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Abstract

Time-series anomaly detection is critical for ensuring safety in high-stakes ap-
plications, where robustness is a fundamental requirement rather than a mere
performance metric. Addressing the vulnerability of these systems to adversarial
manipulation is therefore essential. Existing defenses are largely heuristic or pro-
vide certified robustness only under ℓp-norm constraints, which are incompatible
with time-series data. In particular, ℓp-norm fails to capture the intrinsic temporal
structure in time series, causing small temporal distortions to significantly alter the
ℓp-norm measures. Instead, the similarity metric Dynamic Time Warping (DTW) is
more suitable and widely adopted in the time-series domain, as DTW accounts for
temporal alignment and remains robust to temporal variations. To date, however,
there has been no certifiable robustness result in this metric that provides guarantees.
In this work, we introduce the first DTW-certified robust defense in time-series
anomaly detection by adapting the randomized smoothing paradigm. We develop
this certificate by bridging the ℓp-norm to DTW distance through a lower-bound
transformation. Extensive experiments across various datasets and models validate
the effectiveness and practicality of our theoretical approach. Results demon-
strate significantly improved performance, e.g., up to 18.7% in F1-score under
DTW-based adversarial attacks compared to traditional certified models.

1 Introduction

In recent years, significant research has advanced the study of adversarial attacks and certified
defenses for machine learning systems. Despite the considerable progress in adversarial robustness
across various domains [42, 2, 45, 9, 12, 3], robustness in time-series anomaly detection remains
comparatively underexplored. As a core component of many safety-critical systems—including
healthcare [25, 46, 21], finance [41, 22, 64], and mobile networks [56, 70, 35]— anomaly detectors
are essential for identifying abnormal behavior in preventing failures or hazards. Robustness in this
context is not merely a model performance concern but a core requirement for operational reliability.
Recent work has revealed that time-series anomaly detectors are susceptible to adversarial attacks
tailored to the characteristics of time-series data [6, 5], underscoring the urgent need for ensuring
robustness in this domain.

Adversaries can manipulate detection outcomes by introducing subtle yet strategically crafted per-
turbations into anomaly time-series data to evade detection [61, 29, 74, 69]. Traditional adversarial
threat models typically restrict perturbations to bounded ℓp-norms, widely effective in image [1, 31]
and text domains [63, 76, 57] due to the alignment with semantic preservation in such data types.
However, time-series data exhibit an inherent temporal structure that challenges the assumption of
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Figure 1: Comparison of standard, ℓp-norm-robust, and DTW-robust anomaly detectors under
adversarial perturbations. DTW facilitates optimal temporal alignment, offering a more meaningful
similarity measure for time-series data, thereby ensuring more comprehensive robustness guarantees
against adversarial examples.

ℓp-norms. As illustrated in Figure 1, small temporal transformations such as shifts or rescaling can
significantly inflate ℓp-norm distance (e.g., from 0.2 to 1.4), despite there being no change to the
underlying semantics (e.g., green and blue represent the identical time series). This mismatch renders
ℓp-norms inadequate for measuring meaningful similarity in time-series data, limiting their utility for
robustness measurement.

Addressing this limitation, we advocate for the use of Dynamic Time Warping (DTW) distance, a
commonly used similarity metric specifically designed for time-series data. As shown in the bottom
right of Figure 1, DTW accommodates temporal alignments, which effectively handles temporal
variations such as shifts, stretching, and compression. This alignment flexibility preserves structural
similarities better than ℓp-norms, consistently demonstrating superior performance for diverse time-
series tasks [24, 37, 19]. As a result, a DTW-robust detector exhibits stable distance measurements
under temporal variations (e.g., consistently 0.2 as in Figure 1), offering more reliable robustness
guarantees compared to ℓp-norm. The need for developing defenses under the DTW distance is
further emphasized by recent demonstrations of DTW-based adversarial attacks [6, 5], for which no
certified defenses currently exist.

In response to adversarial attacks, various defensive strategies have been proposed [38, 11, 20].
Although these empirical defenses provide some resilience, adaptive attackers can often bypass
them [10, 65, 75]. Certified defenses [32, 18, 55], in contrast, guarantee theoretical robustness
against worst-case adversarial scenarios, making them particularly appealing for safety-critical
applications. While significant progress has been made in certified robustness under ℓp-norm
constraints [32, 55, 18, 54, 33, 72], its adaptation to time-series data—under the proper DTW
constraints—remains unexplored.

In this paper, we propose the first DTW-certified robustness framework in time-series anomaly de-
tection by adapting the randomized smoothing approach [18]. Our approach establishes a novel
certification method by bridging ℓp-norm guarantees to the DTW distance through a lower-bound
transformation. By leveraging the Keogh Lower Bound [28], we are able to derive a closed-form
expression of the DTW-certified radius for a smoothed model. The resulting framework is model-
agnostic and readily applicable to any pre-trained anomaly detector. Extensive evaluations on
real-world datasets and a variety of detection architectures highlight the broad applicability and effec-
tiveness of our method, demonstrating clear advantages over traditional ℓp-norm-certified defenses,
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e.g., under DTW-based adversarial attacks, our method achieves up to an 18.7% improvement in
F1-score.

Our key contributions include:

• We introduce the first theoretical framework that provides certified robustness in DTW distance,
addressing an essential yet unexplored gap in time-series anomaly detection.

• We present a generalizable defense mechanism that seamlessly integrates DTW certification with
any anomaly detection models, significantly enhancing robustness in practice.

• We provide comprehensive experimental evaluations demonstrating the practical efficacy of our
DTW-certified robustness approach across diverse scenarios.

2 Related Work

Time-series Anomaly Detection Time-series data, consisting of data points sequentially indexed
over time, is prevalent across various domains. Detecting anomalies within time-series data is of
significant importance [40, 49, 16, 7, 25, 46, 21], as anomalies often indicate novel, unexpected, or
potentially critical events. Recent advances in deep learning have significantly improved detection by
enabling models to capture complex temporal and inter-metric dependencies. Modern deep anomaly
detectors [62, 13, 36] have shown strong performance across a range of time-series tasks. However,
they also share the same vulnerabilities to adversarial attacks as other machine learning models.

