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ABSTRACT

A generative latent variable model is said to be disentangled, when varying a single
latent co-ordinate changes a single aspect of samples generated, e.g. object position
or facial expression in an image. Related phenomena are seen in several generative
paradigms, including state-of-the-art diffusion models, but disentanglement is most
notably observed in Variational Autoencoders (VAEs), where oft-used diagonal
posterior covariances are argued to be the cause. We make this picture precise.
From a known exact link between optimal Gaussian posteriors and decoder deriva-
tives, we show how diagonal posteriors “lock™ a decoder’s local axes so that density
over the data manifold factorises along independent one-dimensional seams that
map to axis-aligned directions in latent space. This gives a clear definition of
disentanglement, explains why it emerges in VAEs and shows that, under stated
assumptions, ground truth factors are identifiable even with a symmetric prior.

1 INTRODUCTION

Variational Autoencoders (VAEs, Kingma & Welling| 2014} [Rezende et al., [2014) and variants,
such as 5-VAE (Higgins et al.,[2017) and FactorVAE (Kim & Mnih, 2018)), are often observed to
disentangle the data, whereby changing an individual co-ordinate in latent space causes generated
samples to vary in a single semantically meaningful way, such as the hair colour or facial expression
in an image. This phenomenon is both of practical use, e.g. for controlled data generation, and
intriguing as it is not knowingly designed into a VAE’s training algorithm. Related phenomena are
observed in samples of Generative Adversarial Networks (GANs) (Goodfellow et al. [2014) and
diffusion models (Rombach et al., [2022; |[Pandey et al., [2022} [Zhang et al., [2022}; |Yang et al., 2023).

While disentanglement lacks a formal definition, it commonly refers to identifying generative factors
of the data (Bengio et al.,|2013). Thus a better understanding of disentanglement, and how it arises
“for free” in a VAE, seems relevant to many areas of machine learning, its interpretability and our
understanding of the data; and may enable us to induce disentanglement reliably in domains where it
cannot be readily perceived, e.g. gene sequence or protein modelling. We focus on disentanglement
in VAEs, where it is well observed (Higgins et al.,|2017; |Burgess et al., 2018), with the expectation
that a clearer understanding of it there, more as a property of the data than the model, may extend to
other settings, such as state of the art diffusion models.

The cause of disentanglement in VAEs has been traced to diagonal posterior covariance matrices
(Rolinek et al.l|2019; [Kumar & Poole} 2020), a standard choice for computational efficiency. Approx-
imate relationships suggest that diagonal covariances promote orthogonality between columns in a
VAE decoder’s Jacobian, a property empirically associated with disentangled features (Ramesh et al.}
2018}, |Gresele et al., 2021). Taking inspiration from this, we develop a full theoretical explanation of
disentanglement and how it arises in (3-)VAEs. Specifically, we:

 formally define disentanglement as factorising the density over a manifold into independent 1-D
seam factors, each the push-forward of the density over an axis-aligned latent path (O] Fig. [I));

* show that 3 of a 5-VAE (Higgins et al.l|2017) effectively controls the model variance Var|z|z],
which explains why it is found to enhance disentanglement and mitigate “posterior collapse” (§B));

* identify constraints that are necessary and sufficient for disentanglement, and show that diagonal
posterior covariances induce them, in aggregate and in expectation (§§); and

* prove that if a data distribution has ground truth independent factors, those factors can be identified
by a Gaussian VAE, resolving the “unidentifiability” in non-linear ICA with Gaussian priors (§6).
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Figure 1: Disentanglement: full vs diagonal posteriors (X.,). Right singular vectors v € Z (blue)
of the decoder’s Jacobian define singular vector paths (dashed blue); left singular vectors u’ define
seams (dashed red). 1-D densities over seams factorise the manifold density. (left) with full posteriors,
s.v. paths are not axis-aligned; the axis-traversal image in X’ (green) does not follow the seam. (right)
under C1-C2 induced by diagonal posteriors, s.v. paths axis-align and the traversal image follows the
seam everywhere, and 1-D densities over seams are independent, achieving disentanglement (qﬂ).

2 BACKGROUND

Notation: Let € X =R™, z€ Z = R? denote data and latent variables (d <m). For continuous
g: Z — X differentiable at z, let J, denote its Jacobian evaluated at z ([Jz]ij = g—ﬁj) with singular
value decomposition (SVD) J, =U,S.V." (U, U,.=1,V,'V,=V,V,'=D][|Let s = S;; denote
the i'" singular value, and u’/v’ the i*" left/right singular vectors (columns of U/V'). We consider
continuous, injective functions g differentiable a.e. (abbreviated c.i.d.a.e.), which, e.g., admit ReLU
networks. Such g define a d-dimensional manifold My ={g(z)|z € Z} embedded in X (see Fig.[3).
Since g is injective, there exists a bijection between Z and M ,; and J, has full-rank, where defined.

Latent Variable Model (LVM): We consider the generative model pg(z) = [, ps(|2)p(z) with

independent z;. For tractability, parameters € are typically learned by maximising a lower bound
(ELBO)

[ranogmia) = [ o) [acle) (lozpolalz) — plog 5E52) M

x

po(z]2)p(2)

where $=1 and g4 (z|) learns to approximate the model posterior, gy (2|x) — po(z]a) === ey

Variational Autoencoder (VAE): A VAE parameterises Eq. |I| with neural networks: a decoder
network d(z) parameterises the likelihood pg(z|z); and an encoder network parameterises the
typically Gaussian posteriors g4 (z|z) = N (z; e(x), 3,) with diagonal 3. The prior p(z) is typically
a standard Gaussian. We refer to a VAE with Gaussian likelihood py(z|2) = N (z;d(2),0%I) as a
Gaussian VAE and to a Gaussian VAE with linear decoder d(z) = Dz, D € R™*4 as a linear VAE.

Disentanglement: While not well defined, disentanglement typically refers to associating distinct
semantically meaningful features of the data with distinct latent co-ordinates z;, such that data gener-
ated by varying a single z; differ in a single semantic feature (Bengio et al.| 2013} Higgins et al.,[2017}
Ramesh et al., 2018} [Rolinek et al.,[2019; [Shu et al.|[2019). While samples from a VAE exhibit disen-
tanglement, setting 5> 1 (a 3-VAE) often enhances the effect, although at a cost to generative quality,
e.g. blurrier images (Higgins et al., 2017; Burgess et al.,|2018). Disentanglement relates closely to
independent component analysis (ICA), which aims to recover statistically independent components
of the data under the same LVM but with a deterministic observation model, pg(x|2) = 6, _4).

Probabilistic PCA (PPCA): (Tipping & Bishop| [1999) considers a linear Gaussian LVM
p(alz) = N(zsWz,0' ) p(z) =N (2 0,1) 2
where WeR™*4 and o € R The exact posterior p(z|x) and MLE parameter W, are fully tractable:
p(zle) = N(z; SMW Tz, M), M=(I+5W W)™, W.=Ux(Ax-0’I)?R (3)

where Ay € R¥*? U, € R™*% contain the largest eigenvalues and respective eigenvectors of the
covariance X X '; and ReR%*4 is orthonormal (RTR=1I). As 0> — 0, W, approaches the SVD
of the data matrix X = Uy A2 V;'—G R™*™ up to Vi (classical PCA). The model is unidentified since
R is arbitrary, allowing uncountably infinite solutions. While W, can be computed analytically, it can
also be learned by maximising the ELBO (Eq. : letting pg(x|2) =N (z; Dz, 0I) and iteratively
computing the optimal posterior (Eq. 3} left) and maximising w.r.t. D (we refer to this as PPCAEM),

'To lighten notation, explicit dependence of U, V', S, u’, v, s* on z is often suppressed where context is clear.
>We assume that data is centred, which is equivalent to including a mean parameter (Tipping & Bishop},[1999).
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Figure 2: An LVAE breaks rotational symmetry. (/) both full-X, and diagonal-3, VAEs fit the
data, i.e. learn ground truth parameters U,, S.; (c) only in diagonal-Y, VAEs do right singulars v*
of the Jacobian align with standard basis vectors z; € Z (i.e. V, — I); (r) images of z;: full-X, VAEs
map z; to arbitrary directions (red), but diagonal->,, VAEs learn (later epochs darker) to map z; to
the data’s independent components (black, i.e. blue — black).

