complexity of the architec-
ture [MMM21, BVB21, KLL+24]. Graph Neural Networks are among the most popular architectures
for graph machine learning and have found impactful applications in a wide range of disciplines,
including in chemistry [GRK+21], drug discovery [ZAL18], particle physics [SBV20], and recom-
mender systems [WSZ+22]. However, despite these successes, several limitations remain. A notable
difficulty is the design of stable, deep architectures. Many of the aforementioned applications require
accurate learning of long-range dependencies in the data, which necessitates deeper networks. How-
ever, it has been widely observed that group-convolutional networks suffer from instabilities as their
depths increases. On graph domains, these instabilities have been studied extensively in recent years,
notably in the form of over-smoothing effects [RBM23], which characterizes the fast convergence of
the representations of nearby nodes with depth. This effect can often be observed after only a few it-
erations of message-passing (i.e., small number of layers) and can significantly decrease the utility of
the learned representations in downstream tasks. While interventions for mitigating over-smoothing
have been proposed, including targeted perturbations of the input graph’s connectivity (rewiring)
and skip connections, a more principled architectural approach with theoretical guarantees is still

∗John A. Paulson School of Engineering and Applied Sciences, Harvard; e-mail: bkiani@g.harvard.edu
†John A. Paulson School of Engineering and Applied Sciences, Harvard; e-mail:

lukas fesser@fas.harvard.edu
‡John A. Paulson School of Engineering and Applied Sciences, Harvard; e-mail: mweber@g.harvard.edu
4Code available at https://github.com/Weber-GeoML/Unitary_Convolutions

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

mailto:bkiani@g.harvard.edu
mailto:lukas_fesser@fas.harvard.edu
mailto:mweber@g.harvard.edu
https://github.com/Weber-GeoML/Unitary_Convolutions

lacking. Similar effects, such as exploding or vanishing gradients, have also been studied in more
general group-convolutional architectures, specifically in CNNs [TK21, SF21, LJW+19], for which
architectural interventions (e.g., skip connections) have been proposed.
In this work, we take a different route. Inspired by a long line of work studying unitary recurrent
neural networks [ASB16, HSL16, LCMR19, KBLL22], we propose to replace the standard group
convolution operator with a unitary group convolution. By construction, the unitarity ensures
that the linear transformations are norm-preserving and invertible, which can significantly enhance
the stability of the network and avoid convergence of representations to a fixed point as its depth
increases. We introduce two unitary graph convolution operators, which vary in the way the message
passing and feature transformation are parameterized. We then generalize this approach to cover
more general group-convolutional architectures.
Our theoretical analysis of the proposed unitary graph convolutions shows that they enhance stability
and prevent over-smoothing effects that decrease the performance of their vanilla counterparts. We
further describe how generalized unitary convolutions avoid vanishing and exploding gradients,
enhancing the stability of group-convolutional architectures without additional interventions, such
as residual connections or batch normalization.

1.1 Related work

We now provide a brief background into work that motivated and inspired this current study, deferring
a more complete discussion to App. A. Unitary matrices have a long history of application in
neural networks, specifically related to improving stability for deep networks [SMG13, PMB13]
enhancing the learning of long-range dependencies in data [BSF94, Hoc91, SMG13]. [ASB16,
JSD+17, HSL16] implemented unitary matrices in recurrent neural networks to address issues with
the challenge of vanishing and exploding gradients inherent to learning long sequences of data in
RNNs [BSF94, LJH15]. These original algorithms were later improved to be more expressive while
still being efficient to implement in practice [HWY18, LCMR19, KBLL22]. For graph convolution,
[HSTW20] discuss applications of the exponential map to linear convolutions; here, we use this
same exponential map to explicitly apply unitary operators parameterized in the Lie algebra. For
image data, various works [SGL18, LHA+19, TK21, SF21, KBLL22] design and analyze variants of
orthogonal or unitary convolution used in CNN layers. These can be viewed as a particular instance
of the group convolution we study here over the cyclic group. More recently, proposals for unitary
or orthogonal message passing have shown improvements in stability and performance compared to
conventional message passing approaches [GZH+22, AEL+24, QBY24]. However, in contrast to our
work, these methods do not always implement a unitary transformation across the whole input (e.g.
only applying it in the feature transformation) and in the case of [QBY24] can be computationally
expensive to implement for large graphs (see App. A for more detail).

2 Background and Notation

We denote scalars, vectors, and matrices as 𝑐,w, and M respectively. Given a matrix M , its
conjugate transpose and transpose are denoted M † and M⊤. Given two matrices, A and B, we
denote their tensor product (or Kronecker product) as A⊗B. Given a vector w, its standard Euclidean
norm is denoted ∥w∥. For a matrix M , we denote its operator norm as ∥M ∥ and Frobenius norm
as ∥M ∥𝐹 .

Group Theory Basics Symmetries (“invariances”) describe transformations, which leave proper-
ties of data unchanged (“invariant”), and as such characterize the inherent geometric structure of the
data domain. Algebraically, symmetries can be characterized as groups. We say that a group is a
matrix Lie group, if it is a differentiable manifold and a subgroup of the set of invertible 𝑛×𝑛matrices
(see App. C). Lie groups are associated with a Lie algebra, a vector space, which is formed by its
tangent space at the identity. A comprehensive introduction into Lie groups and Lie algebras can
be found in [FH13, Hal15]. Throughout this work we will encounter the 𝑛-dimensional orthogonal
𝑂 (𝑛) and unitary𝑈 (𝑛) Lie groups, which are defined as

𝑂 (𝑛) =
{
U ∈ R𝑛×𝑛 : UU⊺ = I

}
, 𝑈 (𝑛) =

{
U ∈ C𝑛×𝑛 : UU † = I

}
. (1)

2

Lie algebras of𝑂 (𝑛) and𝑈 (𝑛) are the set of skew symmetric 𝔬(𝑛) and skew Hermitian 𝔲(𝑛) matrices
respectively, i.e.,

𝔬(𝑛) =
{
M ∈ R𝑛×𝑛 : M + M⊺ = 0

}
, 𝔲(𝑛) =

{
M ∈ C𝑛×𝑛 : M + M † = 0

}
. (2)

Given a matrix M ∈ 𝔬(𝑛) (or 𝔲(𝑛)), the matrix exponential maps the matrix to an element of
the Lie group exp(M) ∈ 𝑂 (𝑛) (or 𝑈 (𝑛)). More details on unitary parametrizations can be found
in App. C.2.

Graph Neural Networks We denote graphs by G = (𝑉, 𝐸) where𝑉 and 𝐸 denote the set of nodes
and edges respectively. For a graph on 𝑛 nodes, unless otherwise specified, we let 𝑉 = {1, . . . , 𝑛}
index the nodes and denote the adjacency matrix by A ∈ R𝑛×𝑛 and node features x ∈ R𝑛×𝑑 . We
also often use D ∈ R𝑛×𝑛 to denote the diagonal degree matrix where diagonal entry 𝑖 records the
degree of node 𝑖. The normalized adjacency matrix is defined as Ã = D−1/2AD−1/2. Given a node
feature matrix X ∈ R𝑛×𝑑in where row 𝑖 denotes the 𝑑in-dimensional feature vector of node 𝑖, graph
convolution operators take the general form [KW16, ZK20]

𝑓conv (X; A) = XW0 + AXW1 + · · · + A𝑘XW𝑘 , (3)

where W0, . . .W𝑘 ∈ R𝑑in×𝑑out are trainable parameters. For ease of presentation, we will often omit
the adjacency matrix as an explicit input to the operation. Often, only a single “message passing”
step is included and the operation takes the simple form 𝑓conv (X) = AXW . Eq. (3) is equivariant
under any permutation matrix P𝜋 ∈ R𝑛×𝑛 5 since

𝑓conv (P𝜋X; P𝜋AP −1
𝜋) = P𝜋 · 𝑓conv (X; A). (4)

We aim to parameterize a particular subset of these operations which preserve unitarity properties.

Group-Convolutional Neural Networks In general, a linear convolution operation conv𝐺 :
C𝑛×𝑐 → C𝑛×𝑐 takes the form of a weighted sum over linear transformations that are equivari-
ant to a given group𝐺. For simplicity, we assume here that we are working with finite groups though
this can be generalized to other settings [KT18, CGKW18, CW16]. Given an input X ∈ C𝑛×𝑐
consisting of 𝑐 channels in a vector space of dimension 𝑛, we study convolutions of the form

conv𝐺 (X) =
𝑚∑︁
𝑖=1

T𝑖XW𝑖 , (5)

where T1, . . . ,T𝑚 ∈ C𝑛×𝑛 are linear operators equivariant to the group 𝐺 and W1, . . . ,W𝑚 ∈ C𝑐×𝑐
are parameterized weight matrices. The graph setting is recovered by setting T𝑘 = A𝑘 . Similarly,
for cyclic convolution as in conventional CNNs, one sets T𝑘 to be the circulant matrices sending
basis vector T𝑘e𝑖 = e𝑖+𝑘 where indexing is taken mod 𝑛.

3 Unitary Group Convolutions

We first describe unitary convolution for data on graphs (equivariant to permutations) which is the
main focus of our study and then detail general procedures for performing unitary convolutions equiv-
ariant to general finite groups. Implementing these operations often requires special considerations
to handle nonlinearities, complex numbers, initialization, etc. which we discuss in App. E.

3.1 Unitary graph convolution

We introduce two variants of unitary graph convolution, which we denote as Separable unitary
convolution (short UniConv) and Lie orthogonal/unitary convolution (short Lie UniConv). UniConv
is a simple adjustment to standard message passing and treats linear transformations over nodes
and features separately. Lie UniConv, in contrast, parameterizes operations in the Lie algebra of
the orthogonal/unitary groups. This operation is fully unitary, but does not have the tensor product
nature of the separable UniConv.
By introducing complex numbers, we can enforce unitarity separately in the message passing and
feature transformation.

5In matrix form, entry [P𝜋]𝑖 𝑗 is one if 𝜋(𝑗) = 𝑖 and zero otherwise.

3

0 20 40 60 80
Node Index

0.0

0.2

0.4

M
ag

ni
tu

de

Standard Message Passing

L=0
L=2
L=5
L=20
L=60

0 20 40 60 80
Node Index

Unitary Message Passing

L=0
L=2
L=5
L=20
L=60

Figure 1: Comparison of standard linear message passing with iterates x𝐿+1 = 𝑐(x𝐿 +Ax𝐿) versus
unitary message passing with iterates x𝐿+1 = exp(𝑖A)x𝐿 for a graph of 80 nodes connected as a ring.
The unitary message passing has a wave-like nature which ensures messages “propagate” through
the graph. In contrast, the standard message passing has a unique fixed point corresponding to the
all ones vector which inherently causes oversmoothing in the features. Here, 𝑐 is chosen to ensure
the operator norm of the matrix I + A is bounded by one.

Definition 1 (Separable unitary graph convolution (UniConv)). Given an undirected graph G over
𝑛 nodes with adjacency matrix A ∈ R𝑛×𝑛, separable unitary graph convolution (UniConv) 𝑓Uconv :
C𝑛×𝑑 → C𝑛×𝑑 takes the form

𝑓Uconv (X) = exp(𝑖A𝑡)XU , UU † = I , (6)
where U ∈ 𝑈 (𝑑) is a unitary operator and 𝑡 ∈ R controls the magnitude of the convolution.

One feature of the complexification of the adjacency matrix is that messages propogate as “waves”
as observed for example in Fig. 1. Since A is a symmetric matrix, exp(𝑖A𝑡) is unitary for all values
of 𝑡 ∈ R and corresponds to vanilla message passing up to first order: exp(𝑖A𝑡) ≈ I + 𝑖A𝑡 +𝑂 (𝑡2).
Remark 2. We observe that performance on real-world tasks is usually improved when enforcing
unitarity in the node message passing where oversmoothing occurs, but not necessarily when enforc-
ing unitarity in the feature transformation U . Thus, one can choose to leave U in Eq. (6) as a fully
parameterized (unconstrained) matrix as we often do in our experiments.

More generally, one can parameterize the operation in the Lie algebra by first forming a skew
Hermitian convolution operation 𝑔conv : C𝑛×𝑑 → C𝑛×𝑑 and then applying the exponential map. This
approach has the benefit that it can be fully implemented using real numbers to obtain an orthogonal
operator by enforcing constraints in the real part of the weight matrix W only.
Definition 3 (Lie orthogonal/unitary graph convolution (Lie UniConv)). Given an undirected graph
G over 𝑛 nodes with adjacency matrix A ∈ R𝑛×𝑛, Lie unitary/orthogonal graph convolution (Ortho-
Conv) 𝑓Uconv : C𝑛×𝑑 → C𝑛×𝑑 takes the form

𝑓Uconv (X) = exp(𝑔conv) (X) =
∞∑︁
𝑘=0

𝑔
(𝑘)
conv (X)
𝑘!

= X + 𝑔conv (X) + 1
2
𝑔conv (𝑔conv (X)) + · · · ,

𝑔conv (X) = AXW , W + W † = 0.

(7)

The operation of 𝑔conv can be represented as a vector-matrix operation vec(𝑔conv (X)) = A ⊗
W ⊤ vec(𝑋) where A ⊗ W ⊤ belongs in the Lie algebra. If W is real-valued, the above returns an
orthogonal map since the exponential of a real-valued matrix is real-valued.

Implementing the exponential map The exponential map in Definitions 1 and 3 can be performed
using accurate approximations with typically constant factor overhead in runtime. We use the simple
𝐾-th order Taylor approximation

exp(M) =
𝐾∑︁
𝑘=0

M 𝑘

𝑘!
+𝑂

(
∥M ∥𝐾+1

(𝐾 + 1)!

)
. (8)

For experiments, we find that setting 𝐾 = 10 suffices in all cases as the error exponentially decreases
with 𝐾 . Various other accurate and efficient approximations exist as detailed in App. C.2. We also

4

refer the reader to App. E for other implementation details associated to handling complex numbers,
initialization, etc.

3.2 Generalized unitary convolutions

In the more general setting, we are concerned with parameterizing unitary operations of the form

conv𝐺 (X) =
𝑚∑︁
𝑖=1

T𝑖XW𝑖 , (9)

where T1, . . . ,T𝑚 ∈ C𝑛×𝑛 are linear operators equivariant to the group 𝐺 and W1, . . . ,W𝑚 ∈ C𝑐×𝑐
are parameterized weight matrices (e.g., set T𝑘 = A𝑘−1 to recover graph convolution). One can
enforce and parameterize unitary convolutions in Eq. (9) in the Lie algebra basis or in the Fourier
domain as detailed in App. D.

