

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 559 560 561 562 563 564 565 566 567 568 569 569 570 571 572 573 574 575 576 577 578 579 579 580 581 582 583 584 585 586 587 588 589 589 590 591 592 593 594 595 596 597 598 599 599 600 601 602 603 604 605 606 607 608 609 609 610 611 612 613 614 615 616 617 618 619 619 620 621 622 623 624 625 626 627 628 629 629 630 631 632 633 634 635 636 637 638 639 639 640 641 642 643 644 645 646 647 648 649 649 650 651 652 653 654 655 656 657 658 659 659 660 661 662 663 664 665 666 667 668 669 669 670 671 672 673 674 675 676 677 678 679 679 680 681 682 683 684 685 686 687 688 689 689 690 691 692 693 694 695 696 697 698 699 699 700 701 702 703 704 705 706 707 708 709 709 710 711 712 713 714 715 716 717 718 719 719 720 721 722 723 724 725 726 727 728 729 729 730 731 732 733 734 735 736 737 738 739 739 740 741 742 743 744 745 746 747 748 749 749 750 751 752 753 754 755 756 757 758 759 759 760 761 762 763 764 765 766 767 768 769 769 770 771 772 773 774 775 776 777 778 779 779 780 781 782 783 784 785 786 787 788 789 789 790 791 792 793 794 795 796 797 798 799 799 800 801 802 803 804 805 806 807 808 809 809 810 811 812 813 814 815 816 817 818 819 819 820 821 822 823 824 825 826 827 828 829 829 830 831 832 833 834 835 836 837 838 839 839 840 841 842 843 844 845 846 847 848 849 849 850 851 852 853 854 855 856 857 858 859 859 860 861 862 863 864 865 866 867 868 869 869 870 871 872 873 874 875 876 877 878 879 879 880 881 882 883 884 885 886 887 888 889 889 890 891 892 893 894 895 896 897 898 899 899 900 901 902 903 904 905 906 907 908 909 909 910 911 912 913 914 915 916 917 918 919 919 920 921 922 923 924 925 926 927 928 929 929 930 931 932 933 934 935 936 937 938 939 939 940 941 942 943 944 945 946 947 948 949 949 950 951 952 953 954 955 956 957 958 959 959 960 961 962 963 964 965 966 967 968 969 969 970 971 972 973 974 975 976 977 978 979 979 980 981 982 983 984 985 986 987 988 989 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1098 1099 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1198 1199 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1298 1299 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1398 1399 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1498 1499 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1598 1599 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1698 1699 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1798 1799 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1898 1899 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1909 1910 1911 1912 1913 1914 1915 1916 19

Figure 1: **Disentanglement: full vs diagonal posteriors (Σ_x).** Right singular vectors $\mathbf{v}^i \in \mathcal{Z}$ (blue) of the decoder’s Jacobian define *singular vector paths* (dashed blue); left singular vectors \mathbf{u}^i define *seams* (dashed red). 1-D densities over seams factorise the manifold density. (**left**) with full posteriors, s.v. paths are not axis-aligned; the axis-traversal image in \mathcal{X} (green) does *not* follow the seam. (**right**) under C1-C2 induced by diagonal posteriors, s.v. paths axis-align and the traversal image *follows the seam everywhere*, and 1-D densities over seams are independent, achieving disentanglement (D1).

2 BACKGROUND

Notation: Let $x \in \mathcal{X} \doteq \mathbb{R}^m$, $z \in \mathcal{Z} \doteq \mathbb{R}^d$ denote data and latent variables ($d \leq m$). For continuous $g: \mathcal{Z} \rightarrow \mathcal{X}$ differentiable at z , let \mathbf{J}_z denote its Jacobian evaluated at z ($[\mathbf{J}_z]_{ij} = \frac{\partial x_i}{\partial z_j}$) with singular value decomposition (SVD) $\mathbf{J}_z = \mathbf{U}_z \mathbf{S}_z \mathbf{V}_z^\top$ ($\mathbf{U}_z^\top \mathbf{U}_z = \mathbf{I}$, $\mathbf{V}_z^\top \mathbf{V}_z = \mathbf{V}_z \mathbf{V}_z^\top = \mathbf{I}$).¹ Let $s^i \doteq S_{ii}$ denote the i^{th} singular value, and $\mathbf{u}^i/\mathbf{v}^i$ the i^{th} left/right singular vectors (columns of \mathbf{U}/\mathbf{V}). We consider continuous, injective functions g differentiable *a.e.* (abbreviated **c.i.d.a.e.**), which, e.g., admit ReLU networks. Such g define a d -dimensional *manifold* $\mathcal{M}_g = \{g(z) \mid z \in \mathcal{Z}\}$ embedded in \mathcal{X} (see Fig. 3). Since g is injective, there exists a bijection between \mathcal{Z} and \mathcal{M}_g ; and \mathbf{J}_z has full-rank, where defined.

Latent Variable Model (LVM): We consider the generative model $p_\theta(x) = \int_z p_\theta(x|z)p(z)$ with independent z_i . For tractability, parameters θ are typically learned by maximising a lower bound (**ELBO**)

$$\int_x p(x) \log p_\theta(x) \geq \int_x p(x) \int_z q_\phi(z|x) \left(\log p_\theta(x|z) - \beta \log \frac{q_\phi(z|x)}{p(z)} \right), \quad (1)$$

where $\beta = 1$ and $q_\phi(z|x)$ learns to approximate the model posterior, $q_\phi(z|x) \rightarrow p_\theta(z|x) \doteq \frac{p_\theta(x|z)p(z)}{p_\theta(x)}$.

Variational Autoencoder (VAE): A VAE parameterises Eq. 1 with neural networks: a *decoder* network $d(z)$ parameterises the likelihood $p_\theta(x|z)$; and an *encoder* network parameterises the typically Gaussian posteriors $q_\phi(z|x) = \mathcal{N}(z; e(x), \Sigma_x)$ with *diagonal* Σ_x . The prior $p(z)$ is typically a standard Gaussian. We refer to a VAE with Gaussian likelihood $p_\theta(x|z) \doteq \mathcal{N}(x; d(z), \sigma^2 \mathbf{I})$ as a **Gaussian VAE** and to a Gaussian VAE with linear decoder $d(z) = \mathbf{D}z$, $\mathbf{D} \in \mathbb{R}^{m \times d}$ as a **linear VAE**.

Disentanglement: While not well defined, disentanglement typically refers to associating distinct semantically meaningful features of the data with distinct latent co-ordinates z_i , such that data generated by varying a single z_i differ in a single semantic feature (Bengio et al., 2013; Higgins et al., 2017; Ramesh et al., 2018; Rolinek et al., 2019; Shu et al., 2019). While samples from a VAE exhibit disentanglement, setting $\beta > 1$ (a β -VAE) often enhances the effect, although at a cost to generative quality, e.g. blurrier images (Higgins et al., 2017; Burgess et al., 2018). Disentanglement relates closely to independent component analysis (**ICA**), which aims to recover statistically independent components of the data under the same LVM but with a deterministic observation model, $p_\theta(x|z) = \delta_{x-d(z)}$.

Probabilistic PCA (PPCA) (Tipping & Bishop, 1999) considers a linear Gaussian LVM

$$p(x|z) = \mathcal{N}(x; \mathbf{W}z, \sigma^2 \mathbf{I}) \quad p(z) = \mathcal{N}(z; \mathbf{0}, \mathbf{I}) \quad (2)$$

where $\mathbf{W} \in \mathbb{R}^{m \times d}$ and $\sigma \in \mathbb{R}$.² The exact posterior $p(z|x)$ and MLE parameter \mathbf{W}_* are fully tractable:

$$p(z|x) = \mathcal{N}(z; \frac{1}{\sigma^2} \mathbf{M} \mathbf{W}^\top x, \mathbf{M}), \quad \mathbf{M} = (\mathbf{I} + \frac{1}{\sigma^2} \mathbf{W}^\top \mathbf{W})^{-1}; \quad \mathbf{W}_* = \mathbf{U}_x (\mathbf{\Lambda}_x - \sigma^2 \mathbf{I})^{1/2} \mathbf{R} \quad (3)$$

where $\mathbf{\Lambda}_x \in \mathbb{R}^{d \times d}$, $\mathbf{U}_x \in \mathbb{R}^{m \times d}$ contain the largest eigenvalues and respective eigenvectors of the covariance $\mathbf{X} \mathbf{X}^\top$; and $\mathbf{R} \in \mathbb{R}^{d \times d}$ is orthonormal ($\mathbf{R}^\top \mathbf{R} = \mathbf{I}$). As $\sigma^2 \rightarrow 0$, \mathbf{W}_* approaches the SVD of the data matrix $\mathbf{X} = \mathbf{U}_x \mathbf{\Lambda}_x^{1/2} \mathbf{V}_x^\top \in \mathbb{R}^{m \times n}$, up to \mathbf{V}_x (classical PCA). The model is *unidentified* since \mathbf{R} is arbitrary, allowing uncountably infinite solutions. While \mathbf{W}_* can be computed analytically, it can also be learned by maximising the ELBO (Eq. 1): letting $p_\theta(x|z) = \mathcal{N}(x; \mathbf{D}z, \sigma^2 \mathbf{I})$ and iteratively computing the optimal posterior (Eq. 3, left) and maximising w.r.t. \mathbf{D} (we refer to this as **PPCA^{EM}**).

¹To lighten notation, explicit dependence of \mathbf{U} , \mathbf{V} , \mathbf{S} , \mathbf{u}^i , \mathbf{v}^i , s^i on z is often suppressed where context is clear.

²We assume that data is centred, which is equivalent to including a mean parameter (Tipping & Bishop, 1999).

Figure 2: **An LVAE breaks rotational symmetry.** (l) both full- Σ_x and diagonal- Σ_x VAEs fit the data, i.e. learn ground truth parameters U_*, S_* (all losses $\rightarrow 0$); (r) only in diagonal- Σ_x VAEs do right singular vectors of the Jacobian, $\mathbf{v}^i \in \mathcal{Z}$, align with standard basis vectors \mathbf{z}_i , i.e. $\mathbf{V}_* \rightarrow \mathbf{I}$ (blue plots $\rightarrow 0$); (r) images of \mathbf{z}_i : full- Σ_x VAEs map \mathbf{z}_i to arbitrary directions (red), but diagonal- Σ_x VAEs learn (later epochs darker) to map \mathbf{z}_i to the data’s independent components (black, i.e. blue \rightarrow black).

Linear VAE: An LVAE assumes the same linear LVM as PPCA (Eq. 2) and models the likelihood $p_\theta(x|z) = \mathcal{N}(x; \mathbf{D}z, \sigma^2 \mathbf{I})$ as in PPCA^{EM} , differing only in approximating the posterior by $q_\phi(z|x) = \mathcal{N}(z; \mathbf{E}x, \Sigma)$, rather than computing the optimal $p_\theta(z|x)$. Surprisingly though, an LVAE with *diagonal* posterior covariances loses the rotational ambiguity of PPCA (Lucas et al., 2019), since

$$\Sigma_* \stackrel{(3(l))}{=} (\mathbf{I} + \frac{1}{\sigma^2} \mathbf{W}_*^\top \mathbf{W}_*)^{-1} \stackrel{(3(r))}{=} \sigma^2 \mathbf{R}^\top \Lambda_x^{-1} \mathbf{R}. \quad (4)$$

Thus for Σ to be optimal *and* diagonal, \mathbf{R} must belong to a finite set of signed permutations, hence the optimal decoder $\mathbf{D}_* = \mathbf{U}_x (\Lambda_x - \sigma^2 \mathbf{I})^{1/2}$ is unique up to permutation/sign (see Fig. 2). We will see that this effect, due to diagonal posterior covariances, is in fact (linear) *disentanglement* (§3).