Linear VAE: An LVAE assumes the same linear LVM as PPCA (Eq. [2) and models the likelihood
po(z|z) = N(z; Dz,0°I) as in PPCA®M differing only in approximating the posterior by g, (z|x) =
N (z; Ez,Y), rather than computing the optimal pg(z|z). Surprisingly though, an LVAE with
diagonal posterior covariances loses the rotational ambiguity of PPCA (Lucas et al.,[2019)), since

. @ s pwiwy B 2RI @

Thus for X to be optimal and diagonal, R must belong to a finite set of signed permutations, hence
the optimal decoder D= Uy (Ax— o1 )1/2 is unique up to permutation/sign (see Fig. . We will
see that this effect, due to diagonal posterior covariances, is in fact (linear) disentanglement (3).

Further notation: Under the LVM above, we define a deterministic generative function g: Z — X
as the map from latent variables to means g(z) =E[z|z], that lie on a manifold M, ={g(z)} CX
(mean manifold) with push-forward density p,, (manifold density). We will focus on Gaussian
VAEs, where the data density p(z) is given by adding Gaussian noise to p,,, i.e. convolving it with a
Gaussian kernel. It is known that such data densities match if and only if their manifold densities p,,
match (e.g. Khemakhem et al.,|2020), hence we focus on the manifold density p,,.

3 DISENTANGLEMENT

We now define disentanglement; illustrate it for the linear case, justifying our disentanglement claim
for LVAEs in §|Zt and work up to explaining how it arises in a (non-linear) Gaussian VAE. (See Fig. m)

Definition D1 (Disentanglement). Let g: Z — X be c.i.d.a.e.. We say p, is disentangled if, for
each z € Z, there exist 1-D densities { f;} such that p,, factorises as

d
pul9(2)) =[] fi(ui(2)), )
i=1

where each factor f; is the 1-D push-forward of p(z;) along the axis-aligned line obtained by moving

in the i-th latent coordinate while keeping all others fixed; w; is the co-ordinate of g(z) along the
image of that line; and random variables {u;(z)} are mutually independent under z ~ p(z).

LVAE disentanglement: Consider an LVAE with diagonal posterior covariance 3 and decoder
d(z) =Dz, D € R™*4(§2). The mean manifold M, = {u= Dz|z € Z} is linear with Gaussian
density p,=N(p;0, DD") (e.g. see Fig.[2| right), From ~, the SVD of the data matrix defines the
optimal decoder D,=U., S,V (i.e. U,=Ux, S.=(Ax—0?I)" and V,= R=1 due to diagonal
Y)). As for any Gaussian, p,, factorises as a product of independent 1-D Gaussians along eigenvectors
of its covariance D, D/ = U,S%U, i.e. columns u’ of U,, hence Pu=[1; N (u;0, 5'2) where
U; = uiT,u €R. Since u; = ©u' "D,z = s'z;, each u; depends only on a distinct z;, a co-ordinate in
the standard basis of Z (over which densities are independent 1-D Gaussian). Thus:

* p, factorises as a product of independent push-forward densities f; () =N (u®"y;0, 52); and

* the decoder maps each axis-aligned direction z; to a distinct factor f;,
satisfying qﬂ Note that synthetic data = Dz generated by re-sampling z;, holding z;; constant,
differ only in component (or “feature”) u;, agreeing with the common perception of disentanglement.
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Dropping diagonality: To emphasize that disentanglement depends on diagonal posteriors, we
consider full posterior LVAEs, where R # I in general. The above argument follows except that
columns 7¢ of R in Z map to independent u’ directions in X'. Meanwhile, standard basis vectors
in Z map in directions w’ ' R, which are arbitrary with respect to u’ directions. Hence axis-aligned
traversals in latent space correspond to several entangled components u; changing in generated
samples. We demonstrate this empirically in Fig. 2] (see caption for details).

4 FROM DIAGONAL POSTERIORS TO DECODER CONSTRAINTS

Prior works draw a link between disentanglement in Gaussian VAEs and diagonal posteriors from an
approximate relationship between optimal posteriors and decoder derivatives (Rolinek et al.,[2019;
Kumar & Poole, 2020). In fact, this relationship is exact by the Price/Bonnet Theorem and Opper &
Archambeau| (2009): the ELBO with Gaussian posteriors is optimised when their covariances satisfy

*

5 = I = 3By La(@)] = I+ 50EBqw[J)J. + (z—d(2)) "H.], (6)

B
where L. (z) = V2 log pg(z|2) is the log likelihood Hessian; and J, = 4 and H, = 227%’ are the

Jacobian and Hessian of the decoder (all terms evaluated at z € Z). Step two (*) assumes the
likelihood is Gaussian. Eq. [6|immediately generalises the classical linear result in Eq. [3|and relates
0?2 =Var[z|z] and ¥, = Var|[z|z], showing that (un)certainty in x and z go hand in hand, as expected.

Importantly to disentanglement, Eq. [6]shows that diagonal ¥, constrains derivatives of an optimal
VAE decoder. In practice, the J.| J, term alone is found to be approximately diagonal (Fig.
left) (Rolinek et al., 2019; | Kumar & Poolel 2020), suggesting that each term diagonalises. We thus
consider:

Property P1. The expectations of J'J ., and (x—d(2))"H, in Eq.[6|are each diagonaif|
has the following implications, which will prove fundamental to disentanglement:

Lemma 4.1 (Disentanglement constraints). Under Hl| in expectation for concentrated posteriors:

C1 Right singular vectors V, of the decoder Jacobian J , are standard basis vectors for all z € Z,
i.e. after relabeling/sign flips of the latent axes, we have V,, = I;
C2 The matrix of partial derivatives of singular values (%)m is diagonal, i.e. %: 0 forall i#j.
J J
Proof. See Appendix [A] C1 follows from the SVD of J.; C2 from observing that directions r =
x—d(z) € X of the directed Hessian term are, to a first approximation, tangent to the manifold.

Why $ affects disentanglement: Setting 5 > 1 in Eq. [I]is found to increase disentanglement
(Higgins et al., [2017; Burgess et al., 2018]). We show that 3 implicitly controls the likelihood’s
variance in Appendix [B|and, as a result, 5 > 1 dilates posteriors (while the 5-ELBO remains a valid
objective). We will see that C1-C2 induce disentanglement (§5)), thus Eq. [6] suggests a rationale for
why 3 > 1 enhances disentanglement: it broadens the regions (i.e. posteriors) over which decoder
derivatives are diagonalised, and so disentanglement constraints C1-C2 encouraged; and increases
the overlap of posteriors where multiple constraints apply simultaneously (see Fig. [6] right).

