
MapCoder: Multi-Agent Code Generation
for Competitive Problem Solving

Anonymous ACL submission

Abstract

Code synthesis, which requires a deep under-001
standing of complex natural language (NL)002
problem descriptions, generation of code in-003
structions for complex algorithms and data004
structures, and the successful execution of005
comprehensive unit tests, presents a signifi-006
cant challenge. Thus, while large language007
models (LLMs) demonstrate impressive profi-008
ciency in natural language processing (NLP),009
their performance in code generation tasks re-010
mains limited. In this paper, we introduce a011
new approach to code generation tasks leverag-012
ing the multi-agent prompting that uniquely013
replicates the full cycle of program synthe-014
sis as observed in human developers. Our015
framework, MapCoder, consists of four LLM016
agents specifically designed to emulate the017
stages of this cycle: recalling relevant ex-018
amples, planning, code generation, and de-019
bugging. After conducting thorough exper-020
iments, w/ multiple LLMs ablations, and021
analyses across seven challenging competitive022
problem-solving and program synthesis bench-023
marks—MapCoder showcases remarkable code024
generation capabilities, achieving their new025
state-of-the-art (pass@1) results—(HumanEval026
93.9%, MBPP 83.1%, APPS 22.0%, Code-027
Contests 28.5%, and xCodeEval 45.3%).028
Moreover, our method consistently delivers029
superior performance across various program-030
ming languages & varying problem difficulties.031

1 Introduction032

Computer Programming has emerged as an ubiqui-033

tous problem-solving tool that brings tremendous034

benefits to every aspects of our life (Li et al., 2022a;035

Parvez et al., 2018; Knuth, 1992). To maximize036

programmers’ productivity, and enhance accessibil-037

ity, automation in program synthesis is paramount.038

W/ the growth of LLMs, significant advancements039

have been made in program synthesis—driving us040

in an era where we can generate fully executable041

code, requiring no human intervention (Chowdhery 042

et al., 2022; Nijkamp et al., 2022). 043

Despite LLMs’ initial success and the scaling 044

up of model size and data, many of these models 045

still struggle to perform well on complex problem- 046

solving tasks, especially in competitive program- 047

ming problems (Austin et al., 2021). To mitigate 048

this gap, in this paper, we introduce MapCoder: a 049

Multi-Agent Prompting Based Code Generation 050

approach that can seamlessly synthesize solutions 051

for competition-level programming problems. 052

Competitive programming or competition-level 053

code generation, often regarded as the pinnacle 054

of problem-solving, is an challenging task. It re- 055

quires a deep comprehension of NL problem de- 056

scriptions, multi-step complex reasoning beyond 057

mere memorization, excellence in algorithms and 058

data structures, and the capability to generate sub- 059

stantial code that produces desired outputs aligned 060

with comprehensive test cases (Khan et al., 2023). 061

Early approaches utilizing LLMs for code gener- 062

ation employ a direct prompting approach, where 063

LLMs generate code directly from problem descrip- 064

tions and sample I/O (Chen et al., 2021a). Recent 065

methods like chain-of-thought (Wei et al., 2022a) 066

advocates modular or pseudo code-based genera- 067

tion to enhance planning and reduce errors, while 068

retrieval-based approaches such as Parvez et al. 069

(2021) leverage relevant problems & solutions to 070

guide LLMs’ code generations. However, gains in 071

such approaches remains limited in such a complex 072

task like code generation where LLMs’ generated 073

code often fails to pass the test cases and they do 074

not feature bug-fixing schema (Ridnik et al., 2024). 075

A promising solution to the above challenge is 076

self-reflection, which iteratively evaluates the gen- 077

erated code against test cases, reflects on mistakes, 078

and modifies accordingly (Shinn et al., 2023; Chen 079

et al., 2022). However, such approaches have lim- 080

itations too. Firstly, while previous studies indi- 081

cate that superior problem-solving capabilities are 082

1

Dynamic Traversal Block
(Elaborated View)

Failed in
sample I/O

Failed in sample I/O
max turn done

back to planner agent

Problem
Write a python code for
descending order sorting.
The program will take an
array and return a new
array sorted in the
reverse order. [1,2,3] ->
[3,2,1]

Plan 2Pl
an
 1

P
l
a
n

k

0.9

0.80.7

0.70.9
0.8

0.7 0.90.8

Code

Modified Code
Bugs Fixed

Passed in
sample I/O

Iterative Tests
and debug, max

turn = t

Dynamic Traversal Block

Full Pipeline View

k relevant examples
(problem, plan, code)

Generated Code

Sorted Plans

Plan with Confidence score

Retrieval
Agent

Planning
Agent

Coding
Agent

Debugging
Agent

//

Bug fixed and
Final Code

Problem
Write a python code for
descending order
sorting...

k plans for
original problem

Figure 1: Overview of MapCoder (top). It starts with a retrieval agent that generates relevant examples itself, followed
by planning, coding, & iterative debugging agents. Our dynamic traversal (bottom) considers the confidence of the
generated plans as their reward/utility scores & leverage them to guide the code generation accordingly.

attained when using in-context exemplars (Shum083

et al., 2023; Zhang et al., 2022; Wei et al., 2022a)084

or plans (Jiang et al., 2023b), these approaches,085

during both code generation, and debugging, only086

leverage the problem description itself in a 0-shot087

manner. Consequently, their gains can be limited.088

To confront the above challenge, we develop089

MapCoder augmenting the generation procedure w/090

possible auxiliary supervisions. We draw inspi-091

ration from the cognitive processes of real pro-092

grammers and their adept utilization of various093

learning signals throughout the procedure. The hu-094

man problem-solving cycle involves recalling past095

solutions, planning, code writing, and debugging.096

MapCoder imitates these steps using LLM agents097

- retrieval, planning, coding, and debugging. In098

contrast to relying on human annotated examples,099

or external code retrieval models, we empower our100

retrieval agent to autonomously retrieve relevant101

problems itself (Yasunaga et al., 2023). Moreover,102

we design a novel structured pipeline schema that103

intelligently cascades the LLM agents and incorpo-104

rates a dynamic iteration protocol to enhance the105

generation procedure at every step. Figure 1 shows106

an overview of our approach, MapCoder .107

Additionally, existing self-reflection methods108

rely on extra test cases generated by LLM agents or109

external tools, compounding the challenges. Test110

case generation is equally challenging as code gen-111

eration (Pacheco et al., 2007), and incorrect test112

cases can lead to erroneous code. Blindly edit-113

ing code based on these test cases can undermine114

problem-solving capabilities. For instance, while 115

self-reflection boosts GPT-4’s performance on the 116

HumanEval dataset, it drops by 3% on the MBPP 117

dataset (Shinn et al., 2023). Upon identification, 118

to validate this, on the HumanEval dataset itself, 119

we replace their GPT-4 with ChatGPT, and see that 120

model performance drops by 26.3%. Therefore, our 121

debugging agent performs unit tests and bug fixing 122

using only the sample I/O, w/o any artifact-more 123

plausible for real-world widespread adoption. 124

We evaluate MapCoder on seven popular pro- 125

gramming synthesis benchmarks including both 126

basic programming like HumanEval, MBPP and 127

challenging competitive program-solving bench- 128

marks like APPS, CodeContests and xCodeEval. 129

With multiple different LLMs including ChatGPT, 130

GPT-4, and Gemini Pro, our approach significantly 131

enhances their problem-solving capabilities - con- 132

sistently achieving new SOTA performances, out- 133

performing strong baselines like Reflexion (Shinn 134

et al., 2023), and AlphaCodium (Ridnik et al., 135

2024). Moreover, our method consistently delivers 136

superior performance across various programming 137

languages & varying problem difficulties. Further- 138

more, with detailed ablation studies, we analyze 139

MapCoder to provide more insights. 140

2 Related Work 141

Program Synthesis: Program synthesis has a 142

long standing history in AI systems (Manna and 143

Waldinger, 1971). A large number of prior research 144

attempted to address it via search/data flow ap- 145

2

Approach Self-retrieval Planning
Additional
test cases
generation

Debugging

Reflexion ✗ ✗ ✔ ✔

Self-planning ✗ ✔ ✗ ✗

Analogical ✔ ✔ ✗ ✗

AlphaCodium ✗ ✗ ✔ ✔

MapCoder ✔ ✔ ✗ ✔

Table 1: Features in code generation prompt techniques.