Further notation: Under the LVM above, we define a deterministic **generative function** $g: \mathcal{Z} \rightarrow \mathcal{X}$ as the map from latent variables to means $g(z) = \mathbb{E}[x|z]$, that lie on a manifold $\mathcal{M}_g = \{g(z)\} \subseteq \mathcal{X}$ (**mean manifold**) with push-forward density $p_\mu = g_\# p_z$ (**manifold density**). We will focus on Gaussian VAEs, where the data density $p(x)$ is given by adding Gaussian noise to p_μ , i.e. convolving it with a Gaussian kernel. It is known that such data densities match if and only if their manifold densities p_μ match (e.g. Khemakhem et al., 2020), hence we focus on the manifold density p_μ .

3 DISENTANGLEMENT

We now define disentanglement; illustrate it for the linear case, justifying our disentanglement claim for LVAEs in §2; and work up to explaining how it arises in a (non-linear) Gaussian VAE. (See Fig. 1)

Definition D1 (Disentanglement). Let $g: \mathcal{Z} \rightarrow \mathcal{X}$ be c.i.d.a.e.. We say p_μ is **disentangled** if, for each $z \in \mathcal{Z}$, there exist 1-D densities $\{f_i\}$ such that p_μ factorises as

$$p_\mu(g(z)) = \prod_{i=1}^d f_i(u_i(z)), \quad (5)$$

where each factor f_i is the 1-D push-forward of $p(z_i)$ along the axis-aligned line obtained by moving in the i -th latent coordinate while keeping all others fixed; u_i is the co-ordinate of $g(z)$ along the image of that line; and random variables $\{u_i(z)\}$ are mutually independent under $z \sim p(z)$.

D1 defines disentanglement as factorisation of the pushforward density p_μ into 1-D factors, precisely the distributional independence expected when “changing one factor leaves the others unaffected.”

LVAE disentanglement: Consider an LVAE with diagonal posterior covariance Σ and decoder $d(z) = \mathbf{D}z$, $\mathbf{D} \in \mathbb{R}^{m \times d}$ (§2). The mean manifold $\mathcal{M}_d = \{\mu = \mathbf{D}z \mid z \in \mathcal{Z}\}$ is linear with Gaussian density $p_\mu = \mathcal{N}(\mu; \mathbf{0}, \mathbf{D}\mathbf{D}^\top)$ (e.g. see Fig. 2, right). From §2, the SVD of the data matrix defines the optimal decoder $\mathbf{D}_* = \mathbf{U}_* \mathbf{S}_* \mathbf{V}_*$ (i.e. $\mathbf{U}_* \doteq \mathbf{U}_x$, $\mathbf{S}_* \doteq (\Lambda_x - \sigma^2 \mathbf{I})^{1/2}$ and $\mathbf{V}_* = \mathbf{R} = \mathbf{I}$ due to diagonal Σ). As for any Gaussian, p_μ factorises as a product of independent 1-D Gaussians along eigenvectors of its covariance $\mathbf{D}_* \mathbf{D}_*^\top = \mathbf{U}_* \mathbf{S}_*^2 \mathbf{U}_*^\top$, i.e. columns \mathbf{u}^i of \mathbf{U}_* , hence $p_\mu = \prod_i \mathcal{N}(u_i; 0, s^{i2})$ where $u_i \doteq \mathbf{u}^{i\top} \mu \in \mathbb{R}$. Since $u_i = \mathbf{u}^{i\top} \mathbf{D}_* z = s^i z_i$, each u_i depends *only* on a distinct z_i , a co-ordinate in the standard basis of \mathcal{Z} (over which densities are independent 1-D Gaussian). Thus:

- p_μ factorises as a product of independent push-forward densities $f_i(\mu) = \mathcal{N}(\mathbf{u}^{i\top} \mu; 0, s^{i2})$; and
- the decoder maps each axis-aligned direction z_i to a distinct factor f_i ,

162 satisfying D1. Note that synthetic data $\mu = \mathbf{D}z$ generated by re-sampling z_i , holding $z_{j \neq i}$ constant,
 163 differ only in component (or ‘‘feature’’) u_i , agreeing with the common perception of disentanglement.
 164

165 **Dropping diagonality:** To emphasise that disentanglement depends on diagonal posteriors, we
 166 consider *full* posterior LVAEs, where $\mathbf{R} \neq \mathbf{I}$ in general. The above argument follows except that
 167 columns \mathbf{r}^i of \mathbf{R} in \mathcal{Z} map to independent \mathbf{u}^i directions in \mathcal{X} . Meanwhile, standard basis vectors
 168 in \mathcal{Z} map in directions $\mathbf{u}^{i\top} \mathbf{R}$, which are arbitrary with respect to \mathbf{u}^i directions. Hence axis-aligned
 169 traversals in latent space correspond to several *entangled* components u_i changing in generated
 170 samples. We demonstrate this empirically in Fig. 2 (see caption for details).
 171

4 FROM DIAGONAL POSTERIORS TO DECODER CONSTRAINTS

173 Prior works draw a link between disentanglement in Gaussian VAEs and diagonal posteriors from an
 174 *approximate* relationship between optimal posteriors and decoder derivatives (Rolinek et al., 2019;
 175 Kumar & Poole, 2020). In fact, this relationship is *exact* by the Price/Bonnet Theorem and Opper &
 176 Archambeau (2009): the ELBO with Gaussian posteriors is optimised when their covariances satisfy

$$\Sigma_x^{-1} = \mathbf{I} - \frac{1}{\beta} \mathbb{E}_{q(z|x)} [\mathbf{L}_z(x)] \stackrel{*}{=} \mathbf{I} + \frac{1}{\beta\sigma^2} \mathbb{E}_{q(z|x)} [\mathbf{J}_z^\top \mathbf{J}_z - (x - d(z))^\top \mathbf{H}_z], \quad (6)$$

177 where $\mathbf{L}_z(x) = \nabla_z^2 \log p_\theta(x|z)$ is the log likelihood Hessian; and $\mathbf{J}_z \doteq \frac{dx}{dz}$ and $\mathbf{H}_z \doteq \frac{d^2x}{dz^2}$ are the
 178 Jacobian and Hessian of the decoder (all terms evaluated at $z \in \mathcal{Z}$). Step two (*) assumes the
 179 likelihood is Gaussian. Eq. 6 immediately generalises the classical linear result in Eq. 3 and relates
 180 $\sigma^2 \doteq \text{Var}[x|z]$ and $\Sigma_x \doteq \text{Var}[z|x]$, showing that (un)certainty in x and z go hand in hand, as expected.
 181

182 Importantly to disentanglement, Eq. 6 shows that diagonal Σ_x constrains derivatives of the decoder.
 183 In practice, the $\mathbf{J}_z^\top \mathbf{J}_z$ term *alone* is found to be approximately diagonal (Fig. 3, *left*) (Rolinek et al.,
 184 2019; Kumar & Poole, 2020), suggesting that *each* term diagonalises. **We thus formalise this as a**
 185 **property and consider its implications (C1-C2), which will prove equivalent to disentanglement:**

186 **Property P1.** $\mathbf{J}_z^\top \mathbf{J}_z$ and $(x - d(z))^\top \mathbf{H}_z$ in Eq. 6 are *each* diagonal for z concentrated around $\mathbb{E}[z|x]$.
 187

188 **Lemma 4.1 (Disentanglement constraints).** *For a trained Gaussian VAE and x, z satisfying P1:*

189 **C1)** *Right singular vectors \mathbf{V}_z of the decoder Jacobian \mathbf{J}_z are standard basis vectors, i.e. after
 190 relabeling/sign flips of the latent axes, we have $\mathbf{V}_z = \mathbf{I}$;*

191 **C2)** *The matrix of partial derivatives of singular values $(\frac{\partial s_i}{\partial z_j})_{i,j}$ is diagonal, i.e. $\frac{\partial s_i}{\partial z_j} = 0$ for all $i \neq j$.*

192 *Proof.* See Appendix A. **C1** follows from the SVD of \mathbf{J}_z ; **C2** from observing that directions $r(z) =$
 193 $x - d(z) \in \mathcal{X}$ of the directed Hessian term are, to a first approximation, tangent to the manifold.
 194

195 **Why β affects disentanglement:** Setting $\beta > 1$ in Eq. 1 is found to enhance disentanglement
 196 (Higgins et al., 2017; Burgess et al., 2018). We show that β implicitly controls the likelihood variance
 197 in Appendix B and thus $\beta > 1$ dilates posteriors (while the β -ELBO remains a valid objective). We
 198 will show that C1-C2 equate to disentanglement (§5), thus Eq. 6 suggests a rationale for why $\beta > 1$
 199 enhances disentanglement: it broadens the regions (i.e. posteriors) over which decoder derivatives are
 200 diagonalised, hence where disentanglement constraints C1-C2 are encouraged; also increasing the
 201 overlap of posteriors where multiple constraints apply simultaneously (see Fig. 6, *right*).
 202

5 FROM DECODER CONSTRAINTS TO DISENTANGLEMENT

203 To see how disentanglement relates to constraints C1-C2, defined in terms of the Jacobian SVD of
 204 the generative function g (or decoder d), we consider the Jacobian SVD in detail.
 205

206 **The Jacobian SVD:** For $\mathbf{J}_z = \mathbf{U} \mathbf{S} \mathbf{V}^\top$, singular vectors (columns of \mathbf{V} , \mathbf{U}) respectively define
 207 (local) orthonormal bases: the **V -basis**, $\{\mathbf{v}^i\}$ for \mathcal{Z} at z ; and the **U -basis**, $\{\mathbf{u}^i\}$ for the tangent space
 208 to \mathcal{M}_g at $x = g(z)$. Letting $v \doteq \mathbf{V}^\top z$ and $u \doteq \mathbf{U}^\top x$ denote a point z and its image $x = g(z)$ in those
 209 bases, the chain rule gives an interpretation of the Jacobian’s SVD, $\mathbf{J}_z = \mathbf{U} \mathbf{S} \mathbf{V}^\top = \frac{\partial x}{\partial u} \frac{\partial u}{\partial v} \frac{\partial v}{\partial z}$: \mathbf{U} and
 210 \mathbf{V}^\top are simply local co-ordinate systems in each domain, and $\mathbf{S} = \frac{du}{dv}$ is the Jacobian of a map $v \mapsto u$
 211 expressed in those co-ordinates, under which *only respective dimensions interact* ($\frac{\partial u_i}{\partial v_j} = 0$, $i \neq j$).
 212

213 **Singular Vector Paths and Seams:** The directional derivative $\mathbf{J}_z \mathbf{v}^i = \mathbf{U} \mathbf{S} \mathbf{V}^\top \mathbf{v}^i = s^i \mathbf{u}^i$ shows that
 214 a small perturbation by right singular vector \mathbf{v}^i at $z \in \mathcal{Z}$ translates under g to a small perturbation in
 215

Figure 4: **Pushing forward $p(z)$, from singular vector paths to seams:** 1-D marginals $p_i(z_i)$ over s.v. paths $\mathcal{V}_{z^*}^{(i)}$ (dashed blue) factorise $p(z)$; and push-forward to 1-D seam densities over *seams* $\mathcal{M}_{f,z^*}^{(i)}$ (dashed red) that factorise p_μ (Lemma 5.1). (*left*) For linear f without **C1** (e.g. full- Σ_x LVAE), $\mathcal{V}_{z^*}^{(i)}$ are straight lines but need not axis-align (as shown in Fig. 2, *right*). (*right*) For c.i.d.a.e. f satisfying **C1-C2** (e.g. Gaussian VAE under P1), $\mathcal{V}_{z^*}^{(i)}$ are axis-aligned (by C1) and seam densities are independent components (by C2) that factorise p_μ . (Criteria for disentanglement (D1) are underlined.)