5 FROM DECODER CONSTRAINTS TO DISENTANGLEMENT
5.1 THE JACOBIAN SVD: SINGULAR VECTOR PATHS AND DATA SEAMS

Constraints C1-C2, fundamental to disentanglement, are expressed in terms of SVD components of
the Jacobian of a generative function g (or decoder d), we thus consider the Jacobian SVD in detail.

Local bases: For J, =USV'T, singular vectors (columns of V', U) respectively define (local)
orthonormal bases: the V'-basis, {v*} for Z at z; and the U-basis, {u"} for the tangent space to M,
at r=g(z). Letting v=V "z and u=U "x denote a point z and its image = = g(z) in those bases,

the chain rule gives an interpretation of the Jacobian’s SVD, J, =USV "= % g—jj %: Uand VT

are simply local co-ordinate systems in each domain, and S = % is the Jacobian of a map v+—u

expressed in those co-ordinates, under which only respective dimensions interact (ng] =0, 1#7).
J

3Noting that these properties hold in expectation, we proceed as if they hold pointwise to simplify presentation.
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Figure 3: (left) Empirical support for C1: Rolinek et al.|(2019) show that VAEs with diagonal X,
have increased orthogonality in the decoder Jacobian. (right) Seam factorisation: For g: Z — X in
Jacobian J.~ and manifold M, C X, singular-vector paths Vf* cZzZ I, dashed blue)
following right singular vectors v* of .J - (solid blue), map to seams ./\/l’; o C ./\/lg dashed red)
following left singular vectors u* at g(2*) € X' (solid red). zj, € Z are standard basis vectors.
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Singular Vector Paths and Seams: The directional derivative J, v’ =U SV Tv’ = s'u’ shows that
a small perturbation by right singular vector v* at z € Z translates under g to a small perturbation in
direction u’ at g(z) € M,,. By extension, if a path in Z follows v at each point (as a vector field) its
image on M, is expected to be a path following u’. Note that wherever the Jacobian is continuous,
each of its SVD components is continuous. Since columns of an SVD can be validly permuted, their
order must be fixed for paths over “i-th” singular vectors to be well defined:

Definition D2 (Regular set and continuous SVD). Forc.i.d.ae. g: Z — X, define the regular set
Zig = {2€Z ' J. exists, has full column rank, and s*(z) > --- > s%(2) > 0 }.

Vector fields z + v'(2), z +— u'(2) and singular values z — s'(z) can be made continuous on each

connected component of Zyeg by fixing the SVD J,=U S, V.

With this, we define paths following i-th singular vectors: singular vector paths, or s.v. paths, V;
follow v* in Z (Def.[3| blue dashed lines in Fig. ; and seams, ./\/l’g_z follow u* over the manifold

(Def.[4] red dashed lines in Fig.[3) By construction, g maps s.v. paths to seams (proved in[Cemma C.1)).

Singular vector paths and seams naturally extend the observation that right singular vector perturba-
tions map to distinct left singular vector perturbations (since S is diagonal). Key to disentanglement
is how 1-D densities over s.v. paths push-forward under g to 1-D densities on the manifold M :
Lemma 5.1 (Factorisation over seams). Ler g : Z — X be c.i.d.a.e. and the prior factorise as
p(z) = H?:l pi(zi) (e.g. standard Gaussian). Tl&en, the manifold density p,, on M factorizes as

pu(g(z)) = H iii((zi)) , forevery z€ Z,q. @)
i=1 .
Moreover, each factor £ ",i(é")) is the 1-D density over the i-th seam M , at © = g(z), obtained by

pushing forward the 1-D marginal p;(z;) over Vi, the i-th s.v. path though z.
Proof. See Appendix |Cl Follows straightforwardly from standard change—of—variables formula.

Summary. Singular paths in Z are the latent curves along which g changes in the corresponding
seam on M, (Lemma C.I). [Lemma 5.1|states that p,, decomposes as a product of 1-D densities
along seams, each the push—forward of the marginal over the i-th latent s.v. path — precisely the
factorisation condition required for disentanglement (Eq. [5). Disentanglement also requires that s.v.
paths are axis-aligned (in general they may curve Fig. [3} leff) and that factors are independent, i.e.
only factor ¢ changes over seam 7. We now show that these extra properties follow from C1 and C2.

Theorem 5.2 (Disentanglement < C1-C2). Let g: Z — X be c.i.d.a.e. and the prior factorise
as p(z) = H?Zl pi(2i) (e.g. standard Gaussian). The push-forward density p,, on the manifold
Mg ={g(2)} is disentangled (DI if and only if g satisfies CI and C2 almost everywhere.

Proof. See Appendix

Thm. [5.2means that C1-C2 are precisely the constraints needed to go from the factorisation in Eq.
to disentanglement: C1 causes s.v. paths to axis-align and p;(z;) to be independent; and C2 rules out

s* (of factor i) varying in latent co-ordinate z; (j #1), ensuring that seam factors are independent.

“e.g. start from an arbitrary point, order singular values strictly decreasing and choose signs continuously.
SRestricting to 2., only excludes points where J, is undefined or has repeated singular values; these edge cases
can be avoided without affecting the results. All statements are made on a fixed connected component of Z.cg.
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Figure 4: Pushing forward p(z) from singular vector paths to seams: s.v. path Vi.C Z through
z" (dash blue), following right singular vectors v* of J (solid blue), maps to seam MY .. C My
through f(z*) (dash red), following left singular vectors u’ (solid red). By|Lemma 5.1} 1-D marginals
pi(z;) over V.. factorising p(z) map to 1-D seam densities over M . factorising p,,. (I) For linear
f without C1, e.g. full-covariance LVAE, V:. and M}yz* are straight lines; p;(z;) and seam densities
are independent. (r) For general c.i.d.a.e. f with C1-C2, e.g. Gaussian VAE with seam densities
are independent (by C2). (Essential properties of disentanglement (qﬂ) are underlined.)

Thus, to the extent a Gaussian VAE with diagonal posteriors induces property HI| by Eq. [6] it
expressly disentangles the decoder’s push-forward density; and to the extent disentanglement is
observed, diagonalisation constraints C1-C2 must hold. This provides a firm justification for how
disentanglement emerges in VAEs, while the relationship between Eq. [ and constraints C1-C2 also
suggests a plausible rationale for why disentanglement arises inconsistently (Locatello et al.,|2019).

6 IDENTIFIABILITY

We now investigate if a model, capable of fitting the data (i.e. data is generated under the model class),
learns the frue generative factors up to some symmetry, or could settle on a spurious factorisation.

Corollary 6.1 (LVAE Identifiability). Let data be generated under the linear Gaussian LVM Egq.
with ground-truth g(z) = Wz, W =Uy, Sy, V. € R™*% of full column rank and distinct singular
values. Let an LVAE with diagonal posteriors be trained on n samples, and as n — o its learned
parameters yield p) = p'® on the mean manifold. Then the LVAE achieves disentanglement (||
and identifies ground-truth independent components on M up to permutation and sign (P&S).

Proof. See Appendix [D.2](Follows from the uniqueness of the SVD). O
Thus, if an LVAE learns to model the data, it learns the ground truth independent factors.

Remark 6.2 (V;, immaterial). Ground-truth right singular vectors V4, are not recoverable from p(x)
under the PPCA/LVAE model; this is not a lack of identification. With a standard Gaussian prior,
any orthonormal change of basis of z preserves independence and leaves p(z) unchanged. The only
data-relevant object is Uy, Sy ; the arbitrary basis in which W was written has no bearing on p(z).