Adversarial Attacks Adversarial attacks refer to deliberate perturbations introduced into input data
to intentionally mislead machine learning models into making incorrect predictions. Typically, these
perturbations are minimal in terms of the ℓp-norm, ensuring the semantic consistency and being
imperceptible to humans. Such vulnerabilities have been widely demonstrated across various deep
learning models [1, 31, 63, 76, 57], including anomaly detection tasks [61, 29, 74, 69].

However, the ℓp-norm is inadequate for measuring differences in time-series data, as it fails to
account for the underlying temporal structure. Recent studies [6, 5] have addressed these issues
by adopting the DTW distance, a widely recognized measure suitable for time-series analysis, to
construct adversarial examples. These studies highlight that DTW-based adversarial attacks are more
effective, as the set of permissible perturbations under DTW forms a superset of those constrained
by an equivalent ℓp-norm. Additionally, they demonstrate that the defensive strategies designed to
counter ℓp-norm adversarial attacks exhibit limited effectiveness against DTW-based attacks [39],
highlighting the need for dedicated defenses under the DTW threat model.

Certified Robustness Prior defenses such as adversarial training [39], defensive distillation [44],
and data purification [66] offer empirical robustness, but are often circumvented by adaptive adver-
saries [10, 65, 75]. In contrast, certified defenses have gained significant attention for providing
formal, provable guarantees against all possible attacks within a perturbation bound [32, 18, 53]. In
the context of time-series anomaly detection, certified defenses against ℓp-norm attacks have been
initially considered in [23, 8], through direct application of randomized smoothing [18]. However, as
discussed, the resulting ℓp-norm certificate is inadequate for time-series data and remains vulnerable
to DTW-based attacks. Existing defences [6] against DTW-based attacks have been limited to empir-
ical without any certification. This work introduces the first certified defense against DTW-based
adversarial attacks.

3 DTW-Certified Defense in Time-Series Anomaly Detection

3.1 Problem Setup

Time-Series Anomaly Detector We define the space of time-series signals as X = RL×C , where L
represents the signal length and C denotes the number of channels. Following the common framework
for time-series anomaly detection [71, 67, 51], we consider a detector d : RT×C → Y = {0, 1}
that operates on a sliding window of size T ≤ L. Given an input sequence x ∈ RT×C , the detector
computes an anomaly score f(x) ∈ R, which quantifies the likelihood of x being an anomaly, and
makes the detection decision via comparing f(x) against the anomaly threshold γ:

d(x) =

{
1, f(x) > γ ,

0, f(x) ≤ γ ,
(1)
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where y = 1 indicates an anomalous instance, and y = 0 denotes a benign instance.

Distance Metrics The difference between two time-series x and x′ can be naively measured by the
ℓp-norm distance as

∥x− x′∥p =

(
T∑

i=1

|xi − x′
i|p
)1/p

, (2)

where xi, x
′
i represent the i-th element in x, x′. However, such a measurement fails to capture the

temporal structure of time-series data. Therefore, we consider the Dynamic Time Warping (DTW)
distance, which resolves the issues by finding the optimal temporal alignment that minimizes the
total distance between aligned time-series. Formally, the DTW distance of norm order p is defined as:

DTWp(x, x
′) = min

π∈A(x,x′)

 ∑
(i,j)∈π

|xi − x′
j |p
1/p

(3)

where π represents an alignment path of length T as a sequence of T index pairs
[(i1, j1), · · · , (iT , jT )] and A(x, x′) is the set of all admissible paths. An admissible path should
satisfy the following conditions: 1) Matched ends, as π1 = (1, 1) and πT = (T, T ), and 2) Monoton-
ically increasing and each time series index should appear at least once, as ik−1 ≤ ik ≤ ik−1 + 1
and jk−1 ≤ jk ≤ jk−1 + 1. We adopt p = 2 as the default norm for DTW in the main text for clarity
of exposition; however, the proposed approach generalizes readily to arbitrary norm orders p with
minimal modification as detailed in Appendix C.

Threat Model We assume a strong adversary with white-box access to the anomaly detector d,
meaning the attacker has full knowledge of the detector and unlimited computational power. Given
an input x classified by the detector as y = f(x), the attacker seeks an alternative input x′ to
perform either an evasion attack—suppressing the detection of an actual anomaly, or an availability
attack—inducing a false alarm on benign input, such that d(x′) ̸= d(x). To preserve the semantics
of the original anomaly x, the perturbation in x′ must be constrained within a DTW distance e as
DTW (x, x′) < e.

Certified Defense Goal The anomaly detector d is said to provide certified defense at input x of
DTW radius e, if there exist no x′ ∈ {x′ | DTW (x, x′) < e} such that d(x′) ̸= d(x) with probability
at least 1− α.

3.2 Theoretical Analysis of DTW-Certified Robustness

In this section, we first review the core components of our approach: the randomized smoothing
framework [18, 15] and the DTW lower bound [28]. We then present Lemma 3.2, which establishes
a formal link between ℓp-norm distances and the DTW lower bound. Building on this connection, we
introduce the main theoretical result Theorem 3.3, which derives a DTW robustness certificate from a
smoothed model via the Keogh Lower Bound.

ℓp-norm Certificate via Randomized Smoothing Randomized smoothing [17] constructs a
smoothed function by taking the Gaussian expectation of a base function f (we defer the details in
Appendix A). However, in time-series anomaly detection, the base function f(x)—which outputs
an anomaly score for a time series x—is typically unbounded and may exhibit high variance. As a
result, estimating the Gaussian mean can lead to loose and unreliable robustness bounds.