proaches (Li et al., 2022a; Parisotto and Salakhut-146

dinov, 2017; Polozov and Gulwani, 2015; Gulwani,147

2011). LMs, prior to LLMs, attempt to generate148

code by fine-tuning (i.e., training) neural language149

models (Wang et al., 2021; Ahmad et al., 2021;150

Feng et al., 2020; Parvez et al., 2018; Yin and151

Neubig, 2017; Hellendoorn and Devanbu, 2017;152

Rabinovich et al., 2017; Hindle et al., 2016), con-153

versational intents or data flow features (Andreas154

et al., 2020; Yu et al., 2019).155

Large Language Models: Various LLMs have156

been developed for Code synthesis (Li et al., 2022b;157

Fried et al., 2022; Chen et al., 2021b; Austin et al.,158

2021; Nijkamp et al., 2022; Allal et al., 2023). Re-159

cent open source LLMs include Llama-2 (Touvron160

et al., 2023), CodeLlama-2 (Roziere et al., 2023),161

Mistral (Jiang et al., 2023a) Deepseek Coder (Guo162

et al., 2024), MoTCoder (Li et al., 2023) that are163

capable of solving many basic programming tasks.164

165

Prompting LLMs: As indicated in Section 1,166

LLM prompting can be summarized into three cat-167

egories: retrieval (Yasunaga et al., 2023; Parvez168

et al., 2021); planning (Wei et al., 2022b; Jiang169

et al., 2023b); debugging (Ridnik et al., 2024; Chen170

et al., 2023, 2022; Le et al., 2022) apart from the171

direct code generation approaches. In contrast, we172

combine all these paradigms and bridge their gaps173

(See Table 1). Among others, in different contexts174

of generic problem-solving, Tree-of-thoughts (Yao175

et al., 2023), and Cumulative reasoning (Zhang176

et al., 2023) approaches consider a tree traversal177

approach to explore different sub-steps towards a178

solution while our code generation approach mir-179

rors the human programming cycle through various180

LLM agents. Notably, our traversal does not rely181

on sub-steps toward the solution but instead utilizes182

different forms of complete solutions.183

3 MapCoder184

Our goal is to develop a multi-agent code genera-185

tion approach for competitive problem-solving. In186

order to do so, our framework, MapCoder, repli-187

cates the human programming cycle through four188

LLM agents - retrieval, plan, code, and debug. We 189

devise a pipeline sequence for MapCoder, intelli- 190

gently cascading the agents in a structured way and 191

enhancing each agent’s capability by augmenting 192

in-context learning signals from previous agents 193

in the pipeline. However, not all the agent re- 194

sponses/outputs are equally useful. Therefore, ad- 195

ditionally, MapCoder features an adaptive agent 196

traversal schema to interact among corresponding 197

agents dynamically, iteratively enhancing the gener- 198

ated code by, for example, fixing bugs, while maxi- 199

mizing the usage of the LLM agents. In this section, 200

we first discuss the agents (as per the pipeline), their 201

prompts, and interactions, followed by the dynamic 202

agent traversal protocol in MapCoder towards code 203

generation for competitive problem-solving. 204

3.1 Retrieval Agent 205

Our first agent, the Retrieval Agent, recalls past 206

relevant problem-solving instances, akin to human 207

memory. It finds k (user-defined) similar problems 208

without manual crafting or external retrieval mod- 209

els. Instead, we leverage the LLM agent itself, in- 210

structing it to generate such problems. Our prompt 211

extends the analogical prompting principles (Ya- 212

sunaga et al., 2023), generating examples and their 213

solutions simultaneously, along with additional 214

metadata (e.g., problem description, code, & plan) 215

to provide the following agents as auxiliary data. 216

We adopt a specific sequence of instructions, which 217

is crucial for the prompt’s effectiveness. In particu- 218

lar, initially, we instruct the LLM to produce similar 219

and distinct problems and their solutions, facilitat- 220

ing problem planning reverse-engineering. Then, 221

we prompt the LLM to generate solution code step- 222

by-step, allowing post-processing to form the cor- 223

responding plan. Finally, we direct the LLM to 224

generate relevant algorithms and provide instruc- 225

tional tutorials, enabling the agent to reflect on 226

underlying algorithms and generate algorithmically 227

similar examples. 228

3.2 Planning Agent 229

The second agent, the Planning Agent, aims to cre- 230

ate a step-by-step plan for the original problem. 231

Our Planning Agent uses examples and their plans 232

obtained from the retrieval agent to generate plans 233

for the original problem. A straightforward ap- 234

proach would be to utilize all examples collectively 235

to generate a single target plan. However, not all re- 236

trieved examples hold equal utility. Concatenating 237

examples in a random order may compromise the 238

3

Planning Generation Prompt:

Given a competitive programming problem generate a concrete planning to

solve the problem.

Problem: {Description of a self-retrieved example problem}

Planning: {Planning of that problem}

Relevant Algorithm to solve the next problem:

{Algorithm retrieved by the Retrieval Agent}

Problem to be solved: {Original Problem}

Sample Input/Outputs: {Sample I/Os}

Confidence Generation Prompt:

Given a competitive programming problem and a plan to solve the problem

in {language} tell whether the plan is correct to solve this problem.

Problem: {Original Problem}

Planning: {Planning of our problem from previous step}

 Planning Agent

Figure 2: Prompt for Planning Agent.

LLM’s ability to generate accurate planning. For239

instance, Xu et al. (2023) demonstrated that even240

repeating more relevant information (e.g., query)241

towards the end of the in-context input aids LLM242

reasoning more effectively than including relatively243

less relevant contexts. A similar conclusion of "sep-244

arating noisy in-context data" can also be drawn245

from the state-of-the-art retrieval augmented gen-246

eration approaches like Wang et al. (2023). There-247

fore, we generate a distinct target plan for each248

retrieved example. Additionally, multiple plans249

offer diverse pathways to success.250

To help the generation steps in the following251

agents with the utility information for each plan,252

our designed prompt for the planning agent asks253

the LLM to generate both plans and a confidence254

score. Figure 2 shows our prompt got this agent.255

3.3 Coding Agent256

Next is the inevitable Coding Agent. It takes the257

problem description, and a plan from the Planning258

Agent as input and translates the corresponding259

planning into code to solve the problem. During260

the traversing of agents, Coding Agent takes the261

original problem and one particular plan from the262

Planning Agent, generates the code, and test on263

sample I/O. If the initial code fails, the agent trans-264

fers it to the next agent for debugging. Otherwise,265

predicts that as the final solution.266

3.4 Debugging Agent267

Finally, the Debugging Agent utilizes sample I/O268

from the problem description to rectify bugs in the269

generated code. Similar to humans cross-checking270

their plan while fixing bugs, our pipeline supple-271

ments the Debugging Agent with plans from the272

Planning Agent. This plan-derived debugging sig-273

nificantly enhances bug fixing in MapCoder, under-274

scoring the pivotal roles played by both the De-275

bugging Agent and the Planning Agent in the gen-276

eration process. We verify this in Section 6. For277

each plan, this process is repeated t times. The 278

prompt for this step is illustrated in Figure 3. Note 279

that, different from Reflexion (Shinn et al., 2023) 280

and AlphaCodium (Ridnik et al., 2024), our De- 281

bugging Agent does not require any additional test 282

case generation in the pipeline.

Given a competitive programming problem you have generated {language}

code to solve the problem. But the generated code can not pass sample

test cases. Improve your code to solve the problem correctly.

Relevant Algorithm to solve the next problem:

{Algorithm retrieved by Retrieval Agent}

Planning: {Planning from previous step}

Code: {Generated code from previous step}

Modified Planning:

Let's think step by step to modify {language} Code for solving

this problem.

Debugging Agent

Figure 3: Prompt for Debugging Agent. 283

3.5 Dynamic Agent Traversal 284

The dynamic traversal in MapCoder begins with the 285

Planning Agent, which outputs the plans for the 286

original problem with confidence scores. These 287

plans are sorted, and the highest-scoring one is sent 288

to the Coding Agent. The Coding Agent translates 289

the plan into code, tested with sample I/Os. If all 290

pass, the code is returned; otherwise, it’s passed to 291

Debugging Agent. They attempt to rectify the code 292

iteratively up to t times. If successful, the code is 293

returned; otherwise, responsibility shifts back to 294

the Planning Agent for the next highest confidence 295

plan. This iterative process continues for k itera- 296

tions, reflecting a programmer’s approach. We sum- 297

marize our agent traversal in Algorithm A in Ap- 298

pendix. Our algorithm’s complexity is O(kt). An 299

example illustrating MapCoder’s problem-solving 300

compared to Direct, Chain-of-thought, and Reflex- 301

ion approaches is in Figure 4. All detailed prompts 302

for each agent are in Appendix B. 303

4 Experimental Setup 304

Datasets: For extensive evaluation, we have 305

used seven benchmark datasets: four from ba- 306

sic programming and three from complex com- 307

petitive programming domains. Four basic 308

programming datasets are: HumanEval (Chen 309

et al., 2021a), HumanEval-ET (Dong et al., 310

2023), MBPP) (Austin et al., 2021), and MBPP- 311

ET (Dong et al., 2023). HumanEval-ET and 312

MBPP-ET extend HumanEval and MBPP, respec- 313

tively by incorporating more test cases. The prob- 314

lem set size of HumanEval and MBPP (and their 315

extensions) are 164 and 397, respectively. Due to 316

the absence of sample I/O in MBPP and MBPP- 317

ET, our approach for code moderation involves 318

4

def sum_squares(lst):

 """You are given a list of numbers.

 You need to return the sum of squared numbers in the given list,

 round each element in the list to the upper int(Ceiling) first.

 Examples:

 For lst = [1,2,3] the output should be 14

 For lst = [1,4,9] the output should be 98

 For lst = [1,3,5,7] the output should be 84

 For lst = [1.4,4.2,0] the output should be 29

 For lst = [-2.4,1,1] the output should be 6

 """

Problem:

def sum_squares(lst):

 total = 0

 for num in lst:

 total += (int(num) ** 2)

 return total

Failed Case: assert sum_squares([1.4,4.2,0]) == 29

Explanation: Here, the int function truncates the floating

point number, making it a lower integer. However,

according to the problem, the number should be an upper

integer.

Direct

def sum_squares(lst):

 return sum((int(x) + (x % 1 > 0))**2 for x in lst)

def sum_squares(lst):

 return sum(int(x + 0.5)**2 for x in lst)

def sum_squares(lst):

 return sum(round(x)**2 for x in lst)

Failed Case: assert sum_squares([1.4,4.2,0]) == 29

Explanation: This implementation rounds the given number but the

problem requirement is ceiling. Reflexion failed to improve the code

because it focused on self-generated test case assert sum_squares

([-2.4, 1, 1]) == 6 instead of considering all the sample I/O. For

this particular test case, rounding also works fine thus ending up

with a wrong implementation.

Reflexion

Retrieval Agent: (Self-retrieved Similar Problem, its

solution with planning for helping the model better

understand the original problem)

Example 1: Find the sum of all even numbers in a list.
...

Planning Agent: (Generated plan for original problem)

To solve this problem, we can iterate through the list,

round each number to the upper integer, square it, and

then add it to a running total. Finally, we return the

total sum of all squared numbers in the list.

Coding Agent: (Generate code using the above plan)

import math

def sum_squares(lst):

 total = 0

 for num in lst:

 total += (int(num) ** 2)

 return total

Testing with all the Sample I/O.

But it failed in the following sample I/O:

assert sum_squares([1.4,4.2,0]) == 29

Debugging Agent: (Fix code using the above-mentioned plan

and test report)

import math

def sum_squares(lst):

 total = 0

 for num in lst:

 total += (math.ceil(num) ** 2)

 return total

All sample input-output pairs now passed.

The code is evaluated against private test cases, and

it passed all of them as well.

MapCoder

def sum_squares(lst):

 total = 0

 for num in lst:

 total += (int(num) + (1 if num % 1 > 0 else 0)) ** 2

 return total

Failed Case: assert sum_squares([-2.4,1,1]) == 6

Explanation: After applying the int function it adds 1 if the number

is a floating point that will not work for negative floating-point

numbers.