The linear case hints at why independent factors may be identifiable more generally, since it depends
on the Jacobian SVD, fundamental to the non-linear case. Taking this hint, we show that if a manifold
density admits a seam factorisation (as in [Lemma 3.1)), that seam factorisation is unique (P&S)
and intrinsic to p,, agnostic to any generative process or parameterisation. It follows that if the
push-forward of a decoder fits p,,, then its seams must align with the intrinsic seams of p,, (P&S); and
subsequently that a Gaussian VAE fitting p,, identifies ground truth factors (P&S). (Proofs in@

Lemma 6.3 (Intrinsic seams). Let M C X carry a manifold density p,,. Assume that on a regular

set Mg there exist scalar functions {u;(x)}?_; (each varying only along a 1-D curve through z,
i.e. a seam) and I1-D densities { f;} such that

d
pu(@) = [ fwi(@), o€ M, ®)
=1

and that the on-manifold Hessian H,, =V?2 log p,, () has pairwise distinct eigenvalues a.e. on Mg.
Then for each © € Mg, the d seam directions (along which exactly one w; varies) are determined
intrinsically by p,,, as eigenvectors of H,, unique up to permutation and sign (P&S).
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Lemma 6.4 (A matching decoder finds seams). Under assumptions 0 letd: Z—X
be c.i.d.a.e. with factorised prior p(z) = [, pi(2:) and push-forward density pffi = p,, matching on
Mgy = {d(z)} = M. If d satisfies CI-C2 a.e., then for any z and x = d(z):

o left singular vectors U, of J coincide with the seam directions in[Lemma 6.3 (up to P&S);

* the images under d of singular-vector paths (D3) are exactly the seams through x;

* along the i-th seam, the factor f; is the 1-D push-forward of p;(z;) (as in .

Theorem 6.5 (Gaussian VAE Identifiability). Let data be generated by c.i.d.a.e. g : Z— X with
factorised prior p(z) = H?Zl pi(z;). Let a Gaussian VAE with diagonal posteriors learn a decoder

d:Z — X. Suppose both g and d satisfy CI-C2 and manifold densities match: p,(fl) = pLg) on

M={g(2)}={d(z)}. If, eigenvalues of the tangent Hessian (see proof) are pairwise distinct a.e.,
then d identifies ground-truth independent components on M, up to permutation and sign (P&S).

Thus, if a Gaussian VAE fits the push-forward of a Gaussian distribution under the conditions of
then the VAE identifies and disentangles the ground truth generative factors (up to permutation/sign).

Remark 6.6. P&S symmetry is optimal since seams follow w;, with no inherent order or orientation.

We can also consider fitting a Gaussian VAE to data sampled from the push-forward of other priors.
Corollary 6.7 (BSS). In|Theorem 6.5| if priors p'9) (z) and p'¥ (2) factorise and p,&g) Ep,(fl) with
CI-C2 holding a.e., then the seam decomposition p,, on M is unique up to permutation and sign,
and g and p(g)(z) are recoverable up to an axis-aligned diffeomorphism ¢ = g 'od : Z — Z.

Proof. Immediate from proof of [Theorem 6.5] which does not depend on the form of p(z). The
diffeomorphism follows since M, =M, and by injectivity of d, g. O

Remark 6.8 (Gaussian p(z) unidentifiability). Classical non-linear ICA aims to identify ground
truth factors of the model inii heorem 6.5|with deterministic pg(|2) =, _4(.), which is impossible
if p(2) is Gaussian (Khemakhem et al.[[2020; [Locatello et al., 2019). [Corollary 6.1|and [Theorem 6.5]
show that under a probabilistic formulation together with constraints C1-C2 induced by diagonal
posteriors, we obtain identifiability without requiring extra side information, e.g. auxiliary Variablesﬂ

In summary, we have defined disentanglement, shown that it holds if and only if C1-C2 hold, and
that seam factors are unique and therefore identifiable, up to expected symmetry.

7 EMPIRICAL SUPPORT

We include empirical results to illustrate disentanglement and support our claims. From our analysis,
we expect (i) diagonal posteriors to promote diagonalised derivative terms; and (ii) diagonalised
derivatives to correlate with disentanglement.

Both (i) and (ii) are well illustrated in the linear case where ground truth factors are known analytically.
Fig.[2]shows results for diagonal and full covariance LVAEs learning Gaussian parameters (see caption
for details). All models learn optimal parameters as expected (left); but, as (i) predicts, only diagonal
covariances cause right singular vectors of J, to converge to standard basis vectors, V' — I (C1),
(centre); hence latent traversals map to independent components along left singular vectors u® (right),
yielding disentanglement (DT), predicted by (ii). This evidences diagonal covariances “breaking the
rotational symmetry” of a Gaussian prior. While the linear case seems trivial, it is a fundamental
demonstration since our analysis shows that disentanglement in general follows the same rationale.
Interestingly Fig. [3|shows that learning parameters a disentangled model is notably slower (left), due
to the rate at which V' — I (centre). A diagonal covariance model must find one of a finite set of
solutions among the infinite solutions of a full covariance model.

Various studies show further empirical support. Supporting (i) and (ii), |[Rolinek et al.|(2019) show that
columns of a decoder’s Jacobian are more orthogonal (i.e. V' — I, C1) in diagonal covariance VAEs
than those with full covariance (Fig. 3] leff), and that diagonality correlates with disentanglement.
Supporting (ii), [Kumar & Poole| (2020) show that directly inducing column-orthogonality in the
decoder Jacobian promotes disentanglement.

SUnidentifiability proofs typically make use of an arbitrary rotation applied to the Gaussian prior (¢f R in Eq. ,
but we have seen that C1 removes such symmetry, even in the linear case (Fig. E]) (See also )
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Figure 5: Diagonal vs Full Posteriors: (left) (bottom) disentanglement metrics and estimated diago-
nality of Eq.[6]terms (see Appendix [E). With diagonal posteriors, disentanglement and diagonality are
correlated (supporting HIJ), relative to full posteriors; (fop) heatmaps of mutual information between
model latents and ground truth factors. (right) derivatives in Eq.[6] terms are less diagonal for lower
beta or full posteriors. (All results averaged over multiple runs)

Complementing prior work, we train diagonal and full covariance Gaussian VAEs (d=10) on the
dSprites dataset, for which the 5 ground truth generative factors are known (all results averaged
over 5 runs). How well each latent co-ordinate identifies a ground truth factor can be estimated
explicitly from their mutual information, and a function of mutual information often captures a
model’s overall disentanglement, e.g. the mutual information gap (MIG, [Chen et al.| (2018))). Fig. 5|
(main plots) reports MIG, axis alignment score (AAS) (a novel metric based on the entropy of the
mutual information distribution) and derivative diagonality estimates against 5 (see Appendix [E]
for details). For diagonal covariance VAEs (left), disentanglement metrics and diagonality broadly
increase together with 3. For full posteriors (right) no clear trend is observed. The heatmaps above
(aligned with plots by /3) show mutual information between each latent co-ordinate and ground truth
factor (ordered greedily to put highest mutual information scores along the diagonal). We see that for
diagonal covariance VAEs, disentanglement increases with 5 and that individual latent co-ordinates
(horizontal) correlate with distinct ground truth factors (vertical), whereas that is not clearly observed
for full covariances. To illustrate, Fig. |5| (right) shows heatmaps of the d x d derivative terms in
Eq. E] (e.g. J ;r J .. Jacobian term top, Hessian term bottom), each for diagonal covariances, 5=1 (I);
diagonal covariances, 5 =0.001 (c); and full covariances, 5 =1 (r) (each averaged over a batch).