Thus, to the extent a Gaussian VAE with diagonal posteriors induces property P1 by Eq. 6, it expressly disentangles the decoder’s push-forward density; and to the extent disentanglement is observed, diagonalisation constraints **C1-C2** must hold. This provides a firm justification for how disentanglement emerges in VAEs, while the relationship between Eq. 6 and constraints C1-C2 also suggests a plausible rationale for why disentanglement arises inconsistently (Locatello et al., 2019).

6 IDENTIFIABILITY

We now investigate if a model, capable of fitting the data (i.e. data is generated under the model class), learns the *true* generative factors up to some symmetry, or could settle on a spurious factorisation.

Corollary 6.1 (LVAE Identifiability). *Let data be generated under the linear Gaussian LVM Eq. 2 with ground-truth $g(z) = \mathbf{W}z$, $\mathbf{W} = \mathbf{U}_w \mathbf{S}_w \mathbf{V}_w^\top \in \mathbb{R}^{m \times d}$ of full column rank and distinct singular values. Let an LVAE with diagonal posteriors be trained on n samples, and as $n \rightarrow \infty$ its learned parameters yield $p_\mu^{(d)} \equiv p_\mu^{(s)}$ on the mean manifold. Then the LVAE achieves disentanglement (D1) and identifies ground-truth independent components on \mathcal{M}_g up to permutation and sign (P&S).*

Proof. See Appendix D.2 (Follows from the uniqueness of the SVD). \square

Thus, if an LVAE learns to model the data, it learns the ground truth independent factors.

Remark 6.2 (V_w immaterial). Ground-truth right singular vectors \mathbf{V}_w are not recoverable from $p(x)$ under the PPCA/LVAE model; this is *not* a lack of identification. With a standard Gaussian prior, any orthonormal change of basis of z preserves independence and leaves $p(x)$ unchanged. The only data-relevant object is $\mathbf{U}_w \mathbf{S}_w$; the arbitrary basis in which \mathbf{W} was written has no bearing on $p(x)$.

The linear case hints at why independent factors may be identifiable more generally, since it depends on the Jacobian SVD, fundamental to the non-linear case. Taking this hint, we show that if a manifold density admits a seam factorisation (as in Lemma 5.1), that seam factorisation is unique (P&S) and *intrinsic* to p_μ , agnostic to any generative process or parameterisation. It follows that if the push-forward of a decoder fits p_μ , then its seams must align with the intrinsic seams of p_μ (P&S); and subsequently that a Gaussian VAE fitting p_μ *identifies ground truth factors* (P&S). (Proofs in D.3)

Lemma 6.3 (Seams are Intrinsic). *Let $\mathcal{M} \subseteq \mathcal{X}$ carry a manifold density p_μ . Assume that on a regular set \mathcal{M}_{reg} there exist scalar functions $\{u_i(x)\}_{i=1}^d$ (each varying only along a 1-D curve through x , i.e. a seam) and 1-D densities $\{f_i\}$ such that*

$$p_\mu(x) = \prod_{i=1}^d f_i(u_i(x)), \quad x \in \mathcal{M}_{\text{reg}}, \quad (8)$$

and that the on-manifold Hessian $\mathbf{H}_x \doteq \nabla_x^2 \log p_\mu(x)$ has pairwise distinct eigenvalues a.e. on \mathcal{M}_{reg} . Then for each $x \in \mathcal{M}_{\text{reg}}$, the d seam directions (along which exactly one u_i varies) are determined intrinsically by p_μ , as eigenvectors of \mathbf{H}_x , unique up to permutation and sign (P&S).

324 **Lemma 6.4 (A matching decoder finds seams).** *Under assumptions of Lemma 6.3, let $d : \mathcal{Z} \rightarrow \mathcal{X}$
325 be c.i.d.a.e. with factorised prior $p(z) = \prod_i p_i(z_i)$ and push-forward density $p_\mu^{(d)} \equiv p_\mu$ matching on
326 $\mathcal{M}_d \doteq \{d(z)\} = \mathcal{M}$. If d satisfies **C1–C2** a.e., then for any z and $x = d(z)$:*

- 328 • left singular vectors \mathbf{U}_z of \mathbf{J}_z coincide with the seam directions in Lemma 6.3 (up to P&S);
329 • the images under d of singular-vector paths (D3) are exactly the seams through x ;
330 • along the i -th seam, the factor f_i is the 1-D push-forward of $p_i(z_i)$ (as in Lemma 5.1).

331 **Theorem 6.5 (Gaussian VAE Identifiability).** *Let data be generated by c.i.d.a.e. $g : \mathcal{Z} \rightarrow \mathcal{X}$ with
332 factorised prior $p(z) = \prod_{i=1}^d p_i(z_i)$. Let a Gaussian VAE with diagonal posteriors learn a decoder
333 $d : \mathcal{Z} \rightarrow \mathcal{X}$. Suppose both g and d satisfy **C1–C2** and manifold densities match: $p_\mu^{(d)} \equiv p_\mu^{(g)}$ on
334 $\mathcal{M} = \{g(z)\} = \{d(z)\}$. If, eigenvalues of the tangent Hessian (see proof) are pairwise distinct a.e.,
335 then d identifies ground-truth independent components on \mathcal{M}_g , up to permutation and sign (P&S).*

336 Thus, if a Gaussian VAE fits the push-forward of a Gaussian distribution under the conditions of 5.2,
337 then the VAE identifies and disentangles the ground truth generative factors (up to permutation/sign).

339 *Remark 6.6.* P&S symmetry is optimal since seams follow \mathbf{u}_i , with no inherent order or orientation.

340 We can also consider fitting a Gaussian VAE to data sampled from the push-forward of other priors.

341 **Corollary 6.7 (BSS).** *In Theorem 6.5, if priors $p^{(g)}(z)$ and $p^{(d)}(z)$ factorise and $p_\mu^{(g)} \equiv p_\mu^{(d)}$ with
342 C1–C2 holding a.e., then the seam decomposition p_μ on \mathcal{M} is unique up to permutation and sign,
343 and g and $p^{(g)}(z)$ are recoverable up to an axis-aligned diffeomorphism $\phi \doteq g^{-1} \circ d : \mathcal{Z} \rightarrow \mathcal{Z}$.*

344 *Proof.* Immediate from proof of Theorem 6.5, which does not depend on the form of $p(z)$. The
345 diffeomorphism follows since $\mathcal{M}_g = \mathcal{M}_d$ and by injectivity of d , g . \square

346 *Remark 6.8 (Gaussian $p(z)$ unidentifiability).* Classical non-linear ICA aims to identify ground
347 factors of the model in Theorem 6.5 with deterministic $p_\theta(x|z) = \delta_{x-d(z)}$, which is impossible
348 if $p(z)$ is Gaussian (Khemakhem et al., 2020; Locatello et al., 2019). Corollary 6.1 and Theorem 6.5
349 show that under a probabilistic formulation together with constraints C1–C2 induced by diagonal
350 posteriors, we obtain identifiability without requiring extra side information, e.g. auxiliary variables.⁵

351 In summary, we have defined disentanglement, shown that it holds if and only if C1–C2 hold, and
352 that seam factors are unique and therefore identifiable, up to expected symmetry.

353 7 EMPIRICAL SUPPORT

354 We include empirical results to illustrate disentanglement and support our claims. From our analysis,
355 we expect (i) diagonal posteriors to promote diagonalised derivative terms; and (ii) diagonalised
356 derivatives to correlate with disentanglement.

357 Both (i) and (ii) are well illustrated in the linear case where ground truth factors are known analytically.
358 Fig. 2 shows results for diagonal and full covariance LVAEs learning Gaussian parameters (see caption
359 for details). All models learn optimal parameters as expected (*left*); but, as (i) predicts, only diagonal
360 covariances cause right singular vectors of \mathbf{J}_z to converge to standard basis vectors, $\mathbf{V} \rightarrow \mathbf{I}$ (**C1**),
361 (*centre*); hence latent traversals map to independent components along left singular vectors \mathbf{u}^i (*right*),
362 yielding disentanglement (D1), predicted by (ii). This evidences diagonal covariances “breaking the
363 rotational symmetry” of a Gaussian prior. While the linear case seems trivial, it is a fundamental
364 demonstration since our analysis shows that disentanglement in general follows the same rationale.
365 Interestingly Fig. 3 shows that learning parameters a disentangled model is notably slower (*left*), due
366 to the rate at which $\mathbf{V} \rightarrow \mathbf{I}$ (*centre*). A diagonal covariance model must find one of a finite set of
367 solutions among the infinite solutions of a full covariance model.

368 Various studies show further empirical support. Supporting (i) and (ii), Rolinek et al. (2019) show that
369 columns of a decoder’s Jacobian are more orthogonal (i.e. $\mathbf{V} \rightarrow \mathbf{I}$, **C1**) in VAEs with diagonal posterior
370 than those with full posteriors (Fig. 3, *left*), and that diagonality correlates with disentanglement.
371 Supporting (ii), Kumar & Poole (2020) show that directly inducing column-orthogonality in the
372 decoder Jacobian promotes disentanglement.

373 ⁵Unidentifiability proofs typically make use of an arbitrary rotation applied to the Gaussian prior (*cf.* \mathbf{R} in Eq. 3),
374 but we have seen that C1 removes such symmetry, even in the linear case (Fig. 2). (See also Remark 6.2.)

Figure 5: **Diagonal vs Full Posteriors:** (left) (bottom) disentanglement metrics and estimated diagonality of Eq. 6 terms (see Appendix E). With diagonal posteriors, disentanglement and diagonality are correlated (supporting P1), relative to full posteriors; (top) heatmaps of mutual information between model latents and ground truth factors. (right) derivatives in Eq. 6. terms are less diagonal for lower beta or full posteriors. (All results averaged over multiple runs)

Complementing prior work, we train diagonal and full posterior Gaussian VAEs ($d = 10$) on the *dSprites* dataset, for which the 5 ground truth generative factors are known (all results averaged over 5 runs). How well each latent co-ordinate identifies a ground truth factor can be estimated explicitly from their *mutual information*, and a function of mutual information often captures a model’s overall disentanglement, e.g. the *mutual information gap* (MIG, Chen et al. (2018)). Fig. 5 (main plots) reports MIG, *axis alignment score* (AAS) (a novel metric based on the entropy of the mutual information distribution) and derivative diagonality estimates against β (see Appendix E for details). For diagonal posterior VAEs (left), disentanglement and diagonality both broadly increase with β . For full posteriors (right) no clear trend is observed. The heatmaps above (aligned with plots by β) show mutual information between each latent co-ordinate and ground truth factor (ordered greedily to put highest mutual information scores along the diagonal). We see that for diagonal posterior VAEs, disentanglement increases with β and that individual latent co-ordinates (horizontal) correlate with distinct ground truth factors (vertical), whereas that trend is not observed for full posteriors. For illustration, Fig. 5 (right) shows heatmaps of the $d \times d$ derivative terms in Eq. 6 ($J_z^\top J_z$ term top, Hessian term bottom), each for diagonal covariances, $\beta = 1$ (l); diagonal covariances, $\beta = 0.001$ (c); and full covariances, $\beta = 1$ (r) (each averaged over a batch). We perform comparable analysis on the CelebA dataset of natural face images, reported in Appendix F.

