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ABSTRACT

We give a precise, general account of disentanglement for smooth generative
models. For a decoder g : Z →X and factorised prior p(z) =

∏
i pi(zi), we (i)

define disentanglement as factorisation of the pushforward density pµ=g#p into
one–dimensional “seam” factors (Def. D1); (ii) prove a canonical factorisation of
pµ; and (iii) show that disentanglement is equivalent to two decoder conditions
(C1–C2). Furthermore, under these conditions, the seam factors are identifiable up
to permutation and sign. These results hold for general smooth pushforwards and
are independent of VAEs. Specializing to Gaussian VAEs, we use an exact identity
to show that diagonal posteriors (and β) promote C1–C2 in expectation, thereby
explaining when and why VAEs exhibit disentanglement and how β modulates it.
Experiments illustrate this mechanism on Gaussian data, dSprites, and CelebA.

1 INTRODUCTION

A generative latent variable model is said to be disentangled when varying a single latent co-ordinate
changes a single aspect of samples generated, e.g. object position or facial expression in an image.
Variational Autoencoders (VAEs, Kingma & Welling, 2014; Rezende et al., 2014) and variants,
(Higgins et al., 2017; Kim & Mnih, 2018; Chen et al., 2018), are often observed to disentangle data.
This phenomenon is both of practical use, e.g. for controlled data generation, and intriguing as it
is not knowingly designed into a VAE’s training algorithm. Related phenomena are observed in
samples from Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) and diffusion
models (Rombach et al., 2022; Pandey et al., 2022; Zhang et al., 2022; Yang et al., 2023).

While disentanglement lacks a formal definition, it is commonly associated with identifying ground
truth generative factors of the data (Bengio et al., 2013). Thus a better understanding of disentan-
glement, and how it arises “for free” in a VAE, seems relevant to many areas of machine learning,
its interpretability and potentially our understanding of the data; and may allow disentanglement to
be induced reliably in domains where it cannot be readily perceived, e.g. gene sequence or protein
modelling. We focus on disentanglement in VAEs, where it is well observed (Higgins et al., 2017;
Burgess et al., 2018), with the expectation that a clearer understanding of it there, more as a property
of the data than the model, may extend to other settings, such as state of the art diffusion models.

The cause of disentanglement in VAEs has been traced to diagonal posterior covariance matrices
(Rolinek et al., 2019; Kumar & Poole, 2020), a common choice for computational efficiency. Approx-
imate relationships suggest that diagonal covariances promote orthogonality between columns in a
VAE decoder’s Jacobian, a property empirically associated with disentangled features (Ramesh et al.,
2018; Gresele et al., 2021). Taking inspiration from this, we develop a full theoretical explanation of
disentanglement and how it arises in (β-)VAEs. Several core results are model-agnostic statements
general to smooth pushforwards:
• a distributional definition of disentanglement in terms of independent factors (Definition 1, Fig. 1),
• a canonical factorisation of the pushforward density over the manifold (Lemma 5.1),
• an iff characterisation of disentanglement via decoder conditions (C1–C2) (Theorem 5.2), and
• proof that independent factors are identifiable up to natural symmetries (§6).

We then specialise to VAEs: using an exact Price/Bonnet identity, we show that Gaussian VAEs
with diagonal posteriors (and β) induce C1–C2 in expectation over the encoder region (§4). This
bridges prior empirical observations and VAE diagnostics with a distribution-level disentanglement
and identifiability theory.
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Figure 1: Disentanglement: full vs diagonal posteriors (Σx). Right singular vectors vi ∈Z (blue) of the
decoder’s Jacobian define singular vector paths (dashed blue); left singular vectors ui define seams (dashed red).
1-D densities over seams factorise the manifold density. (left) with full posteriors, s.v. paths are not axis-aligned;
the axis-traversal image in X (green) does not follow the seam. (right) under C1-C2 induced by diagonal
posteriors, s.v. paths axis-align and the traversal image follows the seam everywhere, and 1-D densities over
seams are independent, achieving disentanglement (D1).

2 BACKGROUND

Notation: Let x∈X .
= Rm, z∈Z .

= Rd denote data and latent variables (d≤m). For continuous
g :Z→X differentiable at z, let Jz denote its Jacobian evaluated at z ([Jz]ij =

∂xi

∂zj
) with singular

value decomposition (SVD) Jz=UzSzV
⊤
z (U⊤

z Uz=I , V ⊤
z Vz=VzV

⊤
z =I).1 Let si .=Sii denote

the ith singular value, and ui/vi the ith left/right singular vectors (columns of U /V ). We consider
continuous, injective functions g differentiable a.e. (abbreviated c.i.d.a.e.), which, e.g., admit ReLU
networks. Such g define a d-dimensional manifold Mg={g(z) | z∈Z} embedded in X (see Fig. 3).
Since g is injective, there exists a bijection between Z and Mg; and Jz has full-rank, where defined.