Algorithm 1 Unitary map from Lie algebra
Input: equivariant linear operator L ∈ C𝑛 → C𝑛
Input: vector x ∈ C𝑛
1: L̃ = 1

2 (L − L†) (skew symmetrize operator)
2: return exp(L̃) (x) (or approximation thereof)

In the Lie algebraic setting (Algorithm 1), one explicitly parameterizes operators in the Lie algebra
or orthogonally projects arbitrary linear operators onto this basis by the mapping X ↦→ (X−X†)/2.
This parameterization is particularly simple to implement (it is a linear basis) and unitary operators
are subsequently implemented by applying the exponential map. This setting covers previous
implementations of unitary RNNs and CNNs [LCMR19, SF21] and is detailed in Sec. 3.1 for GNNs.

Example 1 (Convolution on regular representation (Lie algebra)). Given a group𝐺 and vector space
V of dimension |𝐺 | with basis {e𝑔 : 𝑔 ∈ 𝐺}, then the left action T𝑔 (right action R𝑔) of any 𝑔 ∈ 𝐺
is a permutation T𝑔eℎ = e𝑔−1ℎ (R𝑔eℎ = eℎ𝑔). Let x ∈ C |𝐺 | be the vectorized form of an input
function 𝑥 : 𝐺 → C and 𝑚 : 𝐺 → C the filter for convolution6

(𝑚 ★ 𝑥) (𝑢) =
∑︁
𝑣∈𝐺

𝑚(𝑢−1𝑣)𝑥(𝑣) ⇐⇒ conv𝐺 (x) =

∑︁
𝑔∈𝐺

𝑚(𝑔)R𝑔

 x. (10)

Parameterizing operations on the Lie algebra simply requires that 𝑚(𝑔) = 𝑚(𝑔−1)∗ since R−1
𝑔 = R†

𝑔.

An example implementation of the above for a toy learning task on the dihedral group is in App. F.3.
One can also generally implement convolutions in the (block diagonal) Fourier basis of the graph or
group (see App. D and Algorithm 3). Here, one employs a Fourier operator which block diagonalizes
the input into its irreducible representations or some spectral representation. Fourier representations
often have the advantage of being faster to implement due to efficient Fourier transforms. Since we
do not use this in our experiments, we defer the details to App. D.

4 Properties and theoretical guarantees

Unitary operators are now well studied in the context of neural networks and have various properties
that are useful in naturally enhancing stability and performance of learning architectures [ASB16,
SMG13, LCMR19, JSD+17, KBLL22]. These properties and their theoretical guarantees are outlined
here. We defer all proofs to App. B, many of which follow immediately from the definition of unitarity.
Throughout, we will assume that convolution operators act on a vector space V and are built from a
basis of linear operators that is equivariant to input and output representation 𝜌(𝑔) of a group 𝐺. We
set input/output representations to be equal so that the exponential map of an equivariant operator is
itself equivariant.

6Typically called cross-correlation in mathematics literature.

5

Fact 1 (Basic properties). Any unitary convolution 𝑓Uconv : V → V built from Algorithms 1 and 3
meets the basic properties:

(invertibility): ∃ 𝑓 −1
Uconv : V → V such that ∀x ∈ V : 𝑓 −1

Uconv (𝑓Uconv (x)) = x,

(isometry): ∀x ∈ V : ∥ 𝑓Uconv (x)∥ = ∥x∥,
(equivariance): 𝜌(𝑔) ◦ 𝑓Uconv = 𝑓Uconv ◦ 𝜌(𝑔).

(11)

A simple corollary of the above isometry property leveraged in prior work on unitary CNNs [TK21,
SGL18] is that unitary matrices naturally provide robustness guarantees and a provable means to
bound the effects of adversarial perturbations (see Corollary 9 in App. B). For graphs, we note
that the properties above are generally impossible to obtain with graph convolution operations that
perform a single message passing step as we show below.
Proposition 4. Let 𝑓conv : R𝑛×𝑑 → R𝑛×𝑑 be a graph convolution layer of the form

𝑓conv (X ,A) = XW0 + AXW1, (12)
where W0,W1 ∈ R𝑑×𝑑 are parameterized matrices. The linear map 𝑓 (·,A) : R𝑛×𝑑 → R𝑛×𝑑 is
orthogonal for all adjacency matrices A of undirected graphs only if W1 = 0 and W0 ∈ 𝑂 (𝑑) is
orthogonal. Furthermore, denoting JA ∈ R𝑛𝑑×𝑛𝑑 as the Jacobian matrix of the map 𝑓conv (·,A), for
any choice of W0,W1, there always exists a normalized adjacency matrix Â such thatJ⊤

Â
JÂ − I

 ≥ ∥W1∥2
𝐹

2𝑑
, (13)

where ∥M ∥ is the operator norm of matrix M .

The above shows that one must apply higher powers of A as in the exponential map to achieve a
linear operator that is close to orthogonal.

Oversmoothing During the training of GNNs we often observe that the features of neighboring
nodes become more similar as the depth of the networks (i.e., the number of message-passing
iterations) increases. This “oversmoothing” phenomenon has a strong connection to the spectral
properties of graphs where convergence of a function on the graph is measured through the Dirichlet
form7 or its normalized variant also termed the Rayleigh quotient.
Definition 5 (Rayleigh quotient [Chu97]). Given an undirected graph G = (𝑉, 𝐸) on |𝑉 | = 𝑛 nodes
with adjacency matrix A ∈ {0, 1}𝑛×𝑛, let D ∈ R𝑛×𝑛 be a diagonal matrix where the 𝑖-th entry
D𝑖𝑖 = 𝑑𝑖 and 𝑑𝑖 is the degree of node 𝑖. Let 𝑓 : 𝑉 → C𝑑 be a function from nodes to features. Then
the Rayleigh quotient 𝑅G (𝑓) is equal to

𝑅G (𝑓) =
1
2

∑
(𝑢,𝑣) ∈𝐸

 𝑓 (𝑢)√
𝑑𝑢

− 𝑓 (𝑣)√
𝑑𝑣

2∑
𝑤∈𝑉 ∥ 𝑓 (𝑤)∥2 =

Tr
(
X† (I − Ã)X

)
∥X ∥2

𝐹

, (14)

where Ã = D−1/2AD−1/2 is the normalized adjacency matrix and X ∈ C𝑛×𝑑 is a matrix with the
𝑖-th row set to feature vector 𝑓 (𝑖). We will at times abuse notation and let X be an input to 𝑅G (X).

Given an undirected graph G on 𝑛 nodes with normalized adjacency matrix Ã = D−1/2AD−1/2, we
compare the Rayleigh quotient of normalized vanilla and unitary convolution. First, it is straightfor-
ward to show that the Rayleigh quotient is invariant to unitary transformations giving a proof that
unitary graph convolution avoids oversmoothing.
Proposition 6 (Invariance of Rayleigh quotient). Given an undirected graph G on 𝑛 nodes with
normalized adjacency matrix Ã = D−1/2AD−1/2, the Rayleigh quotient 𝑅G (X) = 𝑅G (𝑓Uconv (X))
is invariant under normalized unitary or orthogonal graph convolution (see Definitions 1 and 3).

In contrast, oversmoothing commonly occurs with vanilla graph convolution and has been proven to
occur in a variety of settings [RBM23, CW20, BDGC+22, Ker22]. To illustrate this, we exhibit a
simple setting below commonly found at initialization where the parameterized matrix is set to be an
orthogonal matrix and input features are random. Here, the magnitude of oversmoothing concentrates
around its average and grows with the value of Tr(Ã3) which corresponds to the (weighted) number
of triangles in the graph.

7This quantity has various equivalent names including the Dirichlet energy, local variance, and Laplacian
quadratic form.

6

Proposition 7. Given a simple undirected graph G on 𝑛 nodes with normalized adjacency matrix
Ã = D−1/2AD−1/2 and node degree bounded by 𝐷, let X ∈ R𝑛×𝑑 have rows drawn i.i.d. from the
uniform distribution on the hypersphere in dimension 𝑑. Let 𝑓conv (X) = ÃXW denote convolution
with orthogonal feature transformation matrix W ∈ 𝑂 (𝑑). Then, the event below holds with
probability 1 − exp(−Ω(

√
𝑛)):

𝑅G (X) ≥ 1 −𝑂
(

1
𝑛1/4

)
and 𝑅G (𝑓conv (X)) ≤ 1 − Tr(Ã3)

Tr(Ã2)
+𝑂

(
1
𝑛1/4

)
. (15)

Vanishing/Exploding gradients A commonly observed issue in training deep neural networks,
especially RNNs with evolving hidden states, is that gradients can exponentially grow or vanish with
depth [HS97, GBC16]. In fact, one of the original motivations for using unitary matrices in RNNs
is to directly avoid this vanishing/exploding gradient problem [ASB16, LCMR19, JSD+17, HSL16].
From a theoretical view, prior work has shown that carefully initialized layers have Jacobians that
meet variants of the dynamical isometry property commonly studied in the mean field theory literature
characterizing the growth/decay over layers of the network [SMG13, XBSD+18, PSG18]. We analyze
a version of this property here and discuss it in the context of our work.
Definition 8 (Dynamical isometry). Given functions 𝑓1, . . . , 𝑓𝐿 : R𝑛 → R𝑛, let 𝐹𝑖 = 𝑓𝑖 ◦ · · · ◦
𝑓1. Let J𝐹𝑖 (x) be the Jacobian matrix of 𝐹𝑖 at x ∈ R𝑛 8. The function 𝐹𝐿 = 𝑓𝐿 ◦ · · · ◦ 𝑓1 is
dynamically isometric up to 𝜖 at x ∈ R𝑛 if there exists orthogonal matrix V ∈ 𝑂 (𝑛) such that∏𝐿

𝑖=1 J𝐹𝑖 (x) − V
 ≤ 𝜖 where ∥ · ∥ denotes the operator norm.

Network layers that meet the dynamical isometry property generally avoid vanishing/exploding
gradients. The particular form we analyze is stricter than those studied in the mean field and
Gaussian process literature which analyze the distribution of singular values over the randomness of
the weights [PSG18, XBSD+18]. Unitary convolution layers followed by isometric activations are
examples of dynamical isometries that hold throughout training as exemplified below.
Example 2. Compositions of the layer GroupSort(𝑓Uconv (x)) consisting of the unitary convolution
layer (Definition 1) followed by the Group Sort activation (Eq. (61)) are perfectly dynamically
isometric (𝜖 = 0) at all x ∈ C𝑛 9.

5 Experiments

Our experimental results here show that unitary/orthogonal variants of graph convolutional net-
works perform competitively on various graph learning tasks. Due to space constraints, we present
experiments on additional datasets and architectures in App. F. This includes experiments on TU-
Dataset [MKB+20] and an instance of unitary group convolutional networks on the dihedral group
where the goal is to learn distances between pairs of elements in the dihedral group. Training
procedures and hyperparameters are reported in App. G. Reported results in tables are over the mean
plus/minus standard deviation.

Toy model: graph distance To analyze the ability of our unitary GNN to learn long-range
dependencies, we consider a toy dataset where the aim is to learn the distance between two indicated
nodes on a large graph connected as a ring. This task is inspired by similar toy models on ring graphs
where prior work has shown that message passing architectures fail to learn long-range dependencies
between distant nodes [DGGB+23]. The particular dataset we analyze consists of a training set of
𝑁 = 1000 graphs on 𝑛 = 100 nodes where each graph is connected as a ring (see Fig. 2a). Node
features x𝑖 ∈ R are a single number set to zero for all but two randomly chosen nodes whose features
are set to one. The goal is to predict the distance between these two randomly chosen nodes. For a
graph of 𝑛 nodes, conventional message passing architectures require at least 𝑛/2 sequential messages
to fully learn this dataset. As shown in Fig. 2b, conventional message passing networks fail to learn
this task whereas the unitary convolutional architecture succeeds. We refer the reader to App. F.1
for further details and results for additional architectures.

8For complex valued inputs, we additionally require that the functions are holomorphic. For sake of
simplicity, we will treat functions 𝑓 : C𝑛 → C𝑛 as real-valued functions 𝑓 : R2𝑛 → R2𝑛.

9Technically, this holds for almost all x ∈ C𝑛 due to non-differentiability of the activation at singular points,
but this is handled in practice by choosing a gradient in the sub-differential which meets the criteria.

7

Method PEPTIDES-FUNC PEPTIDES-STRUCT COCO PASCAL-VOC
Test AP ↑ Test MAE ↓ Test F1 ↑ Test F1 ↑

M
P

GCN † 0.6860 ± 0.0050 0.2460 ± 0.0007 0.1338 ± 0.0007 0.2078 ± 0.0031
GINE † 0.6621 ± 0.0067 0.2473 ± 0.0017 0.2125 ± 0.0009 0.2718 ± 0.0054
GatedGCN † 0.6765 ± 0.0047 0.2477 ± 0.0009 0.2922 ± 0.0018 0.3880 ± 0.0040
GUMP 0.6843 ± 0.0037 0.2564 ± 0.0023 - -

O
th

er
s

GPS † 0.6534 ± 0.0091 0.2509 ± 0.0014 0.3884 ± 0.0055 0.4440 ± 0.0065
DRew 0.7150 ± 0.0044 0.2536 ± 0.0015 - 0.3314 ± 0.0024
Exphormer 0.6527 ± 0.0043 0.2481 ± 0.0007 0.3430 ± 0.0008 0.3960 ± 0.0027
GRIT 0.6988 ± 0.0082 0.2460 ± 0.0012 - -
Graph ViT 0.6942 ± 0.0075 0.2449 ± 0.0016 - -
CRAWL 0.7074 ± 0.0032 0.2506 ± 0.0022 - 0.4588 ± 0.0079

O
ur

s UniGCN 0.7072 ± 0.0035 0.2425 ± 0.0009 0.2852 ± 0.0016 0.3516 ± 0.0070
Lie UniGCN 0.7173 ± 0.0061 0.2460 ± 0.0011 0.3153 ± 0.0035 0.4005 ± 0.0067

† Reported performance taken from [TRRG23].
Table 1: Unitary GCN with UniConv (Definition 1) and Lie UniConv (Definition 3) layers compared
with other GNN architectures on LRGB datasets [DRG+22]. Top performer bolded and second/third
underlined. Networks are set to fit within a parameter budget of 500, 000 parameters. Complex
numbers are counted as two parameters each. See App. G for additional details.