Our understanding of the interplay between β and disentanglement is that higher β implies higher expected noise, weakening reconstructions but enhancing disentanglement; while lower β (less assumed noise) tightens reconstructions but limits disentanglement to concentrated, potentially disconnected regions of \mathcal{Z} (§4). This suggests that the *heuristic* of starting with β high and reducing it over training may give both disentangled and higher quality samples. We run experiments on the *dSprites* dataset and report results in Appendix G for constant β baselines (1, 0.001), and exponentially reducing β ($1 \rightarrow 0.001$) over training. The results are as expected results, showing that annealing β gives both sharp reconstructions and good disentanglement. Noting also the resemblance to the “de-noising” process in denoising autoencoders and diffusion models, this suggests that dynamically varying β is an interesting direction for future research.

8 RELATED WORK

Higgins et al. (2017) showed that disentanglement in VAEs is enhanced by setting $\beta > 1$ in the (β) -ELBO (Eq. 1). Burgess et al. (2018) conjectured that diagonal posterior covariances may cause disentanglement. Rolinek et al. (2019) showed supporting empirical evidence (Fig. 3) and derived an approximate relationship between diagonal posteriors and Jacobian orthogonality, conjectured to then cause disentanglement. Kumar & Poole (2020) generalised the argument, reaching an approximation to the identity in Eq. 6. **We make the link between posterior covariances and decoder derivatives precise in Eq. 6 and, by giving disentanglement a formal definition, show how it follows from Eq. 6 via constraints C1-C2, confirming the conjecture.**

Lucas et al. (2019); Bao et al. (2020) and Koehler et al. (2022) study properties of linear VAEs. Notably Lucas et al. (2019) show the equivalence of β and $\text{Var}[x|z]$ in Gaussian VAEs, **which we generalise in Appendix B**; and prove identifiability of LVAEs, **which we generalise to the non-linear case**. Zietlow et al. (2021) show that disentanglement can be sensitive to perturbing the data. Reizinger

432 et al. (2022) seek to relate the ELBO to *independent mechanism analysis* (Gresele et al., 2021),
 433 which encourages column-orthogonality in the mixing function of ICA.⁶ We show that Jacobian
 434 orthogonality (**C1**) is insufficient for disentanglement/identification of independent components,
 435 which also requires (**C2**). **VAEs relate closely to ICA (§2) and noisy ICA (Hyvärinen, 1998).** The
 436 latter assumes the same generative model but does not model the posterior, which we show is the
 437 critical factor for disentanglement.

438 Ramesh et al. (2018) trace independent factors by following leading left singular vectors (our *seams*)
 439 of the Jacobian of a GAN generator, whereas Chadebec & Allassonnière (2022) and Arvanitidis et al.
 440 (2018) consider paths in latent space defined by the inverse image of paths over the data manifold (our
 441 *s.v. paths*). Pan et al. (2023) claim that the data manifold is identifiable from a geometric perspective
 442 assuming Jacobian-orthogonality, differing to our probabilistic factorisation approach. Bhowal et al.
 443 (2024) consider linear and non-linear components of the encoder/decoder, loosely resembling our
 444 Jacobian SVD view. However, dissecting a function into linear/non-linear components is not well
 445 defined, whereas the SVD is unique (up to permutation/sign). **Buchholz et al. (2022); Buchholz &**
 446 **Schölkopf (2025) analyse identifiability by function classes, e.g. proving that *conformal maps* are**
 447 **identifiable and *orthogonal coordinate transformations* (satisfying C1) are not.** By comparison, our
 448 **C1-C2** are derived with respect to disentanglement, which implies an intrinsic density factorisation,
 449 unique/identifiable up to symmetry (Thm 6.5). Brady et al. (2023); Lachapelle et al. (2023) analyze
 450 ***additive/compositional* decoders that have block-diagonal Hessians in pixel space, a strictly stronger**
 451 **condition than our Thm 5.2, which allows, e.g., rotations/scale/colour changes that would not be**
 452 **block-diagonal in pixel space.**

453 9 CONCLUSION

454 Unsupervised disentanglement of generative factors of the data is of fundamental interest in machine
 455 learning. Thus, irrespective of current popularity, understanding how a VAE disentangles the data
 456 *for free* may offer useful insight for other paradigms. We take significant strides in this respect, in
 457 particular proposing a simple, formal definition of disentanglement (D1) as factorising the manifold
 458 density into independent components, each factor being the image of an axis-aligned traversal in
 459 latent space. We also give a simple interpretation of β in a β -VAE, as adjusting the assumed variance
 460 of the likelihood (**generalising the known Gaussian case**), justifying both why $\beta > 1$ promotes
 461 disentanglement while degrading generative quality, and $\beta < 1$ mitigates *posterior collapse*.
 462

463 **Our key results (Definition 1, Lemma 5.1, Theorem 5.2, Lemma 6.3, Lemma 6.4, Theorem 6.5) are**
 464 **not specific to VAEs**, but are general to smooth push-forwards of a factorised prior, as also in GANs
 465 and flows. We show via a relatively simple mechanism, the decoder Jacobian's SVD, that under
 466 suitable conditions a push-forward density factorises. Indeed the factorisation in the latent space
 467 can be seen to project *en masse* onto the manifold, whereby independent densities over *singular*
 468 *vector paths* in latent space push-forward to independent densities over *seams* on the manifold. We
 469 show that the constraints needed for such a factorisation to reach disentanglement are precisely
 470 those imposed, in aggregate and in expectation, by a VAE with diagonal posteriors, justifying both
 471 why disentanglement arises and why it is also ephemeral (Locatello et al., 2019). Furthermore,
 472 independent factors are provably *identifiable*, which is particularly significant given their proven
 473 *unidentifiability* under ICA with Gaussian prior.

474 Neural networks models are often considered too complex to explain, despite their increasingly
 475 widespread deployment in everyday applications. An improved theoretical understanding seems
 476 essential to optimally and safely take advantage of machine learning progress, particularly in critical
 477 systems. We hope our work is a useful step in that direction, providing new insight into how the data
 478 density decomposes over independent generative factors. Interestingly, our proof structure shows
 479 that, irrespective of the complex non-linearity of a decoder, how the prior pushes forward can be
 480 considered relatively simply.

481 VAEs (and variants e.g. AEs, SAEs) form part of a pipeline in many state-of-the-art models, e.g. latent
 482 diffusion (e.g. Rombach et al., 2022; Pandey et al., 2022; Yang et al., 2023; Zhang et al., 2022) and
 483 LLMs; other recent works show that supervised learning (Dhuliawala et al., 2024) and self-supervised
 484 learning (Bizeul et al., 2024) can be viewed as latent models trained under ELBO variants. In future
 485 work we will look to see if our results transfer to such other learning paradigms.

⁶We report apparent discrepancies in Reizinger et al. (2022) in Appendix H.

486 REFERENCES
487

488 Georgios Arvanitidis, Lars Kai Hansen, and Søren Hauberg. Latent space oddity: On the curvature of
489 deep generative models. In *ICLR*, 2018.

490 Xuchan Bao, James Lucas, Sushant Sachdeva, and Roger B Grosse. Regularized linear autoencoders
491 recover the principal components, eventually. In *NeurIPS*, 2020.

492

493 Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
494 perspectives. In *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2013.

495 Pratik Bhowal, Achint Soni, and Sirisha Rambhatla. Why do variational autoencoders really promote
496 disentanglement? In *ICML*, 2024.

497

498 Alice Bizeul, Bernhard Schölkopf, and Carl Allen. A Probabilistic Model to explain Self-Supervised
499 Representation Learning. In *TMLR*, 2024.

500

501 Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz, and Samy Bengio.
502 Generating sentences from a continuous space. In *Conference on Computational Natural Language
503 Learning*, 2015.

504

505 Jack Brady, Roland S Zimmermann, Yash Sharma, Bernhard Schölkopf, Julius Von Kügelgen, and
506 Wieland Brendel. Provably learning object-centric representations. In *International Conference on
507 Machine Learning*, pp. 3038–3062. PMLR, 2023.

508

509 Simon Buchholz and Bernhard Schölkopf. Robustness of nonlinear representation learning. *arXiv
510 preprint arXiv:2503.15355*, 2025.

511

512 Simon Buchholz, Michel Besserve, and Bernhard Schölkopf. Function classes for identifiable
513 nonlinear independent component analysis. In *NeurIPS*, 2022.

514

515 Christopher P Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume Desjardins,
516 and Alexander Lerchner. Understanding disentangling in β -vae. *arXiv preprint arXiv:1804.03599*,
517 2018.

518

519 Clément Chadebec and Stéphanie Allassonnière. A geometric perspective on variational autoencoders.
520 In *NeurIPS*, 2022.

521

522 Ricky TQ Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud. Isolating sources of
523 disentanglement in variational autoencoders. *Advances in neural information processing systems*,
524 31, 2018.

525

526 Shehzaad Dhuliawala, Mrinmaya Sachan, and Carl Allen. Variational Classification. *TMLR*, 2024.

527

528 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
529 Aaron Courville, and Yoshua Bengio. Generative adversarial nets. *NeurIPS*, 2014.

530

531 Luigi Gresele, Julius Von Kügelgen, Vincent Stimper, Bernhard Schölkopf, and Michel Besserve.
532 Independent mechanism analysis, a new concept? In *NeurIPS*, 2021.

533

534 Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
535 Shakir Mohamed, and Alexander Lerchner. β -VAE: Learning Basic Visual Concepts with a
536 Constrained Variational Framework. In *ICLR*, 2017.

537

538 A Hyvarinen. Noisy independent component analysis, maximum likelihood estimation, and competi-
539 tive learning. In *1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE
540 World Congress on Computational Intelligence (Cat. No. 98CH36227)*, volume 3, pp. 2282–2287.
541 IEEE, 1998.

542

543 Ilyes Khemakhem, Diederik Kingma, Ricardo Monti, and Aapo Hyvärinen. Variational autoencoders
544 and nonlinear ica: A unifying framework. In *AISTATS*, 2020.

545

546 Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In *ICML*, 2018.

547

548 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In *ICLR*, 2014.

540 Frederic Koehler, Viraj Mehta, Chenghui Zhou, and Andrej Risteski. Variational autoencoders in the
 541 presence of low-dimensional data: landscape and implicit bias. In *ICLR*, 2022.