CoT

Sample I/O

Deviation from Planning

Figure 4: Example problem & solution generation using Direct, CoT, Reflexion, & MapCoder prompts. MapCoder ex-
plores high-utility plans first and uniquely features a plan-derived debugging for enhanced bug fixing.

randomly removing one test-case from MBPP-ET319

for each problem and provide this test-case as a320

sample I/O for the problem. Importantly, this re-321

moved test-case is carefully selected to ensure mu-322

tual exclusivity from the hidden test sets in MBPP323

and MBPP-ET. Three competitive programming324

datasets are: Automated Programming Progress325

Standard (APPS), xCodeEval (Khan et al., 2023),326

and CodeContest, where we have used 150, 106,327

and 156 problems, respectively, in our experiments.328

Baselines: We have compared MapCoder with sev-329

eral baselines and state-of-the-art approaches. Di-330

rect Prompting instructs language models to gener-331

ate code without explicit guidance, relying on their332

inherent capabilities of LLM. Chain of Thought333

Prompting (CoT) (Wei et al., 2022b) breaks down334

problems into step-by-step solutions, enabling ef-335

fective tackling of complex tasks. Self-Planning336

Prompting (Jiang et al., 2023b) divides the code337

generation task into planning and implementation338

phases. Analogical Reasoning Prompting (Ya-339

sunaga et al., 2023) instructs models to recall rele-340

vant problems from training data. Reflexion (Shinn341

et al., 2023) provides verbal feedback to enhance342

solutions based on unit test results. AlphaCodium343

(Ridnik et al., 2024) iteratively refines code based 344

on AI generated input-output tests. 345

Foundation Models, Evaluation Metric, k, t W/ 346

k = t = 5 in HumanEval, and k = t = 3 for 347

others, we evaluate all competitive methods us- 348

ing ChatGPT (gpt-3.5-turbo-1106), GPT-4 (gpt-4- 349

1106-preview) from OpenAI and Gemini Pro from 350

Google. We have used the Pass@k evaluation met- 351

ric, where the model is considered successful if at 352

least one of k generated solutions is correct. 353

5 Results 354

In this section, we evaluate the code generation 355

capabilities of our framework, MapCoder , for com- 356

petitive problem solving. Our experimental results 357

are reported in Table 2. Overall, MapCoder shows 358

a tremendous excellence in code generation, signif- 359

icantly outperforms all baselines, and achieves new 360

state-of-the-art results in all benchmarks. In gen- 361

eral the scales w/ GPT-4 are higher than ChatGPT. 362

Performance on basic code generation The high- 363

est scale of performance (Pass@1) scores are ob- 364

served in simple program synthesis tasks like Hu- 365

manEval, MBPP in Table 2. Though with the sim- 366

pler problem (non-contests) datasets such as Hu- 367

5

https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://deepmind.google/technologies/gemini/#gemini-1.0

Simple Problems Contest-Level Problems

LLM Approach HumanEval HumanEval
ET MBPP MBPP

ET APPS xCodeEval CodeContest
C

ha
tG

PT

Direct 48.1% 37.2% 49.8% 37.7% 8.0% 17.9% 5.5%
CoT 53.9% 45.5% 54.5% 39.6% 7.3% 23.6% 6.1%
Self-Planning 60.3% 46.2% 55.7% 41.9% 9.3% 18.9% 6.1%
Analogical 63.4% 57.9% 70.5% 46.1% 6.7% 15.1% 7.3%
Reflexion 67.1% 49.4% 73.0% 47.4% - - -

MapCoder 80.5%
↑ 67.3%

70.1%
↑ 88.5%

78.3%
↑ 57.3%

57.3%
↑ 44.3%

11.3%
↑ 41.3%

27.4%
↑ 52.6%

12.7%
↑ 132.8%

G
PT

4

Direct 80.1% 73.8% 81.1% 54.7% 12.7% 32.1% 12.1%
CoT 89.0% 61.6% 82.4% 56.2% 11.3% 36.8% 5.5%
Self-Planning 85.4% 62.2% 75.8% 50.4% 14.7% 34.0% 10.9%
Analogical 66.5% 48.8% 58.4% 40.3% 12.0% 26.4% 10.9%
Reflexion 91.0% 78.7% 78.3% 51.9% - - -

MapCoder 93.9%
↑ 17.2%

82.9%
↑ 12.4%

83.1%
↑ 2.5%

57.7%
↑ 5.5%

22.0%
↑ 73.7%

45.3%
↑ 41.2%

28.5%
↑ 135.1%

Table 2: Pass@1 results for different approaches. The results of the yellow and blue colored cells are obtained from
Jiang et al. (2023b) and Shinn et al. (2023), respectively. The green texts indicate SoTA results, and the red text is
gain over Direct Prompting approach..

CodeContest (Pass@5)
Approach ChatGPT GPT4

Direct 11.2% 18.8%
AlphaCodium 17.0% 29.0%
MapCoder 18.2% (↑ 63.1%) 35.2% (↑ 87.1%)

Table 3: Pass@5 results on CodeContest dataset. Alph-
Codium result are from Ridnik et al. (2024). The green
cells indicate the SoTA and the red text indicates im-
provement w.r.t Direct approach.

manEval, HumanEval-ET, the current state-of-the-368

art method, Reflexion (Shinn et al., 2023) perform369

reasonably well, this approach does not generalize370

across varying datasets depicting a wide variety371

of problems. Self-reflection techniques enhance372

GPT-4’s performance on HumanEval but result in a373

3% decrease on the MBPP dataset. Similarly, with374

ChatGPT, there’s a notable 26.3% drop in perfor-375

mance where in several cases their AI generated376

test cases are incorrect. We observe that 8% of fail-377

ures in HumanEval and 15% in MBPP is caused378

by their AI generates incorrect test cases while379

our approach is independent of AI test cases, and380

consistently improves code generations in general.381

Consequently, even in HumanEval, w/ GPT-4, our382

Pass@1 surpasses Reflexion by ∼3%. On top, in all383

four simple programming datasets, MapCoder en-384

hances the Direct prompting significantly w/ a max-385

imum of 88% on HumanEvalET by ChatGPT.386

Performance on competitive problem-solving387

The significance of MapCoder shines through388

clearly when evaluated in competitive problem-389

Figure 5: Performance vs problem types (APPS).

solving contexts. Across datasets such as APPS, 390

xCodeEval, and CodeContests, MapCoder demon- 391

strates substantial enhancements over Direct 392

prompting methods, with improvements of 41.3%, 393

52.6%, and 132.8% for ChatGPT, and 73.7%, 394

41.2%, and 135.1% for GPT4, respectively. No- 395

tably, the most challenging datasets are APPS 396

and CodeContest, where MapCoder ’s performance 397

stands out prominently. We deliberately com- 398

pare against strong baselines on these datasets, re- 399

gardless of whether they are prompt-based or not. 400

Importantly, on CodeContest our Pass@1 results 401

match the Pass@5 scores of the concurrent state-of- 402

the-art model AlphaCodium (Ridnik et al., 2024): 403

28.5% vs. their 29% (see Table 3). Furthermore, 404

our Pass@5 results demonstrate an additional im- 405

provement of 12.8%. On APPS, MapCoder consis- 406

tently surpasses the Pass@1 scores of all baseline 407

prompts for both ChatGPT and GPT-4, even out- 408

6

Figure 6: The number of correct answers wrt algorithm types (tags) and difficulty levels (xCodeEval dataset).

performing the concurrent state-of-the-art model409

MoTCoder (Li et al., 2023) by 1.2% Pass@1.410

Performance with Varying Difficulty Levels:411

The APPS dataset comprises problems categorized412

into three difficulty levels: (i) Introductory, (ii) In-413

terview, and (iii) Competition. Figure 5 illustrates414

the performance of various competitive approaches415

for these three categories. The results reveal that416

our MapCoder excels across all problem categories,417

with highest gain in competitive problem-solving418

indicating its superior code generation capabilities419

in general, and on top, remarkable effectiveness420

in competitive problem-solving. In order to gather421

more understanding on what algorithm problems422

it’s capable of solving and in fact much difficulty423

level it can solve, we have also conducted a compar-424

ison between MapCoder and the Direct approach,425

considering the difficulty levels1 and tags2 present426

in the xCodeEval dataset. The results of this com-427

parison are depicted in Figure 6. This comparison428

showcases that MapCoder is effective across vari-429

ous algorithm types and exhibits superior perfor-430

mance even in higher difficulty levels, compared to431

the Direct approach. However, beyond (mid-level:432

difficulties>1000), its gains are still limited.433

Performance Across Different Programming434

Languages and LLMs To show the robustness435

of MapCoder across various LLMs, we evaluate436

MapCoder using Gemini Pro, a non OpenAI SoTA437

LLM in Table 4. As expected, our method shows438

perfromance gains over other baseline approaches439

in equitable trend on both simple (HumanEval)440

and contest-level problems (CodeContest). Fur-441

1Difficulty levels in xCodeEval dataset represents an inte-
ger number, a higher value means more difficult problem

2Tags in xCodeEval dataset represents algorithm type that
can be used to solve the problem i.e., greedy, dp, brute-force,
constructive, and so on.

LLM Approach HumanEval CodeContest

G
em

in
i Direct 64.6% 3.6%

CoT 66.5% 4.8%
MapCoder 69.5% (↑ 7.5%) 4.8% (↑ 32.0%)

Table 4: Pass@1 results w/ using Gemini Pro. The red
text is gain over Direct Prompting approach.

Figure 7: The number of correct answers wrt different
programming languages (xCodeEval dataset).

thermore, we evaluate model performances using 442

MapCoder across different programming languages. 443

We utilize the xCodeEval dataset, which features 444

multiple languages. Figure 7 shows that consis- 445

tent proficiency across different programming lan- 446

guages is achieved by MapCoder w.r.t baselines. 447

6 Ablations Studies and Analyses 448

We present the ablation study of the MapCoder on 449

HumanEval dataset as the problems are simpler 450

and easy to diagnose by us humans. 451

Impact of Different Agents We have also con- 452

ducted a study by excluding certain agents from our 453

7

Retrieval
Agent

Planning
Agent

Debugging
Agent Pass@1 Performance

Drop
✗ ✗ ✔ 68.0% 15.0%
✗ ✔ ✔ 76.0% 5.0%
✗ ✔ ✗ 52.0% 35.0%
✔ ✗ ✔ 70.0% 12.5%
✔ ✔ ✗ 66.0% 17.5%
✔ ✗ ✗ 62.0% 22.5%
✔ ✔ ✔ 80.0% -

Table 5: Pass@1 results for different versions of
MapCoder (by using ChatGPT on HumanEval dataset).