Lastly, we make a prediction based on our understanding of the interplay between 5 and disen-
tanglement (§4). Our analysis suggests that higher (3 increases expected noise, which weakens
reconstructions, but promotes disentanglement via widened posteriors; whereas lower 3 assumes
less noise, which tightens reconstructions, but disentanglement is restricted under concentrated
posteriors to smaller, potentially disconnected, regions. For both clear samples and disentanglement,
this suggests starting with high 3, so that disentanglement is induced broadly; and reducing 3 over
training so that the model manifold is pulled tighter to the data and images become sharper. While
not the focus of this work, we run a preliminary experiment on the dSprites dataset as a proof of
concept. Results in Appendix [F]include baselines for constant high and low /3 values (1 and 0.001);
and the effect of exponentially reducing 5 (1 — 0.001) over training. The baselines illustrate the
expected results described above and, promisingly in line with our prediction, reducing 5 shows both
sharp reconstructions and good disentanglement. We note a resemblance to the “de-noising” process
in denoising autoencoders and diffusion models and see this as an interesting future direction.

8 RELATED WORK

Many works study aspects of VAEs, or disentanglement in other modelling paradigms. Here, we
focus on those at the nexus, investigating disentanglement in VAEs.

Higgins et al|(2017) showed that disentanglement in VAEs is enhanced by setting 3 > 1 in the
(8-)ELBO (Eq. [I). Burgess et al.|(2018)) conjectured that diagonal posterior covariances may cause
disentanglement. [Rolinek et al.| (2019) showed supporting empirical evidence (3 and derived an
approximate relationship between diagonal posteriors and Jacobian orthogonality, conjectured to
cause disentanglement. Kumar & Poole (2020) simplified and generalised their argument, arriving at
an (independent) approximation of Eq. 6] By comparison, our work makes precise the link between
posterior covariances and decoder derivatives, formally defines disentanglement and proves that it
arises if and only if derivative constraints hold.
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Lucas et al.|(2019); Bao et al.| (2020) and Koehler et al.|(2022) properties of LVAEs, notably [Lucas
et al.| (2019) show the equivalence of a Gaussian S-VAE and a Gaussian VAE with a different variance
assumption, which we generalise in Appendix [B] Zietlow et al.| (2021) suggest disentanglement is
sensitive to perturbations to the data distribution. Reizinger et al.|(2022) seek to relate the ELBO
to independent mechanism analysis (Gresele et al.| 2021)), which encourages column-orthogonality
in the mixing function of ICAJ’| We note that orthogonality of the Jacobian (C1) is not sufficient to
guarantee disentanglement/identification of independent components, as that also requires (C2).

Ramesh et al.[(2018)) trace independent factors by following leading left singular vectors (our seams)
of the Jacobian of a GAN generator, whereas (Chadebec & Allassonniere|(2022) and |Arvanitidis et al.
(2018)) consider paths in latent space defined by the inverse image of paths over the data manifold
(our s.v. paths). |Pan et al.| (2023) claim that the data manifold is identifiable from a geometric
perspective assuming Jacobian-orthogonality, differing to our probabilistic factorisation approach.
Bhowal et al.|(2024)) consider the encoder/decoder dissected into linear and non-linear components,
loosely resembling our view of the Jacobian from its SVD. However, the decoder function is quite
different to its Jacobian, and dissecting a function into linear/non-linear components is not well
defined, whereas the SVD is unique (up to permutation and sign).

Buchholz et al.[(2022)) analyse function classes that are identifiable by ICA, proving that conformal
maps are identifiable, but orthogonal coordinate transformations (OCTs), defined to satisfy Cl1,
are not. This is relatively close to our work in spirit, differing in that our identifiability proof
(Theorem 6.5) relies on a stochastic model and an additional constraint, C2.

9 CONCLUSION

Unsupervised disentanglement of generative factors of the data is of fundamental interest in machine
learning. Thus, irrespective of the popularity of VAEs as a generative model class, understanding
how they disentangle the data for free may have useful implications for other paradigms, and we take
significant strides in this respect, in particular giving disentanglement a formal definition (D]I): as
factorising the manifold density into independent components, each the image of an axis-aligned
traversal in latent space. We also give a simple interpretation of g in a S-VAE, as adjusting the
assumed variance or entropy of the likelihood, which justifies why 8> 1 promotes disentanglement
while degrading generative quality; and also why 8 < 1 mitigates posterior collapse.

Much of our work is not restricted to VAEs, but is general to a class of push-forward distributions, i.e.
a factorised prior combined with conditinuous, injective, differentiable almost everywhere function,
as arise also in GANs and FLOWSs. We show that the combination of two relatively simple concepts,
the first derivative or Jacobian and the SVD, combine in a surprisingly elegant way by which, under
suitable conditions, a push-forward density factorises. Indeed the entire factorisation in the latent
space essentially projects onto the manifold and independent densities over singular vector paths
in latent space push-forward to independent densities over seams on the manifold. We show that
the constraints needed to achieve disentanglement are precisely those imposed, albeit in aggregate
and in expectation, by a VAE with diagonal covariances, justifying both why disentanglement arises
and perhaps also why it can be elusive. Significantly, given the proven impossibility of ICA under a
Gaussian prior (precisely the setting of a Gaussian VAE), we prove that, under suitable assumptions,
a Gaussian VAE does identify ground truth independent factors, up to their inherent symmetry group.

Neural networks models are often considered too complex to explain, despite their increasingly
widespread deployment in everyday applications. An improved theoretical understanding seems
essential to safely take advantage of machine learning progress in potentially critical systems. Our
work aims to be a useful step in that direction, providing novel insight into how a density decomposes
over generative factors. Interestingly, our work shows that, regardless of the non-linear complexity of
a VAE, how it pushes forward the prior density can be considered relatively simply.

VAEs (and variants e.g. AEs, SAEs) form part of a pipeline in many state-of-the-art models, e.g. latent
diffusion (e.g.|[Rombach et al., 2022; [Pandey et al.,|2022; |Yang et al., 2023} |Zhang et al.,|2022) and
LLMs; other recent works show that supervised learning (Dhuliawala et al.| [2024) and self-supervised
learning (Bizeul et al.| 2024) can be viewed as latent models trained under ELBO variants. In future
work we will look to see if our results transfer to such other learning paradigms.