542

543 Abhishek Kumar and Ben Poole. On Implicit Regularization in β -VAEs. In *ICML*, 2020.

544 Sébastien Lachapelle, Divyat Mahajan, Ioannis Mitliagkas, and Simon Lacoste-Julien. Additive
 545 decoders for latent variables identification and cartesian-product extrapolation. *Advances in Neural*
 546 *Information Processing Systems*, 36:25112–25150, 2023.

547

548 Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard Schölkopf,
 549 and Olivier Bachem. Challenging common assumptions in the unsupervised learning of disentan-
 550 gled representations. In *ICML*, 2019.

551 James Lucas, George Tucker, Roger B Grosse, and Mohammad Norouzi. Don’t Blame the ELBO! a
 552 Linear VAE Perspective on Posterior Collapse. In *NeurIPS*, 2019.

553

554 Manfred Opper and Cédric Archambeau. The variational gaussian approximation revisited. *Neural*
 555 *computation*, 21(3):786–792, 2009.

556 Ziqi Pan, Li Niu, and Liqing Zhang. Geometric inductive biases for identifiable unsupervised learning
 557 of disentangled representations. In *AAAI*, 2023.

558

559 Kushagra Pandey, Avideep Mukherjee, Piyush Rai, and Abhishek Kumar. Diffusevae: Efficient,
 560 controllable and high-fidelity generation from low-dimensional latents. In *TMLR*, 2022.

561 Aditya Ramesh, Youngduck Choi, and Yann LeCun. A spectral regularizer for unsupervised disentan-
 562 glement. *arXiv preprint arXiv:1812.01161*, 2018.

563

564 Patrik Reizinger, Luigi Gresele, Jack Brady, Julius Von Kügelgen, Dominik Zietlow, Bernhard
 565 Schölkopf, Georg Martius, Wieland Brendel, and Michel Besserve. Embrace the gap: Vaes
 566 perform independent mechanism analysis. In *NeurIPS*, 2022.

567 Danilo Jimenez Rezende and Fabio Viola. Taming vaes. *arXiv preprint arXiv:1810.00597*, 2018.

568

569 Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
 570 approximate inference in deep generative models. In *ICML*, 2014.

571 Michal Rolinek, Dominik Zietlow, and Georg Martius. Variational Autoencoders Pursue PCA
 572 Directions (by Accident). In *CVPR*, 2019.

573

574 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 575 resolution image synthesis with latent diffusion models. In *CVPR*, 2022.

576 Rui Shu, Yining Chen, Abhishek Kumar, Stefano Ermon, and Ben Poole. Weakly supervised
 577 disentanglement with guarantees. In *ICLR*, 2019.

578

579 Michael E Tipping and Christopher M Bishop. Probabilistic principal component analysis. *Journal*
 580 *of the Royal Statistical Society Series B: Statistical Methodology*, 61(3):611–622, 1999.

581 Tao Yang, Yuwang Wang, Yan Lu, and Nanning Zheng. Disdiff: unsupervised disentanglement of
 582 diffusion probabilistic models. In *NeurIPS*, 2023.

583

584 Zijian Zhang, Zhou Zhao, and Zhijie Lin. Unsupervised representation learning from pre-trained
 585 diffusion probabilistic models. In *NeurIPS*, 2022.

586 Dominik Zietlow, Michal Rolinek, and Georg Martius. Demystifying inductive biases for (beta-) vae
 587 based architectures. In *ICML*, 2021.

588

589

590

591

592

593

594 A PROOF OF DECODER DERIVATIVE CONSTRAINTS
595596 **Property P1.** $\mathbf{J}_z^\top \mathbf{J}_z$ and $(x - d(z))^\top \mathbf{H}_z$ in Eq. 6 are each diagonal for z concentrated around $\mathbb{E}[z|x]$.
597598 **Lemma 4.1 (Disentanglement constraints).** For a trained Gaussian VAE and x, z satisfying P1:
599600 **C1)** Right singular vectors \mathbf{V}_z of the decoder Jacobian \mathbf{J}_z are standard basis vectors, i.e. after
601 relabeling/sign flips of the latent axes, we have $\mathbf{V}_z = \mathbf{I}$;
602603 **C2)** The matrix of partial derivatives of singular values $(\frac{\partial s_i}{\partial z_j})_{i,j}$ is diagonal, i.e. $\frac{\partial s_i}{\partial z_j} = 0$ for all $i \neq j$.
604605 *Proof. (Preliminaries):* Recall $p(z) = \mathcal{N}(0, I)$ and $p(x|z) = \mathcal{N}(x; d(z), \sigma^2 \mathbf{I})$. Let $q(z|x) =$
606 $\mathcal{N}(z; e(x), \Sigma_x)$ be the trained posterior with Σ_x diagonal (by assumption). Denote the SVD of the
607 decoder Jacobian by

608
$$\mathbf{J}_z = \mathbf{U}_z \mathbf{S}_z \mathbf{V}_z^\top, \quad \mathbf{U}_z \in \mathbb{R}^{n \times d}, \quad \mathbf{S}_z = \text{Diag}(s_1(z), \dots, s_k(z)), \quad s_i(z) > 0.$$

609

610 Assume full column rank on the manifold ($s_i(z) > 0$). For Gaussian likelihood with variance σ^2 , the
611 Hessian of the log-likelihood w.r.t. z can be written

612
$$\nabla_z^2 \log p(x|z) = -\frac{1}{\sigma^2} (\mathbf{J}_z^\top \mathbf{J}_z - \sum_{\ell=1}^n r(z)_\ell \mathbf{H}_\ell(z)),$$

613

614 where $r(z) = x - d(z)$ and $\mathbf{H}_\ell(z) \in \mathbb{R}^{k \times k}$ is the Hessian of the ℓ -th decoder coordinate, $[\mathbf{H}_\ell]_{pq} =$
615 $\partial^2 d_\ell / \partial z_p \partial z_q$. Combined with the Opper–Archambeau fixed-point yields⁷
616

617
$$\Sigma_x^{-1} = \mathbf{I} - \mathbb{E}_q[\nabla_z^2 \log p(x|z)] = \mathbf{I} + \frac{1}{\sigma^2} \mathbb{E}_q[\mathbf{J}_z^\top \mathbf{J}_z] - \frac{1}{\sigma^2} \mathbb{E}_q\left[\sum_{\ell=1}^n r(z)_\ell \mathbf{H}_\ell(z)\right]. \quad (9)$$

618

619 **(C1):** For diagonal Σ_x in Eq. 9 and z concentrated around $e(z)$ under P1 (“no cancellation”), we
620 have
621

622
$$\mathbf{J}_z^\top \mathbf{J}_z \text{ is diagonal,} \quad \sum_{\ell=1}^n r(z)_\ell \mathbf{H}_\ell(z) \text{ is diagonal.} \quad (10)$$

623

624 Diagonal $\mathbf{J}_{e(x)}^\top \mathbf{J}_{e(x)} = \text{Diag}(s_1^2, \dots, s_k^2)$ implies right singular vectors \mathbf{v}^i are the standard basis, up
625 to signed permutations. By relabelling latent axes and absorbing signs, $\mathbf{V}_z = \mathbf{I}$ for all z visited by
626 the encoder, establishing C1.
627628 **(Directed Hessian is Tangent to Manifold):** Since the model is well trained, we assume $d(e(x)) \approx x$.
629 For $z = e(x) + \delta$ with $\delta > 0$ small, a first-order Taylor expansion gives

630
$$d(z) = d(e(x)) + \mathbf{J}_{e(x)} \delta + O(\|\delta\|^2) \implies r(z) = x - d(z) = -\mathbf{J}_{e(x)} \delta + O(\|\delta\|^2).$$

631

632 Thus, for z concentrated around $e(x)$, to first order, $r(z)$ lie in the column space of $\mathbf{J}_{e(x)}$, i.e. in the
633 span of the left singular vectors $\{u_i(e(x))\}_{i=1}^k$ (columns of \mathbf{U}_z):
634

635
$$r = \mathbf{U}_z a, \quad a \in \mathbb{R}^k \quad (11)$$

636 Hence, we consider $\sum_{\ell=1}^n r_\ell \mathbf{H}_\ell(z)$ to be diagonal for all $r \in \text{span}(\mathbf{U}_z)$. In particular,
637 $\sum_{\ell=1}^n u_{i\ell}^\top \mathbf{H}_\ell(z)$ is diagonal for all rows u_i of \mathbf{U}_z and, by definition of slices \mathbf{H}_ℓ and \mathbf{J}_z ,
638

639
$$[\sum_{\ell=1}^n u_{i\ell}^\top \mathbf{H}_\ell(z)]_{pq} = \sum_{\ell=1}^n u_{i\ell}^\top \frac{\partial^2 d_\ell}{\partial z_p \partial z_q} = (\mathbf{U}_z^\top \frac{\partial \mathbf{J}_z}{\partial z_p})_{iq} \quad (12)$$

640

641 **(Diagonality of $(\frac{\partial s_i}{\partial z_j})_{i,j}$):**
642643 Differentiating $\mathbf{U}_z^\top \mathbf{U}_z = \mathbf{I}_k$ to get $\frac{\partial \mathbf{U}_z^\top}{\partial z_j} \mathbf{U}_z + \mathbf{U}_z^\top \frac{\partial \mathbf{U}_z}{\partial z_j} = \mathbf{0}$ shows $\Omega_j(z) := \mathbf{U}_z^\top \frac{\partial \mathbf{U}_z}{\partial z_j} \in \mathbb{R}^{d \times d}$ is
644 skew-symmetric. Differentiating $\mathbf{J}_z = \mathbf{U}_z \mathbf{S}_z$ w.r.t. z_j and premultiplying by \mathbf{U}_z^\top then gives
645

646
$$\mathbf{U}_z^\top \frac{\partial \mathbf{J}_z}{\partial z_j} = \Omega_j(z) \mathbf{S}_z + \frac{\partial \mathbf{S}_z}{\partial z_j}. \quad (13)$$

647

7we use: $\Sigma_x^{-1} = -\mathbb{E}_q[\nabla_z^2 \log p(x, z)] = -\mathbb{E}_q[\nabla_z^2 \log p(z) + \nabla_z^2 \log p(x|z)]; \quad \nabla_z^2 \log p(z) = -\mathbf{I}.$

Figure 6: Illustrating $\beta \propto \text{Var}[x|z]$ (blue = data, red = reconstruction): (l) For low β ($\beta = 0.55$), $\text{Var}[x|z]$ is low (by Eq. 6), and data must be well reconstructed (right, top). As β increases, $\text{Var}[x|z]$ and so $\text{Var}[z|x]$ increase, and posteriors of nearby samples $\{x_i\}_i$ increasingly overlap (right, bottom). For z in overlapping $\{q(z|x_i)\}_i$, the decoder $\mathbb{E}[x|z]$ maps to a weighted average of $\{x_i\}_i$. Initially, close neighbours reconstruct to their mean ($\beta = 2.2, 3.8$), then small circles “become neighbours” and map to their centres. Finally ($\beta = 60$), all samples reconstruct to the global centroid. (reproduced with permission from Rezende & Viola, 2018) (r) illustrating posterior overlap, (t) low β , (b) higher β .

Since $\Omega_j(z)$ is skew-symmetric, all diagonal entries are zero; since $\frac{\partial S_z}{\partial z_j}$ is diagonal, all non-diagonal entries are zero. Thus, of respective entries, only one is non-zero and can be considered separately.