(a) Data sample

0 50 100 150 200 250
epoch

0.0

2.5

5.0

7.5

10.0

12.5

te
st

 M
AE

Graph Attention Network
Residual GCN
Spectral Convolution
Vanilla GCN

Unitary GCN (UniConv)
Unitary GCN (Lie UniConv)
Trivial Performance

(b) Results for message passing architectures

Figure 2: (a) Example datapoint on
𝑛 = 25 nodes; the target is 𝑦 = 5 (dis-
tance between red nodes). (b) Results
for the ring toy model problem with
100 nodes where the unitary GCN with
UniConv or Lie UniConv layers is the
only message passing architecture able
to learn successfully. Best performance
over networks with 5, 10, and 20 layers
is plotted. Other architectures typically
perform best with 5 layers and only learn
shorter distances (see App. F.1).

Long Range Graph Benchmark (LRGB) We consider the Peptides, Coco, and Pascal datatsets
from the Long Range Graph Benchmark (LRGB) [DRG+22]. There are two tasks associated with
Peptides, a peptide function classification task (Peptides-func) and a regression task (Peptides-struct).
Coco and Pascal are node classification tasks.Table 1 shows that the Unitary GCN outperforms
standard message passing architectures and is competitive with other state of the art architectures as
well, many of which employ global attention mechanisms. This provides evidence that the unitary
GCN is nearly as effective at learning long-range signals.

Heterophilous Graph Dataset For node classification, we consider the Heterophilous Graph
Dataset proposed by [PKD+23]. The dataset contains the heterophilous graphs Roman-empire,
Amazon-ratings, Minesweeper, Tolokers, and Questions, which are often considered as a benchmark
for evaluating the performance of GNNs on graphs where connected nodes have dissimilar labels
and features. Our results in Table 2 show that the unitary GCN outperforms the baseline message
passing and graph transformer models. Given the heterophilous nature of this dataset, these findings
reinforce the notion that unitary convolution enhances the ability of convolutional networks to capture
long-range dependencies.

6 Discussion

In this paper we introduced unitary graph convolutions for enhancing stability in graph neural
networks. We provided theoretical and empirical evidence for the effectiveness of our approach. We
further introduce an extension to general groups (generalized unitary convolutions), which can be
leveraged in group-convolutional architectures to enhance stability.

8

Method Roman-e. Amazon-r. Minesweeper Tolokers Questions
Test AP ↑ Test AP ↑ ROC AUC ↑ ROC AUC ↑ ROC AUC ↑

M
P

GCN † 73.69 ± 0.74 48.70 ± 0.63 89.75 ± 0.52 83.64 ± 0.67 76.09 ± 1.27
SAGE † 85.74 ± 0.67 53.63 ± 0.39 93.51 ± 0.57 82.43 ± 0.44 76.44 ± 0.62
GAT † 80.87 ± 0.30 49.09 ± 0.63 92.01 ± 0.68 83.70 ± 0.47 77.43 ± 1.20
GT † 86.51 ± 0.73 51.17 ± 0.66 91.85 ± 0.76 83.23 ± 0.64 77.95 ± 0.68

O
ur

s Unitary GCN 87.21 ± 0.76 55.34 ± 0.74 94.27 ± 0.58 84.83 ± 0.68 79.21 ± 0.79
Lie Unitary GCN 85.50 ± 0.22 52.35 ± 0.26 96.11 ± 0.10 85.18 ± 0.43 80.01 ± 0.43

† Reported performance taken from [PKD+23].

Table 2: Comparison of Unitary GCN with UniConv (Definition 1) and Lie UniConv (Definition 3)
layers with other GNN architectures on the Heterophilous Graph Datasets.

Limitations Perhaps the biggest challenge in working with unitary convolutions is the overhead
associated with maintaining unitarity or orthogonality via approximations of the exponential map or
diagonalizations in Fourier or spectral bases. For implementing unitary maps, working with complex
numbers also requires different initialization and activation functions. We refer the reader to App. C.2
and E for methods to alleviate these challenges in practice. Separately, there may be target functions
or problem instances where unitarity or orthogonality may not be appropriate. For example, one can
envision node classification tasks where the target function is neither (approximately) invertible nor
isometric. In such instances, non-unitary layers will be required to learn the task. More generally,
deciding when to use unitary layers is problem-dependent. In some cases, such as applications with
smaller input graphs, simple and more efficient interventions such as adding residual connections or
including batch norm will likely suffice for addressing signal propagation problems.

Future Directions In the graph domain, extensions of graph convolution to more advanced methods
such as those that better incorporate edge features could widen the range of applications. Exploring
hybrid models that combine unitary and non-unitary layers (e.g. global attention mechanisms) could
potentially lead to more robust and versatile graph neural networks. Future work can also improve
the efficiency of the parameterizations and implementations of the exponential map (see App. C.2).
In a similar vein, it is likely that approximately unitary/orthogonal layers suffice in many settings to
achieve the performance gains we see in our work. Methods that approximately enforce or regularize
layers towards unitarity may be of interest in these instances due to their potential for improved
efficiency. In this study, we mainly focused on applications to graph classification and regression
tasks; however, the proposed methodology is much more general and could open up a wider range
of applications to domains with more general symmetries or different data domains. For example,
unitary matrices offer provable guarantees to adversarial attacks (see Corollary 9) and testing this
robustness in practice on geometric data has yet to be conducted.

Acknowledgements

BK and MW were supported by the Harvard Data Science Initiative Competitive Research Fund and
NSF award 2112085.

References
[ABKL23] Eric R Anschuetz, Andreas Bauer, Bobak T Kiani, and Seth Lloyd. Efficient classical

algorithms for simulating symmetric quantum systems. Quantum, 7:1189, 2023. 18

[AEL+24] Yassine Abbahaddou, Sofiane Ennadir, Johannes F. Lutzeyer, Michalis Vazirgiannis,
and Henrik Boström. Bounding the expected robustness of graph neural networks
subject to node feature attacks. In The Twelfth International Conference on Learning
Representations, 2024. 2, 18, 19

[AK22] Eric R Anschuetz and Bobak T Kiani. Quantum variational algorithms are swamped
with traps. Nature Communications, 13(1):7760, 2022. 18

9

[ALG19] Cem Anil, James Lucas, and Roger Grosse. Sorting out lipschitz function approxima-
tion. In International Conference on Machine Learning, pages 291–301. PMLR, 2019.
27, 31

[AMH09] Awad H Al-Mohy and Nicholas J Higham. Computing the fréchet derivative of the
matrix exponential, with an application to condition number estimation. SIAM Journal
on Matrix Analysis and Applications, 30(4):1639–1657, 2009. 25

[AMH10] Awad H Al-Mohy and Nicholas J Higham. A new scaling and squaring algorithm for
the matrix exponential. SIAM Journal on Matrix Analysis and Applications, 31(3):970–
989, 2010. 25

[ASB16] Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural
networks. In International Conference on Machine Learning, pages 1120–1128, 2016.
2, 5, 7, 17

[BDGC+22] Cristian Bodnar, Francesco Di Giovanni, Benjamin Chamberlain, Pietro Lio, and
Michael Bronstein. Neural sheaf diffusion: A topological perspective on heterophily
and oversmoothing in gnns. Advances in Neural Information Processing Systems,
35:18527–18541, 2022. 6

[BL17] Xavier Bresson and Thomas Laurent. Residual gated graph convnets. arXiv preprint
arXiv:1711.07553, 2017. 18, 30

[BQL21] Joshua Bassey, Lijun Qian, and Xianfang Li. A survey of complex-valued neural
networks. arXiv preprint arXiv:2101.12249, 2021. 27

[BSC+24] Ilyes Batatia, Lars Leon Schaaf, Gabor Csanyi, Christoph Ortner, and Felix Andreas
Faber. Equivariant matrix function neural networks. In The Twelfth International
Conference on Learning Representations, 2024. 18

[BSF94] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies
with gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–166,
1994. 2

[BVB21] Alberto Bietti, Luca Venturi, and Joan Bruna. On the sample complexity of learning
under geometric stability. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and
J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems,
volume 34, pages 18673–18684. Curran Associates, Inc., 2021. 1

[CGKW18] Taco S Cohen, Mario Geiger, Jonas Köhler, and Max Welling. Spherical cnns. arXiv
preprint arXiv:1801.10130, 2018. 3, 18

[Chu97] Fan RK Chung. Spectral graph theory, volume 92. American Mathematical Soc.,
1997. 6

[CNDP+21] Grecia Castelazo, Quynh T Nguyen, Giacomo De Palma, Dirk Englund, Seth Lloyd,
and Bobak T Kiani. Quantum algorithms for group convolution, cross-correlation, and
equivariant transformations. arXiv preprint arXiv:2109.11330, 2021. 18

[CST+21] Andrew M Childs, Yuan Su, Minh C Tran, Nathan Wiebe, and Shuchen Zhu. Theory
of trotter error with commutator scaling. Physical Review X, 11(1):011020, 2021. 25

[CW16] Taco Cohen and Max Welling. Group equivariant convolutional networks. In Interna-
tional conference on machine learning, pages 2990–2999. PMLR, 2016. 3, 18

[CW20] Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks. arXiv
preprint arXiv:2006.13318, 2020. 6, 28

[DGGB+23] Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio,
and Michael M Bronstein. On over-squashing in message passing neural networks:
The impact of width, depth, and topology. In International Conference on Machine
Learning, pages 7865–7885. PMLR, 2023. 7

10

[DRG+22] Vijay Prakash Dwivedi, Ladislav Rampášek, Mikhail Galkin, Ali Parviz, Guy Wolf,
Anh Tuan Luu, and Dominique Beaini. Long range graph benchmark. In Thirty-
sixth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track, 2022. 8, 33

[ESM23] Carlos Esteves, Jean-Jacques Slotine, and Ameesh Makadia. Scaling spherical cnns.
arXiv preprint arXiv:2306.05420, 2023. 1

[FH13] William Fulton and Joe Harris. Representation theory: a first course, volume 129.
Springer Science & Business Media, 2013. 2, 20, 26

[FL19] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch
Geometric. In ICLR Workshop on Representation Learning on Graphs and Manifolds,
2019. 30, 33

[FSIW20] Marc Finzi, Samuel Stanton, Pavel Izmailov, and Andrew Gordon Wilson. Generalizing
convolutional neural networks for equivariance to lie groups on arbitrary continuous
data. In International Conference on Machine Learning, pages 3165–3176. PMLR,
2020. 18

[FW24] Lukas Fesser and Melanie Weber. Mitigating over-smoothing and over-squashing using
augmentations of Forman-Ricci curvature. In Proceedings of the Second Learning on
Graphs Conference, volume 231 of Proceedings of Machine Learning Research, pages
19:1–19:28. PMLR, 27–30 Nov 2024. 18

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016. 7

[GBH18] Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic neural networks.
Advances in neural information processing systems, 31, 2018. 18

[GDBDG23] Benjamin Gutteridge, Xiaowen Dong, Michael M. Bronstein, and Francesco Di Gio-
vanni. DRew: Dynamically rewired message passing with delay. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan
Scarlett, editors, Proceedings of the 40th International Conference on Machine Learn-
ing, volume 202 of Proceedings of Machine Learning Research, pages 12252–12267.
PMLR, 23–29 Jul 2023. 18, 30

[GRK+21] Gligorijević, Renfrew, Kosciolek, Leman Koehler, Berenberg, Vatanen, Chandler,
Taylor, Fisk, Vlamakis, et al. Structure-based protein function prediction using graph
convolutional networks. Nature communications, 12(1):3168, 2021. 1

[GX15] Qinghua Guo and Jiangtao Xi. Approximate message passing with unitary transforma-
tion. arXiv preprint arXiv:1504.04799, 2015. 18

[GZH+22] Kai Guo, Kaixiong Zhou, Xia Hu, Yu Li, Yi Chang, and Xin Wang. Orthogonal graph
neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pages 3996–4004, 2022. 2, 18, 19

[Hal15] Brian Hall. Lie groups, Lie algebras, and representations: an elementary introduction,
volume 222. Springer, 2015. 2, 23, 24, 25

[HHL+23] Xiaoxin He, Bryan Hooi, Thomas Laurent, Adam Perold, Yann Lecun, and Xavier
Bresson. A generalization of ViT/MLP-mixer to graphs. In Andreas Krause, Emma
Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett,
editors, Proceedings of the 40th International Conference on Machine Learning, vol-
ume 202 of Proceedings of Machine Learning Research, pages 12724–12745. PMLR,
23–29 Jul 2023. 18, 30

[Hig09] Nicholas J Higham. The scaling and squaring method for the matrix exponential
revisited. SIAM review, 51(4):747–764, 2009. 25

[Hoc91] Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen netzen. Diploma, Tech-
nische Universität München, 91(1), 1991. 2

11

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-
tation, 9(8):1735–1780, 1997. 7, 17

[HSL16] Mikael Henaff, Arthur Szlam, and Yann LeCun. Recurrent orthogonal networks and
long-memory tasks. In International Conference on Machine Learning, pages 2034–
2042. PMLR, 2016. 2, 7, 27

[HSTW20] Emiel Hoogeboom, Victor Garcia Satorras, Jakub M Tomczak, and Max Welling.
The convolution exponential and generalized sylvester flows. arXiv preprint
arXiv:2006.01910, 2020. 2

[HWY18] Kyle Helfrich, Devin Willmott, and Qiang Ye. Orthogonal recurrent neural networks
with scaled cayley transform. In International Conference on Machine Learning, pages
1969–1978. PMLR, 2018. 2, 17, 25, 27

[HYL17] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on
large graphs. Advances in neural information processing systems, 30, 2017. 18

[JD15] Bo Jiang and Yu-Hong Dai. A framework of constraint preserving update schemes for
optimization on stiefel manifold. Mathematical Programming, 153(2):535–575, 2015.
27

[JSD+17] Li Jing, Yichen Shen, Tena Dubcek, John Peurifoy, Scott Skirlo, Yann LeCun, Max
Tegmark, and Marin Soljačić. Tunable efficient unitary neural networks (eunn) and
their application to rnns. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 1733–1741. JMLR. org, 2017. 2, 5, 7, 17

[KB14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014. 31

[KBLL22] Bobak Kiani, Randall Balestriero, Yann LeCun, and Seth Lloyd. projunn: efficient
method for training deep networks with unitary matrices. Advances in Neural Infor-
mation Processing Systems, 35:14448–14463, 2022. 2, 5, 17, 18, 20, 26, 27

[Kel75] Joseph B Keller. Closest unitary, orthogonal and hermitian operators to a given operator.
Mathematics Magazine, 48(4):192–197, 1975. 19