"We report apparent discrepancies in|Reizinger et al.|(2022) in Appendix
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A PROOF OF DECODER DERIVATIVE CONSTRAINTS

Property P1. The expectations of JJ, and (x—d(z))"H, in Eq. @ are each diagonal.ﬁ]

Lemma 4.1 (Disentanglement constraints). Under in expectation for concentrated posteriors:

C1 Right singular vectors V., of the decoder Jacobian J, are standard basis vectors for all z € Z,
i.e. after relabeling/sign flips of the latent axes, we have V, = I;

C2 The matrix of partial derivatives of singular values (%)l j is diagonal, i.e. gj’_ =0forall i#}j.
J J

Proof. (Preliminaries): Recall p(z) = N(0,1) and p(z | 2) = N (x;d(z),0?I). Let q(z | z) =
N (z;e(z),%,;) be the trained posterior with X, diagonal (by assumption). Denote the SVD of the
decoder Jacobian by

J. =U.S.V.), U eR™, 8, =Diag(s1(2),...,s6(2)), si(2)>0.
Assume full column rank on the manifold (s;(z) > 0). For Gaussian likelihood with variance o2, the
Hessian of the log-likelihood w.r.t. z can be written V2 log (x| 2) =25 (J. J. = >, 7 Hy(z)),
where r = z — d(z) and H,(z) € R¥** is the Hessian of the (-th decoder coordinate, [H/],, =
0?dy/0z, 0z4. Combined with the Opper—Archambeau fixed-point yieldﬂ

n
S7t = 0 - B[ VZogp(x|2)] = I + HE[I]I] — SE[> reHe(2)]. 9
=1

CI: For diagonal X, in Eq.[QJunder the “no cancellation” HI} we must have

Eq[JZTJZ} is diagonal, Eq[ Z Ty Hg(Z)] is diagonal. (10)
=1

If ¢(z|z) is concentrated at e(z), the first expectation is well approximated by its value at z = e(x)
up to o(1) errors, hence JeT(z)Je(z) = Diag(s?,...,s?); and right singular vectors at e(x) are the

standard basis up to signed permutations. By relabelhng latent axes and absorbing signs, V) = I.
Continuity and data coverage then give V, = I for all z visited by the encoder, establishing C1.

(Directed Hessian is Tangent to Manifold): Assume the model is well trained so that d(e(z)) ~ .
For z = e(x) + ¢ with ¢ small, a first-order Taylor expansion gives

d(z) = d(e(@)) + Je@) 0+ O(I0]P), = r=x—d(z) = —Jew)d+O0(5]).

Thus, to first order, r lies in the column space of Je(,,), i.e. in the span of the left singular vectors
{fu;i(e(z))}5_; (columns of U,):
r = Ua, aecRF (11)

To simplify, we drop the expectation and consider >, 7¢ Hy(z) to be diagonal for all r € span(U.).
Thus 2221 u; H/(2) is diagonal for all rows u; of U, and, by definition of slices Hy and J,

n

Zuw Hy(2)lpg = Y udp 2% = (U 5=)i (12)

=1

(Diagonality of (%)i,j)i

Differentiating U/ U, = I}, to get Uy, +U) %LZIZ = 0 shows Q;(z) := U, %(ZJZ € R¥xd jg

skew-symmetric. Differentiating J, = U S, w.r.t. z; and premultiplying by U then gives

U35 = 9;()

13)

8Noting that these properties hold in expectation, we proceed as if they hold pointwise to simplify presentation.
‘weuse: £ 1 = —Eg[VZlogp(z,2)] = —Eg[VZlogp(z) + VZlogp(zlz)]; V2logp(z) = —1I.

12
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Figure 6: Tllustrating 3 o Var[z|z] (blue = data, red = reconstruction): (I) For low 3 (8 = 0.55),
Var[z|2] is low (by Eq.[6), and data must be well reconstructed (right, top). As 3 increases, Var|z|2]
and so Var[z|z] increase, and posteriors of nearby samples {x;}; increasingly overlap (right, bottom).
For z in overlapping {q(z|z;)}:, the decoder E[z|z] maps to a weighted average of {z; };. Initially,
close neighbours reconstruct to their mean (5 = 2.2, 3.8), then small circles “become neighbours”
and map to their centres. Finally (8=160), all samples reconstruct to the global centroid. (reproduced
with permission from [Rezende & Viola, 2018) (r) illustrating posterior overlap, (¢) low 3, (b) higher
B.

Since ;(z) is skew-symmetric, all diagonal entries are zero; since %S is diagonal, all non-diagonal

entries are zero. Thus, of respective entries, only one is non-zero and can be considered separately.

From Eq. . only (2;(2) S.).; elements can be non-zero, thus all elements of 2;(z) must be zero
(by skew-sym.), rullng out rotation in the tangent planem

=)

0
) = a? can be non-zero, ehmmatmg mlxed partials

For S: diagonality (only(

) elements non-zero)

1mp1y that only elements ( S

55(2) = 0 foralli #j,

i.e. the Jacobian of the singular-value map s(z) = (s1(2), ..., sk(2)) is diagonal, proving C2. [

B (3 CONTROLS NOISE VARIANCE

Choosing 3> 1 in Eq.[I|can enhance disentanglement (Higgins et al., 2017; Burgess et al, 2018) and
has been viewed as re-weighting ELBO components or as a Lagrange multiplier. We show that 3
implicitly controls the likelihood’s variance and that the “5-ELBO” remains a valid objective.

Dividing the ELBO by a constant and suitably adjusting the learning rate leaves the VAE training
algorithm unchanged, hence consider Eq. l 1|divided through by S with the log likelihood scaled by
B For a Gaussmn VAE with Var|[z|z] =02, this exactly equates to a standard VAE with variance
Bo? 2019). More generally, scahng the log likelihood by 3~" is equivalent to an implicit
lzkelzhood pg(x| ) #, where (3 acts as a temperature parameter: 3 — oo increases the effective
entropy towards uniform (the model assumes more noise in the data, fitting more loosely), and 8 — 0
reduces it to a delta (reconstructions should be tight). Optimal posteriors fit to the implicit likelihood,
qe(2|7) o pg(z|2)"/#p(2), which thus dilate (3 > 1) or concentrate (3 < 1). This generalises the
Gaussian result (Lucas et al.,[2019), showing that the 3-ELBO is simply the ELBO for a different
likelihood model /']

Empirical support: Our claim, in effect that Var[z|z] o 3, is well illustrated on synthetic data in
Fig.[6] (Rezende & Viola, 2018 see caption for details). It also immediately explains blur in 3-VAEs
since B > 1 simply assumes more noise. It also explains why 5 < 1 helps mitigate posterior collapse
(Bowman et all,[2015), i.e. when a VAE’s likelihood is sufficiently expressive that it can directly
model the data distribution, p(z|z) =p(x), leaving latent variables redundant (posterior “collapses”
to prior). As — 0, the effective variance of py(x|z), and the distributions it can describe, reduces.
Thus for some /3 < 1 the effective variance falls below Var[z], rendering posterior collapse impossible
as some variance in x can only be explained by z. Thus our claim that 5 controls effective variance
explains well-known empirical observations, which in turn provide empirical support for the claim.

e have: Q;(2)r; = —Q;(2);5 = 0, if j #k; and Q;(2);; = 0 (skew-sym.).
"Technically, the 8-ELBO’s value is incorrect without renormalising the implicit likelihood, but that is typically
irrelevant, e.g. for commonly used Gaussian likelihoods, only the quadratic "MSE” term appears in the loss.

13
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C APPENDIX: SINGULAR VECTOR PATHS AND SEAMS

Definition D3 (i-th singular-vector path). Let g: Z — X be c.id.ae. Forz*€ 2o, i€{1,...,d},
the i-th singular—vector path (s.v. path) through z* is any C' curve t — z! with 2z} = 2* satisfying

jtzt = v'(2}) for tin its maximal interval I« ; C R.

We denote the path set by V.. = {z}: t € I« ;} C Zreg. (See Fig.|3| left, dash blue lines).