To address this, we adopt the percentile smoothing approach [14], which bounds the p-th percentiles
of the base function outputs instead of the mean. Such a smoothing method is more robust to
outliers and variance in the output distribution. We construct the smoothed anomaly score function
hp(x) : X → R of the anomaly score function f , as

hp(x) = sup{u ∈ R | Pη∼N(0,σ2I)[f(x+ η) ≤ u] ≤ p}. (4)
The hp does not admit a closed form, its value can be bounded by Monte Carlo sampling as outlined
in Section 3.3. With the percentile smoothed function, the anomaly score hp(x

′) of the adversarial
input x′ can be certifiably bounded by h(x), as
Lemma 3.1. A percentile smoothed function hp can be bounded as

hp(x) ≤ hp(x
′) ≤ hp(x) ∀x′ ∈ {x′ | ∥x− x′∥2 ≤ r}, (5)

where p = Φ(Φ−1(p)− r
σ ) and p = Φ(Φ−1(p) + r

σ ), with Φ being the standard Gaussian CDF.
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Lower Bound of DTW The exact computation of DTW is typically expensive and slow, i.e.,
quadratic time and space complexity. To address this, various lower bounds have been proposed to
approximate DTW efficiently. One of the widely used bounds is the Keogh Lower Bound [28, 47]
LB_Keogh(x, x′), which is calculated by defining two new time series, upper U and lower L
envelopes. For each time step i and channel k, the envelopes are defined as:

Ui,k = max(xi−w,k : xi+w,k)

Li,k = min(xi−w,k : xi+w,k)
(6)

where the w : 1 ≤ w ≤ T is the DTW wrapping window size (Sakoe–Chiba band) [52] that constrains
only xi and x′

j within the window can be aligned. The LB_Keogh(x, x′) is calculated as

LB_Keoghp(x, x
′) = p

√√√√√ T∑
i=1

N∑
k=1


(x′

i,k − Ui,k)
p if x′

i,k > Ui,k,

(x′
i,k − Li,k)

p if x′
i,k < Li,k,

0 otherwise.
(7)

In summary, the lower bound is calculated as the sum of ℓp-norm distances to the envelope of points
in x′ that are outside the envelope of x.

DTW-Certificate In the following, we present the theoretical foundation for deriving DTW-
certified robustness, offering a robustness measure that is better aligned with the temporal nature of
time-series data. By leveraging the percentile-smoothed function and the DTW lower bound, we
introduce a lemma that establishes a connection between the ℓp-norm certificate and a robustness
certificate in DTW distance through a lower-bound transformation.
Lemma 3.2. Suppose the certification of a smoothed function h holds for data x as a ≤ h(x′) ≤
b,∀x′ ∈ {x′ | ∥x′ − x∥ ≤ r}. Then, the certification a ≤ h(x′) ≤ b,∀x′ ∈ {x′ | DTW(x, x′) ≤ e}
also holds, where LB(x, x′) is a strict lower bound of DTW(x, x′) and

e = inf{LB(x, x′) | ∥x− x′∥ > r}. (8)

Proof. Assume for the sake of contradiction that the chosen x′ does not lie in the l2-ball. Then we
have ∥x′ − x∥ > r. Since x′ is outside the ball, by the definition of e we know that LB(x, x′) ≥ e.
This contradicts LB(x, x′) < DTW (x, x′) ≤ e by the definition of the set {x′ | DTW(x, x′) ≤ e}
and LB is a strict lower bound of DTW . Thus, we conclude that any point x′ with DTW (x, x′) ≤ e
must satisfy ∥x′ − x∥ ≤ r, where the certification holds.

Building upon Lemma 3.2, we present the theorem that establishes DTW-certified robustness for
the smoothed function. Formally, we define the anomaly score function f : X → R of a time-
series anomaly detector d : X → Y , and construct a percentile smoothed version of f , denoted as
hp : X → R, which serves as the new anomaly score function of d. The DTW-certified robustness of
d can then be derived through the following theorem.
Theorem 3.3 (Robustness Certification for Time-series Anomaly Detection). Let f : X → R be
any deterministic or random function, and η ∼ N (0, σ2I). Let the percentile smoothed function
hp : X → R be defined as in Equation (4). Suppose the anomaly score threshold is γ, and the
following is satisfied for a testing input x{

hp(x) > γ, if hp(x) > γ ,

hp(x) ≤ γ, if hp(x) ≤ γ .
(9)

Then d(x′) = d(x) is guaranteed to hold for all {x′ : DTW (x, x′) ≤ e}, where

e =

{
0, if r ≤ R,
√
M2 + r2 −R2 − M, if r > R,

(10)

with

∆i = max
(
Ui − xi, xi − Li

)
, R =

√√√√ n∑
i=1

∥∆i∥2, M = max
1≤i≤n

||∆i||,

r =

{
σ
(
Φ−1(p)− Φ−1(p)

)
, if hp(x) > γ ,

σ
(
Φ−1(p)− Φ−1(p)

)
, if hp(x) ≤ γ .
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Figure 2: Construct any anomaly detector with anomaly score function f as a DTW-certified detector.

where U and L are envelopes in the Keogh Lower Bound with wrapping window size w as specified
in Equation (6).

Proof. We provide a sketch of the proof below due to space constraints, and the complete proof is
available in Appendix B.

We begin by showing that d(x′) = d(x) holds for all x′ satisfying ∥x− x′∥ ≤ r using Lemma 3.1.
The radius r can be solved as r = σ

(
Φ−1(p) − Φ−1(p)

)
or r = σ

(
Φ−1(p) − Φ−1(p)

)
depending

on the classification outcome. Next, we invoke Lemma 3.2 to translate the certificate from ℓp-norm
r to DTW distance e, defined as e = inf{LB(x, x′) | ∥x − x′∥ > r}, where LB(x, x′) is a strict
lower bound of the DTW distance. In the final step, we instantiate LB(x, x′) with the Keogh Lower
Bound, which satisfies the strictness condition for all w > 0 and x′ ̸= x, and derive the corresponding
expression for e by exploiting the structural properties of the upper and lower envelopes U and L.