[Kem03] Julia Kempe. Quantum random walks: an introductory overview. Contemporary
Physics, 44(4):307–327, 2003. 18

[Ker22] Nicolas Keriven. Not too little, not too much: a theoretical analysis of graph (over)
smoothing. Advances in Neural Information Processing Systems, 35:2268–2281, 2022.
6

[KJ08] Alexander Kirillov Jr. An introduction to Lie groups and Lie algebras. Number 113.
Cambridge University Press, 2008. 24

[KLL+24] Bobak T Kiani, Thien Le, Hannah Lawrence, Stefanie Jegelka, and Melanie Weber. On
the hardness of learning under symmetries. In International Conference on Learning
Representations, 2024. 1

[KT18] Risi Kondor and Shubhendu Trivedi. On the generalization of equivariance and convo-
lution in neural networks to the action of compact groups. In International conference
on machine learning, pages 2747–2755. PMLR, 2018. 3, 18, 20, 26

[KW16] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolu-
tional networks. arXiv preprint arXiv:1609.02907, 2016. 3, 18, 28, 30

[LCMR19] Mario Lezcano-Casado and David Martınez-Rubio. Cheap orthogonal constraints in
neural networks: A simple parametrization of the orthogonal and unitary group. In
International Conference on Machine Learning, pages 3794–3803. PMLR, 2019. 2, 5,
7, 17, 20, 24, 25, 27

[LFT20] Jun Li, Li Fuxin, and Sinisa Todorovic. Efficient riemannian optimization on the stiefel
manifold via the cayley transform. arXiv preprint arXiv:2002.01113, 2020. 20, 27

12

[LGJ+21] Man Luo, Qinghua Guo, Ming Jin, Yonina C Eldar, Defeng Huang, and Xiangming
Meng. Unitary approximate message passing for sparse bayesian learning. IEEE
transactions on signal processing, 69:6023–6039, 2021. 18

[LHA+19] Qiyang Li, Saminul Haque, Cem Anil, James Lucas, Roger B Grosse, and Jörn-
Henrik Jacobsen. Preventing gradient attenuation in lipschitz constrained convolutional
networks. Advances in neural information processing systems, 32:15390–15402, 2019.
2, 17, 20

[LJH15] Quoc V Le, Navdeep Jaitly, and Geoffrey E Hinton. A simple way to initialize recurrent
networks of rectified linear units. arXiv preprint arXiv:1504.00941, 2015. 2

[LJW+19] Shuai Li, Kui Jia, Yuxin Wen, Tongliang Liu, and Dacheng Tao. Orthogonal deep
neural networks. IEEE transactions on pattern analysis and machine intelligence,
43(4):1352–1368, 2019. 2, 18

[Llo96] Seth Lloyd. Universal quantum simulators. Science, 273(5278):1073–1078, 1996. 25

[MBB24] Nimrah Mustafa, Aleksandar Bojchevski, and Rebekka Burkholz. Are gats out of
balance? Advances in Neural Information Processing Systems, 36, 2024. 18

[MGL+23] Grégoire Mialon, Quentin Garrido, Hannah Lawrence, Danyal Rehman, Yann LeCun,
and Bobak Kiani. Self-supervised learning with lie symmetries for partial differential
equations. Advances in Neural Information Processing Systems, 36:28973–29004,
2023. 25

[MHRB17] Zakaria Mhammedi, Andrew Hellicar, Ashfaqur Rahman, and James Bailey. Efficient
orthogonal parametrisation of recurrent neural networks using householder reflections.
In International Conference on Machine Learning, pages 2401–2409. PMLR, 2017.
17

[MKB+20] Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel,
and Marion Neumann. Tudataset: A collection of benchmark datasets for learning
with graphs. In ICML 2020 Workshop on Graph Representation Learning and Beyond
(GRL+ 2020), 2020. 7, 28, 33

[MLL+23] Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K Dokania, Mark
Coates, Philip Torr, and Ser-Nam Lim. Graph inductive biases in transformers without
message passing. In International Conference on Machine Learning, pages 23321–
23337. PMLR, 2023. 18, 30

[MMM21] Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Learning with invariances
in random features and kernel models. In Mikhail Belkin and Samory Kpotufe, editors,
Proceedings of Thirty Fourth Conference on Learning Theory, volume 134 of Pro-
ceedings of Machine Learning Research, pages 3351–3418. PMLR, 15–19 Aug 2021.
1

[MMS+17] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks. arXiv
preprint arXiv:1706.06083, 2017. 20

[MP17] Junjie Ma and Li Ping. Orthogonal amp. IEEE Access, 5:2020–2033, 2017. 18

[MPBK24] Sohir Maskey, Raffaele Paolino, Aras Bacho, and Gitta Kutyniok. A fractional graph
laplacian approach to oversmoothing. Advances in Neural Information Processing
Systems, 36, 2024. 18, 19

[MQ02] Robert I McLachlan and G Reinout W Quispel. Splitting methods. Acta Numerica,
11:341–434, 2002. 25

[NA05] Yasunori Nishimori and Shotaro Akaho. Learning algorithms utilizing quasi-geodesic
flows on the stiefel manifold. Neurocomputing, 67:106–135, 2005. 27

13

[NHN+23] Khang Nguyen, Nong Minh Hieu, Vinh Duc Nguyen, Nhat Ho, Stanley Osher, and
Tan Minh Nguyen. Revisiting over-smoothing and over-squashing using ollivier-ricci
curvature. In International Conference on Machine Learning, pages 25956–25979.
PMLR, 2023. 28, 32

[NSB+22] Quynh T Nguyen, Louis Schatzki, Paolo Braccia, Michael Ragone, Patrick J Coles,
Frederic Sauvage, Martin Larocca, and Marco Cerezo. Theory for equivariant quantum
neural networks. arXiv preprint arXiv:2210.08566, 2022. 18

[Pet06] Peter Petersen. Riemannian geometry, volume 171. Springer, 2006. 24

[PGC+17] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017. 30, 33

[PKD+23] Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila
Prokhorenkova. A critical look at the evaluation of gnns under heterophily: Are we
really making progress? arXiv preprint arXiv:2302.11640, 2023. 8, 32, 33

[PMB13] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training
recurrent neural networks. In International conference on machine learning, pages
1310–1318. Pmlr, 2013. 2

[PSG18] Jeffrey Pennington, Samuel Schoenholz, and Surya Ganguli. The emergence of spectral
universality in deep networks. In International Conference on Artificial Intelligence
and Statistics, pages 1924–1932. PMLR, 2018. 7

[PTPV17] Trang Pham, Truyen Tran, Dinh Phung, and Svetha Venkatesh. Column networks for
collective classification. In Proceedings of the AAAI conference on artificial intelli-
gence, volume 31, 2017. 18

[QBY24] Haiquan Qiu, Yatao Bian, and Quanming Yao. Graph unitary message passing. arXiv
preprint arXiv:2403.11199, 2024. 2, 18, 19, 20

[RBM23] T Konstantin Rusch, Michael M Bronstein, and Siddhartha Mishra. A survey on
oversmoothing in graph neural networks. arXiv preprint arXiv:2303.10993, 2023. 1,
6, 18, 28

[RCR+22] T Konstantin Rusch, Ben Chamberlain, James Rowbottom, Siddhartha Mishra, and
Michael Bronstein. Graph-coupled oscillator networks. In International Conference
on Machine Learning, pages 18888–18909. PMLR, 2022. 28

[RGD+22] Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf,
and Dominique Beaini. Recipe for a general, powerful, scalable graph transformer.
Advances in Neural Information Processing Systems, 35:14501–14515, 2022. 18, 28,
30, 33

[S+77] Jean-Pierre Serre et al. Linear representations of finite groups, volume 42. Springer,
1977. 25, 26

[SBV20] Shlomi, Battaglia, and Vlimant. Graph neural networks in particle physics. Machine
Learning: Science and Technology, 2(2):021001, 2020. 1

[SCY+23] Andrea Skolik, Michele Cattelan, Sheir Yarkoni, Thomas Bäck, and Vedran Dunjko.
Equivariant quantum circuits for learning on weighted graphs. npj Quantum Informa-
tion, 9(1):47, 2023. 18

[SF21] Sahil Singla and Soheil Feizi. Skew orthogonal convolutions. arXiv preprint
arXiv:2105.11417, 2021. 2, 5, 17, 18

[SGL18] Hanie Sedghi, Vineet Gupta, and Philip M Long. The singular values of convolutional
layers. arXiv preprint arXiv:1805.10408, 2018. 2, 6, 17, 20

14

[SHF+20] Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun.
Masked label prediction: Unified message passing model for semi-supervised classifi-
cation. arXiv preprint arXiv:2009.03509, 2020. 18

[SLN+24] Louis Schatzki, Martin Larocca, Quynh T Nguyen, Frederic Sauvage, and Marco
Cerezo. Theoretical guarantees for permutation-equivariant quantum neural networks.
npj Quantum Information, 10(1):12, 2024. 18

[SMG13] Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to
the nonlinear dynamics of learning in deep linear neural networks. arXiv preprint
arXiv:1312.6120, 2013. 2, 5, 7

[Str68] Gilbert Strang. On the construction and comparison of difference schemes. SIAM
journal on numerical analysis, 5(3):506–517, 1968. 25

[SVV+23] Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and
Ali Kemal Sinop. Exphormer: Sparse transformers for graphs. In International
Conference on Machine Learning, pages 31613–31632. PMLR, 2023. 18, 30

[TK21] Asher Trockman and J Zico Kolter. Orthogonalizing convolutional layers with the
cayley transform. arXiv preprint arXiv:2104.07167, 2021. 2, 6, 17, 18, 20, 25, 26, 27,
31

[Tro59] Hale F Trotter. On the product of semi-groups of operators. Proceedings of the
American Mathematical Society, 10(4):545–551, 1959. 25

[TRRG23] Jan Tönshoff, Martin Ritzert, Eran Rosenbluth, and Martin Grohe. Where did the gap
go? reassessing the long-range graph benchmark. arXiv preprint arXiv:2309.00367,
2023. 18, 30, 31, 36

[TRWG21] Jan Tönshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Walking out of the
weisfeiler leman hierarchy: Graph learning beyond message passing. arXiv preprint
arXiv:2102.08786, 2021. 31

[TRWG23] Jan Tönshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Walking out of the
weisfeiler leman hierarchy: Graph learning beyond message passing. Transactions on
Machine Learning Research, 2023. 18, 30

[VCC+17] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio,
and Yoshua Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903,
2017. 18, 28

[WPH+16] Scott Wisdom, Thomas Powers, John R Hershey, Jonathan Le Roux, and Les Atlas.
Full-capacity unitary recurrent neural networks. arXiv preprint arXiv:1611.00035,
2016. 17, 25

[WSZ+22] Wu, Sun, Zhang, Xie, and Cui. Graph neural networks in recommender systems: a
survey. ACM Computing Surveys, 55(5):1–37, 2022. 1

[WWY20] Rui Wang, Robin Walters, and Rose Yu. Incorporating symmetry into deep dynamics
models for improved generalization. arXiv preprint arXiv:2002.03061, 2020. 1

[WZR+20] Melanie Weber, Manzil Zaheer, Ankit Singh Rawat, Aditya K Menon, and Sanjiv Ku-
mar. Robust large-margin learning in hyperbolic space. Advances in Neural Information
Processing Systems, 33:17863–17873, 2020. 18

[XBSD+18] Lechao Xiao, Yasaman Bahri, Jascha Sohl-Dickstein, Samuel Schoenholz, and Jeffrey
Pennington. Dynamical isometry and a mean field theory of cnns: How to train 10,000-
layer vanilla convolutional neural networks. In International Conference on Machine
Learning, pages 5393–5402. PMLR, 2018. 7, 17, 18

[XHLJ18] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph
neural networks? arXiv preprint arXiv:1810.00826, 2018. 18, 30

15

[XLT+18] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi,
and Stefanie Jegelka. Representation learning on graphs with jumping knowledge
networks. In International conference on machine learning, pages 5453–5462. PMLR,
2018. 18

[YYL20] Jiaxuan You, Zhitao Ying, and Jure Leskovec. Design space for graph neural networks.
Advances in Neural Information Processing Systems, 33:17009–17021, 2020. 30, 33

[ZAL18] Zitnik, Agrawal, and Leskovec. Modeling polypharmacy side effects with graph con-
volutional networks. Bioinformatics, 34(13):i457–i466, 2018. 1

[ZK20] Hao Zhu and Piotr Koniusz. Simple spectral graph convolution. In International
conference on learning representations, 2020. 3, 28

16

Table of Contents

A Extended related works 17
A.1 Further related literature . 17
A.2 Comparison with other proposals for unitary message passing 18

B Deferred proofs 20

C Background on representation theory, Lie groups, exponential map, and related ap-
proximations 23
C.1 Matrix Lie groups . 23
C.2 Exponential map . 24

D Fourier implementation of group convolution 25

E Architectural considerations 27

F Additional experiments 27
F.1 Additional results on toy model of graph distance 27
F.2 TU Datasets . 28
F.3 Dihedral group distance . 28
F.4 Orthogonal Convolution . 29

G Experimental details 30
G.1 Licenses . 33

A Extended related works

A.1 Further related literature

Unitary RNNs Unitary neural networks were initially developed to tackle the challenge of vanish-
ing and exploding gradients encountered in recurrent neural networks (RNNs) processing lengthy
sequences of data. Aiming for more efficient information learning compared to established non-
unitary architectures like the long-short term memory unit (LSTM) [HS97], early approaches ensured
unitarity through a sequence of parameterized unitary transformations [ASB16, MHRB17, JSD+17].
Other methods like the unitary RNN (uRNN) [WPH+16], the Cayley parameterization (scoRNN)
[HWY18], and exponential RNN (expRNN) [LCMR19] parameterized the entire unitary space,
maintaining unitarity via Cayley transformations or parameterizing the Lie algebra of the unitary
group and performing the exponential map. To eliminate the reliance on the matrix inversion or ma-
trix exponential in these prior algorithms which are computationally expensive in higher dimensions,
[KBLL22] showed how to fully parameterize unitary operations more efficiently when applying
gradient updates in a low rank subspace.