From Eq. 12, only $(\Omega_j(z) S_z)_{:j}$ elements can be non-zero, thus *all* elements of $\Omega_j(z)$ must be zero (by skew-sym.), **ruling out rotation in the tangent plane**⁸

For $\frac{\partial S_z}{\partial z_j}$, diagonality (only $(\frac{\partial S_z}{\partial z_j})_{kk}$ elements non-zero) and Eq. 12 (only $(\frac{\partial S_z}{\partial z_j})_{:j}$ elements non-zero) imply that only elements $(\frac{\partial S_z}{\partial z_j})_{jj} = \frac{\partial s_j}{\partial z_j}$ can be non-zero, eliminating mixed partials

$$\frac{\partial s_i}{\partial z_j}(z) = 0 \quad \text{for all } i \neq j,$$

i.e. the Jacobian of the singular-value map $s(z) = (s_1(z), \dots, s_k(z))$ is *diagonal*, proving **C2**. \square

B β CONTROLS NOISE VARIANCE

Choosing $\beta > 1$ in Eq. 1 can enhance disentanglement (Higgins et al., 2017; Burgess et al., 2018) and has been viewed as re-weighting ELBO components or as a Lagrange multiplier. We show that β implicitly controls the likelihood’s variance and that the “ β -ELBO” remains a valid objective.

Dividing the ELBO by a constant and suitably adjusting the learning rate leaves the VAE training algorithm unchanged, hence consider Eq. 1 divided through by β with the log likelihood scaled by β^{-1} . For a Gaussian VAE with $\text{Var}[x|z] = \sigma^2$, this exactly equates to a standard VAE with variance $\beta\sigma^2$ (Lucas et al., 2019). More generally, scaling the log likelihood by β^{-1} is equivalent to an *implicit likelihood* $p_\theta(x|z)^{1/\beta}$, where β acts as a *temperature* parameter: $\beta \rightarrow \infty$ increases the effective entropy towards uniform (the model assumes more noise in the data, fitting more loosely), and $\beta \rightarrow 0$ reduces it to a delta (reconstructions should be tight). Optimal posteriors fit to the implicit likelihood, $q_\phi(z|x) \propto p_\theta(x|z)^{1/\beta} p(z)$, which thus dilate ($\beta > 1$) or concentrate ($\beta < 1$). This generalises the Gaussian result (Lucas et al., 2019), showing that the β -ELBO is simply the ELBO for a different likelihood model.⁹

Empirical support: Our claim, in effect that $\text{Var}[x|z] \propto \beta$, is well illustrated on synthetic data in Fig. 6 (Rezende & Viola, 2018, see caption for details). It also immediately explains *blur* in β -VAEs since $\beta > 1$ simply assumes more noise. It also explains why $\beta < 1$ helps mitigate *posterior collapse* (Bowman et al., 2015), i.e. when a VAE’s likelihood is sufficiently expressive that it can directly model the data distribution, $p(x|z) = p(x)$, leaving latent variables redundant (posterior “collapses” to prior). As $\beta \rightarrow 0$, the effective variance of $p_\theta(x|z)$, and the distributions it can describe, reduces. Thus for some $\beta < 1$ the effective variance falls below $\text{Var}[x]$, rendering posterior collapse impossible as some variance in x can only be explained by z . Thus our claim that β controls effective variance explains well-known empirical observations, which in turn provide empirical support for the claim.

⁸we have: $\Omega_j(z)_{kj} = -\Omega_j(z)_{jk} = 0$, if $j \neq k$; and $\Omega_j(z)_{jj} = 0$ (skew-sym.).

⁹Technically, the β -ELBO’s value is incorrect without renormalising the implicit likelihood, but that is typically irrelevant, e.g. for commonly used Gaussian likelihoods, only the quadratic “MSE” term appears in the loss.

702 **C APPENDIX: SINGULAR VECTOR PATHS AND SEAMS**
 703

704 **Definition D3 (i-th singular–vector path).** Let $g: \mathcal{Z} \rightarrow \mathcal{X}$ be c.i.d.a.e.. For $z^* \in \mathcal{Z}_{\text{reg}}$, $i \in \{1, \dots, d\}$,
 705 the i -th singular–vector path (s.v. **path**) through z^* is any C^1 curve $t \mapsto z_t^i$ with $z_0^i = z^*$ satisfying
 706

$$707 \quad \frac{d}{dt} z_t^i = \mathbf{v}^i(z_t^i) \quad \text{for } t \text{ in its maximal interval } I_{z^*,i} \subseteq \mathbb{R}.$$

708 We denote the path set by $\mathcal{V}_{z^*}^i \doteq \{z_t^i : t \in I_{z^*,i}\} \subseteq \mathcal{Z}_{\text{reg}}$.¹⁰ (See Fig. 3, left, dash blue lines).

710 **Definition D4 (i-th seam).** Let $g: \mathcal{Z} \rightarrow \mathcal{X}$ be c.i.d.a.e. with manifold $\mathcal{M}_g = \{g(z)\}$. For $z^* \in \mathcal{Z}_{\text{reg}}$,
 711 $i \in \{1, \dots, d\}$, the i -th **seam** through $g(z^*)$ is any C^1 curve $t \mapsto x_t^i$ in \mathcal{M}_g with $x_0^i = g(z^*)$ satisfying
 712

$$713 \quad \frac{d}{dt} x_t^i = s^i(g^{-1}(x_t^i)) \mathbf{u}^i(g^{-1}(x_t^i)) \quad \text{for } t \text{ in } I_{z^*,i}.$$

714 We denote the path set $\mathcal{M}_{g,z^*}^i \doteq \{x_t^i : t \in I_{z^*,i}\} \subseteq \mathcal{M}_g$ and define seam coordinate
 715

$$716 \quad u_i(t) \doteq \int_0^t s^i(g^{-1}(x_\tau^i)) d\tau, \quad \text{so} \quad \frac{d}{dt} u_i(t) = s^i(g^{-1}(x_t^i)), \quad u_i(0) = 0.$$

718 u_i measures position along the seam in units of s^i (strictly monotone as $s^i > 0$). (See Fig. 3, right).

720 **Lemma C.1 (Paths \mapsto seams).** Let $g: \mathcal{Z} \rightarrow \mathcal{X}$ be c.i.d.a.e., $z^* \in \mathcal{Z}_{\text{reg}}$, $i \in \{1, \dots, d\}$, and let $\mathcal{V}_{z^*}^i$
 721 be the i -th s.v. path through z^* . Then the image of $\mathcal{V}_{z^*}^i$ under g is the i -th seam through $g(z^*)$:
 722 $\mathcal{M}_{g,z^*}^i = \{g(z) : z \in \mathcal{V}_{z^*}^i\}$.

724 *Proof.* For $x_t^i \doteq g(z_t^i)$, by the chain rule and SVD: $\frac{dx_t^i}{dt} = \mathbf{J}_{z_t^i} \frac{dz_t^i}{dt} = \mathbf{J}_{z_t^i} \mathbf{v}^i(z_t^i) = s^i(z_t^i) \mathbf{u}^i(z_t^i)$, so
 725 x_t^i satisfies Def. 4. \square

727 **Lemma 5.1 (Factorisation over seams).** Let $g: \mathcal{Z} \rightarrow \mathcal{X}$ be c.i.d.a.e. and the prior factorise as
 728 $p(z) = \prod_{i=1}^d p_i(z_i)$ (e.g. standard Gaussian). Then, the manifold density p_μ on \mathcal{M}_g factorises as
 729

$$730 \quad p_\mu(g(z)) = \prod_{i=1}^d \frac{p_i(z_i)}{s^i(z)}, \quad \text{for every } z \in \mathcal{Z}_{\text{reg}}. \quad (7)$$

731 Moreover, each factor $\frac{p_i(z_i)}{s^i(z)}$ is the 1-D density over the i -th seam $\mathcal{M}_{g,z}^i$ at $x = g(z)$, obtained by
 732 pushing forward the 1-D marginal $p_i(z_i)$ over $\mathcal{V}_{z^*}^i$, the i -th s.v. path through z .

735 *Proof.* By a standard change–of–variables (on embedded manifolds) and $|\mathbf{J}_z^\top \mathbf{J}_z| = \prod_{i=1}^d s^i(z)^2$,

$$737 \quad p_\mu(g(z)) = \det(\mathbf{J}_z^\top \mathbf{J}_z)^{-1/2} p(z) = \frac{\prod_{i=1}^d p_i(z_i)}{\prod_{i=1}^d s^i(z)}, \quad \text{yielding Eq. 7.}$$

739 For each i and $x = g(z)$, the change–of–variables formula along $\mathcal{M}_{g,z}^i$ (i -th seam through x with
 740 coordinate u_i , Def. 4) at $t = 0$ gives the local pushed 1-D **seam–density**

$$742 \quad f_i^{(z)}(u_i(t)) \doteq \frac{p_i([z_t^i]_i)}{s^i(z_t^i)}, \quad \frac{d}{dt} u_i(t) = s^i(z_t^i), \quad u_i(0) = 0, \quad (14)$$

744 where $t \mapsto z_t^i$ is the i -th singular–vector path through z (Def. 3) with local co-ordinate $z_i^i(t)$.
 745 Evaluating at $t = 0$: $f_i^{(z)}(u_i(0)) = \frac{p_i(z_i)}{s^i(z)}$, shows that seam-densities are the factors of Eq. 7. \square

747
 748
 749
 750
 751
 752
 753
 754
 755
 10 Different choices of sign for \mathbf{v}^i reverse the time direction ($t \mapsto -t$) but generate the same path set.