MapCoder, which helps us investigate each agent’s454

impact in our whole pipeline. As expected, the455

results (Table 5) show that every agent has its role456

in the pipeline as turning off any agent decreases457

the performance of MapCoder. Furthermore, we458

observe that the Debugging Agent has the most459

significant impact on the pipeline, as evidenced by460

a performance drop of 17.5% when excluding this461

agent exclusively, and an avg performance drop of462

24.83% in all cases. The Planning agent has the463

second best important with avg drop of 16.7% in all464

cases. In Table 5), we perform an ablation study of465

our multi-agent framework investigate each agent’s466

impact in our whole pipeline.467

Qualitative Example To verify the above numer-468

ical significance, and to understand how infact,469

our method enhance the code generation, we have470

performed a qualitative analysis to find the un-471

derlying reason for the superior performance of472

MapCoder over other competitive prompting ap-473

proaches. An example problem and the output474

with the explanation of Direct, CoT, Reflexion, and475

MapCoder prompting is shown in Figure 4. This476

example demonstrates how the Debugging Agent477

fixes the bugs leveraging the plan as a guide from478

the Planning Agent. This verifies the impact of479

these two most significant agents. We present more480

detailed examples in Appendix.481

Impact of k and t MapCoder involves two hyper-482

parameters: the number of self-retrieved exemplars,483

k, and the number of debugging attempts, t. Our484

findings (Table 6) reveal that higher k, t is propor-485

tionate performance gain at the expense of time.486

Dataset Name 0 3 5

HumanEval
3 62.8% 76.8% 80.5%
5 65.9% 79.9% 80.5%

HumanEval-ET
3 57.3% 61.0% 70.1%
5 57.9% 67.1% 67.1%

Table 6: Pass@1 results by varying k and t.487

Impact of Number of Sample I/Os Given the488

limited number of sample I/Os in the HumanEval489

dataset (average of 2.82 per problem), we supple-490

mented it with an additional 5 sample I/Os from 491

the HumanEval-ET dataset. Experiments with this 492

augmented set showed a 1.5% gain. 493

Time and Token Analysis Avg. number of API 494

calls, tokens (thousands), and time required for 495

solving a problem in Table 7 to estimate the LLM 496

usage cost: 497
Average

LLM Dataset k t API Calls Tokens (k) Time (min)

C
ha

tG
PT

HumanEval 5 5 17 10 0.5
MBPP 3 5 12 5 0.2
APPS 3 5 21 27 1.3
xCodeEval 3 5 19 24 1.2
CodeContest 3 5 23 35 1.7

G
PT

4

HumanEval 5 5 15 13 5.9
MBPP 3 5 8 5 2.3
APPS 3 5 19 32 14.8
xCodeEval 3 5 14 23 10.9
CodeContest 3 5 19 39 18.1

Table 7: Avg. #API calls, tokens used, required time.
Error Analysis and Challenges Although 498

MapCoder demonstrates strong performance com- 499

pared to other methods, it faces challenges in cer- 500

tain algorithmic domains. For example, Figure 501

6 illustrates MapCoder ’s reduced performance on 502

more difficult problems requiring precise problem 503

understanding and concrete planning—capabilities 504

still lacking in LLMs. In the xCodeEval dataset 505

(see Figure 6), it solves a limited number of prob- 506

lems in categories like Combinatorics, Construc- 507

tive, Number Theory, Divide & Conquer, and Dy- 508

namic Programming (DP). Manual inspection of 509

five DP category problems reveals occasional mis- 510

interpretation of problems, attempts to solve using 511

greedy or brute-force approaches, and struggles 512

with accurate DP table construction when recogniz- 513

ing the need for a DP solution. 514

7 Conclusion and Future Work 515

In this paper, we introduce MapCoder, a novel 516

framework for effective code generation in complex 517

problem-solving tasks, leveraging the multi-agent 518

prompting capabilities of LLMs. MapCoder cap- 519

tures the complete problem-solving cycle by em- 520

ploying four agents - retrieval, planning, coding, 521

and debugging - which dynamically interact to pro- 522

duce high-quality outputs. Evaluation across ma- 523

jor benchmarks, including basic and competitive 524

programming datasets, demonstrates MapCoder ’s 525

consistent outperformance of well-established base- 526

lines and SoTA approaches across various metrics. 527

Future work aims to extend this approach to other 528

domains like question answering and mathematical 529

reasoning, expanding its scope and impact. 530

8

8 Limitations531

We have identified several limitations of our work.532

Firstly, MapCoder generates a large number of to-533

kens 7, which may pose challenges in resource-534

constrained environments. Secondly, our method535

currently relies on sample input-output (I/O) pairs536

for bug fixing. Although sample I/Os provide valu-537

able insights for LLMs’ code generation, their lim-538

ited number may not always capture the full spec-539

trum of possible test cases. Consequently, enhanc-540

ing the quality of additional test case generation541

could reduce our reliance on sample I/Os and fur-542

ther improve the robustness of our approach. Ad-543

ditionally, future exploration of open-source code544

generation models, such as CodeLLaMa (Roziere545

et al., 2023), could offer valuable insights and po-546

tential enhancements to our approach. Another547

important concern is that while running machine-548

generated code, it is advisable to run it inside a549

sandbox to aboid potential risk.550

References551

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi552
Ray, and Kai-Wei Chang. 2021. Unified pre-training553
for program understanding and generation. arXiv554
preprint arXiv:2103.06333.555

Loubna Ben Allal, Raymond Li, Denis Kocetkov,556
Chenghao Mou, Christopher Akiki, Carlos Munoz557
Ferrandis, Niklas Muennighoff, Mayank Mishra,558
Alex Gu, Manan Dey, et al. 2023. Santacoder: don’t559
reach for the stars! arXiv preprint arXiv:2301.03988.560

Jacob Andreas, John Bufe, David Burkett, Charles561
Chen, Josh Clausman, Jean Crawford, Kate Crim,562
Jordan DeLoach, Leah Dorner, Jason Eisner, Hao563
Fang, Alan Guo, David Hall, Kristin Hayes, Kellie564
Hill, Diana Ho, Wendy Iwaszuk, Smriti Jha, Dan565
Klein, Jayant Krishnamurthy, Theo Lanman, Percy566
Liang, Christopher H. Lin, Ilya Lintsbakh, Andy Mc-567
Govern, Aleksandr Nisnevich, Adam Pauls, Dmitrij568
Petters, Brent Read, Dan Roth, Subhro Roy, Jesse569
Rusak, Beth Short, Div Slomin, Ben Snyder, Stephon570
Striplin, Yu Su, Zachary Tellman, Sam Thomson, An-571
drei Vorobev, Izabela Witoszko, Jason Wolfe, Abby572
Wray, Yuchen Zhang, and Alexander Zotov. 2020.573
Task-oriented dialogue as dataflow synthesis. Trans-574
actions of the Association for Computational Linguis-575
tics, 8:556–571.576

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten577
Bosma, Henryk Michalewski, David Dohan, Ellen578
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.579
Program synthesis with large language models. arXiv580
preprint arXiv:2108.07732.581

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan,582
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2022.583

Codet: Code generation with generated tests. arXiv 584
preprint arXiv:2207.10397. 585

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 586
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka- 587
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 588
Greg Brockman, Alex Ray, Raul Puri, Gretchen 589
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas- 590
try, Pamela Mishkin, Brooke Chan, Scott Gray, 591
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz 592
Kaiser, Mohammad Bavarian, Clemens Winter, 593
Philippe Tillet, Felipe Petroski Such, Dave Cum- 594
mings, Matthias Plappert, Fotios Chantzis, Eliza- 595
beth Barnes, Ariel Herbert-Voss, William Hebgen 596
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie 597
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, 598
William Saunders, Christopher Hesse, Andrew N. 599
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan 600
Morikawa, Alec Radford, Matthew Knight, Miles 601
Brundage, Mira Murati, Katie Mayer, Peter Welinder, 602
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya 603
Sutskever, and Wojciech Zaremba. 2021a. Evaluat- 604
ing large language models trained on code. 605

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, 606
Henrique Ponde de Oliveira Pinto, Jared Kaplan, 607
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg 608
Brockman, et al. 2021b. Evaluating large lan- 609
guage models trained on code. arXiv preprint 610
arXiv:2107.03374. 611

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and 612
Denny Zhou. 2023. Teaching large language models 613
to self-debug. arXiv preprint arXiv:2304.05128. 614

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, 615
Maarten Bosma, Gaurav Mishra, Adam Roberts, 616
Paul Barham, Hyung Won Chung, Charles Sutton, 617
Sebastian Gehrmann, et al. 2022. Palm: Scaling 618
language modeling with pathways. arXiv preprint 619
arXiv:2204.02311. 620

Yihong Dong, Jiazheng Ding, Xue Jiang, Zhuo Li, 621
Ge Li, and Zhi Jin. 2023. Codescore: Evaluating 622
code generation by learning code execution. arXiv 623
preprint arXiv:2301.09043. 624

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi- 625
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin, 626
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A 627
pre-trained model for programming and natural lan- 628
guages. In Findings of the Association for Computa- 629
tional Linguistics: EMNLP 2020, pages 1536–1547. 630

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, 631
Eric Wallace, Freda Shi, Ruiqi Zhong, Wen-tau Yih, 632
Luke Zettlemoyer, and Mike Lewis. 2022. Incoder: 633
A generative model for code infilling and synthesis. 634
arXiv preprint arXiv:2204.05999. 635

Sumit Gulwani. 2011. Automating string processing 636
in spreadsheets using input-output examples. ACM 637
Sigplan Notices, 46(1):317–330. 638

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai 639
Dong, Wentao Zhang, Guanting Chen, Xiao Bi, 640

9

https://doi.org/10.1162/tacl_a_00333
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374

Y Wu, YK Li, et al. 2024. Deepseek-coder: When the641
large language model meets programming–the rise of642
code intelligence. arXiv preprint arXiv:2401.14196.643

Vincent J. Hellendoorn and Premkumar Devanbu. 2017.644
Are deep neural networks the best choice for model-645
ing source code? In Proceedings of the 2017 11th646
Joint Meeting on Foundations of Software Engineer-647
ing, ESEC/FSE 2017, pages 763–773, New York,648
NY, USA. ACM.649

Abram Hindle, Earl T. Barr, Mark Gabel, Zhendong Su,650
and Premkumar Devanbu. 2016. On the naturalness651
of software. Commun. ACM, 59(5):122–131.652

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-653
sch, Chris Bamford, Devendra Singh Chaplot, Diego654
de las Casas, Florian Bressand, Gianna Lengyel, Guil-655
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,656
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,657
Thibaut Lavril, Thomas Wang, Timothée Lacroix,658
and William El Sayed. 2023a. Mistral 7b.659

Xue Jiang, Yihong Dong, Lecheng Wang, Qiwei Shang,660
and Ge Li. 2023b. Self-planning code genera-661
tion with large language model. arXiv preprint662
arXiv:2303.06689.663

Mohammad Abdullah Matin Khan, M Saiful Bari,664
Xuan Long Do, Weishi Wang, Md Rizwan Parvez,665
and Shafiq Joty. 2023. xcodeeval: A large scale multi-666
lingual multitask benchmark for code understanding,667
generation, translation and retrieval. arXiv preprint668
arXiv:2303.03004.669