Group convolutional neural networks For convolutional neural networks acting on data in lattices
or grids (e.g. images), various algorithms have proposed orthogonal or unitary versions of linear
convolutions over the cyclic group [LHA+19, SF21, TK21, KBLL22]. [XBSD+18] study the task
of initializing convolution layers to be an isometry and thereby are able to train very deep CNNs
with thousands of layers without the need for residual connections or batch norm. [SGL18] project
convolutions onto an operator-norm ball to ensure the norm of the convolution is within a given range.
[LHA+19] introduced a block convolutional orthogonal parameterization (BCOP) parameterizing a

17

subspace of orthogonal convolution operations. [SF21] implement orthogonal convolutions by
parameterizing the Lie algebra of the orthogonal group and approximating the exponential map.
Their approach is a special case of the instances we discuss in our work. [TK21] and [KBLL22]
perform convolution in the Fourier domain where convolution is block diagonalized and unitarity
can be enforced across each of these blocks. Generally, unitary convolutional architectures do not
perform as well as their vanilla counterparts in terms of accuracy on large image datasets such as
CIFAR or ImageNet [TK21, SF21, LJW+19]. Nonetheless, enforcing unitarity here can provide
other benefits such as improved robustness to adversarial attacks or added stability with many layers
[TK21, KBLL22, SF21, XBSD+18]. Various architectures for more general geometric domains have
been proposed [KT18, CGKW18, CW16, GBH18, WZR+20, FSIW20], including generalized group
convolutional neural networks considered here. To the best of our knowledge, no explicit extensions
of unitary convolutions and related stability aspects have been considered in these settings.

GNNs and oversmoothing Our GNN architectures develop on seminal work proposing variants
of graph convolution architectures [KW16, BL17]. Graph convolution is one of various types
of trainable layers that act on graphs and are equivariant to the permutation group; among those
we compare to in our experiments are [KW16, BL17, XHLJ18, TRRG23, HHL+23, GDBDG23,
RGD+22, MLL+23, SVV+23, TRWG23, HYL17, VCC+17, SHF+20]. Recently, some work has
proposed variants of unitary/orthogonal graph convolution which we discuss in more detail in the
next section (App. A.2). Compared to our method, these either only enforce unitarity in part of the
transformation or are expensive to compute. For example, [GZH+22, AEL+24] propose variants of
graph convolution which enforce orthogonality in the feature transformation but not in the message
passing update itself. [QBY24] propose a graph unitary message passing algorithm that is in general
close to an isometry, but scales poorly with the graph size (see App. A.2). Some recent work has
also proposed performing message passing in the complex domain. [MPBK24] show a continuous
time message passing update that can be made unitary as discussed in App. A.2. [BSC+24] propose
an equivariant matrix function graph neural network layer that performs a global update by taking
a trainable pole expansion of a matrix function of the adjacency matrix. This layer is effective
at incorporating global information, but requires matrix inversion operations that can scale poorly
with dimension. [MBB24] give a so-called “balanced orthogonal” initialization for message passing
networks using graph attention (GAT). The weight matrix parameters in the GAT layer are initialized
as some orthogonal matrix which improves stability for GNNs of the given form with many layers.
Nonetheless, the layer itself does not implement an isometry due to the presence of the attention
mechanism in the GAT layer.
Various architectures have been proposed to avoid oversmoothing and incorporate nonlocal graph
information more generally. This includes approaches that perform small perturbations of the input
graph (rewiring [RBM23, FW24]), as well as architectural interventions, such as skip connec-
tions [PTPV17, HYL17, XLT+18], which can improve stability in homophilous settings.

Other settings In the context of Bayesian statistics and graphical algorithms, there are variants of
the approximate message passing algorithm which leverage properties of unitarity or orthogonality
in the message passing [LGJ+21, GX15, MP17]. Unitary equivariant operators are also used in
the context of quantum computation and quantum variational algorithms [NSB+22, CNDP+21,
SCY+23, SLN+24]. These papers generally study a very different context to that of classical machine
learning algorithms. Furthermore, it is unclear whether practical instances of these algorithms offer
improvements in comparison to classical machine learning algorithms [AK22, ABKL23]. Separate
from quantum machine learning, the unitary graph convolution used here is partly inspired by
quantum walks which feature similar unitarity properties [Kem03].

A.2 Comparison with other proposals for unitary message passing

We compare here previous GNN architectures which have proposed variants of complex-valued or
isometric message passing. To facilitate this comparison, first let us recall some standard notation
and implementations. Given an (possibly normalized) adjacency matrix A ∈ R𝑛×𝑛 acting on 𝑛 nodes
and input features X ∈ R𝑛×𝑑 of dimension 𝑑, a basic linear message passing layer 𝑓 : R𝑛×𝑑 → R𝑛×𝑑′
takes the form

𝑓W (X) = 𝜎(AXW), (16)

18

where 𝜎 : R → R is a pointwise nonlinearity and W ∈ R𝑑×𝑑′ is a parameterized weight matrix
transforming the node features. There are variations of the above which normalize the adjacency
matrix or add residual connections, but for sake of comparison, we will study the simplified form
above. In contrast, the unitary message passing layer we propose takes the form

𝑓 uni
W (X) = 𝜎(exp(𝑖𝑡A)XW), (17)

where X and W are now complex-valued and 𝑡 ∈ R is a parameter controlling the strength of message
passing.
[GZH+22] propose a version of an orthogonal GNN which enforces either exactly or approximately
that the matrix W in Eq. (16) is orthogonal, i.e.

𝑓W (X) = 𝜎(AXW), where W ⊺W = I . (18)

They also discuss regularization of node transformations W to bias towards orthogonality. [AEL+24]
also detail a version of a GNN which enforces orthogonality in the matrix W . We note that our study
focuses on orthogonality in the node evolution during message passing. We discuss in the main text
how to combine this with orthogonality in the feature transformation W .
Our work also has overlap with the recently proposed fractional Graph Laplacian approach of
[MPBK24]. There, they analyze a continuous-time message passing scheme called the fractional
Schrödinger equation taking the form

𝜕X
𝜕𝑡

= 𝑖L𝛼XW , (19)

where 𝛼 > 0 is a chosen parameter and L is the normalized graph Laplacian. Unitarity can be
strictly enforced in this continuous time format although [MPBK24] do not take this approach.
In fact, solving this continuous-time differential equation for some time 𝑡, we obtain vec(X) (𝑡) =

exp(𝑖𝑡L𝛼 ⊗ W) vec(X) (0) where vec(X) (𝑡) is the vectorized version of X at time 𝑡. Constraining
L𝛼 ⊗ W to be Hermitian obtains a unitary transformation. Beyond enforcing unitarity, our method
works over discrete time, and we find it more efficient to parameterize the weight matrix W outside
of the exponential map.
A recent preprint proposes a unitary message passing algorithm called graph unitary message
passing (GUMP) which sends messages through a larger ring graph constructed from the edges of
the original graph [QBY24]. Given a graph 𝐺 with nodes and edges 𝑉 and 𝐸 respectively, the steps
of this approach loosely are as follows:

1. Construct a new directed graph (digraph) 𝐺′ with the same nodes and include directed
edges (𝑖, 𝑗) and (𝑗 , 𝑖) for any undirected edge (𝑖, 𝑗) in original graph.

2. Convert𝐺′ to its line graph 𝐿 (𝐺′): here, each node is an edge in𝐺′ and two nodes in 𝐿 (𝐺′)
share an edge if there is a path through the original edges in 𝐺′ (e.g. nodes corresponding
to edges (𝑖, 𝑗) and (𝑗 , 𝑘)).

3. Construct new node representations in the line graph where for each edge (𝑖, 𝑗) we append
the node representations [x𝑖 ,x 𝑗].

4. Given the adjacency matrix A𝐿 for 𝐿 (𝐺′), find permutation matrices P1,P2 which form a
block diagonal matrix P

⊺
1 A𝐿P2.

5. Project each block to its closest unitary in Frobenius norm according to the closed form
projection operation [Kel75]:

Ã𝐿 = arg min
U ∈ U(|𝐿 (𝐺′) |)

∥A𝐿 − U ∥2
𝐹 = A𝐿 (A†

𝐿
A𝐿)−

1
2 . (20)

In the above, U(𝑛) denotes the set of unitary matrices in C𝑛×𝑛.

6. Invert the permutations obtaining P1Ã𝐿P
⊺
2 .

7. Perform GNN convolution using the adjacency matrix constructed previously for 𝑘 layers.
8. Attach node representations of 𝐿 (𝐺′) to corresponding nodes of 𝐺 and append these to the

initial representations x to output the final representations.

19

As evident above, the approach here is rather meticulous and many details of the approach are left
out. We refer the reader to the preprint [QBY24] for those details. Key to this procedure is that
unitarity is roughly enforced by constructing the matrix Ã𝐿 which is itself unitary in the vector space
of the line graph 𝐿 (𝐺′). Nonetheless, the map from node representations on the original graph 𝐺 to
new node representations on 𝐺 will only be approximately unitary as the additional steps here will
not guarantee properties of isometry and invertibility in general.
For sake of comparison, we should note that the complexity of this approach (in number of nodes |𝑉 |
and edges |𝐸 |) is at least𝜔(|𝐸 |2) and in practice𝑂 (|𝐸 |3) where the most expensive step is the unitary
projection which requires a matrix inverse square root. More efficient parameterizations of this pro-
cedure or approximations to the projection exist as noted in prior work [KBLL22, LCMR19, LFT20],
but this would only improve runtimes to 𝜔(|𝐸 |2) at best with additional overhead. Furthermore,
the GUMP algorithm expands the memory needed to store hidden states from 𝑂 (|𝑉 |) to 𝑂 (|𝐸 |). In
comparison, our approach can be made strictly unitary and is more efficient scaling only a constant
factor times standard graph convolution runtime to 𝑂 (𝑇 |𝑉 | |𝐸 |) where 𝑇 is the truncation in the
matrix exponential approximation (see App. C.2) with no change to the way hidden states are stored.
Our approach is also noticeably simpler as it only reparameterizes the message passing step to be an
exponential map over standard message passing procedures.

B Deferred proofs

First, we review the properties shown in Fact 1 that unitary convolution meets the properties of
invertibility, isometry, and equivariance. This fact follows virtually immediately from the definition
of unitarity and equivariance.

Proof of Fact 1. The proofs of isometry and invertibility follow directly from the definition of
unitarity. What remains to be shown is the equivariance property. For unitary convolution built
using Algorithm 1, equivariance can be checked by noting that the exponential map is a composition
of equivariant linear operators. For unitary convolution in the Fourier domain (Algorithm 3),
equivariance follows from convolution theorems where linear operators appropriately applied in the
block diagonal Fourier basis are equivariant [FH13, KT18]. □

As an application, unitary transformations are often used to provide provable robustness guarantees
to adversarial perturbations of inputs [TK21, LHA+19, MMS+17, SGL18].
Corollary 9 (Certified robustness to adversarial perturbations [TK21]). A simple consequence of the
isometry property of the unitary convolution is that ∥ 𝑓Uconv (x)− 𝑓Uconv (y)∥ = ∥x−y∥ so the Lipschitz
constant of this function is 1. Assume neural network classifier 𝑓 : R𝑛 → R𝑚 is composed of unitary
transformations and 1-Lipschitz bounded nonlinearities followed by an 𝐿-Lipschitz transformation
and for given input x, it has margin M 𝑓 (x) defined as

M 𝑓 (x) = max
𝑡∈[𝑚]

{
0, [𝑓 (x)]𝑡 − max

𝑖∈[𝑚],𝑖≠𝑡
[𝑓 (x)]𝑖

}
. (21)

Then, 𝑓 is certifiably robust (i.e. classification is unchanged) to perturbations x + Δ of magnitude
∥Δ∥ < M 𝑓 (x) (

√
2𝐿)−1.

In the main text, we noted in Proposition 4 that the above facts in some way cannot be obtained using
the standard graph convolution. We restate this here and prove it.
Proposition 4. Let 𝑓conv : R𝑛×𝑑 → R𝑛×𝑑 be a graph convolution layer of the form

𝑓conv (X ,A) = XW0 + AXW1, (12)
where W0,W1 ∈ R𝑑×𝑑 are parameterized matrices. The linear map 𝑓 (·,A) : R𝑛×𝑑 → R𝑛×𝑑 is
orthogonal for all adjacency matrices A of undirected graphs only if W1 = 0 and W0 ∈ 𝑂 (𝑑) is
orthogonal. Furthermore, denoting JA ∈ R𝑛𝑑×𝑛𝑑 as the Jacobian matrix of the map 𝑓conv (·,A), for
any choice of W0,W1, there always exists a normalized adjacency matrix Â such thatJ⊤

Â
JÂ − I

 ≥ ∥W1∥2
𝐹

2𝑑
, (13)

where ∥M ∥ is the operator norm of matrix M .

20

Proof. Note that for (a potentially normalized) adjacency matrix A, the Jacobian JA in the basis of
vec(X) is equal to

JA = I ⊗ W ⊤
0 + A ⊗ W ⊤

1 . (22)
Thus, for the map to be orthogonal, it must hold that

I = JAJ⊤
A = I ⊗ W ⊤

0 W0 + A ⊗ W ⊤
0 W1 + A ⊗ W ⊤

1 W0 + A2 ⊗ W ⊤
1 W1. (23)

First, let A0 be the empty graph on two nodes so A = 0, then

JA0J
⊤
A0

= I ⊗ W ⊤
0 W0, (24)

which means W0 must be orthogonal if JA0 is orthogonal. A simple instance with the desired
structure can be constructed as follows: Consider the graph on two nodes, which is connected with
adjacency matrix A1. Here, we have

JA1J
⊤
A1

= I ⊗
(
W ⊤

0 W0 + W ⊤
1 W1

)
+ A ⊗

(
W ⊤

1 W0 + W ⊤
0 W1

)
. (25)

Note that if W0 is orthogonal, then W1 = 0 if JA1J
⊤
A1

= I . This proves the first part of the
proposition.
For the second part, we take traces and note that

Tr
(
JA0J

⊤
A0

)
= 2∥W0∥2

𝐹 ,

Tr
(
JA1J

⊤
A1

)
= 2∥W0∥2

𝐹 + 2∥W1∥2
𝐹 .