Definition D4 (:-th seam). Let g: Z — X be c.i.d.a.e. with manifold My = {g z)}. For 2 € Zyeg,
i€{l,...,d}, thei-thseam through g(z*) is any C' curve t — x} in M, wzth xh = g(2*) satisfying

4oy = s'(g " (2})) u'(g () fortin L.
We denote the path set M, .. = {z} : t € I ;} C M, and define seam coordinate

t
ui(t) = / s (g~ (L)) dr, 50 %ui(t) =s"(g7"(=})), wi(0)=0.
0
u; measures position along the seam in units of s* (strictly monotone as s* >0). (See Fig.|3| right).

Lemma C.1 (Paths — seams). Let g: Z — X be ci.dae., 2% € Zee, 1 € {1,...,d}, and let Vi*
be the i-th s.v. path through z*. Then the image of Vi, under g is the i-th seam through g(z*):

g,z* {g( ) Zevl }

Proof. For xi=g(z}), by the chain rule and SVD: dm’ =J dt = J.:v'(2)) = s'(2}) u'(2}), s0

x satisfies Def.[4] O

Lemma 5.1 (Factorisation over seams). Let g: Z — X be c.i.d.a.e. and the prior factorise as

p(z) = Hle pi(2i) (e.g. standard Gaussian). Then, the manifold density p,, on M factorizes as
d

p#(g(z)) = H ’;",,-((Z")) , forevery 2 € Z,q4. @)

i=1
Moreover, each factor p‘((zz) is the 1-D density over the i-th seam ./\/l . at © = g(z), obtained by

pushing forward the 1-D marginal p;(z;) over Vi, the i-th s.v. path though .

Proof. By a standard change—of-variables (on embedded manifolds) and |J," J,| = 1_[Z L sH(2)%,

pu(9(2)) = det(J]J.) 2 p(z) = %, yielding Eq.[7}

For each i and = = ¢(z), the change—of—varlables formula along ./\/l . (¢-th seam through x with
coordinate u;, Def.[d) at ¢t = 0 gives the local pushed 1-D seam—denslty

i) = B () = sz, wi(0) =0, (14)

where ¢t +— 2! is the i-th singular—vector path through z (Def. ' with local co-ordinate z{(t).
Evaluating att = 0: f (z)( (0 )) B ((Z’) shows that seam-densities are the factors of Eq. I O

ZDifferent choices of sign for v° reverse the time direction (¢ — —t) but generate the same path set.

14



Under review as a conference paper at ICLR 2026

D APPENDIX: DISENTANGLEMENT AND IDENTIFIABILITY PROOFS

D.1 PROOF OF NON-LINEAR DISENTANGLEMENT

Theorem 5.2 (Disentanglement < C1-C2). Let g: Z — X be c.i.d.a.e. and the prior factorise

as p(z) = H?Zl pi(z:) (e.g. standard Gaussian). The push-forward density p, on the manifold
My={g(z)} is disentangled ( if and only if g satisfies C1 and C2 almost everywhere.

Proof. (C1/2=-D1) By Thm.|5.1} the manifold density factorises pointwise as p,,(d(z)) = Hle %

By C1, V, =1 for all z, so the :-th singular—vector path through z is exactly the axis—aligned line
{2 : [#']; varies, [2/]-; =[z]~;}; by[Lemma C.1|its image is the i-th seam through = g(z) following
u’. By C2, s*(z) depends only on z;. Define the seam coordinate u; along the i-th seam as in D4|
then u; is a strictly monotone function of z;, hence the 1-D push—forward of p; along that seam is

filuy) = |Z:l () = zjﬁjgzg,Thus pu(9(2)) = T1; fi(u;(2)) with each f; evaluated on the i-th
seam. Finally, since u; is monotone in z; and {z;} are independent, the random variables {u; } are
independent; hence factors { f;(u;)} are statistically independent as required by

(D1« C1/2) Assume p,, is disentangled under g. By each factor f; is obtained by pushing
forward p(z;) along an axis-aligned line indirection 2z, and the i-th seam follows J, 2% = J¢ at z
(column ¢ of J,). By factor independence (, only f; can change along the i-th seam, hence all
other factors must be orthogonal to J;, i.e. J, J, is diagonal or J, =U_ S, (C1). Since f; depends
on s°=[S.];; and only s’ can change along seam i, then gj; =0, i#j (C2). O

D.2 PROOF OF LINEAR VAE IDENTIFIABILITY

Corollary 6.1 (LVAE Identifiability). Ler data be generated under the linear Gaussian LVM Eq.
with ground-truth g(z) = Wz, W =Uy, Sw V., € R"™*4 of full column rank and distinct singular
values. Let an LVAE with diagonal posteriors be trained on n samples, and as n— o its learned
parameters yield pz"’ = pf) on the mean manifold. Then the LVAE achieves disentanglement (
and identifies ground-truth independent components on My up to permutation and sign (P&S).

Proof. (Ground truth) With jj=W z and u=U, ji= Sy, (V,, 2), then 2~ N (0, I') and orthonormal

Vi imply V) z ~ N(0,I), hence {u; = uy ;} are independent, u; ~ N(0, 53, ;) and pﬁ%) =
d

[Ty N (ui; 0,55, ).

(Model) Let d(z) = Dz with SVD D=U,S,V,| . For an LVAE, the Hessian term in Eq. E]is zero
and Assumption|[T]is trivially satisfied. Thus, by [Lemma 4.1] right singular paths are axis—aligned (C1,
note C2 is vacuous). Therefore, by the disentanglement theorem|Theorem 5.2|, pff) is disentangled
and factorizes into statistically independent components along the decoder’s seams (columns of
Up). Since up,; = sp,iz; and z; ~ N(0, 1), each seam factor is Gaussian with variance sfn, i.e.
d

pf) = [[iz1 N (up,i; 0, S2D,i)'

(Matching) Equality pf) = p(,f) and distinct {sy ;} imply uniqueness of the Gaussian product
decomposition, up to permutation. Thus the LVAE’s independent components (seam factors) match
ground-truth components up to permutation/sign, i.e. identifiability and disentanglement on M,. [
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D.3 PROOF OF GAUSSIAN VAE IDENTIFIABILITY

Lemma 6.3 (Intrinsic seams). Let M C X carry a manifold density p,,. Assume that on a regular
set Mg there exist scalar functions {u;(x)}?_, (each varying only along a 1-D curve through z,
i.e. a seam) and 1-D densities { fz} such that

pul(x H Silui(x T € Mieg, (®)

and that the on-manifold Hessian H, = VI log pu () has pairwise distinct eigenvalues a.e. on M eg.
Then for each x € Mg, the d seam directions (along which exactly one u; varies) are determined
intrinsically by p,,, as eigenvectors of H, unique up to permutation and sign (P&S).

Proof. For x € Mg, let ul, ... ,ud be unit tangent directions at x such that, along ut, only u;
varies locally while u;; remain constant, thus {u"} are orthonormal. Stack them as columns of
U, € R™*? and define seam coordinates u(x) = (uy(z), ..., uq(x)). Thus

Vulogp,(z) = Ul V. logp,(z), VZlogpu(r) = U} H, U,.
By Eq. logp,(z) = Zlelog fi(u;(z)), hence
o log filui(a)) (i =),
0 (@ #3),

i.e. V2 logp,(x) is diagonal, hence H, = U,/ [V} log p,(x)]U, is an eigendecomposition with
distinct eigenvalues (by assumption). Thus, u’ are eigenvectors of V2 log p,, () and are unique up to
P&S, as are seam directions following them.