Donald E Knuth. 1992. Literate programming. CSLI670
Lecture Notes, Stanford, CA: Center for the Study of671
Language and Information (CSLI), 1992.672

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio673
Savarese, and Steven Chu Hong Hoi. 2022. Coderl:674
Mastering code generation through pretrained models675
and deep reinforcement learning. Advances in Neural676
Information Processing Systems, 35:21314–21328.677

Jingyao Li, Pengguang Chen, and Jiaya Jia. 2023. Mot-678
coder: Elevating large language models with modular679
of thought for challenging programming tasks. arXiv680
preprint arXiv:2312.15960.681

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,682
Julian Schrittwieser, Rémi Leblond, Tom Eccles,683
James Keeling, Felix Gimeno, Agustin Dal Lago,684
et al. 2022a. Competition-level code generation with685
alphacode. Science, 378(6624):1092–1097.686

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,687
Julian Schrittwieser, Rémi Leblond, Tom Eccles,688
James Keeling, Felix Gimeno, Agustin Dal Lago,689
Thomas Hubert, Peter Choy, Cyprien de Mas-690
son d’Autume, Igor Babuschkin, Xinyun Chen, Po-691
Sen Huang, Johannes Welbl, Sven Gowal, Alexey692
Cherepanov, James Molloy, Daniel Mankowitz, Esme693
Sutherland Robson, Pushmeet Kohli, Nando de Fre-694
itas, Koray Kavukcuoglu, and Oriol Vinyals. 2022b.695
Competition-level code generation with alphacode.696

Zohar Manna and Richard J. Waldinger. 1971. To- 697
ward automatic program synthesis. Commun. ACM, 698
14(3):151–165. 699

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan 700
Wang, Yingbo Zhou, Silvio Savarese, and Caiming 701
Xiong. 2022. Codegen: An open large language 702
model for code with multi-turn program synthesis. 703
arXiv preprint arXiv:2203.13474. 704

Carlos Pacheco, Shuvendu K Lahiri, Michael D Ernst, 705
and Thomas Ball. 2007. Feedback-directed random 706
test generation. In 29th International Conference 707
on Software Engineering (ICSE’07), pages 75–84. 708
IEEE. 709

Emilio Parisotto and Ruslan Salakhutdinov. 2017. Neu- 710
ral map: Structured memory for deep reinforcement 711
learning. arXiv preprint arXiv:1702.08360. 712

Md Rizwan Parvez, Wasi Uddin Ahmad, Saikat 713
Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 714
2021. Retrieval augmented code generation and sum- 715
marization. arXiv preprint arXiv:2108.11601. 716

Md Rizwan Parvez, Saikat Chakraborty, Baishakhi Ray, 717
and Kai-Wei Chang. 2018. Building language mod- 718
els for text with named entities. In Proceedings of the 719
56th Annual Meeting of the Association for Compu- 720
tational Linguistics (Volume 1: Long Papers), pages 721
2373–2383, Melbourne, Australia. Association for 722
Computational Linguistics. 723

Oleksandr Polozov and Sumit Gulwani. 2015. Flash- 724
meta: A framework for inductive program synthesis. 725
In Proceedings of the 2015 ACM SIGPLAN Interna- 726
tional Conference on Object-Oriented Programming, 727
Systems, Languages, and Applications, pages 107– 728
126. 729

Maxim Rabinovich, Mitchell Stern, and Dan Klein. 730
2017. Abstract syntax networks for code generation 731
and semantic parsing. CoRR, abs/1704.07535. 732

Tal Ridnik, Dedy Kredo, and Itamar Friedman. 2024. 733
Code generation with alphacodium: From prompt 734
engineering to flow engineering. arXiv preprint 735
arXiv:2401.08500. 736

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten 737
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 738
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. 739
Code llama: Open foundation models for code. arXiv 740
preprint arXiv:2308.12950. 741

Noah Shinn, Federico Cassano, Ashwin Gopinath, 742
Karthik R Narasimhan, and Shunyu Yao. 2023. Re- 743
flexion: Language agents with verbal reinforcement 744
learning. In Thirty-seventh Conference on Neural 745
Information Processing Systems. 746

Kashun Shum, Shizhe Diao, and Tong Zhang. 2023. 747
Automatic prompt augmentation and selection with 748
chain-of-thought from labeled data. In Findings 749
of the Association for Computational Linguistics: 750
EMNLP 2023, pages 12113–12139, Singapore. Asso- 751
ciation for Computational Linguistics. 752

10

https://doi.org/10.1145/3106237.3106290
https://doi.org/10.1145/3106237.3106290
https://doi.org/10.1145/3106237.3106290
https://doi.org/10.1145/2902362
https://doi.org/10.1145/2902362
https://doi.org/10.1145/2902362
http://arxiv.org/abs/2310.06825
https://doi.org/10.1145/362566.362568
https://doi.org/10.1145/362566.362568
https://doi.org/10.1145/362566.362568
https://doi.org/10.18653/v1/P18-1221
https://doi.org/10.18653/v1/P18-1221
https://doi.org/10.18653/v1/P18-1221
http://arxiv.org/abs/1704.07535
http://arxiv.org/abs/1704.07535
http://arxiv.org/abs/1704.07535
https://doi.org/10.18653/v1/2023.findings-emnlp.811
https://doi.org/10.18653/v1/2023.findings-emnlp.811
https://doi.org/10.18653/v1/2023.findings-emnlp.811

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-753
bert, Amjad Almahairi, Yasmine Babaei, Nikolay754
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti755
Bhosale, et al. 2023. Llama 2: Open founda-756
tion and fine-tuned chat models. arXiv preprint757
arXiv:2307.09288.758

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH759
Hoi. 2021. Codet5: Identifier-aware unified pre-760
trained encoder-decoder models for code understand-761
ing and generation. In EMNLP, pages 8696–8708.762

Zhiruo Wang, Jun Araki, Zhengbao Jiang, Md Rizwan763
Parvez, and Graham Neubig. 2023. Learning to filter764
context for retrieval-augmented generation. arXiv765
preprint arXiv:2311.08377.766

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten767
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,768
et al. 2022a. Chain-of-thought prompting elicits rea-769
soning in large language models. Advances in Neural770
Information Processing Systems, 35:24824–24837.771

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten772
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,773
et al. 2022b. Chain-of-thought prompting elicits rea-774
soning in large language models. Advances in Neural775
Information Processing Systems, 35:24824–24837.776

Xiaohan Xu, Chongyang Tao, Tao Shen, Can Xu,777
Hongbo Xu, Guodong Long, and Jian guang Lou.778
2023. Re-reading improves reasoning in language779
models.780

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,781
Thomas L Griffiths, Yuan Cao, and Karthik782
Narasimhan. 2023. Tree of thoughts: Deliberate783
problem solving with large language models. arXiv784
preprint arXiv:2305.10601.785

Michihiro Yasunaga, Xinyun Chen, Yujia Li, Panupong786
Pasupat, Jure Leskovec, Percy Liang, Ed H Chi, and787
Denny Zhou. 2023. Large language models as ana-788
logical reasoners. arXiv preprint arXiv:2310.01714.789

Pengcheng Yin and Graham Neubig. 2017. A syntactic790
neural model for general-purpose code generation.791
CoRR, abs/1704.01696.792

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue,793
Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze794
Shi, Zihan Li, Youxuan Jiang, Michihiro Yasunaga,795
Sungrok Shim, Tao Chen, Alexander Fabbri, Zifan796
Li, Luyao Chen, Yuwen Zhang, Shreya Dixit, Vin-797
cent Zhang, Caiming Xiong, Richard Socher, Walter798
Lasecki, and Dragomir Radev. 2019. CoSQL: A799
conversational text-to-SQL challenge towards cross-800
domain natural language interfaces to databases. In801
Proceedings of the 2019 Conference on Empirical802
Methods in Natural Language Processing and the803
9th International Joint Conference on Natural Lan-804
guage Processing (EMNLP-IJCNLP), pages 1962–805
1979, Hong Kong, China. Association for Computa-806
tional Linguistics.807

Yifan Zhang, Jingqin Yang, Yang Yuan, and An- 808
drew Chi-Chih Yao. 2023. Cumulative reason- 809
ing with large language models. arXiv preprint 810
arXiv:2308.04371. 811

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex 812
Smola. 2022. Automatic chain of thought prompt- 813
ing in large language models. arXiv preprint 814
arXiv:2210.03493. 815

Appendix 816

817

A Algorithm of MapCoder 818

Algorithm 1 shows the pseudo-code of our prompt- 819

ing technique. 820

Algorithm 1 MapCoder

1: k ← number of self-retrieved exemplars
2: t← number of debugging attempts
3:
4: exemplars← RetrivalAgent(k)
5:
6: plans← empty array of size k
7: for example in exemplars do
8: plans[i]← PlanningAgent(example)
9: end for

10:
11: plans← SortByConfidence(plans)
12:
13: for i← 1 to k do
14: code← CodingAgent(code, plan[i])
15: passed, log ← test(code, sample_io)
16: if passed then
17: Return code
18: else
19: for j ← 1 to t do
20: code← DebuggingAgent(code, log)
21: passed, log ← test(code, sample_io)
22: if passed then
23: Return code
24: end if
25: end for
26: end if
27: end for
28: Return code

B Details Promptings of MapCoder 821

The detailed prompting of the Retrieval Agent, 822

Planning Agent, Coding Agent, and Debugging 823

Agent are shown in Figures 8, 9, and 10, respec- 824

tively. Note that we adopt a specific sequence of in- 825

structions in the prompt for Retrieval Agent which 826

is a crucial design choice. 827

C Example Problem 828

Two complete examples of how MapCoder works 829

by showing all the prompts and responses for all 830

four agents is given in the following pages. 831

11

https://arxiv.org/pdf/2307.09288
https://arxiv.org/pdf/2307.09288
https://arxiv.org/pdf/2307.09288
http://arxiv.org/abs/2309.06275
http://arxiv.org/abs/2309.06275
http://arxiv.org/abs/2309.06275
http://arxiv.org/abs/1704.01696
http://arxiv.org/abs/1704.01696
http://arxiv.org/abs/1704.01696
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204

Given a problem, provide relevant problems then identify the algorithm behind it and also explain the tutorial of the algorithm.

Problem:

{Problem Description will be added here}

Exemplars:

Recall k relevant and distinct problems (different from problem mentioned above). For each problem,

1. describe it

2. generate {language} code step by step to solve that problem

3. finally generate a planning to solve that problem

Algorithm:

Important:

Your response must follow the following xml format-

<root>

<problem>

Recall k relevant and distinct problems (different from problem mentioned above). Write each problem in the following format.