(26)

In contrast, Tr(I) = 2𝑑. Therefore, for any choice of the values of ∥W0∥2
𝐹
, ∥W1∥2

𝐹
, it must hold

that either ���Tr
(
JA0J

⊤
A0

)
− 2𝑑

��� ≥ ∥W1∥2
𝐹 (27)

or ���Tr
(
JA1J

⊤
A1

)
− 2𝑑

��� ≥ ∥W1∥2
𝐹 . (28)

W.l.o.g. assume the first event holds. Denoting the singular values of a matrix JA1JA1 − I as
𝑠1, . . . , 𝑠2𝑑 , we have

∥W1∥2
𝐹 ≤

���Tr
(
JA1J

⊤
A1

− I
)��� ≤ 𝑠1 + · · · + 𝑠2𝑑 ≤ 2𝑑max

𝑖
𝑠𝑖 . (29)

Rearranging, we obtain the final result. □

One consequence of the above fact is that fully parameterized unitary graph convolution requires
higher order powers of A to be implemented. This is essentially one reason why the exponential
map (or some approximation thereof) is needed.
We now show that the Rayleigh quotient defined in Definition 5 is invariant under unitary transfor-
mations. As before, this will follow virtually directly from the unitarity properties. We restate the
proposition below.
Proposition 6 (Invariance of Rayleigh quotient). Given an undirected graph G on 𝑛 nodes with
normalized adjacency matrix Ã = D−1/2AD−1/2, the Rayleigh quotient 𝑅G (X) = 𝑅G (𝑓Uconv (X))
is invariant under normalized unitary or orthogonal graph convolution (see Definitions 1 and 3).

Proof. First, consider separable unitary convolution (Definition 1). The Rayleigh quotient takes the
form

𝑅G (𝑓Uconv (X)) =
Tr

((
exp(𝑖Ã)XU

)†
(I − Ã) exp(𝑖Ã)XU

)
∥ exp(𝑖Ã)XU ∥2

𝐹

. (30)

The Frobenius norm is invariant under unitary transformations so the denominator
∥ exp(𝑖Ã)XU ∥2

𝐹
= ∥X ∥2

𝐹
. For the numerator we have by the cyclic property of trace

Tr
((

exp(𝑖Ã)XU
)†

(I − Ã) exp(𝑖Ã)XU

)
= Tr

(
X† exp(−𝑖Ã) (I − Ã) exp(𝑖Ã)X

)
(31)

21

The matrices exp(−𝑖Ã), (I − Ã), exp(𝑖Ã) all share the same eigenbasis so they commute and thus

Tr
(
X† exp(−𝑖Ã) (I − Ã) exp(𝑖Ã)X

)
= Tr

(
X† (I − Ã)X

)
. (32)

Thus, we have

𝑅G (𝑓Uconv (X)) =
Tr

(
X† (I − Ã)X

)
∥X ∥2

𝐹

= 𝑅G (X). (33)

Similarly for Lie unitary/orthogonal convolution (Definition 3), the isometry property guarantees
∥X ∥2

𝐹
= ∥ 𝑓Uconv (X)∥2

𝐹
. Furthermore, when viewed as a linear map in the basis of vec(X) ∈ C𝑛𝑑

(i.e. entries of X viewed as a vector), 𝑓Uconv can be written as a linear map of the form

vec(𝑓Uconv (X)) = exp(A ⊗ W ⊤) vec(X), (34)

where W is the feature transformation matrix in Definition 3. Finally, note that exp(A ⊗ W ⊤)
commutes with A so

Tr
(
𝑓Uconv (X)† (I − Ã) 𝑓Uconv (X)

)
= vec(X)† exp(A ⊗ W ⊤)†

[
(I − Ã) ⊗ I

]
exp(A ⊗ W ⊤) vec(X)

= vec(X)†
[
(I − Ã) ⊗ I

]
vec(X).

(35)

Multiplying the above by ∥X ∥−2
𝐹

recovers 𝑅G (X). □

In contrast, we gave an example (Proposition 7) where the Rayleigh quotient decays with high
probability for vanilla convolution, which we restate below.
Proposition 7. Given a simple undirected graph G on 𝑛 nodes with normalized adjacency matrix
Ã = D−1/2AD−1/2 and node degree bounded by 𝐷, let X ∈ R𝑛×𝑑 have rows drawn i.i.d. from the
uniform distribution on the hypersphere in dimension 𝑑. Let 𝑓conv (X) = ÃXW denote convolution
with orthogonal feature transformation matrix W ∈ 𝑂 (𝑑). Then, the event below holds with
probability 1 − exp(−Ω(

√
𝑛)):

𝑅G (X) ≥ 1 −𝑂
(

1
𝑛1/4

)
and 𝑅G (𝑓conv (X)) ≤ 1 − Tr(Ã3)

Tr(Ã2)
+𝑂

(
1
𝑛1/4

)
. (15)

Proof. Note that

E
[
𝑅G (X)

]
= E

Tr

(
X⊤ (I − Ã)X

)
∥X ∥2

𝐹

 =
1
𝑛
E
[
Tr

(
(I − Ã)XX⊤

)]
. (36)

By symmetry properties of the uniform distribution Unif (𝑆𝑑−1) on the hypersphere, E[XX⊤] = I .
Thus,

E
[
𝑅G (X)

]
= 1. (37)

Furthermore, treating 𝑅G (X) as a function of its node features x1, . . . ,x𝑛 where x𝑖 = X⊤
𝑖,:, we have

by the Azuma-Hoeffding inequality that

P
[��𝑅G (X) − E𝑅G (X)

�� ≥ 𝜖] ≤ exp(−Ω(𝑛𝜖2)). (38)

The above can be shown by noting that the operator norm of I − Ã is bounded by two and changing
the values of any x𝑖 changes 𝑅G (X) by at most 4/𝑛. Therefore, setting 𝜖 = 𝜀𝑛−1/4, we get that with
probability 1 − exp(−Ω(𝜀2√𝑛)),

𝑅G (X) = 1 −𝑂 (1/𝑛1/4). (39)

22

For 𝑅G (𝑓conv (X)), we have

E
[
𝑅G (𝑓conv (X))

]
= E

Tr

(
W ⊤X⊤Ã(I − Ã)ÃXW

)
∥ÃXW ∥2

𝐹

= E

Tr

(
X⊤Ã(I − Ã)ÃX

)
∥ÃX ∥2

𝐹

= E

1 −
Tr

(
X⊤Ã3X

)
∥ÃX ∥2

𝐹

 .
(40)

Again, using the Azuma-Hoeffding argument as before, the numerator above concentrates around its
expectation as

P
[���Tr

(
X⊤Ã3X

)
− ETr

(
X⊤Ã3X

)��� ≥ 𝜖𝑛] ≤ exp(−Ω(𝜖2𝑛)). (41)

A similar statement holds for the denominator ∥ÃX ∥2
𝐹

. Furthermore, we have by symmetry
properties of the distribution of X and linearity of expectation:

ETr
(
X⊤Ã3X

)
= Tr(Ã3), E∥ÃX ∥2

𝐹 = Tr(Ã2). (42)

Combining the above facts and applying the union bound, we have that with probability
1 − exp(Ω(𝜀2√𝑛)),

1 −
Tr

(
X⊤Ã3X

)
∥ÃX ∥

≤ 1 − Tr(Ã3) − 𝜀𝑛3/4

Tr(Ã2) + 𝜀𝑛3/4
= 1 − Tr(Ã3)

Tr(Ã2)
+𝑂 (𝑛−1/4). (43)

In the last equality, we use the fact that A has bounded degree and thus Tr(Ã2) = Θ(𝑛). □

C Background on representation theory, Lie groups, exponential map, and
related approximations

C.1 Matrix Lie groups

We give a brief overview of matrix Lie groups and Lie algebras here and recommend [Hal15] for
detailed exposition. Matrix Lie groups are subsets of invertible matrices that form a differentiable
manifold formally defined below.
Definition 10 (Matrix Lie groups [Hal15]). A matrix Lie group is any subgroup of 𝐺𝐿 (𝑛,C) with
the property that any sequence of matrices M𝑚 ∈ C𝑛×𝑛 in the subgroup converge to a matrix M
that is either an element of the subgroup or not invertible (i.e., not in 𝐺𝐿 (𝑛,C)).

The orthogonal and unitary groups whose definitions are copied below meet these criteria.

𝑂 (𝑛) =
{
M ∈ R𝑛×𝑛 |MM⊺ = M⊤M = I

}
, (44)

𝑈 (𝑛) =
{
M ∈ C𝑛×𝑛 |MM † = M †M = I

}
. (45)

A crucial operation in matrix Lie groups is the exponential map. Given a matrix M : C𝑛×𝑛 which is
an endomorphism End(C𝑛) on the vector space C𝑛, the exponential map exp : End(C𝑛) → End(C𝑛)
returns another matrix (endomorphism) and is defined as

exp(M) =
∞∑︁
𝑝=0

1
𝑝!

M 𝑝 . (46)

The exponential map, as we will show below, maps from the Lie algebra to the Lie group. It also has
an interpretation over Riemannian manifolds which we do not discuss here. We refer the reader to a

23

textbook [Pet06] or prior work in machine learning [LCMR19] for further details of that connection.
For compact groups, the exponential map is a smooth map whose image is the connected component
to the identity of the Lie group [KJ08, Hal15]. The Lie algebra is the tangent space of a Lie group
at the identity element. To see this, note that

𝑑

𝑑𝑡
exp(𝑡X) = X exp(𝑡X) = exp(𝑡X)X , (47)

and
𝑑

𝑑𝑡
exp(𝑡X)

���
𝑡=0

= X . (48)

Note that exp(0) = I . The above gives us the Lie algebra to a given group.
Definition 11 (Lie algebra [Hal15]). Given a matrix Lie group 𝐺, the Lie algebra 𝔤 of 𝐺 is the set
of matrices X such that 𝑒𝑡X ∈ 𝐺 for all 𝑡 ∈ R.

As an example, consider the unitary group where given a matrix U ∈ 𝑈 (𝑛) and X ∈ 𝔲(𝑛). Here,
we have

𝑑

𝑑𝑡
exp(−𝑡X)

���
𝑡=0

=
𝑑

𝑑𝑡
exp(𝑡X†)

���
𝑡=0

=⇒ −X = X†. (49)

C.2 Exponential map

First, let us recall the definition of the exponential map. Given a linear operator L : V → V which
is an endomorphism End(V) on a vector space V, the exponential map exp : End(V) → End(V)
is defined as

exp(L) (X) =
∞∑︁
𝑝=0

1
𝑝!

L𝑝 (X) = X + L(X) + 1
2

L ◦ L(X) + 1
6

L ◦ L ◦ L(X) + · · · (50)

Applying the exponential map of a linear operator to a given vector in a vector space of dimension 𝑛 to
computer precision can scale in practice as𝑂 (𝑛3) similarly to performing an eigendecomposition. In
fact, for matrices M ∈ C𝑛×𝑛 which have an eigendecomposition M = UDU † (for skew-Hermitian
matrices M ∈ 𝔲(𝑛), the spectral theorem guarantees the existence of an eigendecomposition.),
exp(M) = U exp(D)U † where exp(D) can be easily implemented by performing the exponential
elementwise on the diagonal entries of D. However, in practice, we can exploit approximations
which avoid expensive operations such as eigendecompositions.

Taylor approximation Often the simplest and most efficient approximation is a 𝑘-th order trunca-
tion to the Taylor series

exp[conv] (X) ≈
𝑘∑︁
𝑝=0

1
𝑝!

conv(𝑝) (X), (51)

where conv𝑝 : V → V indicates the composition of the operator conv 𝑝 times. By Taylor’s theorem,
one can bound the error in this approximation asexp[conv] (X) −

𝑘∑︁
𝑝=0

1
𝑝!

conv𝑝 (X)

2

≤ 𝑂
(
∥conv∥𝑘+1∥X∥2

(𝑘 + 1)!

)
,

where ∥conv∥ denotes the operator norm of conv. Therefore, error decreases exponentially with 𝑘 . In
practice, we find setting 𝑘 = 12 is sufficiently accurate for the GNNs we train in our experiments. Of
course, 𝑘 can be increased in settings with larger graphs or more training time where instabilities are
likely to arise. We also by default perform unitary convolution with normalized adjacency matrices
D−1/2AD−1/2 (D is the diagonal degree matrix) so that the operator norm of the linear convolution
operation is bounded by one.

24

Padé approximant Padé approximations are optional rational functional approximations of a given
function up to a given order. In unitary settings, Padé approximants are often preferred because they
return a unitary operator. In contrast, Taylor approximations discussed previously only return a linear
operator which can be made arbitrarily close to a unitary operator. Padé approximants of order 𝑘
take the form

exp(M) ≈ 𝑝𝑘 (M)𝑞𝑘 (M)−1, (52)
where 𝑝𝑘 , 𝑞𝑘 are degree 𝑘 polynomials. The degree 𝑘 Padé approximant agrees with the Taylor
expansion up to order 2𝑘 . The first order Padé approximant, also known as the Cayley map, has been
used in prior neural network implementations [WPH+16, HWY18, TK21] and takes the form

exp(M) ≈
(
I + 1

2
M

) (
I − 1

2
M

)−1
. (53)

One practical drawback of Padé approximants are that they typically require implementations of
a matrix inverse or approximations thereof which render this more challenging to implement. In
our setting, we found that the Taylor approximation sufficed in accuracy and stability so we did not
implement this.
Finally, we should remark that Padé approximants can be used to pre-compute matrix exponentials
to computer precision [Hig09, AMH10, AMH09]. [LCMR19] use these techniques to parameterize
unitary layers accurately for RNNs. One could pre-compute matrix exponentials of adjacency
matrices in our setting to speed up training, though we have not implemented this in our experiments.
We leave this for future work.

Other implementations of exponential map We briefly mention here for sake of completeness
a different approach to approximating the exponential map based on the Baker-Campbell-Hausdorff
formula [Hal15] which states that for matrices X ,Y ∈ C𝑛×𝑛:

exp(X) exp(Y) = exp
(
X + Y + 1

2
[X ,Y] + 1

12
[X , [X ,Y]] − 1

12
[Y , [X ,Y]] + · · ·

)
. (54)

The Lie-Trotter approximation uses the above fact to implement the matrix exponential of a sum of
matrices as a product of matrix exponentials over elements of the sum. This method is often used in
high dimensional spaces where the output of the exponential map on each Lie algebra generator is
known. The first order expansion takes the form [Tro59, CST+21]

exp(X + Y) = lim
𝑛→∞

[
exp

(
X

𝑛

)
exp

(
Y

𝑛

)]𝑛
≈

[
exp

(
X

𝑘

)
exp

(
Y

𝑘

)] 𝑘
, (55)

where 𝑘 is a positive integer controlling the level of approximation. The above is accurate to order
𝑂 (1/𝑘), and higher order accurate schemes exist. These methods are commonly used in machine
learning, quantum computation, and numerical methods10 [CST+21, MGL+23, Llo96, Str68, MQ02].
One advantage of this approach is that the approximation applied to an operator in the Lie algebra
always returns an element in the Lie group since the approximation is a product of Lie group elements
themselves.