3.3 DTW-Certified Defense Implementation

Construct smoothed detector Given an anomaly detector with an anomaly score function f ,
we construct the percentile-smoothed anomaly score function hp by the definition of Equation (4)
following the process as shown in Figure 2. Specifically, the smoothed function is composed as
hp = j ◦ k ◦ f , where the smoothing noise η ∼ N (0, σ2I) injection layer j generates multiple
Gaussian-perturbed inputs x+ η from the original time-series x, and the denoising layer k reduces
noise variance to improve score concentration. This denoising process does not compromise the
certification guarantee, as randomized smoothing is valid for any downstream pipeline [54]. For each
testing input x, the DTW-certified anomaly detector outputs a binary decision based on anomaly score
hp(x) and computes the corresponding certified DTW radius e by the Theorem 3.3. This method does
not require modifications to the training process and can be readily applied to pre-trained models.

Bound hp(x) and hp(x) We utilize Monte-Carlo sampling to estimate and bound the upper and lower
percentiles hp(x) and hp(x), following a similar approach as in [18, 15]. Given n i.i.d. Gaussian
noise samples {µ1, · · · , µn}, we compute anomaly scores Xi = f(x+ µi) and sort them to obtain
the empirical order statistics −∞ = K0 ≤ K1, · · · ≤ Kn ≤ Kn+1 = ∞. We aim to identify Kqu

and Kql such that Pr[Kqu > hp(x)] > 1− α and Pr[Kql < hp(x)] > 1− α for a confidence level
of 1− α (we set α = 1e−3 in the experiments). The corresponding probabilities are evaluated using
the binomial distribution as

Pr[Kqu > hp(x)] =

j=qu∑
i=1

(
n

i

)
(p̄)

i
(1− p̄)

n−i . (11)

A similar formula applies for the lower bound. We use binary search to identify the smallest qu and
largest ql that satisfy the required confidence bounds. In general, increasing the number of samples
improves the estimation accuracy of the certified radius, and greater consensus aggregated predictions
indicate a stronger certification.

4 Experiments

In our experiments, we evaluate the general applicability of the DTW-certified defense across a
range of anomaly detection models and time-series datasets. We demonstrate improved robustness
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compared to ℓp-norm certified defenses and provide ablation studies to analyze the trade-off between
detection performance and certified robustness.

Settings Our empirical evaluation of the DTW-certified defense spans seven widely used benchmark
datasets, including SMAP [48], MSL [27], SML [60], NIPS-TS-SWAN, NIPS-TS-CREDITCARD,
NIPS-TS-WATER [30], UCR-1 ane UCR-2 [68], encompassing both univariate and multivariate
time-series data. Detailed descriptions and dataset statistics are provided in Appendix D. To ensure
broad applicability, we evaluate our approach using three state-of-the-art anomaly detection models:
COUTA [71], TimesNet [67], and DeepSVDDTS [51]. The effectiveness is further validated through
comparison with ℓp-norm certified defense [18] under DTW-based adversarial attack [6].

We use the following default hyperparameters across all experiments unless otherwise specified:
sequence length T = 50, DTW wrapping window size w = 4, number of noisy samples n = 1, 000,
smoothing noise level σ = 0.5 in N (0, σ2I), and percentile p = 0.5 in the percentile-smoothed
function hp. Additional ablation studies on the hyperparameters are available in Appendix F.

All experiments are implemented using PyTorch and executed on a Linux server equipped with
Intel(R) Xeon(R) Gold 6326 CPUs and NVIDIA A100 GPUs with 80 GB of memory.

Evaluation Metrics For evaluating the detection performance, we report the point-adjusted F1-
score and Area Under the Receiver Operating Characteristic Curve (ROC AUC) following the
common practice in the domain of time-series anomaly detection [4, 50, 58, 59, 34, 71, 51, 67].

To evaluate certified robustness, we report the mean, maximum, and standard deviation (std.) of
the certified radii computed for all test instances. Additionally, we report the certified proportion
(prop.), defined as the fraction of test inputs with a non-zero certified radius e.

Following the notion of certified accuracy from the certified robustness literature [32, 18, 53],
which is defined as the proportion of instances for which the model guarantees correct predictions
within a specified attack budget as radius t. We extend this evaluation to the confusion matrix
components by considering worst-case adversarial scenarios. Specifically, for evasion attacks, we
define Certified True Positives (TP) as the count of true positive instances for which the model is
provably robust within a DTW radius of t as

∑N
i=1

I {∀x′ : DTW (xi, x
′) ≤ t : f(x′) = 1, yi = 1}.

Similarly, for availability attacks, we define the Certified True Negatives (TN) as the number of
benign instances that remain correctly classified under all perturbations within the DTW radius t as∑N

i=1
I {∀x′ : DTW (xi, x

′) ≤ t : f(x′) = 0, yi = 0}. We construct the corresponding certified
confusion matrix as detailed in Appendix E, and derive the certified metrics, certified accuracy and
certified F1-score that represent the guaranteed performance under bounded attack.

4.1 Results

The DTW-certified defense is broadly applicable, though the certified robustness performance
varies across datasets and models. We evaluate the applicability of our DTW-certified defense
across benchmark datasets and anomaly detection models. As shown in Table 1, our approach
generally achieves strong certified robustness with minimal trade-offs in detection performance. For
instance, on the NIPS-TS-WATER using DeepSVDDTS, our method certifies 99.46% of test inputs
with an average certified robust DTW-radius of 0.189, without any degradation in F1-score and ROC
AUC. Additionally, DeepSVDDTS often achieves the strongest performance, which we attribute to
its superior handling of noisy data. However, we observe weaker robustness on certain datasets, such
as SMAP and NIPS-TS-SWAN, due to their high channel dimensionality and greater data variance,
which reduces the tightness of the lower-bound estimation and thus limits certifiable robustness.