756 **D APPENDIX: DISENTANGLEMENT AND IDENTIFIABILITY PROOFS**
757758 **D.1 PROOF OF NON-LINEAR DISENTANGLEMENT**
759760 **Theorem 5.2 (Disentanglement \Leftrightarrow C1-C2).** *Let $g : \mathcal{Z} \rightarrow \mathcal{X}$ be c.i.d.a.e. and the prior factorise
761 as $p(z) = \prod_{i=1}^d p_i(z_i)$ (e.g. standard Gaussian). The push-forward density p_μ on the manifold
762 $\mathcal{M}_g = \{g(z)\}$ is disentangled (D1) if and only if g satisfies C1 and C2 almost everywhere.*
763764 *Proof.* (C1/2 \Rightarrow D1) By Thm. 5.1, the manifold density factorises pointwise as $p_\mu(d(z)) = \prod_{i=1}^d \frac{p_i(z_i)}{s^i(z)}$.
765 By C1, $\mathbf{V}_z = \mathbf{I}$ for all z , so the i -th singular–vector path through z is exactly the axis-aligned line
766 $\{z' : [z']_i \text{ varies, } [z']_{-i} = [z]_{-i}\}$; by Lemma C.1 its image is the i -th seam through $x = g(z)$ following
767 \mathbf{u}^i . By C2, $s^i(z)$ depends only on z_i . Define the seam coordinate u_i along the i -th seam as in D4;
768 then u_i is a strictly monotone function of z_i , hence the 1-D push-forward of p_i along that seam is
769 $f_i(u_i) = \left| \frac{du_i}{dz_i} \right|^{-1} p_i(z_i) = \frac{p_i(z_i)}{s^i(z_i)}$. Thus $p_\mu(g(z)) = \prod_i f_i(u_i(z))$ with each f_i evaluated on the i -th
770 seam. Finally, since u_i is monotone in z_i and $\{z_i\}$ are independent, the random variables $\{u_i\}$ are
771 independent; hence factors $\{f_i(u_i)\}$ are statistically independent as required by D1.
772773 (D1 \Leftarrow C1/2) Assume p_μ is disentangled under g . By D1, each factor f_i is obtained by pushing
774 forward $p(z_i)$ along an axis-aligned line indirection \mathbf{z}^i , and the i -th seam follows $\mathbf{J}_z \mathbf{z}^i = \mathbf{J}_z^i$ at z
775 (column i of \mathbf{J}_z). By factor independence (D1), only f_i can change along the i -th seam, hence all
776 other factors must be orthogonal to \mathbf{J}_i , i.e. $\mathbf{J}_z^\top \mathbf{J}_z$ is diagonal or $\mathbf{J}_z = \mathbf{U}_z \mathbf{S}_z$ (C1). Since f_i depends
777 on $s^i \doteq [\mathbf{S}_z]_{ii}$ and only s^i can change along seam i , then $\frac{\partial s_i}{\partial z_j} = 0, i \neq j$ (C2). \square
778779 **D.2 PROOF OF LINEAR VAE IDENTIFIABILITY**
780781 **Corollary 6.1 (LVAE Identifiability).** *Let data be generated under the linear Gaussian LVM Eq. 2
782 with ground-truth $g(z) = \mathbf{W}z$, $\mathbf{W} = \mathbf{U}_W \mathbf{S}_W \mathbf{V}_W^\top \in \mathbb{R}^{m \times d}$ of full column rank and distinct singular
783 values. Let an LVAE with diagonal posteriors be trained on n samples, and as $n \rightarrow \infty$ its learned
784 parameters yield $p_\mu^{(d)} \equiv p_\mu^{(g)}$ on the mean manifold. Then the LVAE achieves disentanglement (D1)
785 and identifies ground-truth independent components on \mathcal{M}_g up to permutation and sign (P&S).*
786787 *Proof. (Ground truth)* With $\mu = \mathbf{W}z$ and $u \doteq \mathbf{U}_W^\top \mu = \mathbf{S}_W (\mathbf{V}_W^\top z)$, then $z \sim \mathcal{N}(0, \mathbf{I})$ and orthonormal
788 $\mathbf{V}_W^\top z \sim \mathcal{N}(0, \mathbf{I})$, hence $\{u_i \doteq u_{W,i}\}$ are independent, $u_i \sim \mathcal{N}(0, s_{W,i}^2)$ and $p_\mu^{(g)} =$
789 $\prod_{i=1}^d \mathcal{N}(u_i; 0, s_{W,i}^2)$.
790791 *(Model)* Let $d(z) = \mathbf{D}z$ with SVD $\mathbf{D} = \mathbf{U}_D \mathbf{S}_D \mathbf{V}_D^\top$. For an LVAE, the Hessian term in Eq. 6 is zero
792 and Assumption 1 is trivially satisfied. Thus, by Lemma 4.1, right singular paths are axis-aligned (C1,
793 note C2 is vacuous). Therefore, by the *disentanglement theorem* Theorem 5.2, $p_\mu^{(d)}$ is disentangled
794 and factorises into statistically independent components along the decoder’s seams (columns of
795 \mathbf{U}_D). Since $u_{D,i} = s_{D,i} z_i$ and $z_i \sim \mathcal{N}(0, 1)$, each seam factor is Gaussian with variance $s_{D,i}^2$, i.e.
796 $p_\mu^{(d)} = \prod_{i=1}^d \mathcal{N}(u_{D,i}; 0, s_{D,i}^2)$.
797798 *(Matching)* Equality $p_\mu^{(d)} \equiv p_\mu^{(g)}$ and distinct $\{s_{W,i}\}$ imply uniqueness of the Gaussian product
799 decomposition, up to permutation. Thus the LVAE’s independent components (seam factors) match
800 ground-truth components up to permutation/sign, i.e. identifiability and disentanglement on \mathcal{M}_g . \square
801802 **D.3 PROOF OF GAUSSIAN VAE IDENTIFIABILITY**
803804 **Lemma 6.3 (Seams are Intrinsic).** *Let $\mathcal{M} \subseteq \mathcal{X}$ carry a manifold density p_μ . Assume that on
805 a regular set \mathcal{M}_{reg} there exist scalar functions $\{u_i(x)\}_{i=1}^d$ (each varying only along a 1-D curve
806 through x , i.e. a seam) and 1-D densities $\{f_i\}$ such that
807*

808
$$p_\mu(x) = \prod_{i=1}^d f_i(u_i(x)), \quad x \in \mathcal{M}_{\text{reg}}, \quad (8)$$

809

810 and that the on-manifold Hessian $\mathbf{H}_x \doteq \nabla_x^2 \log p_\mu(x)$ has pairwise distinct eigenvalues a.e. on \mathcal{M}_{reg} .
 811 Then for each $x \in \mathcal{M}_{\text{reg}}$, the d seam directions (along which exactly one u_i varies) are determined
 812 intrinsically by p_μ , as eigenvectors of \mathbf{H}_x , unique up to permutation and sign (P&S).
 813

814 *Proof.* For $x \in \mathcal{M}_{\text{reg}}$, let $\mathbf{u}^i, \dots, \mathbf{u}^d$ be unit tangent directions at x such that, along \mathbf{u}^i , only u_i
 815 varies locally while $u_{j \neq i}$ remain constant, thus $\{\mathbf{u}^i\}$ are orthonormal. Stack $\{\mathbf{u}^i\}$ as columns of
 816 $\mathbf{U}_x \in \mathbb{R}^{m \times d}$ and define seam coordinates $u(x) \doteq (u_1(x), \dots, u_d(x))$. Thus, for each i , $\frac{\partial x}{\partial u_i} = \mathbf{u}^i$
 817 and by the chain rule,
 818

$$\begin{aligned} [\nabla_u \log p_\mu(x)]_i &= \frac{\partial}{\partial u_i} \log p_\mu(x) = (\frac{\partial x}{\partial u_i})^\top \nabla_x \log p_\mu(x) = \mathbf{u}^i \nabla_x \log p_\mu(x). \\ [\nabla_u^2 \log p_\mu(x)]_{ij} &= (\frac{\partial^2 x}{\partial u_j \partial u_i})^\top \nabla_x \log p_\mu(x) + (\frac{\partial x}{\partial u_i})^\top \underbrace{[\nabla_x^2 \log p_\mu(x)](\frac{\partial x}{\partial u_j})}_{\mathbf{H}_x} = \mathbf{u}^i \mathbf{H}_x \mathbf{u}^j, \end{aligned}$$

823 where the last equality uses that the basis vectors $\{\mathbf{u}^i(x)\}$ are fixed, so $\frac{\partial^2 x}{\partial u_j \partial u_i}(x) = 0$. In summary,
 824

$$\begin{aligned} \nabla_u \log p_\mu(x) &= \mathbf{U}_x^\top \nabla_x \log p_\mu(x), & \nabla_u^2 \log p_\mu(x) &= \mathbf{U}_x^\top \mathbf{H}_x \mathbf{U}_x, \\ \text{i.e. } \mathbf{H}_x &= \mathbf{U}_x [\nabla_u^2 \log p_\mu(x)] \mathbf{U}_x^\top. \end{aligned} \tag{15}$$

825 By Eq. 8, $\log p_\mu(x) = \sum_{i=1}^d \log f_i(u_i(x))$, hence the central term $\nabla_u^2 \log p_\mu(x)$ has components
 826

$$[\nabla_u^2 \log p_\mu(x)]_{ij} = \begin{cases} \frac{\partial^2}{\partial u_i^2} \log f_i(u_i(x)) & (i = j), \\ 0 & (i \neq j), \end{cases}$$

827 and is *diagonal*. Thus Eq. 15 is an eigendecomposition with distinct eigenvalues (by assumption);
 828 and seam directions \mathbf{u}^i are eigenvectors of $\nabla_u^2 \log p_\mu(x)$ and so are unique up to P&S. \square
 829

830 **Implication for identifiability.** Lemma 6.3 isolates the intrinsic geometry of p_μ : once p_μ is fixed,
 831 the seams and their directions are fixed (P&S). Any Gaussian VAE decoder d matching p_μ and
 832 satisfying **C1–C2** must therefore align its singular paths with those seams and inherit the same seam
 833 factors.
 834

835 **Lemma 6.4 (A matching decoder finds seams).** *Under assumptions of Lemma 6.3, let $d : \mathcal{Z} \rightarrow \mathcal{X}$
 836 be c.i.d.a.e. with factorised prior $p(z) = \prod_i p_i(z_i)$ and push-forward density $p_\mu^{(d)} \equiv p_\mu$ matching on
 837 $\mathcal{M}_d \doteq \{d(z)\} = \mathcal{M}$. If d satisfies **C1–C2** a.e., then for any z and $x = d(z)$:*

- *left singular vectors \mathbf{U}_z of \mathbf{J}_z coincide with the seam directions in Lemma 6.3 (up to P&S);*
- *the images under d of singular-vector paths (D3) are exactly the seams through x ;*
- *along the i -th seam, the factor f_i is the 1-D push-forward of $p_i(z_i)$ (as in Lemma 5.1).*

838 *Proof.* Since $p_\mu^{(d)} \equiv p_\mu$, both induce the same $\mathbf{H}_x = \nabla_x^2 \log p_\mu(x)$. By Lemma 5.1 and **C1**,
 839 $\log p_\mu(x) = \sum_{i=1}^d (\log p_i(z_i) - \log s_i(z))$, with s_i depending only on z_i by **C2**. Letting $u = \mathbf{U}_z^\top x$,
 840 the gradient along the manifold (on-manifold score) is given by
 841

$$\nabla_x \log p_\mu(x) = \mathbf{U}_z \nabla_u \log p_\mu(x), \quad [\nabla_u \log p_\mu(x)]_i = \frac{1}{s_i(z)} \frac{\partial}{\partial z_i} (\log p_i(z_i) - \log s_i(z)).$$

842 Differentiating again along the manifold gives the on-manifold Hessian \mathbf{H}_x

$$\nabla_x^2 \log p_\mu(x) = \mathbf{U}_z [\nabla_u^2 \log p_\mu(x)] \mathbf{U}_z^\top, \quad [\nabla_u^2 \log p_\mu(x)]_{ij} = \begin{cases} \frac{1}{s_i(z)} \frac{\partial}{\partial z_i} [\nabla_u \log p_\mu(x)]_i & (i = j) \\ 0 & (i \neq j) \end{cases}$$

843 Hence,

$$\mathbf{H}_x = \mathbf{U}_z \text{Diag}(\frac{1}{s_i(z)} \frac{\partial}{\partial z_i} [\nabla_u \log p_\mu(x)]_i) \mathbf{U}_z^\top$$

844 is an eigendecomposition. With a simple spectrum, eigenvectors are unique up to P&S and coincide
 845 with the intrinsic seam directions in Lemma 6.3. By Lemma C.1, singular-vector paths map to seams;
 846 and by Lemma 5.1, the factor along seam i equals the 1-D push-forward of $p_i(z_i)$. \square
 847

848 Note that the two proofs above adopt a similar technique, but Lemma 6.3 is entirely intrinsic to the
 849 manifold (hence no mention of a Jacobian), whereas Lemma 6.4 is with reference to a parameterisation
 850 of the manifold by a function d .
 851

864 D.4 PROOF OF GAUSSIAN VAE IDENTIFIABILITY
865

866 **Corollary D.1 (Gaussian VAE Identifiability).** *Let data be generated by c.i.d.a.e. $g : \mathcal{Z} \rightarrow \mathcal{X}$ with*
 867 *factorised prior $p(z) = \prod_{i=1}^d p_i(z_i)$; let a Gaussian VAE with diagonal posteriors learn a decoder*
 868 *$d : \mathcal{Z} \rightarrow \mathcal{X}$. Suppose both g and d satisfy **C1–C2** a.e. and manifold densities match, $p_\mu^{(d)} \equiv p_\mu^{(g)}$, on the*
 869 *common manifold $\mathcal{M} = \{g(z)\} = \{d(z)\}$. If the tangent Hessian \mathbf{H}_x has a simple spectrum a.e., then*
 870 *d identifies the ground-truth seam decomposition (independent components) of $p_\mu^{(g)}$, up to P&S.*

872 *Proof.* **(Matching U)** Equality $p_\mu^{(g)} \equiv p_\mu^{(d)}$ implies the same \mathbf{H}_x . By Lemma 6.3, its eigenvectors are
 873 intrinsic and unique (P&S), so $\mathbf{U}_z^{(d)} = \mathbf{U}_z^{(g)}$ (P&S, herein assume indices are relabelled to match).