D Fourier implementation of group convolution

In the main text, we described a generalized procedure to implement unitary convolution with
parameterized operators in the Lie algebra of a group. We complement that with a mostly informal
discussion on how to implement unitary convolution in the Fourier domain. The algorithms are
summarized in Algorithm 3 and Algorithm 2.
Before detailing the algorithm in Algorithm 3, we provide a brief overview of Fourier-based convo-
lutions over arbitrary groups, which generalizes the classical Fourier transform to that over arbitrary
groups. We recommend [S+77] for a more complete and rigorous background. Throughout this, we
will assume that groups are finite, though this can be generalized to other groups, especially those
that are compact.

10In numerical methods, they fall under the umbrella of splitting methods or Strang splitting.

25

Algorithm 2 Unitary map from Lie algebra
Input: equivariant linear operator L ∈ C𝑛 → C𝑛
Input: vector x ∈ C𝑛
1: L̃ = 1

2 (L − L†) (skew symmetrize operator)
2: return exp(L̃) (x) (or approximation thereof)

Algorithm 3 Unitary map in Fourier basis
Input: Fourier transform F : C𝑛 →

⊕𝑚
𝑖=1 C

𝑑𝑖×𝑑𝑖
Input: Unitary operators {U𝑖}𝑚𝑖=1, U𝑖 ∈ 𝑈 (𝑑𝑖)
Input: vector x ∈ C𝑛
1: Y = F (x) (apply Fourier transform)
2: Z =

[⊕𝑚
𝑖=1 U𝑖

]
Y (apply block diagonal uni-

taries)
3: return F −1 (Z) (inverse Fourier transform)

A representation of a group is a map 𝜌 : 𝐺 → F𝑑×𝑑 for a given field F such that 𝜌(𝑔)𝜌(𝑔′) = 𝜌(𝑔𝑔′)
(homomorphism). A representation is reducible if there exists an invertible matrix 𝑄 ∈ F𝑑×𝑑
such that 𝑄𝜌(𝑔)𝑄−1 = ⊕𝑘

𝑖=1𝜌
′
𝑖
(𝑔) is a direct sum of at least 𝑘 ≥ 2 representations 𝜌′1, . . . , 𝜌

′
𝑘
. A

representation is irreducible if such a decomposition does not exist. For any finite group 𝐺, a system
of unique irreps 𝜌1, . . . , 𝜌𝐾 always exists. It holds that

∑
𝑖 dim(𝜌𝑖)2 = |𝐺 | for any such set of unique

irreducible representations [S+77]. Here, the uniqueness is to eliminate redundancies due to the fact
that any irrep 𝜌 can be mapped to a new one by an invertible transformation 𝜌′ (𝑔) = 𝑄𝜌(𝑔)𝑄−1.
The Fourier transform of a function 𝑓 : 𝐺 → C with respect to a set of irreducible representations
(irreps) {𝜌𝑖}𝑚𝑖=1 is given by:

𝑓 (𝜌𝑖) =
∑︁
𝑢∈𝐺

𝑓 (𝑢)𝜌𝑖 (𝑢), 𝑖 = 1, 2, . . . , 𝑚. (56)

For abelian groups these irreps are all one dimensional. The set of 𝜌𝑖 (𝑢) for the cyclic group for
example correspond to the entries of the discrete Fourier transform matrix. For non-abelian groups,
there always exists an irrep which is at least of dimension 2.
In Algorithm 3, we denote the Fourier transform F : C𝑛 → ⊕𝑚

𝑖=1C
𝑑𝑖×𝑑𝑖 as a map that takes in the

inputs to a function 𝑓 and outputs a direct sum of the Fourier basis of the function 𝑓 over the irreps.
Given two functions 𝑓 , 𝑔 : 𝐺 → C, their convolution outputs another function (𝑓 ∗ 𝑔) : 𝐺 → C and
is equal to

(𝑓 ∗ 𝑔) (𝑢) =
∑︁
𝑣∈𝐺

𝑓 (𝑢𝑣−1)𝑔(𝑣). (57)

In the main text, we describe these operations as vector operations over a vector space C𝑛. Setting
𝑛 = |𝐺 | and taking the so-called regular representation as maps acting on C |𝐺 | can recover the form
in the main text. Finally, the Fourier transform of their convolution is the matrix product of their
respective Fourier transforms: �(𝑓 ∗ 𝑔) (𝜌𝑖) = 𝑓 (𝜌𝑖)�̂�(𝜌𝑖), (58)
where 𝜌𝑖𝑚𝑖=1 are the irreps of 𝐺. The above assumes that all the functions have input domain over the
group. This is not strictly necessary and generalizations exist which map functions on homogeneous
spaces to the setting above [KT18].
The general implementation of Fourier convolution is given in Algorithm 3. Here, one employs
a Fourier operator which block diagonalizes the input into its irreducible representations or some
spectral representation. Then, applying blocks of unitary matrices in this representation and inverting
the Fourier transform implements a unitary convolution. The details will depend on the particular
form of the Fourier transform and irreducible representations. This method is often preferred when
filters are densely supported and efficient implementations of the Fourier transform are obtained.
Previous implementations have been designed for CNNs [TK21, KBLL22].
Example 3 (Convolution on regular representation (Fourier basis)). Continuing the previous ex-
ample, assume the group 𝐺 has unitary irreducible representations 𝜌1, . . . , 𝜌𝑚 (irreps) where
𝜌𝑖 : 𝐺 → C𝑑𝑖×𝑑𝑖 . The group Fourier transform maps input function 𝑥 : 𝐺 → C to its irrep
basis as [FH13, KT18]

𝑥(𝜌𝑖) =
∑︁
𝑔∈𝐺

𝑥(𝑔)𝜌𝑖 (𝑔), (59)

and group convolution is now block diagonal in this basis�(𝑚 ★ 𝑥) (𝜌) = 𝑥(𝜌)�̂�(𝜌)†. (60)
Implementing unitary convolution requires that �̂�(𝜌) is unitary for all irreps 𝜌.

26

E Architectural considerations

Handling complex numbers and enforcing isometry in neural networks requires changes to some
standard practice in training neural networks. We summarize some of the important considerations
here and refer the reader to surveys and prior works for further details [BQL21, TK21, LCMR19,
KBLL22].

Handling different input and output dimensions Unitary and orthogonal transformations are
defined on input and output spaces of the same dimension. Maintaining isometry for different input
and output dimensions formally requires manipulations of the Stiefel manifold as studied in various
prior works [LCMR19, LFT20, NA05, JD15]. When the input dimension is less than that of the
output dimension, one simple way to implement semi-unitary or semi-orthogonal convolutions via
standard unitary layers is simply to pad the inputs with zeros to match the output dimensionality. We
also often will simply use a standard (unconstrained) linear transformation to first embed inputs in
the given dimension that is later used for unitary transformations.

Nonlinearities For handling complex numbers, one must typically redefine nonlinearities to handle
complex inputs. We find that applying standard nonlinearities separately to the real and imaginary
parts works well in practice in line with other works [BQL21]. To enforce isometry as well in the
nonlinearity, we use the GroupSort : R2 → R2 activation [TK21, ALG19], which acts on a pair of
numbers as

GroupSort(𝑎, 𝑏) = (max(𝑎, 𝑏),min(𝑎, 𝑏)), (61)
and is clearly norm-preserving. To apply this nonlinearity to a given layer, we split the channels or
feature dimension into two separate parts and apply the nonlinearity across the split.

Initialization Given the constraints on unitary matrices and skew-Hermitian matrices, prior work
has proposed various forms of initialization that meet the constraints of these matrices. One strategy
that has been effective in prior work and proposed in [HSL16, HWY18] is to initialize in 2×2 blocks
along the diagonal. For skew symmetric matrices, one way of achieving this is to initialize 2 × 2
blocks as [

0 𝑠
−𝑠 0

]
, (62)

where 𝑠 ∼ Unif (−𝜋, 𝜋) for example [HSL16].

Directed graphs Directed graphs present a challenge because their adjacency matrix is not guar-
anteed to be symmetric. Given an adjacency matrix A ∈ R𝑛×𝑛 of a directed graph, one simple way to
proceed is to split the directed graph into its symmetric and non-symmetric parts A = Asym+Anonsym.
Here, we assume that for matrix entry A𝑖 𝑗 , either A𝑖 𝑗 = A 𝑗𝑖 or A𝑖 𝑗A 𝑗𝑖 = 0 (i.e. one of the transposed
entries is zero). Then, we set [

Asym
]
𝑖 𝑗
=

{
A𝑖 𝑗 if A𝑖 𝑗 = A 𝑗𝑖

0 otherwise (63)

and [
Anonsym

]
𝑖 𝑗
=

A𝑖 𝑗 if A𝑖 𝑗 ≠ A 𝑗𝑖 , A𝑖 𝑗 ≠ 0
−A 𝑗𝑖 if A𝑖 𝑗 ≠ A 𝑗𝑖 , A𝑖 𝑗 = 0
0 otherwise

(64)

Finally, one can then perform graph convolution with the skew-Hermitian matrix
H = 𝑖Asym + Anonsym. (65)

We do not work with directed graphs in our experiments and have not implemented this in our code.

F Additional experiments

F.1 Additional results on toy model of graph distance

Fig. 3 shows additional results for the toy model considered in the main text. As a reminder, this
task is to learn the graph distance between pairs of randomly selected nodes in a ring graph of 100

27

0

5

10

te
st

 M
AE

layers = 5

0

5

10

te
st

 M
AE

layers = 10

0 50 100 150 200 250
epoch

0

5

10

te
st

 M
AE

layers = 20

model
Residual GCN
GraphCON GCN
Unitary GCN
Vanilla GCN
Spectral Convolution
Graph Attention Network
GPS

Figure 3: Additional results on the ring plot toy model including additional architectures. We show
here the performance of various models with 5, 10, or 20 layers. The unitary GCN is the only message
passing architecture that achieves stable performance with added layers and can learn the task. Apart
from message passing architectures, global transformer architectures like GPS can learn the task
when given Laplacian positional encoding. The trivial performance corresponding to outputting the
average output is shown as a dotted horizontal line.

nodes. Message passing architectures need at least 50 sequential messages to fully learn this task.
As layers are added to the unitary GCN, the network is able to learn the task better. This is in contrast
to other message passing architectures which perform worse with additional layers. Apart from
message passing architectures, strong performance is also achieved by transformer architectures like
GPS with global attention. The networks we study are the vanilla GCN (Residual GCN includes skip
connections) [KW16], graph attention network [VCC+17], spectral convolution [ZK20], transformer-
based GPS [RGD+22], and graph-coupled oscillator network (GraphCON), which is a discretization
of a second-order ODE on the graph [RCR+22]. Hyperparameters and additional network details are
reported in App. G.

F.2 TU Datasets

We perform experiments on the ENZYMES, IMDB-BINARY, MUTAG, and PROTEINS tasks from
the TU Dataset database [MKB+20]. As can be seen in table 3, with the exception of IMDB, a
GCN with UniConv layers outperforms all message-passing GNNs tested against on all datasets, by
margins of up to 18 percent. We follow the training procedure in [NHN+23] and report results for
GCN and GIN from [NHN+23]. For GAT and unitary GCN, we tune the dropout and learning rate
as detailed in App. G. All results are accumulated over 100 random trials. In addition, in Fig. 4, we
show that the unitary GCN maintains its performance over large network depths in contrast to other
message passing layers. The deteriation in performance of conventional message passing layers is a
likely a consequence of over-smoothing which we show does not occur in unitary graph convolution
[CW20, RBM23].

F.3 Dihedral group distance

The dihedral group 𝐷𝑛 is a group of order 2𝑛 describing the symmetries (rotations and reflections)
of a regular polygon. Its elements are generated by a rotation generator 𝑟 and reflection generator 𝑠:

D𝑛 =
〈
𝑟, 𝑠 | 𝑟𝑛 = 𝑠2 = (𝑠𝑟)2 = 1

〉
. (66)

In this task, analaogous to the graph distance task in Sec. 5, the goal is to learn the distance between
two group elements 𝑔, 𝑔′ in the dihedral group 𝐷𝑛. Formally, we aim to learn a target function
𝑓 : R |𝐷𝑛 | → Z mapping inputs of dimension 2𝑛 (the vector space of the regular representation) to

28

Method ENZYMES IMDB MUTAG PROTEINS
Test AP ↑ Test AP ↑ Test AP ↑ Test AP ↑

M
P GCN 25.5 ± 1.2 49.3 ± 0.8 68.8 ± 2.4 70.6 ± 0.7

GIN 31.3 ± 1.1 69.0 ± 1.0 75.7 ± 3.6 69.7 ± 0.8
GAT 26.8 ± 1.2 47.0 ± 1.1 68.5 ± 2.8 72.6 ± 0.8

O
ur

s Unitary GCN 41.5 ± 1.6 61.2 ± 1.4 86.8 ± 3.3 75.1 ± 1.3
Wide Unitary GCN 42.1 ± 1.5 62.4 ± 1.3 87.1 ± 3.5 75.6 ± 1.0

Table 3: Comparison of Unitary GCN with Lie UniConv layers (Definition 3) with other GNN
architectures on the TU datasets. Each complex number is counted as two parameters for our
architectures, except for wide Unitary GCN which counts a complex numbers as one parameter so
that the width of hidden layers roughly matches that of vanilla GCN.

Figure 4: Test accuracies on Mutag for GCN, GIN, GAT, and a GCN with UniConv layers with
increasing number of layers. Except for the unitary network, all other message passing architectures
collapse to trivial accuracy levels as the number of layers increases.

positive integers. The input space R |𝐷𝑛 | is indexed by group elements and convolution is performed
on the regular representation of the group. Each data pair (x𝑖 , 𝑦𝑖)𝑖 is drawn as follows:

• Draw two group elements 𝑔, 𝑔′ ∼ Unif (𝐷𝑛) from the uniform distribution over the group
𝐷𝑛 without replacement.

• Set x𝑖 = e𝑔 + e𝑔′ where e𝑔 ∈ R |𝐷𝑛 | is a unit vector whose entries are all zero except for the
entry corresponding to operation 𝑔 set to one.

• Set 𝑦𝑖 = 𝑑𝐷𝑛
(𝑔, 𝑔′) ∈ Z where 𝑑𝐷𝑛

(𝑔, 𝑔′) indicates the number of applications of the
generators that need to be applied to go from 𝑔 to 𝑔′, i.e.