Figure 3 presents the certified F1-score and certified accuracy of the COUTA model on the MSL and
SMAP datasets under evasion and availability attacks. The x-axis denotes the attack budget radius t,
while the y-axis shows the corresponding certified metrics. These curves represent lower bounds on
model performance under the worst-case adversarial perturbations constrained by DTW (x, x′) ≤ t,
as guaranteed by our DTW-certified defense. With appropriately chosen hyperparameters (e.g.,
σ = 1.0), the defense exhibits strong certified robustness. For instance, on the SMAP dataset, it
maintains a certified F1-score of approximately 0.5 under an evasion attack with a budget of t = 0.2.

Improved performance over ℓp-norm certified defense. Table 2 evaluates the effectiveness of our
DTW-certified defense under strong DTW-based adversarial attacks [6]. The adversary is granted a

7



(a) Certified metrics evaluated on the MSL dataset. (b) Certified metrics evaluated on the SMAP dataset.

Figure 3: Certified accuracy and certified F1-score as functions of the DTW perturbation threshold
t ∈ [0.0, 0.5] under evasion or availability attack. Results are reported for the COUTA model on the
MSL (a) and SMAP (b) datasets across varying values of the hyperparameter σ.

Dataset Model
Base Model DTW-Certified Defense Model

Detection Performance Detection Performance Certified Robustness (Radii Statistics)
F1-score ROC AUC F1-score ROC AUC Radii Mean Radii Max Radii Std. Certified Prop.

SMAP
COUTA 0.794 0.958 0.961 0.998 0.037 0.816 0.043 51.06%

TimesNet 0.783 0.929 0.910 0.992 0.039 1.001 0.044 51.03%
DeepSVDDTS 0.694 0.861 0.719 0.964 0.052 0.626 0.055 53.55%

SMD
COUTA 0.675 0.956 0.624 0.966 0.083 0.386 0.060 77.99%

TimesNet 0.827 0.995 0.755 0.964 0.032 0.267 0.036 56.69%
DeepSVDDTS 0.725 0.958 0.733 0.957 0.255 2.318 0.150 93.94%

MSL
COUTA 0.911 0.993 0.706 0.966 0.057 0.534 0.062 55.92%

TimesNet 0.744 0.956 0.910 0.993 0.056 0.262 0.056 62.18%
DeepSVDDTS 0.825 0.973 0.816 0.979 0.123 2.347 0.139 73.89%

NIPS-TS-SWAN
COUTA 0.780 0.788 0.738 0.710 0.022 0.574 0.064 14.52%

TimesNet 0.770 0.906 0.773 0.866 0.013 0.451 0.080 10.56%
DeepSVDDTS 0.740 0.827 0.744 0.830 0.227 2.242 0.196 71.05%

NIPS-TS-CREDITCARD
COUTA 0.192 0.900 0.003 0.300 0.232 0.450 0.046 99.86%

TimesNet 0.422 0.942 0.450 0.846 0.028 0.262 0.035 51.75%
DeepSVDDTS 0.132 0.772 0.119 0.719 0.105 0.817 0.056 91.55%

NIPS-TS-WATER
COUTA 0.515 0.537 0.598 0.989 0.070 0.359 0.034 95.18%

TimesNet 0.778 0.997 0.550 0.974 0.120 0.279 0.032 99.07%
DeepSVDDTS 0.512 0.764 0.513 0.907 0.189 0.540 0.039 99.46%

UCR-1
COUTA 0.672 0.986 0.949 0.999 0.177 0.413 0.124 69.43%

TimesNet 0.886 0.996 0.845 0.995 0.011 0.207 0.024 25.30%
DeepSVDDTS 0.813 0.994 0.984 1.000 0.351 0.758 0.220 74.89%

UCR-2
COUTA 0.886 0.998 0.842 0.939 0.022 0.190 0.033 38.84%

TimesNet 0.984 1.000 0.982 1.000 0.036 0.256 0.042 52.15%
DeepSVDDTS 0.118 0.900 0.306 0.970 0.033 0.218 0.043 46.02%

Table 1: Detection performance and certified robustness of the DTW-certified defense across various
datasets and models with hyperparameter σ = 0.5. The results show minimal degradation in detection
performance while consistently achieving meaningful DTW-certified robustness.

generous attack budget of eatt = 1.0, which exceeds the average certified radius of 0.5 measured by
both ℓp-norm and proposed DTW-certified defenses across datasets for model COUTA. As shown in
Table 2, the DTW-based adversarial attack is highly effective against undefended models, causing
significant drops in F1-score and ROC AUC (e.g., a 60.6% drop in F1-score on SMD and 89.7% on
UCR-1). While the ℓp-norm certified defense offers partial resilience, it fails to provide consistent
protection, especially on datasets with strong temporal distortions under attacks (e.g., SMD and
NIPS-TS-WATER). In contrast, our DTW-certified defense consistently outperforms both baselines
under attack, yielding substantially higher F1-scores and AUCs. For example, on MSL and UCR-1,
our method improves the F1-score under attack by 11.2% and 18.7%, respectively, compared to the
ℓp-norm certified defense. These results affirm that robustness guarantees aligned with DTW—rather
than ℓp-norm—are essential for effective defense in time-series anomaly detection.

Trade-off between detection performance and certified robustness. We investigate the trade-off
between detection performance and certified robustness by varying the hyperparameter σ, which

8



Dataset
Unattacked Under DTW-based Adversarial Attack with Attack Budget DTW eatt = 1.0

Base Model Undefended Base Model ℓp-norm Certified Defense DTW-Certified Defense
F1-score ROC AUC F1-score ROC AUC F1-score ROC AUC F1-score ROC AUC

MSL 0.896 0.992 0.694 0.938 0.672 0.943 0.784 0.966
SMD 0.575 0.938 0.253 0.698 0.392 0.741 0.464 0.838

NIPS-TS-WATER 0.516 0.689 0.240 0.665 0.423 0.797 0.525 0.927
UCR-1 0.682 0.987 0.084 0.846 0.761 0.893 0.948 0.998

Table 2: Detection performance under DTW-based adversarial attacks, evaluated using the COUTA
model across multiple datasets. Comparisons are made among the undefended base model, the
ℓp-norm certified defense, and the proposed DTW-certified defense.