[Vilogpu(@)],, =

Implication for identifiability. isolates the intrinsic geometry of p,,: once p,, is fixed,
the seams and their directions are fixed (P&S). Any Gaussian VAE decoder d matching p,, and
satisfying C1-C2 must therefore align its singular paths with those seams and inherit the same seam
factors.
Lemma 6.4 (A matching decoder finds seams). Under assumptions 0 letd: Z—X
be c.i.d.a.e. with factorised prior p(z) = [, pi(2:) and push-forward density pffi = p,, matching on
Mgy = {d(z)} = M. If d satisfies CI-C2 a.e., then for any z and x = d(z):

o left singular vectors U, of J coincide with the seam directions in[Lemma 6.3|(up to P&S);

* the images under d of singular-vector paths (D3)) are exactly the seams through x;

* along the i-th seam, the factor f; is the 1-D push-forward of p;(z;) (as in .

Proof. Since pLd) = p,, both induce the same H, = V2logp,(z). By and Cl1,

log p(z) = 324, (logp;(z;) — log si(z)), with s; depending only on z; by C2. Letting u = U, z,
the gradient along the manifold (on-manifold score) is given by

Ve Ingu(x) =U.V, Ingu(x)a [Vulogp“(x)]i = M(Z) 92 (logp7(zz) IOgSi(Z))'

Differentiating again along the manifold gives the on-manifold Hessian H,,

5, 02 [V Ingu( )] (i=74)

V2 logpyu(x) = U. [V log p,(z)| U, [Vilogpu(m)]u{o (i#7)

Hence,

H, = U, Diag(siz) %[VU logp#(x)]i) U’

is an eigendecomposition. With a simple spectrum, eigenvectors are unique up to P&S and coincide
with the intrinsic seam directions in|Lemma 6.3 By|[Lemma C.1| singular—vector paths map to seams;
and by the factor along seam i equals the 1-D push-forward of p;(z;). O

Note that both proofs adopt the same technique, but[Lemma 6.3|is entirely intrinsic to the manifold
(hence no mention of a Jacobian), whereas [Lemma 6.4]is with reference to a parameterisation of the
manifold by a function d.
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D.4 PROOF OF GAUSSIAN VAE IDENTIFIABILITY

Corollary D.1 (Gaussian VAE Identifiability). Lef data be generated by c.i.d.a.e. g : Z— X with
factorised prior p(z) = H?Zl pi(z;); let a Gaussian VAE with diagonal posteriors learn a decoder
d: Z— X. Suppose both g and d satisfy CI-C2 a.e. and manifold densities match, pLd): p&g ), on the
common manifold M ={g(z)}={d(2)}. If the tangent Hessian H, has a simple spectrum a.e., then

d identifies the ground-truth seam decomposition (independent components) of pl(Lg ), up to P&S.

Proof. (Matching U) Equality p,(f )= pr ) implies the same H,.. By , its eigenvectors are
intrinsic and unique (P&S), so Uz( ) = Uz(g ) (P&S, herein assume indices are relabelled to match).

(Matching S) In this common basis, under C1-C2, on-manifold scores are equal:
(Vulogp?)(@)]; = sl o (logmi(z) —logsi”(2)) = [Vulogp)(@)].,
hence integrating along seam 7 (with z—; fixed, using equality of p,, at a reference point to fix the

’”(Zl) match. Since p; is fixed, s( )—S(Q) ie. S{9=8W

5;

integration constant), 1-D seam factors

With Vz(d) = z(g =1 by C1, it follows that JZ( )= (‘7) and the seam decomposition is identified
up to P&S. O

E DISENTANGLEMENT METRICS

Axis alignment score (AAS): Given a matrix of mutual information values, between each latent
co-ordinate and each ground truth factor, one can normalise over rows or columns to compute a
“distribution” of mutual information.

The entropy of each distribution gives a measure of how narrowly or sparsely information about a
ground truth factor is captured across latents or the spread of information about each factor captured
by a single latent. In either case, a “high entropy” distribution means information is widely spread,
while low entropy means information about a factor is concentrated in a single latent, i.e. disentangled.

Entropy of the mutual information distribution can be computed row-wise or column-wise. AAS is a
holistic metric combining the intuitions of both options into a single, robust score that evaluates how
close matrix M is to a permuted diagonal form (zero entropy, perfect disentanglement).

In a perfectly disentangled MI matrix, the sum of peak values per row equals the sum of peak values
per column, and both equal the total sum of the matrix. AAS measures the ratio of the ”sum of peaks”
to the "total sum”:

sum_col_max = sum(max (mut_info, dim=0))
sum_row_max = sum(max (mut_info, dim=1)
aas = 0.5 * (sum_row_max + sum_col_max) / sum(mut_info)

Normalised off diagonal: For gradient terms (here, a d x d matrix M) we compute a measure of
diagonality by computing the ratios of normalised off-diagonal absolute values to on-diagonal values.

d = M.shape[1l]
num_off_diag = m x (m - 1)
M = abs (M)

= diag(M) " (-
mean_off_diag

=
|

0.5) » M » diag(M) " (-0.5) # normalise
= (sum(M) - sum(diag(M))) / num_off_diag
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F REDUCING /3 OVER TRAINING

TRAIN TEST

(a) B=1: good disentanglement, blurry reconstructions.

SAMPLES

sssss

[ [wfwlala]e]elelelelelelelo ol [oo0-0-0 & o
(e[ [e el ]eolofee]elelelaeelefelo [ [N8

(b) B=1073: no clear disentanglement, good reconstructions.

SAMPLES

(c) B=1: good dlsentanglement good reconstructlons

(d) Traversals from a random test sample

Figure 7: Testing the 5-hypothesis: (top) high /5 (1) gives best disentanglement (see heatmap) but
blurry images (see top rows); (mid) low 5 (0.001) gives poor disentanglement but good reconstruc-
tions; (bottom) lowering (3 over training (1 —0.001) gives good disentanglement (see heatmap) and
good reconstructions.
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G MATERIAL ERRORS IN REIZINGER ET AL.|(2022)

We note what appear to be several fundamental mathematical errors in the proof of Theorem 1
in |Reizinger et al. (2022) rendering it invalid. Theorem 1 claims an approximation to the exact
relationship given in Eq. []

1. p.33, after “triangle inequality”:

E[lal2[b2]| < E[la-b]2], where a=a—f, b=- 3 &

* (dropping expectations for clarity) this has the form |||a? — ||b]|?| < |la — b]|? (*)
* true triangle inequality: [[|a]|—[|b]|| < [la—b] == [lla[|=[|b][|* < [la—b]|* (by squaring)
— this differs to (*) since norms are squared inside the absolute operator on the L.H.S.
e counter-example to (*): b=z >0, a=z+l = ||a|*—|]b]|?| = [22+1] > 1 = |a—b|?
2. next step, p.33:  Ell[(c—e) — (d—e)||?] < E[llc—e|® + ||d—e||?] where c=1x, d=
F) =X gLy e= 1)

* this has the form of the standard triangle inequality ||a—b|| < |la||+]|b|| except all norms are
squared.

* squaring both sides of the triangle inequality gives an additional cross term on the right that
the used inequality omits, without which the inequality does not hold in general.

3. first step, p.34: drops the K term, which bounds the decoder Hessian and higher derivatives (in
earlier Taylor expansion)

* this omission is similar to a step in|[Kumar & Poole|(2020) but is not stated, e.g. in Assumption
1.

* since K is unbounded, any conclusion omitting it without justification is not valid in general.

H THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used to assist drafting this paper as follows:
 general review for errors, inconsistencies and readability;
* verifying proofs, generating code snippets or identifying code errors;

e creating figure 1.
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