<description> # Describe the problem. </description>

<code> # Let's think step by step to solve this problem in {language} programming language. </code>

<planning> # Planning to solve this problem. </planning>

</problem>

similarly add more problems here...

<algorithm>

Identify the algorithm (Brute-force, Dynamic Programming, Divide-and-conquer, Greedy, Backtracking, Recursive, Binary search,

and so on) that needs to be used to solve the original problem.

Write a useful tutorial about the above mentioned algorithms. Provide a high level generic tutorial for solving this types

of problem. Do not generate code.

</algorithm>

</root>

Retrieval Agent

Figure 8: Prompt for self-retrieval Agent.

Planning Generation Prompt:
Given a competitive programming problem
generate a concrete planning to solve the
problem.
Problem: {Description of the example problem}
Planning: {Planning of the example problem}
Relevant Algorithm to solve the next
problem:
{Algorithm retrieved by Retrieval Agent}
Problem to be solved: {Original Problem}
Sample Input/Outputs: {Sample IOs}

Important: You should give only the planning to
solve the problem. Do not add extra explanation
or words.

 Confidence Generation Prompt:
Given a competitive programming problem and a plan to solve
the problem in {language} tell whether the plan is correct to
solve this problem.

Problem: {Original Problem}
Planning: {Planning of our problem from previous step}

Important: Your response must follow the following xml format-
<root>
<explanation> Discuss whether the given competitive
programming problem is solvable by using the above mentioned
planning. </explanation>
<confidence> Confidence score regarding the solvability of
the problem. Must be an integer between 0 and 100.
</confidence>
</root>

Planning Agent

Figure 9: Prompt for Planning Agent. The example problems that are mentioned in this figure will come from the
Retrieval Agent.

Given a competitive programming problem generate

Python3 code to solve the problem.

Relevant Algorithm to solve the next problem:

{Algorithm retrieved by Retrieval Agent}

Problem to be solved:

{Our Problem Description will be added here}

Planning: {Planning from the Planning Agent}

Sample Input/Outputs: {Sample I/Os}

Let's think step by step.

Important:

Your response must contain only the {language} code

to solve this problem. Do not add extra explanation or

words.

Coding Agent

Given a competitive programming problem you have generated {language}

code to solve the problem. But the generated code cannot pass sample

test cases. Improve your code to solve the problem correctly.

Relevant Algorithm to solve the next problem:

{Algorithm retrieved by Retrieval Agent}

Planning: {Planning from previous step}

Code: {Generated code from previous step}

Modified Planning:

Let's think step by step to modify {language} Code for solving

this problem.

Important:

Your response must contain the modified planning and then the

{language} code inside ``` block to solve this problem.

Debugging Agent

Figure 10: Prompt for Coding and Debugging Agent.

12

An example containing problem from HumanEval Dataset (k=5, t=5)

Prompt for Self-retrieval Agent:
Given a problem, provide relevant problems then identify the algorithm behind it and also explain the tutorial

of the algorithm.

Problem:

def sum_squares(lst):

 """You are given a list of numbers.

 You need to return the sum of squared numbers in the given list,

 round each element in the list to the upper int(Ceiling) first.

 Examples:

 For lst = [1,2,3] the output should be 14

 For lst = [1,4,9] the output should be 98

 For lst = [1,3,5,7] the output should be 84

 For lst = [1.4,4.2,0] the output should be 29

 For lst = [-2.4,1,1] the output should be 6

 """

Exemplars:

Recall five (05) relevant and distinct problems (different from problem mentioned above). For each problem,

1. describe it

2. generate Python3 code step by step to solve that problem

3. finally generate a planning to solve that problem

Algorithm:

Important:

Your response must follow the following xml format-

<root>

<problem>

Recall five (05) relevant and distinct problems (different from problem mentioned above). Write each

problem in the following format.

<description> # Describe the problem. </description>

<code> # Let's think step by step to solve this problem in Python3 programming language. </code>

<planning> # Planning to solve this problem. </planning>

</problem>

similarly add more problems here...

<algorithm>

Identify the algorithm (Brute-force, Dynamic Programming, Divide-and-conquer, Greedy, Backtracking,

Recursive, Binary search, and so on) that needs to be used to solve the original problem.

Write a useful tutorial about the above mentioned algorithms. Provide a high level generic tutorial for

solving this types of problem. Do not generate code.

</algorithm>

</root>

We will refer this as original problem

from the next time

Response from Self-retrieval Agent:

<root>

<problem>

<description> 1. Problem: Find the sum of all even numbers in a list. </description>

<code>

def sum_even(lst):

 total = 0

 for num in lst:

 if num % 2 == 0:

 total += num

 return total

</code>

<planning>

To solve this problem, we can iterate through the list and check if each number is even. If it is, we add it

to a running total. Finally, we return the total sum of all even numbers in the list.

</planning>

</problem>

<problem>

<description> 2. Problem: Find the product of all numbers in a list. </description>

<code>

def product_of_numbers(lst):

 product = 1

 for num in lst:

 product *= num

 return product

</code>

<planning>

To solve this problem, we can iterate through the list and multiply each number with a running product.

Finally, we return the total product of all numbers in the list.

</planning>

</problem>

Three more plans are generated in similar way…

<algorithm>

The algorithm behind the original problem of summing squared numbers in a list is a simple iteration

through the list and performing a calculation on each element. This can be solved using a brute-force

algorithm.

Tutorial:

Brute-force algorithm involves iterating through the input and checking all possible solutions to find the

best one. In the case of summing squared numbers in a list, we iterate through the list, square each

number, round it to the upper integer, and then sum them up. This algorithm is straightforward and easy to

implement, but it may not be the most efficient for large inputs.

</ algorithm>

</root>

We will refer this as Retrieved algorithm

from the next time

Prompt for Planning Agent (Plan Generation):

Given a competitive programming problem generate a concrete planning to solve the problem.

Problem: 1. Problem: Find the sum of all even numbers in a list.

Planning: To solve this problem, we can iterate through the list and check if each number is even. If it is, we

add it to a running total. Finally, we return the total sum of all even numbers in the list.

Relevant Algorithm to solve the next problem: {Retrieved algorithm}

Problem to be solved: {Original problem}

Sample Test cases:

assert sum_squares([1,2,3])==14

assert sum_squares([1,4,9])==98

assert sum_squares([1,3,5,7])==84

assert sum_squares([1.4,4.2,0])==29

assert sum_squares([-2.4,1,1])==6

Planning:

Important: You should give only the planning to solve the problem. Do not add extra explanation or words.

Response from Planning Agent (Plan Generation):

To solve this problem, we can iterate through the list, round each number to the upper integer, square it, and

then add it to a running total. Finally, we return the total sum of all squared numbers in the list.

Prompt for Planning Agent (Confidence Generation):

Given a competitive programming problem and a plan to solve the problem in Python3, tell whether the plan is

correct to solve this problem.

Problem: {Original problem}

Planning:

To solve this problem, we can iterate through the list, round each number to the upper integer, square it, and

then add it to a running total. Finally, we return the total sum of all squared numbers in the list.

Important: Your response must follow the following xml format-

<root>

<explanation>

Discuss whether the given competitive programming problem is solvable by using the above mentioned

planning.

</explanation>

<confidence>

Confidence score regarding the solvability of the problem. Must be an integer between 0 and 100.

</confidence>

</root>

We will refer this as Sample IO

from the next time

Response from Planning Agent (Confidence Generation):

<root>

<explanation>

The given competitive programming problem is solvable by using the above mentioned planning. The

plan correctly outlines the steps to iterate through the list, round each number to the upper integer,

square it, and then add it to a running total. Finally, returning the total sum of all squared numbers in

the list.

</explanation>

<confidence> 100 </confidence>

</root>

Similarly generate planning and their confidence using other examples….

Decision: As First Planning gets 100 as confidence score Coding Agent will work with first

Planning.

Prompt for Coding Agent:

Given a competitive programming problem generate Python3 code to solve the problem.

Relevant Algorithm to solve the next problem: {Retrieved algorithm}

Problem to be solved: {Original problem}

Planning:

To solve this problem, we can iterate through the list, round each number to the upper integer, square it, and

then add it to a running total. Finally, we return the total sum of all squared numbers in the list.

Sample Test cases: {Sample I/O}

Let's think step by step.

Important:

Your response must contain only the Python3 code to solve this problem. Do not add extra explanation or

words.

Response from Coding Agent:

def sum_squares(lst):

 total = 0

 for num in lst:

 total += (int(num) ** 2)

 return total

Decision: Testing using Sample I/O will fail because this is wrong implementation. So, our

approach will go to Debugging Agent.

Prompt for Debugging Agent: (1st iteration)

Given a competitive programming problem you have generated Python3 code to solve the problem. But the

generated code can not pass sample test cases. Improve your code to solve the problem correctly.

Relevant Algorithm to solve the next problem: {Retrieved algorithm}

Problem to be solved: {Original problem}

Planning: {Current Planning}

Code: {Current Implementation}

Test Report:

passed in test case: assert sum_squares([1,2,3]) == 14

passed in test case: assert sum_squares([1,4,9]) == 98

passed in test case: assert sum_squares([1,3,5,7]) == 84

failed in test case: assert sum_squares([1.4,4.2,0]) == 29

passed in test case: assert sum_squares([-2.4,1,1]) == 6

Modified Planning:

Let's think step by step to modify Python3 Code for solving this problem.

Important:

Your response must contain the modified planning and then the Python3 code inside ``` block to solve this

problem.

Response from Debugging Agent: (1st iteration)

Modified Planning:

To modify the code, we need to round each number to the upper integer before squaring it. We can use the

math.ceil() function to achieve this. After rounding each number, we can then square it and add it to the total

sum.

Code:

```Python3 

import math 

 

def sum_squares(lst): 

    total = 0 

    for num in lst: 

        total += (math.ceil(num) ** 2) 

    return total 

``` 


Decision: This time all Sample I/O passed. We return this implementation as the Final Code for final

evaluation. Finally, we evaluated this code with private test case and our implementation passed the

evaluation.

An example containing problem from CodeContest Dataset (k=3, t=5)

Prompt for Self-retrieval Agent:
Given a problem, provide relevant problems then identify the algorithm behind it and also explain the tutorial

of the algorithm.

Problem:

Luntik has decided to try singing. He has a one-minute songs, b two-minute songs

and c three-minute songs. He wants to distribute all songs into two concerts such

that every song should be included to exactly one concert.

He wants to make the absolute difference of durations of the concerts as small as

possible. The duration of the concert is the sum of durations of all songs in that

concert.

Please help Luntik and find the minimal possible difference in minutes between the

concerts durations.

Input

The first line contains a single integer t (1 ≤ t ≤ 1000) — the number of test

cases.