Dataset σ
DTW-Certified Defense

Detection Performance Certified Robustness (Radii Statistics)
F1-score ROC AUC Radii Mean Radii Max Radii Std. Certified Prop.

SMAP

0.1 0.956 0.997 0.007 0.320 0.010 41.13%
0.5 0.961 0.998 0.037 0.816 0.043 51.06%
1.0 0.961 0.998 0.080 1.051 0.082 58.02%
2.0 0.913 0.958 0.202 1.571 0.165 72.24%

SMD

0.1 0.504 0.881 0.025 0.190 0.028 52.42%
0.5 0.624 0.966 0.083 0.386 0.060 77.99%
1.0 0.673 0.977 0.121 0.511 0.084 83.28%
2.0 0.315 0.822 0.456 1.969 0.285 94.66%

MSL

0.1 0.841 0.982 0.003 0.426 0.020 11.13%
0.5 0.706 0.966 0.057 0.534 0.062 55.92%
1.0 0.830 0.984 0.108 0.457 0.098 68.27%
2.0 0.739 0.914 0.294 1.457 0.196 87.72%

NIPS-TS-WATER

0.1 0.515 0.775 0.192 0.473 0.038 99.42%
0.5 0.598 0.989 0.070 0.359 0.034 95.18%
1.0 0.555 0.986 0.161 0.430 0.061 98.79%
2.0 0.462 0.983 0.261 0.711 0.114 98.54%

UCR-1

0.1 0.871 0.996 0.023 0.112 0.027 50.63%
0.5 0.949 0.999 0.177 0.413 0.124 69.43%
1.0 0.919 0.984 0.309 0.692 0.196 75.36%
2.0 0.821 0.973 0.541 1.209 0.300 82.67%

Table 3: Detection performance and certified robustness results evaluated under varying σ =
{0.1, 0.5, 1.0, 2.0} using COUTA. Higher σ generally yield improved certified robustness (Mean,
Max, Prop.), but could at the expense of reduced detection performance (F1-socre, ROC AUC).

controls the magnitude of Gaussian noise N (0, σ2I) used in the smoothing process. Notably, under a
moderate setting (σ = 0.5), many configurations exhibit improved detection performance compared
to the base model, as shown in datasets SMAP and UCR-1 in Table 1. This observation is consistent
with prior work [18, 73, 43, 26], where smoothing is shown to enhance generalization by stabilizing
decision boundaries. As illustrated in Table 3, increasing σ generally improves certified robustness,
as reflected in larger average certified radii and a higher proportion of certified inputs. However,
overly large values (e.g., σ = 2.0) often degrade detection performance, including both F1-score
and ROC AUC. Therefore, the choice of σ should be tuned carefully, considering both the model
architecture and dataset characteristics.

5 Conclusion and Limitations

We present the first certified defense for time-series anomaly detection under the Dynamic Time
Warping (DTW) distance—a metric well-suited for capturing temporal structure in time-series data.
By adapting randomized smoothing and leveraging the Keogh lower bound, we derive a DTW-
certified radius that provides formal robustness guarantees. This method is model-agnostic across
diverse datasets and architectures. Empirical results demonstrate that it consistently delivers strong
DTW-certified robustness while maintaining strong detection performance.

The Monte Carlo sampling process introduces testing-time overhead, which future work may address
by exploring more efficient sampling strategies or adaptive noise injection methods. Additionally,
tightening the DTW relaxation by incorporating more precise lower bounds could lead to stronger
robustness guarantees. Finally, extending the proposed framework to broader time-series tasks, such
as classification, presents a promising direction for future research.
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(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code and environment file are provided in the supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: he training and testing details are provided in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The statistical significance of the experiments are discussed in Section 4
Evaluation Metrics.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computational resources used for the experiments are specified in Section 4
Settings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research was conducted in accordance with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The broader impacts are discussed Appendix G.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release new data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The data and models used in the paper are properly cited as detailed in
Section 4.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

20

paperswithcode.com/datasets


• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Randomized Smoothing Details

Randomized smoothing [17] was originally proposed and widely applied in classification tasks by
constructing the smoothed function g(x) that takes the Gaussian means of the base function f as

g(x) = Eη∼N(0,σ2I)[f(x+ η)] . (12)

Lemma A.1. Given a bounding output range as f : X → [l, u], the upper and lower bounds on the
output of the Gaussian smoothed function g(x′) can be shown as [14]

l + (u− l) · Φ
(
k(x)− ∥x− x′∥2

σ

)
≤ g

(
x′) ≤ l + (u− l) · Φ

(
k(x) + ∥x− x′∥2

σ

)
, (13)

where k(x) = σ · Φ−1( g(x)−l
u−l ) and Φ denote the cumulative distribution function (CDF) of the

standard Gaussian distribution.

In the context of classification, g(x) is interpreted as the bounded probability score in range [0, 1] for
each label, e.g., the softmax score, and a certificate can be obtained by bounding the gap between the
highest and second-highest scores.

B Proof of Theorem 3.3

Here we provided the complete proof of the Theorem 3.3.

Proof. First, we prove that d(x′) = d(x) holds for all x′ satisfying ∥x − x′∥ ≤ r. In the case
of d(x) = 1, i.e., hp(x) > γ, we prove that all x′ satisfies hp(x

′) > γ. Given the inequality
hp(x) < hp(x

′) for all ∥x − x′∥2 < r, as established in Lemma 3.1, it follows that if hp(x) > γ,
then γ < hp(x) < hp(x

′), which ensures that hp(x
′) > γ. In the case of d(x) = 0, the proof follows

by a similar argument. The radius r can be solved by the definitions of p = Φ(Φ−1(p) − r
σ ) and

p = Φ(Φ−1(p) + r
σ ) as given in Lemma 3.1.