𝑑𝐷𝑛
(𝑔, 𝑔′) B min

𝑎1 ,...,𝑎2𝑛∈{𝑠,𝑟 ,𝑟−1 }
{𝑇 : 𝑎1𝑎2 · · · 𝑎𝑇𝑔 = 𝑔′} . (67)

Fig. 5 plots the performance of three different networks in this task. The vanilla network performs
standard convolution in each layer where the group convolution is parameterized over elements of
the generator. The residual network is the same architecture but includes skip connections after
convolutions. The unitary network applies the exponential map to a skew-Hermitian version of the
group convolution as outlined earlier. The unitary network is able to learn this task in fewer layers
and with added stability. No hyperparameter tuning was performed in these experiments. Adam
optimizer parameters were set to the default setting. All networks have a global average pooling after
the last convolution layer followed by a 2 layer MLP to output a scalar. The number of channels is
set to 32 for each convolution layer.

F.4 Orthogonal Convolution

To compare orthogonal (real-valued) and unitary convolutional layers, we repeat our experiments on
Peptides-func and Peptides-struct from the main text. We report the results in table 4. Edge features

29

0 200 400
epoch

0

20

40

60

va
lu

e

layers = 20

0 200 400
epoch

layers = 50 network
unitary
 residual
vanilla
metric
train
test

Figure 5: Training and test MAE of the distance learning task for the dihedral group. Listed as column
headers are the number of convolution layers in each network. Residual and Unitary convolutional
networks are both able to learn the task under default hyperparameters for the optimizer.

Method PEPTIDES-FUNC PEPTIDES-STRUCT
Test AP ↑ Test MAE ↓

Unitary GCN 0.7043 ± 0.0061 0.2445 ± 0.0009
Wide U. GCN 0.7094 ± 0.0020 0.2429 ± 0.0007

Narrow O. GCN 0.7011 ± 0.0096 0.2461 ± 0.0021
Orthogonal GCN 0.7037 ± 0.0053 0.2433 ± 0.0018

Table 4: Comparison of GCN with Lie UniConv layers (Definition 1) with real-valued (hence
orthogonal) or complex-valued (hence unitary) on Peptides-func and Peptides-struct. The Narrow
Orthogonal GCN as the same width and depth as the Unitary GCN where we counted complex
weights twice. Narrow Orthogonal GCN therefore has only about 285K parameters. Orthogonal
GCN has the same width and depth as Wide Unitary GCN, and therefore about 490K parameters.

are not included in this ablation as no edge feature aggregator was included in the architecture.
GCN with OrthoConv layers achieves performance levels similar to UniConv without using complex
numbers in its weights.

G Experimental details

For LRGB datasets, we evaluate our GNNs using the GraphGym platform [YYL20]. In Table 1, we
list reported results where available from various architectures [KW16, BL17, XHLJ18, TRRG23,
HHL+23, GDBDG23, RGD+22, MLL+23, SVV+23, TRWG23]. Reported results are taken from
existing papers as of May 1, 2024. Experiments were run on Pytorch [PGC+17] and specifically the
Pytorch Geometric package for training GNNs [FL19].
Our implementation of unitary graph convolution does not take into account edge features. Thus,
for datasets with edge features, at times, we included a single initial convolution layer using the
GINE [XHLJ18] or Gated GCN [BL17] architecture which aggregates the edge features into the
node features. For instances where this is done, we indicate the type of layer as an “edge aggregator”
hyperparameter in the tables below.
All our experiments were trained on a single GPU (we used either Nvidia Tesla V100 or Nvidia RTX
A6000 GPUs). Training time varied depending on the dataset. Peptides datasets trained in no more
than 15 seconds per epoch. PascalVOC-SP took about a minute per epoch to train and COCO-SP
took about 15 minutes per epoch to train. The PascalVOC-SP and two Peptides datasets are no
more than 1 GB in size. The COCO dataset was much larger, about 12 GB in size. The TU and
Heterophilous Node Classification datasets are all less than 1GB in size and take only a few second
to train per epoch.
Remark 12 (Parameter counting). LRGB datasets require neural networks to be within a budget
of 500k parameters. For fair comparison, complex numbers are counted as two parameters each.
Furthermore, to handle constraints for parameterized matrices in the Lie Algebra, we treat the

30

Table 5: Hyperparameters on Peptides datasets. Number of parameters are counted using the default
Pytorch method which undercounts complex numbers or the methodology as stated in Remark 12.
Edge aggregator indicates a single layer of the specified type which is used to incorporate edge
feature data into node features.

Unitary GCN Lie Unitary GCN
PEPTIDES-FUNC PEPTIDES-STRUCT PEPTIDES-FUNC PEPTIDES-STRUCT

lr 0.001 0.001 0.001 0.001
dropout 0.1 0.2 0.1 0.2
Conv. Layers 10 6 14 6
hidden dim. 135 200 155 200
PE/SE RWSE LapPE RWSE LapPE
batch size 200 200 200 200
epochs 2000 500 4000 500
edge aggregator GINE GINE GINE GINE
Param. (see Remark 12) 468K 470K 466K 470K
Param. (default Pytorch) 282K 305K 464K 305K

Table 6: Hyperparameters on Coco and PascalVOC datasets. Number of parameters are counted
using the default Pytorch method which undercounts complex numbers or the methodology as stated
in Remark 12. Edge aggregator indicates a single layer of the specified type which is used to
incorporate edge feature data into node features.

Unitary GCN Lie Unitary GCN
COCO-SP PASCALVOC-SP COCO-SP PASCALVOC-SP

lr 0.001 0.001 0.001 0.001
dropout 0.1 0.1 0.1 0.1
Conv. Layers 12 15 12 15
hidden dim. 120 145 155 145
PE/SE None RWSE None RWSE
batch size 50 50 50 50
epochs 750 1000 500 1000
edge aggregator Gated Gated Gated Gated
Param. (see Remark 12) 466K 453K 478K 453K
Param. (default Pytorch) 290K 305K 481K 305K

number of parameters as the dimension of the Lie Algebra (i.e. the number of parameters to fully
parameterize the Lie algebra).

Toy model: graph distance All networks consist of the stated number of convolution or trans-
former layers with feature dimension 128 followed by a global average pooling over nodes. Pooled
features are then passed through a single hidden layer MLP with 128 dimension width. For net-
works with 5, 10 and 20 layers respectively, we set the learning rate to 0.0007, 0.0003 and 0.0001
respectively. Networks are trained with the mean average error (L1) loss. Activation functions for
all networks are set to GELU apart from the unitary networks where we choose the norm-preserving
activation GroupSort [TK21, ALG19] (see App. E). To ensure unitary layers are also truly norm-
preserving, we do not include a trainable bias in these layers.

Peptides For the Peptides experiments, the training procedure follows that of [TRRG23]. Unless
otherwise stated, we use the Adam optimizer with learning rate set to 0.001 and a cosine learning
rate scheduler [KB14]. Most hyperparameters were taken from [TRWG21]. For our purposes, we
tuned dropout rates in the set {0.1, 0.15, 0.2} and tested networks of layers in the set {6, 8, 10, 12, 14}
selecting the hidden width to fit within the parameter budget. For larger levels of dropout, we found
that we needed to train the network for more epochs to achieve convergence. Final hyperparameters
are listed in Table 6.

COCO-SP and PascalVOC-SP For the COCO-SP and PascalVOC-SP experiments, our training
procedure again follows that of [TRRG23]. We use the Adam optimizer with learning rate set to
0.001 and a cosine learning rate scheduler [KB14], unless otherwise stated. For our purposes, we

31

Table 7: Hyperparameters on the TU datasets.

Unitary GCN Lie Unitary GCN
ENZYMES IMDB MUTAG PROTEINS ENZYMES IMDB MUTAG PROTEINS

lr 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
dropout 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Conv. Layers 6 6 6 6 6 6 6 6
hidden dim. 128 128 128 128 256 256 256 256
PE/SE None None None RWSE None None None RWSE
Edge Features No No Yes No No No Yes No
batch size 50 50 50 50 50 50 50 50
epochs 300 300 300 300 300 300 300 300

Table 8: Hyperparameters on the Heterophilous Graph datasets.

Unitary GCN Lie Unitary GCN
ROM AMA MINE TOL QUE ROM AMA MINE TOL QUE

lr 0.001 0.001 0.0001 0.0001 0.0001 0.001 0.001 0.0001 0.0001 0.0001
dropout 0.2 0.2 0.2 0.2 0.2 0.5 0.2 0.2 0.2 0.5
Conv. Layers 8 8 8 8 8 6 4 8 8 4
hidden dim. 512 512 512 512 512 512 512 512 512 512
PE/SE LAPE LAPE LAPE LAPE LAPE LAPE LAPE LAPE LAPE LAPE
batch size 50 50 50 50 50 50 50 50 50 50
epochs 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

tuned dropout rates in the set {0.1, 0.15, 0.2} and tested networks of layers in the set {6, 8, 10, 12, 14}
selecting the hidden width to fit within the parameter budget. For larger levels of dropout, we found
that we needed to train the network for more epochs to achieve convergence. Final hyperparameters
are listed in Table 6.

TU Datasets Our experiments are designed as follows: For a given GNN model, we train on a part
of the dataset and evaluate performance on a withheld test set using a train/val/test split of 50/25/25
percent. For all models considered, we record the test set accuracy of the settings with the highest
validation accuracy. As there is a certain stochasticity involved, especially when training GNNs, we
accumulate experimental results across 100 random trials. We report the mean test accuracy, along
with the 95% confidence interval. For the TU Datasets, our training procedure and hyperparameter
tuning procedure follows that described in [NHN+23]. Namely, we fix the depth and width of the
network as in [NHN+23] and tune the learning rate and dropout parameters. Final hyperparameters
are listed in Table 7. To ensure fairness and comparability, we conducted the same hyperparameter
searches with the baseline models we compare against, but found no improvements over the numbers
reported in previous papers. We therefore report their (higher) numbers instead of ours for these
models.

Heterophilous Graph Datasets For a given GNN model, we train on a part of the dataset and
evaluate performance on a withheld test set using a train/val/test split of 50/25/25 percent, in
accordance with [PKD+23]. Note that we do not separate ego- and neighbor-embeddings, and hence
also do not report accuracies for models from the original paper that used this pre-processing (e.g.
GAT-sep and GT-sep). Our training procedure generally follows that described in the original paper
[PKD+23]. We use the AdamW optimizer, stop training after no improvement in 200 steps, and
including residual connections in the intermediate network layers. For the unitary GNNs, we tuned
values for the dropout in {0.2, 0.5}, number of layers in {4, 6, 8} and learning rate in {0.001, 0.0001}.
To output a single number, we use a single convolution layer (SAGE convolution) to map from the
higher dimensional space to a single number for each node. [PKD+23] differs in that they have an
MLP in between layers; we opt for a more simple approach. Final hyperparameters are listed in
Table 8. To ensure fairness and comparability, we conducted the same hyperparameter searches with
SAGE and GCN, but generally found no significant differences with respect to the numbers reported
in previous papers. We therefore report their usually higher numbers instead of ours for these models.

32

G.1 Licenses

We list below the licenses of code and datasets that we use in our experiments.

Model/Dataset License Notes
LRGB [DRG+22] Custom See here for license
TUDataset [MKB+20] Open Open sourced here
Heterophily Data [PKD+23] N/A Data is open source; no license stated in repository
Pytorch Geometric [FL19] MIT See here for license
GraphGym [YYL20] MIT See here for license
GraphGPS [RGD+22] MIT See here for license
Pytorch [PGC+17] 3-clause BSD See here for license

33

https://github.com/vijaydwivedi75/lrgb
https://chrsmrrs.github.io/datasets/docs/home/
https://github.com/yandex-research/heterophilous-graphs?tab=readme-ov-file
https://github.com/pyg-team/pytorch_geometric/blob/master/LICENSE
https://github.com/snap-stanford/GraphGym?tab=License-1-ov-file
https://github.com/rampasek/GraphGPS?tab=MIT-1-ov-file
https://pytorch.org/FBGEMM/general/License.html

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In this work, we support formal claims with proofs and include results for
various different datasets which show that the unitary layer we propose enhances stability
and achieves strong performance.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have described limitations of our work at various points. Incorporating
unitarity is not a panacea and we mention the challenges in dealing with this (e.g. see
discussion section).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

34

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All formal statements are proven either in the main text or Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We follow established training procedures as stated in the main text. Code is
shared to replicate various experiments. Training details and hyperparameters are reported
in App. G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend on
the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

35

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Code is shared in the anonymized zip file to replicate the LRGB Peptides
experiments and toy model experiments (both the ring dataset and the dihedral group
convolution in App. F). Instructions to initialize our unitary/orthogonal convolution layer
and perform experiments are given therein. To handle different datasets, we had to format
code differently for the various code bases, and we did not have time to make the code
consistent for other graph experiments. Nonetheless, we plan to make all code available
before eventual publication and/or during rebuttals if desired. In addition to the submitted
code, experimental details are provided in the main text as well as in App. F and G.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We report how we trained different models in the main text and App. G. For
LRGB experiments, we report in comparison to reported results and follow the training
procedure in [TRRG23] as mentioned in the main text. Hyperparameters and other training
details are reported in App. G for all experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]

36

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Justification: Error bars included in all experiments and tables. Details are provided in
App. G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: A single GPU is needed to run an individual experiment; details are provided
in App. G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

37

https://neurips.cc/public/EthicsGuidelines

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work presents foundational research on improving learning on graphs
and groups. Though this work has impact on the research community in machine learning,
we do not see any clear links to questions of privacy, misuse, fairness, or other major societal
impacts here.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work is largely foundational and theoretical. All models and datasets are
relatively small and scientific in nature.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released

with necessary safeguards to allow for controlled use of the model, for example by
requiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]

38

Justification: Datasets and models are cited throughout and licenses are listed in App. G.1.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The unitary convolution layers are shared in the attached code and documented
in the text. Apart from the simple toy datasets of graph distance on a ring or group, no new
datasets are introduced here.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

39

paperswithcode.com/datasets

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

40

	Introduction
	Related work

	Background and Notation
	Unitary Group Convolutions
	Unitary graph convolution
	Generalized unitary convolutions

	Properties and theoretical guarantees
	Experiments
	Discussion
	Extended related works
	Further related literature
	Comparison with other proposals for unitary message passing

	Deferred proofs
	Background on representation theory, Lie groups, exponential map, and related approximations
	Matrix Lie groups
	Exponential map

	Fourier implementation of group convolution
	Architectural considerations
	Additional experiments
	Additional results on toy model of graph distance
	TU Datasets
	Dihedral group distance
	Orthogonal Convolution

	Experimental details
	Licenses