Each test case consists of one line containing three integers a, b, c (1 ≤ a, b, c

≤ 10^9) — the number of one-minute, two-minute and three-minute songs.

Output

For each test case print the minimal possible difference in minutes between the

concerts durations.

Example

Input

4

1 1 1

2 1 3

5 5 5

1 1 2

Output

0

1

0

1

Note

In the first test case, Luntik can include a one-minute song and a two-minute song

into the first concert, and a three-minute song into the second concert. Then the

difference will be equal to 0.

In the second test case, Luntik can include two one-minute songs and a two-minute

song and a three-minute song into the first concert, and two three-minute songs

into the second concert. The duration of the first concert will be 1 + 1 + 2 + 3 =

7, the duration of the second concert will be 6. The difference of them is |7-6| =

1. """

Important Note: You must follow the input output format. Input must be taken from

standard input and output must be given to standard output. The code will be

tested against multiple test cases and all the test cases must be passed.

We will refer this as original problem

from the next time

Exemplars:

Recall three (03) relevant and distinct problems (different from problem mentioned above). For each problem,

1. describe it

2. generate Python3 code step by step to solve that problem

3. finally generate a planning to solve that problem

Algorithm:

Important:

Your response must follow the following xml format-

<root>

<problem>

Recall three (03) relevant and distinct problems (different from problem mentioned above). Write

each problem in the following format.

<description> # Describe the problem. </description>

<code> # Let's think step by step to solve this problem in Python3 programming language. </code>

<planning> # Planning to solve this problem. </planning>

</problem>

similarly add more problems here...

<algorithm>

Identify the algorithm (Brute-force, Dynamic Programming, Divide-and-conquer, Greedy, Backtracking,

Recursive, Binary search, and so on) that needs to be used to solve the original problem.

Write a useful tutorial about the above mentioned algorithms. Provide a high level generic tutorial for

solving this types of problem. Do not generate code.

</algorithm>

</root>

Response from Self-retrieval Agent:

<root>

<problem>

<description>

Problem 1:

You are given an array of integers, find the maximum sum of a contiguous subarray within the array.

</description>

<code>

def maxSubArray(nums):

 max_sum = nums[0]

 current_sum = nums[0]

 for i in range(1, len(nums)):

 current_sum = max(nums[i], current_sum + nums[i])

 max_sum = max(max_sum, current_sum)

 return max_sum

</code>

<planning>

- Initialize two variables max_sum and current_sum to the first element of the array.

- Iterate through the array and at each index, update the current_sum to be the maximum of the

current element and the sum of the current element and the previous current_sum.

- Update max_sum to be the maximum of max_sum and current_sum.

- Return max_sum at the end.

</planning>

</problem>

<problem>

<description>

Problem 2:

You are given a list of tasks with their start and end times. Find the minimum number of meeting rooms

required to schedule all the tasks.

</description>

<code>

import heapq

def minMeetingRooms(intervals):

 if not intervals:

 return 0

 intervals.sort(key=lambda x: x[0])

 rooms = []

 heapq.heappush(rooms, intervals[0][1])

 for i in intervals[1:]:

 if rooms[0] <= i[0]:

 heapq.heappop(rooms)

 heapq.heappush(rooms, i[1])

 return len(rooms)

</code>

<planning>

- Sort the intervals based on their start times.

- Create a min heap to store the end times of the meetings.

- Push the end time of the first meeting into the heap.

- Iterate through the intervals, if the start time of the current interval is greater than or equal to the end

time at the top of the heap, pop the end time from the heap. Push the end time of the current interval

into the heap.

- Return the length of the heap at the end.

</planning>

</problem>

<problem>

<description>

Problem 3:

You are given a list of intervals representing the start and end times of meetings. Find the maximum

number of overlapping intervals.

 </description>

<code>

def maxOverlap(intervals):

 if not intervals:

 return 0

 start_times = sorted([i[0] for i in intervals])

 end_times = sorted([i[1] for i in intervals])

 max_overlap = 0

 current_overlap = 0

 start_ptr = 0

 end_ptr = 0

 while start_ptr < len(intervals):

 if start_times[start_ptr] < end_times[end_ptr]:

 current_overlap += 1

 max_overlap = max(max_overlap, current_overlap)

 start_ptr += 1

 else:

 current_overlap -= 1

 end_ptr += 1

 return max_overlap

</code>

<planning>

- Sort the start times and end times of the intervals separately.

- Initialize max_overlap and current_overlap to 0, and start and end pointers to 0.

- Iterate through the start times, if the current start time is less than the current end time, increment

current_overlap and update max_overlap. Increment the start pointer.

- If the current start time is greater than or equal to the current end time, decrement current_overlap

and increment the end pointer.

- Return max_overlap at the end.

</planning>

</problem>

<algorithm>

The algorithm that can be used to solve the original problem of distributing songs into two concerts with

minimal possible difference in durations is the Greedy algorithm. The Greedy algorithm makes the locally

optimal choice at each stage with the hope of finding a global optimum.

To solve the original problem, we can use the following steps:

1. Sort the songs by their durations in non-increasing order.

2. Start with two empty concerts.

3. Iterate through the sorted songs and at each stage, assign the current song to the concert with the

smaller total duration.

4. Calculate the absolute difference in durations between the two concerts at the end.

This approach ensures that we are making the locally optimal choice at each stage by assigning the current

song to the concert with the smaller total duration, and it leads to the minimal possible difference in

durations between the concerts.

</ algorithm>

</root>

We will refer this as Retrieved algorithm

from the next time

Prompt for First Planning Agent (Plan Generation):

Given a competitive programming problem generate a concrete planning to solve the problem.

Problem:

Problem 1:

You are given an array of integers, find the maximum sum of a contiguous subarray within the array.

Planning:

- Initialize two variables max_sum and current_sum to the first element of the array.

- Iterate through the array and at each index, update the current_sum to be the maximum of the current

element and the sum of the current element and the previous current_sum.

- Update max_sum to be the maximum of max_sum and current_sum.

- Return max_sum at the end.

Relevant Algorithm to solve the next problem: {Retrieved algorithm}

Problem to be solved: {Original problem}

Sample Test cases:

Input:

4

1 1 1

2 1 3

5 5 5

1 1 2

Expected output:

0 1 0 1

Planning:

Important: You should give only the planning to solve the problem. Do not add extra explanation or words.

Response from First Planning Agent (Plan Generation):

- Sort the songs by their durations in non-increasing order.

- Start with two empty concerts.

- Iterate through the sorted songs and at each stage, assign the current song to the concert with the smaller

total duration.

- Calculate the absolute difference in durations between the two concerts at the end.

Prompt for First Planning Agent (Confidence Generation):

Given a competitive programming problem and a plan to solve the problem in Python3, tell whether the plan is

correct to solve this problem.

Problem: {Original problem}

Planning:

- Sort the songs by their durations in non-increasing order.

- Start with two empty concerts.

- Iterate through the sorted songs and at each stage, assign the current song to the concert with the smaller

total duration.

We will refer this as Sample IO

from the next time

- Calculate the absolute difference in durations between the two concerts at the end.

Important: Your response must follow the following xml format-

<root>

<explanation>

Discuss whether the given competitive programming problem is solvable by using the above mentioned

planning.

</explanation>

<confidence>

Confidence score regarding the solvability of the problem. Must be an integer between 0 and 100.

</confidence>

</root>

Response from First Planning Agent (Confidence Generation):

<root>

<explanation>

The given competitive programming problem is solvable by using the above mentioned planning. The

plan involves sorting the songs by duration and then assigning them to two concerts in a way that

minimizes the absolute difference in durations between the concerts.

</explanation>

<confidence> 100 </confidence>

</root>

Prompt for Second Planning Agent (Plan Generation):

Given a competitive programming problem generate a concrete planning to solve the problem.

Problem:

Problem 2:

You are given a list of tasks with their start and end times. Find the minimum number of meeting rooms

required to schedule all the tasks.

Planning:

- Sort the intervals based on their start times.

- Create a min heap to store the end times of the meetings.

- Push the end time of the first meeting into the heap.

- Iterate through the intervals, if the start time of the current interval is greater than or equal to the end time at

the top of the heap, pop the end time from the heap. Push the end time of the current interval into the heap.

- Return the length of the heap at the end.

Relevant Algorithm to solve the next problem: {Retrieved algorithm}

Problem to be solved: {Original problem}

Sample Test cases: {Sample I/O}

Planning:

Important: You should give only the planning to solve the problem. Do not add extra explanation or words.

Response from Second Planning Agent (Plan Generation):

- Sort the songs by their durations in non-increasing order.

- Start with two empty concerts.

- Iterate through the sorted songs and at each stage, assign the current song to the concert with the smaller

total duration.

- Calculate the absolute difference in durations between the two concerts at the end.

Prompt for Second Planning Agent (Confidence Generation):

Given a competitive programming problem and a plan to solve the problem in Python3, tell whether the plan is

correct to solve this problem.

Problem: {Original problem}

Planning:

- Sort the songs by their durations in non-increasing order.

- Start with two empty concerts.

- Iterate through the sorted songs and at each stage, assign the current song to the concert with the smaller

total duration.

- Calculate the absolute difference in durations between the two concerts at the end.

Important: Your response must follow the following xml format-

<root>

<explanation>

Discuss whether the given competitive programming problem is solvable by using the above mentioned

planning.

</explanation>

<confidence>

Confidence score regarding the solvability of the problem. Must be an integer between 0 and 100.

</confidence>

</root>

Response from Second Planning Agent (Confidence Generation):

<root>

<explanation>

The given competitive programming problem is solvable by using the above mentioned planning. The

plan involves sorting the songs by duration, then assigning the songs to two concerts in a way that

minimizes the absolute difference in durations between the concerts.

</explanation>

<confidence> 100 </confidence>

</root>

Similarly generate the planning and the confidence of last example….

Decision: As First Planning gets 100 as confidence score Coding Agent will work with first

Planning.

Prompt for Coding Agent:

Given a competitive programming problem generate Python3 code to solve the problem.

Relevant Algorithm to solve the next problem: {Retrieved algorithm}

Problem to be solved: {Original problem}

Planning:

- Sort the songs by their durations in non-increasing order.

- Start with two empty concerts.

- Iterate through the sorted songs and at each stage, assign the current song to the concert with the smaller

total duration.

- Calculate the absolute difference in durations between the two concerts at the end.

Sample Test cases: {Sample I/O}

Let's think step by step.

Important:

Note: Strictly follow the input and output format. The input should be taken from Standard input and

output should be given to standard output. If you are writing a function then after the function definition take

input using `input()` function then call the function with specified parameters and finally print the output of

the function. Do not add extra print statement otherwise it will failed the test cases.