By Lemma 3.2, such certification can be transited to {x′ | DTW (x, x′) ≤ e} by solving the
e = inf{LB(x, x′) | ∥x− x′∥ > r} with a proper choice of the lower bound LB(x, x′).

We consider the Keogh Lower Bound [28] LB_Keogh(x, x′), which is a strict lower bound of
DTW for any w > 0 and x′ ̸= x. The LB_Keogh(x, x′) is calculated as the sum of deviation of
x′ outside the envelope of x. For each time step i we define the slack (allowable deviation) without
incurring any penalty in LB_Keogh(x, x′) by ∆i = max

(
Ui − xi, xi − Li

)
and the sum of all

time steps as R =
√∑n

i=1 ∆
2
i . Thus, if x′ could “hide" all the norm deviation r within the slacks

for all time steps as r ≤ R, the LB_Keogh(x, x′) = 0. Hence, in that case, e = 0.

Then consider the case when r > R, which means any x′ with ∥x − x′∥ > r must have at least
one coordinate outside the envelope. Since we are solving for the infimum, the smallest possible
LB_Keogh(x, x′) is when ∥x−x′∥ = r and the x′ use up the available slack ∆i in every coordinate
except one i∗ where the slack ∆i∗ is largest. Then, such a worst-case x′ is defined as

x′
i =

{
xi +∆i, if i ̸= i∗,

xi∗ +∆i∗ + d, if i = i∗.
(14)

with d as the part outside the envelops and ∥x− x′∥ = r. In that case

r2 = ∥x− x′∥2 =
∑
i ̸=i∗

∥∆i∥2 + ∥∆i∗ + d∥2 =

(
n∑

i=1

∆2
i

)
+ 2 dT ∆i∗ + ∥d∥2 (15)

Note that the LB_Keogh(x, x′) is calculated as the sum of deviations outside the envelope. Thus,
the infimum e when r > R can be obtained by solving ∥d∥. To yield the extreme value of ∥d∥, d and
∆i∗ should be collinear and can be written as d = λ∆i∗ . With the substitution, the equation becomes

(λ2 + 2λ)M2 +R2 = r2 . (16)
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Solve for the λ, we have

λ = −1±
√
1 +

r2 −R2

M2
. (17)

Therefore, the infimum value of ∥d∥ is

||d|| =
√

M2 + r2 −R2 − M = e . (18)

C Extension to ℓp Norm

Generalization of Randomized Smoothing to Arbitrary Norms Our certified robustness analysis
in the main text is built upon randomized smoothing under the ℓ2 norm using Gaussian noise. The
framework naturally extends to arbitrary ℓp norms by replacing the isotropic Gaussian distribution
with a noise distribution that is radially symmetric with respect to the chosen norm [72]. Let ∥ · ∥p
denote the base norm and ∥ · ∥q its dual norm, where 1

p + 1
q = 1. We consider a noise vector η

drawn from a distribution that is spherically symmetric with respect to ∥ · ∥p, such that the density
of η depends only on ∥η∥p/s, where s is a scale parameter. Typical choices include: ℓ2 with
Gaussian noise η ∼N (0, σ2I); ℓ1 with Laplace noise ηi ∼ Laplace(0, b) i.i.d.; ℓ∞ with Uniform
noise ηi∼Unif[−τ, τ ] i.i.d. General ℓp can use generalized Gaussian noise with density proportional
to exp(−∥η∥αp /λα) for α = p.

Quantile Stability under ℓp Perturbations Let f denote the base anomaly scoring function and
hp(x) the p-th percentile of f(x+ η) under the smoothing noise distribution. For any r ≥ 0, define
F as the cumulative distribution function of ⟨u, η⟩ for any unit vector u with ∥u∥q = 1. Then, the
following holds for all ∥x′ − x∥p ≤ r:

hF (F−1(p)−r/s)(x
′) ≤ hp(x) ≤ hF (F−1(p)+r/s)(x

′). (19)

Equation (19) generalizes the Gaussian case by replacing the standard normal CDF Φ with the 1-D
marginal F of the chosen noise distribution, and the Gaussian scale σ with the corresponding scale
parameter s. This yields a certified radius in ℓp norm space.

DTW Certification via ℓp Lower Bounds The DTW-based certification derived in Lemma 3.2
remains valid once ℓ2 is replaced by ℓp. Specifically, let LBKeogh,p(x, x

′) denote a strict lower bound
of DTWp(x, x

′). For any perturbation ∥x′ − x∥p ≤ r, the certified DTW radius is

ep = inf
{
LBKeogh,p(x, x

′) : ∥x′ − x∥p > r
}
. (20)

A practical closed-form lower bound can be obtained via

ep ≥
(
rp −Rp

in,p

)1/p
+

, (21)

where Rin,p is the largest ℓp ball centered at x fully contained within the envelope [L,U ] used in
the LBKeogh,p construction. This provides a conservative yet efficient computation of certified DTW
radius for arbitrary norms.

This extension preserves the overall structure of the certification pipeline:

1. Replace Gaussian noise with a norm-symmetric distribution;
2. Replace the Gaussian CDF Φ by the 1-D marginal CDF F of that noise;
3. Compute the ℓp certified radius r via (19);
4. Translate the ℓp certificate into DTW certificate ep using (20).

This demonstrates that the proposed percentile-based randomized smoothing framework is inherently
norm-agnostic, supporting robustness certification under any ℓp metric and its induced DTW variants.