874 **(Matching S)** In this common basis, under **C1–C2**, on-manifold scores are equal:

$$877 \quad [\nabla_u \log p_\mu^{(g)}(x)]_i = \frac{1}{s_i^{(g)}(z)} \frac{\partial}{\partial z_i} \left(\log p_i(z_i) - \log s_i^{(g)}(z) \right) = [\nabla_u \log p_\mu^{(d)}(x)]_i,$$

879 hence integrating along seam i (with z_{-i} fixed, using equality of p_μ at a reference point to fix the
 880 integration constant), 1-D seam factors $\frac{p_i(z_i)}{s_i}$ match. Since p_i is fixed, $s_i^{(d)} = s_i^{(g)}$, i.e. $\mathbf{S}_z^{(d)} = \mathbf{S}_z^{(g)}$.

882 With $\mathbf{V}_z^{(d)} = \mathbf{V}_z^{(g)} = \mathbf{I}$ by **C1**, it follows that $\mathbf{J}_z^{(d)} = \mathbf{J}_z^{(g)}$ and the seam decomposition is identified
 883 up to P&S. \square

884
885 E DISENTANGLEMENT METRICS
886

887 **Axis alignment score (AAS):** Given a matrix of mutual information values, between each latent
 888 co-ordinate and each ground truth factor, one can normalise over rows or columns to compute a
 889 “distribution” of mutual information.

890 The entropy of each distribution gives a measure of how narrowly or sparsely information about a
 891 ground truth factor is captured across latents or the spread of information about each factor captured
 892 by a single latent. In either case, a “high entropy” distribution means information is widely spread,
 893 while low entropy means information about a factor is concentrated in a single latent, i.e. disentangled.

894 Entropy of the mutual information distribution can be computed row-wise or column-wise. AAS is a
 895 holistic metric combining the intuitions of both options into a single, robust score that evaluates how
 896 close matrix M is to a permuted diagonal form (zero entropy, perfect disentanglement).

897 In a perfectly disentangled MI matrix, the sum of peak values per row equals the sum of peak values
 898 per column, and both equal the total sum of the matrix. AAS measures the ratio of the “sum of peaks”
 899 to the “total sum”:

```
900
901     sum_col_max = sum(max(mut_info, dim=0))
902     sum_row_max = sum(max(mut_info, dim=1))
903     aas = 0.5 * (sum_row_max + sum_col_max) / sum(mut_info)
```

904
905
906 **Normalised off diagonal:** For gradient terms (here, a $d \times d$ matrix M) we compute a measure of
 907 diagonality by computing the ratios of normalised off-diagonal absolute values to on-diagonal values.

```
908
909     d = M.shape[1]
910     num_off_diag = m * (m - 1)
911     M = abs(M)
912     M = diag(M) ^ (-0.5) * M * diag(M) ^ (-0.5)      # normalise
913     mean_off_diag = (sum(M) - sum(diag(M))) / num_off_diag
914
```

915
916
917

918 F EMPIRICAL RESULTS ON NATURAL DATA (CELEBA)
919

920 This appendix complements §7, applying the same architecture and training regime used for dSprites
921 (and as in Burgess et al. (2018)) to CelebA, a more complex natural dataset without introducing
922 new confounds. We vary β and compare *diagonal* vs *full* posterior covariances, reporting: (i)
923 latent traversals showing the dependence of disentanglement on posterior structure (Fig. 7); (ii) how
924 utilisation of the latent space varies with β and posterior structure (Fig. 8); (iii) diagonality of the
925 Price/Bonnet derivative terms (Fig. 9); and (iv) reconstruction/sampling quality (10). See captions for
926 details.

944 Figure 7: **Traversals over dimensions of highest variance** ($\beta = 4$): Each row shows images generated as
945 individual latent dimensions z_i are varied with rows ordered by latent activity (See Fig. 8 caption). For diagonal
946 posteriors (left), traversals more clearly demonstrate disentanglement, i.e. identification of distinct semantic
947 features with distinct latent dimensions, e.g. background shade (row 1), facial orientation (row 3), lighting (row
948 5), background colour (row 7). For full covariance posteriors, independent features are less clearly assigned to
949 distinct latent dimensions, i.e. less disentangled.

962 Figure 8: **Active latent dimension depend on β (denoted by colour) and posterior covariance structure**
963 (**left/right**): For a trained model and for each latent dimension z_i , the variance $x|z_i$ is estimated by taking
964 equidistant traversals in latent space and computing the Euclidean distance between samples at each end of
965 the traversal. The plot show the (estimated) variance, or *latent activity*, per dimension ordered by magnitude
966 (log scale, mean over 5 runs, standard deviation indicated by shaded areas). With diagonal covariances (left),
967 there are relatively sharp cliff-edges implying that dimensions are (broadly) *active* or *inactive* and that axis-
968 aligned directions are preferred. The number of active dimension increases as β reduces and reconstructions get
969 “sharper”, requiring more information to be captured and thus greater capacity (i.e. latent dimensions). For full
970 posteriors (right), the distribution of variance over dimensions is much smoother and axis-aligned directions
971 have no special status.

Figure 9: **Heatmaps of Derivative Terms in Eq. 6 for CelebA for Diagonal and Full Posterior Covariances:** For each value of β (indicated on left), there are two rows for $J^\top J$ (upper) and the directed Hessian (lower) over 10 random test samples. Colour intensity indicates log magnitude of matrix entries. For each heatmap, rows and columns correspond to a latent dimensions z_i , ordered by latent activity (See Fig. 8 caption). We show the top 20 most active dimensions. For diagonal covariances (left), the active dimensions are visible as a darker block in the upper left, which grows with as β reduces (matching Fig. 8), and diagonal structure is visible for active dimensions of $J^\top J$. Such structure is not visible for full covariances (right). The Hessians show less discernable structure and we suspect that such a higher order derivative require more samples to be well estimated for a complex distribution.

Figure 10: **Reconstructions and Samples for CelebA for a range of β values and Diagonal and Full Posterior Covariances:** For each value of β (left), there are two rows in three sections: (left) train samples (upper) and reconstructions (lower); (mid) test samples (upper) and reconstructions (lower); and (right) samples (both rows). As β reduces, reconstruction quality and samples improve (i.e. blur reduces). Reconstruction and sample quality is broadly comparable for diagonal and full covariances, indicating that the latent space is reoriented towards axis-alignment without necessarily impacting performance.

Summary: For *diagonal* posteriors, we observe: (a) a small set of *active* latents whose number increases as β decreases; (b) stronger Jacobian orthogonality among active dimensions; and (c) reconstructions/samples of comparable quality to the full-covariance model across β (Figures 7–10). These match the predictions of our theory and mirror the synthetic/dSprites trends, supporting on natural data the claim that diagonal posteriors drive C1–C2 in expectation.

1026 **G REDUCING β OVER TRAINING**
1027(a) $\beta = 1$: good disentanglement, blurry reconstructions.(b) $\beta = 10^{-3}$: no clear disentanglement, good reconstructions.(c) $\beta = 1$: good disentanglement, good reconstructions.

(d) Traversals from a random test sample

1076 **Figure 11: Testing the β -hypothesis:** (top) high β (1) gives best disentanglement (see heatmap) but blurry
1077 images (see top rows); (mid) low β (0.001) gives poor disentanglement but good reconstructions;
1078 (bottom) lowering β over training (1 \rightarrow 0.001) gives good disentanglement (see heatmap) and good reconstructions.
1079

1080 H MATERIAL ERRORS IN REIZINGER ET AL. (2022)
10811082 We note what appear to be several fundamental mathematical errors in the proof of Theorem 1
1083 in Reizinger et al. (2022) rendering it invalid. Theorem 1 claims an approximation to the exact
1084 relationship given in Eq. 6
10851086 1. p.33, after “triangle inequality”: $|\mathbb{E}[\|a\|^2 - \|b\|^2]| \leq \mathbb{E}[\|a-b\|^2]$, where $a = x-f$, $b = -\sum \frac{\partial f}{\partial z_k} \dots$
10871088 • (dropping expectations for clarity) this has the form $|\|a\|^2 - \|b\|^2| \leq \|a-b\|^2 \quad (*)$
1089 • true triangle inequality: $|\|a\| - \|b\|| \leq \|a-b\| \implies \|\|a\| - \|b\||^2 \leq \|a-b\|^2$ (by squaring)
1090 – this differs to $(*)$ since norms are squared inside the absolute operator on the L.H.S.
1091 • counter-example to $(*)$: $b = x > 0$, $a = x+1 \implies |\|a\|^2 - \|b\|^2| = |2x+1| > 1 = \|a-b\|^2$
10921093 2. next step, p.33: $\mathbb{E}[\|(c-e) - (d-e)\|^2] \leq \mathbb{E}[\|c-e\|^2 + \|d-e\|^2]$ where $c = x$, $d =$
1094 $f(z) - \sum \frac{\partial f}{\partial z_k} \dots$, $e = f(\mu)$
10951096 • this has the form of the standard triangle inequality $\|a-b\| \leq \|a\| + \|b\|$ except all norms are
1097 squared.
1098 • squaring both sides of the triangle inequality gives an additional cross term on the right that
1099 the used inequality omits, without which the inequality does not hold in general.1100 3. first step, p.34: drops the K term, which bounds the decoder Hessian and higher derivatives (in
1101 earlier Taylor expansion)
11021103 • this omission is similar to a step in Kumar & Poole (2020) but is not stated, e.g. in Assumption
1104 1.
1105 • since K is unbounded, any conclusion omitting it without justification is not valid in general.
11061107 I THE USE OF LARGE LANGUAGE MODELS (LLMs)
11081109 LLMs were used to assist drafting this paper as follows:
11101111 • general review for errors, inconsistencies and readability;
1112 • verifying proofs, generating code snippets or identifying code errors;
1113 • creating figure 1.
11141115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133