Your response must contain only the Python3 code to solve this problem. Do not add extra explanation or

words.

Response from Coding Agent:

def min_difference_in_concerts(t, test_cases):

 for case in test_cases:

 a, b, c = case

 songs = [(1, a), (2, b), (3, c)]

 songs.sort(key=lambda x: x[0], reverse=True)

 concert1 = 0

 concert2 = 0

 for song in songs:

 if concert1 <= concert2:

 concert1 += song[0] * song[1]

 else:

 concert2 += song[0] * song[1]

 print(abs(concert1 - concert2))

t = 4

test_cases = [(1, 1, 1), (2, 1, 3), (5, 5, 5), (1, 1, 2)]

min_difference_in_concerts(t, test_cases)

Decision: Testing using Sample I/O will fail because of incorrect implementation. The main

problem with this code is that it does not take input from the console. It writes a function

and just calls it with fixed value. So, our approach will go to the Debugging Agent.

Prompt for Debugging Agent: (1st iteration)

Given a competitive programming problem you have generated Python3 code to solve the problem. But the

generated code can not pass sample test cases. Improve your code to solve the problem correctly.

Relevant Algorithm to solve the next problem: {Retrieved algorithm}

Problem to be solved: {Original problem}

Planning:

- Sort the songs by their durations in non-increasing order.

- Start with two empty concerts.

- Iterate through the sorted songs and at each stage, assign the current song to the concert with the smaller

total duration.

- Calculate the absolute difference in durations between the two concerts at the end.

Code:

def min_difference_in_concerts(t, test_cases):

 for case in test_cases:

 a, b, c = case

 songs = [(1, a), (2, b), (3, c)]

 songs.sort(key=lambda x: x[0], reverse=True)

 concert1 = 0

 concert2 = 0

 for song in songs:

 if concert1 <= concert2:

 concert1 += song[0] * song[1]

 else:

 concert2 += song[0] * song[1]

 print(abs(concert1 - concert2))

t = 4

test_cases = [(1, 1, 1), (2, 1, 3), (5, 5, 5), (1, 1, 2)]

min_difference_in_concerts(t, test_cases)

Test Report:

Tested passed:

No test cases passed.

Tests failed:

Input:

4

1 1 1

2 1 3

5 5 5

1 1 2

Expected Output:

0 1 0 1

Your Output:

0 5 0 3

Modified Planning:

Let's think step by step to modify Python3 Code for solving this problem.

Important:

Note: Strictly follow the input and output format. The input should be taken from Standard input and

output should be given to standard output. If you are writing a function then after the function definition take

input using `input()` function then call the function with specified parameters and finally print the output of

the function. Do not add extra print statement otherwise it will failed the test cases.

Your response must contain the modified planning and then the Python3 code inside ``` block to solve this

problem.

Response from Debugging Agent: (1st iteration)

Modified Planning:

1. Read the integer t from input to determine the number of test cases.

2. Create a function min_difference_in_concerts(t, test_cases) that takes t and test_cases as input parameters.

3. For each test case in test_cases, do the following:

 - Read the integers a, b, and c from input.

 - Calculate the total duration of each type of song (1-minute, 2-minute, 3-minute).

 - Calculate the total duration of all songs.

 - Calculate the minimum possible difference in minutes between the concerts durations.

 - Print the minimum possible difference in minutes between the concerts durations.

4. Call the function min_difference_in_concerts with t and test_cases as input parameters.

Code:

```Python3 

def min_difference_in_concerts(t, test_cases): 

    for case in test_cases: 

        a, b, c = case 

        total_duration = a + 2*b + 3*c 

        if total_duration % 2 == 0: 

            print(total_duration // 2) 

        else: 

            print((total_duration - 1) // 2) 

 

t = int(input()) 

test_cases = [] 

for _ in range(t): 

    a, b, c = map(int, input().split()) 

    test_cases.append((a, b, c)) 

 

min_difference_in_concerts(t, test_cases) 

``` 

Decision: This time, it takes input from the console and gives output to the console. It correct

that part. But again, it failed because of incorrect implementation. So, the Debugging Agent

tries to improve the code again.

Prompt for Debugging Agent: (2nd iteration)

Given a competitive programming problem you have generated Python3 code to solve the problem. But the

generated code can not pass sample test cases. Improve your code to solve the problem correctly.

Relevant Algorithm to solve the next problem: {Retrieved algorithm}

Problem to be solved: {Original problem}

Planning:

1. Read the integer t from input to determine the number of test cases.

2. Create a function min_difference_in_concerts(t, test_cases) that takes t and test_cases as input parameters.

3. For each test case in test_cases, do the following:

 - Read the integers a, b, and c from input.

 - Calculate the total duration of each type of song (1-minute, 2-minute, 3-minute).

 - Calculate the total duration of all songs.

 - Calculate the minimum possible difference in minutes between the concerts durations.

 - Print the minimum possible difference in minutes between the concerts durations.

4. Call the function min_difference_in_concerts with t and test_cases as input parameters.

Code:

def min_difference_in_concerts(t, test_cases):

 for case in test_cases:

 a, b, c = case

 total_duration = a + 2*b + 3*c

 if total_duration % 2 == 0:

 print(total_duration // 2)

 else:

 print((total_duration - 1) // 2)

t = int(input())

test_cases = []

for _ in range(t):

 a, b, c = map(int, input().split())

 test_cases.append((a, b, c))

min_difference_in_concerts(t, test_cases)

Test Report:

Tested passed:

No test cases passed.

Tests failed:

Input:

4

1 1 1

2 1 3

5 5 5

1 1 2

Expected Output:

0 1 0 1

Your Output:

3 6 15 4

Modified Planning:

Let's think step by step to modify Python3 Code for solving this problem.

Important:

Note: Strictly follow the input and output format. The input should be taken from Standard input and

output should be given to standard output. If you are writing a function then after the function definition take

input using `input()` function then call the function with specified parameters and finally print the output of

the function. Do not add extra print statement otherwise it will failed the test cases.

Your response must contain the modified planning and then the Python3 code inside ``` block to solve this

problem.

Response from Debugging Agent: (2nd iteration)

Modified Planning:

1. Read the integer t from input to determine the number of test cases.

2. Create a function min_difference_in_concerts(t, test_cases) that takes t and test_cases as input parameters.

3. For each test case in test_cases, do the following:

 - Read the integers a, b, and c from input.

 - Calculate the total duration of each type of song (1-minute, 2-minute, 3-minute).

 - Calculate the total duration of all songs.

 - Calculate the minimum possible difference in minutes between the concerts durations.

 - Append the minimum possible difference to a list.

4. Return the list of minimum possible differences.

Code:

```Python3 

def min_difference_in_concerts(t, test_cases): 

    result = [] 

    for case in test_cases: 

        a, b, c = case 

        total_duration = a + 2*b + 3*c 

        if total_duration % 2 == 0: 

            result.append(total_duration // 2) 

        else: 

            result.append((total_duration + 1) // 2) 

    return result 

 

t = int(input()) 

test_cases = [] 

for _ in range(t): 

    a, b, c = map(int, input().split()) 

    test_cases.append((a, b, c)) 

 

output = min_difference_in_concerts(t, test_cases) 

for res in output: 

    print(res) 

``` 


Decision: Again failed because of incorrect implementation. So, the Debugging Agent tries to

improve the code again.

Prompt for Debugging Agent: (3rd iteration)

Given a competitive programming problem you have generated Python3 code to solve the problem. But the

generated code can not pass sample test cases. Improve your code to solve the problem correctly.

Relevant Algorithm to solve the next problem: {Retrieved algorithm}

Problem to be solved: {Original problem}

Planning:

1. Read the integer t from input to determine the number of test cases.

2. Create a function min_difference_in_concerts(t, test_cases) that takes t and test_cases as input parameters.

3. For each test case in test_cases, do the following:

 - Read the integers a, b, and c from input.

 - Calculate the total duration of each type of song (1-minute, 2-minute, 3-minute).

 - Calculate the total duration of all songs.

 - Calculate the minimum possible difference in minutes between the concerts durations.

 - Append the minimum possible difference to a list.

4. Return the list of minimum possible differences.

Code:

def min_difference_in_concerts(t, test_cases):

 result = []

 for case in test_cases:

 a, b, c = case

 total_duration = a + 2*b + 3*c

 if total_duration % 2 == 0:

 result.append(total_duration // 2)

 else:

 result.append((total_duration + 1) // 2)

 return result

t = int(input())

test_cases = []

for _ in range(t):

 a, b, c = map(int, input().split())

 test_cases.append((a, b, c))

output = min_difference_in_concerts(t, test_cases)

for res in output:

 print(res)

Test Report:

Tested passed:

No test cases passed.

Tests failed:

Input:

4

1 1 1

2 1 3

5 5 5

1 1 2

Expected Output:

0 1 0 1

Your Output:

3 7 15 5

Modified Planning:

Let's think step by step to modify Python3 Code for solving this problem.

Important:

Note: Strictly follow the input and output format. The input should be taken from Standard input and

output should be given to standard output. If you are writing a function then after the function definition take

input using `input()` function then call the function with specified parameters and finally print the output of

the function. Do not add extra print statement otherwise it will failed the test cases.

Your response must contain the modified planning and then the Python3 code inside ``` block to solve this

problem.

Response from Debugging Agent: (3rd iteration)

Modified Planning:

1. Read the integer t from input to determine the number of test cases.

2. Create a function min_difference_in_concerts(t, test_cases) that takes t and test_cases as input parameters.

3. For each test case in test_cases, do the following:

 - Read the integers a, b, and c from input.

 - Calculate the total duration of each type of song (1-minute, 2-minute, 3-minute).

 - Calculate the total duration of all songs.

 - Calculate the minimum possible difference in minutes between the concerts durations.

 - Append the minimum possible difference to a list.

4. Return the list of minimum possible differences.

Code:

```Python3 

def min_difference_in_concerts(t, test_cases): 

    result = [] 

    for case in test_cases: 

        a, b, c = case 

        total_duration = a + 2*b + 3*c 

        if total_duration % 2 == 0: 

            result.append(0) 

        else: 

            result.append(1) 

    return result 

 

t = int(input()) 

test_cases = [] 

for _ in range(t): 

    a, b, c = map(int, input().split()) 

    test_cases.append((a, b, c)) 

 

output = min_difference_in_concerts(t, test_cases) 

for res in output: 

    print(res) 

``` 


Decision: This time all Sample I/O passed. We return this implementation as the Final Code for final

evaluation. Finally, we evaluated this code with a private test case, and our implementation passed

the evaluation. This way Debugging Agents debug the code like a human.