D Dataset Details

• The Soil Moisture Active Passive (SMAP) dataset [48] contains soil moisture and telemetry
measurements collected by NASA’s Mars rover.
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Datasets Channels Training Timesteps Testing Timesteps Testing Anomalies Ratio %
SMAP 25 135,183 427,617 13.13%
MSL 55 58,317 73,729 10.72%
SMD 25 708,405 708,420 4.16%
NIPS-TS-SWAN 38 60,000 60,000 32.60%
NIPS-TS-CREDITCARD 29 284,807 284,807 0.17%
NIPS-TS-WATER 9 69,260 69,260 1.05%
UCR-1 1 35,000 44,795 1.38%
UCR-2 1 35,000 45,000 0.67%

Table 4: Statistics of the benchmark datasets for time-series anomaly detection.

• The Mars Science Laboratory (MSL) dataset [27] includes comprehensive sensor and actuator data
directly obtained from the Mars rover.

• The Server Machine Dataset (SMD)[60] offers stacked resource utilization data from 28 machines
within a compute cluster, collected over a five-week duration.

• The NIPS-TS benchmark suite[30] and the UCR collection [68], which provide standardized
datasets widely employed in time-series anomaly detection.

E Certified Confusion Matrix

Predicted Positive Predicted Negative

Positive Certified TP(t) =
∑N

i=1
I {∀x′ : DTW (xi, x

′) ≤ t : f(x′) = 1, yi = 1}
∑N

i=1
I {yi = 1} − Certified TP(t)

Negative FP TN

Table 5: Certified Confusion Matrix for evasion attacks.

Predicted Positive Predicted Negative

Positive TP FN
Negative

∑N
i=1

I {yi = 0} − Certified TN(t) Certified TN(t) =
∑N

i=1
I {∀x′ : DTW (xi, x

′) ≤ t : f(x′) = 0, yi = 0}

Table 6: Certified Confusion Matrix for availability attacks.

Certified accuracy is a metric widely used in certified robust machine learning, measuring the fraction
of examples for which a model can provably maintain correct predictions under specific perturbations.
For a certified radius e, it is defined as

Certified Accuracy(e) =
1

N

N∑
i=1

I {∀x′ with DTW (xi, x
′) ≤ e : f(x′) = yi} (22)

Following the definition of certified accuracy, we construct the certified confusion matrix as described
in Section 4. Given the certified confusion matrix, the certified accuracy is computed as the proportion
of instances for which the model guarantees correct predictions within a perturbation threshold. It is
defined as:

Certified Accuracy =
Certified TP + Certified TN

N
, (23)

where N is the total number of test instances.

Similarly, the certified F1-score, which balances precision and recall under certification constraints,
is calculated as:

Certified F1 =
2 · Certified Precision · Certified Recall
Certified Precision + Certified Recall

, (24)

where

Certified Precision =
Certified TP

Certified TP + FP
, (25)

Certified Recall =
Certified TP

Certified TP + FN
. (26)
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Here, FP and FN refer to false positives and false negatives, respectively, counted as the remaining
instances not included in the certified true predictions. These metrics provide a conservative evaluation
of model robustness under worst-case adversarial perturbations.

F Additional Experiment Results

Seq. Length T Window Size w
Standard DTW-Certified Defense

F1-score ROC AUC F1-score ROC AUC Radii Mean Radii Max Radii Std. Certified Prop.

10
2

0.571 0.856 0.671 0.943
0.088 0.337 0.053 94.40%

4 0.085 0.333 0.053 92.59%
10 0.083 0.326 0.054 91.01%

50
2

0.675 0.956 0.624 0.966
0.090 0.401 0.058 82.75%

4 0.083 0.386 0.060 77.99%
10 0.074 0.374 0.061 71.05%

100
2

0.656 0.929 0.447 0.878
0.131 0.699 0.104 79.69%

4 0.119 0.678 0.107 71.54%
10 0.107 0.635 0.107 63.30%

200
2

0.681 0.963 0.440 0.880
0.057 0.392 0.076 48.50%

4 0.050 0.391 0.074 41.05%
10 0.041 0.389 0.070 33.33%

Table 7: Empirical and certified robustness results for the SMD dataset using the COUTA model with
σ = 0.5, evaluated under varying sequence length T and DTW wrapping window size w.

Table 7 presents an ablation study on the impact of sequence length T and DTW wrapping window
size w on both detection performance and certified robustness. The results indicate a trade-off
between these parameters and robustness guarantees. Increasing the sequence length generally
enhances detection performance (F1-score and ROC AUC) by incorporating more temporal context
for anomaly detection. However, this comes at the cost of reduced certified radius, as the higher
dimensionality magnifies the impact of injected noise. Similarly, increasing the wrapping window w
allows greater temporal flexibility in DTW alignment but leads to looser Keogh lower bounds and
higher slack (as defined by the value R in Theorem 3.3), thereby weakening the robustness guarantee.

G Border Impact

Time-series anomaly detection plays a crucial role in many safety-critical domains, including health-
care monitoring, financial fraud detection, industrial control systems, and mobile communication
networks. In such applications, robustness to adversarial manipulation is not only a matter of perfor-
mance but also of safety, reliability, and trust. This work contributes to the broader goal of deploying
machine learning systems that are resilient to worst-case perturbations in time-series data, particularly
those involving temporal distortions.

Our proposed DTW-certified defense offers a principled approach to formally quantifying and
improving the robustness of anomaly detection systems under realistic threat models. By aligning the
certification metric with the temporal structure of time-series data, we aim to enable more reliable AI
systems in high-stakes environments. However, we acknowledge that any advancement in robustness
may also encourage the development of stronger adversarial strategies. As such, we encourage
responsible deployment and continuous evaluation of these defenses in real-world conditions.

This work is primarily beneficial to organizations seeking reliable time-series analytics in critical
domains. It does not disproportionately disadvantage any particular group. Nonetheless, as with
any security-related research, care should be taken to ensure that the methodology is not misused to
benchmark or strengthen attack strategies without accompanying safeguards.
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