Latent Variable Model (LVM): We consider the generative model pθ(x)=
∫
z
pθ(x|z)p(z) with

independent zi. For tractability, parameters θ are typically learned by maximising a lower bound
(ELBO) ∫

x

p(x) log pθ(x) ≥
∫
x

p(x)

∫
z

qϕ(z|x)
(
log pθ(x|z) − β log

qϕ(z|x)
p(z)

)
, (1)

where β=1 and qϕ(z|x) learns to approximate the model posterior, qϕ(z|x) → pθ(z|x)
.
= pθ(x|z)p(z)

pθ(x)
.

Variational Autoencoder (VAE): A VAE parameterises Eq. 1 with neural networks: a decoder
network d(z) parameterises the likelihood pθ(x|z); and an encoder network parameterises the
typically Gaussian posteriors qϕ(z|x) = N (z; e(x),Σx) with diagonal Σx. The prior p(z) is typically
a standard Gaussian. We refer to a VAE with Gaussian likelihood pθ(x|z)

.
= N (x; d(z), σ2I) as a

Gaussian VAE and to a Gaussian VAE with linear decoder d(z)=Dz, D∈Rm×d as a linear VAE.

Disentanglement: While not well defined, disentanglement typically refers to associating distinct
semantically meaningful features of the data with distinct latent co-ordinates zi, such that data gener-
ated by varying a single zi differ in a single semantic feature (Bengio et al., 2013; Higgins et al., 2017;
Ramesh et al., 2018; Rolinek et al., 2019; Shu et al., 2019). While samples from a VAE exhibit disen-
tanglement, setting β>1 (a β-VAE) often enhances the effect, although at a cost to generative quality,
e.g. blurrier images (Higgins et al., 2017; Burgess et al., 2018). Disentanglement relates closely to
independent component analysis (ICA), which aims to recover statistically independent components
of the data under the same LVM but with a deterministic observation model, pθ(x|z) = δx−d(z).
Probabilistic PCA (PPCA) (Tipping & Bishop, 1999) considers a linear Gaussian LVM

p(x|z) = N (x;W z, σ2I) p(z) = N (z; 0, I) (2)

where W∈Rm×d and σ∈R.2 The exact posterior p(z|x) and MLE parameter W∗ are fully tractable:

p(z|x) = N (z; 1
σ2MW⊤x, M), M=(I+ 1

σ2W
⊤W )

−1
; W∗= UX(ΛX −σ2I)

1/2R (3)

where ΛX∈Rd×d, UX∈Rm×d contain the largest eigenvalues and respective eigenvectors of the
covariance XX⊤; and R∈Rd×d is orthonormal (R⊤R=I). As σ2→ 0, W∗ approaches the SVD
of the data matrix X=UXΛ

1/2
X V ⊤

X ∈Rm×n, up to VX (classical PCA). The model is unidentified since
R is arbitrary, allowing uncountably infinite solutions. While W∗ can be computed analytically, it can
also be learned by maximising the ELBO (Eq. 1): letting pθ(x|z)=N (x;Dz, σ2I) and iteratively
computing the optimal posterior (Eq. 3, left) and maximising w.r.t. D (we refer to this as PPCAEM).

1To lighten notation, explicit dependence of U ,V ,S,ui,vi, si on z is often suppressed where context is clear.
2We assume that data is centred, which is equivalent to including a mean parameter (Tipping & Bishop, 1999).
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Figure 2: An LVAE breaks rotational symmetry. (l) both full-Σx and diagonal-ΣxVAEs fit the data, i.e. learn
ground truth parameters U∗, S∗ (all losses→0); (c) only in diagonal-ΣxVAEs do right singular vectors of the
Jacobian, vi∈Z , align with standard basis vectors zi, i.e. V∗→I (blue plots→0); (r) images of zi: full-Σx

VAEs map zi to arbitrary directions (red), but diagonal-Σx VAEs learn (later epochs darker) to map zi to the
data’s independent components (black, i.e. blue → black).

Linear VAE: An LVAE assumes the same linear LVM as PPCA (Eq. 2) and models the likelihood
pθ(x|z) = N (x;Dz, σ2I) as in PPCAEM, differing only in approximating the posterior by qϕ(z|x)=
N (z;Ex,Σ), rather than computing the optimal pθ(z|x). Surprisingly though, an LVAE with
diagonal posterior covariances loses the rotational ambiguity of PPCA (Lucas et al., 2019), since

Σ∗
(3(l))
= (I+ 1

σ2W
⊤
∗ W∗)

−1 (3(r))
= σ2R⊤Λ

−1

X R . (4)

Thus for Σ to be optimal and diagonal, R must belong to a finite set of signed permutations, hence
the optimal decoder D∗= UX(ΛX−σ2I)

1/2 is unique up to permutation/sign (see Fig. 2). We will
see that this effect, due to diagonal posterior covariances, is in fact (linear) disentanglement (§3).

Further notation: Under the LVM above, we define a deterministic generative function g :Z→X
as the map from latent variables to means g(z)=E[x|z], that lie on a manifold Mg ={g(z)}⊆X
(mean manifold) with push-forward density pµ

.
= g#pz (manifold density). We will focus on

Gaussian VAEs, where the data density p(x) is given by adding Gaussian noise to pµ, i.e. convolving
it with a Gaussian kernel. It is known that such data densities match if and only if their manifold
densities pµ match (e.g. Khemakhem et al., 2020), hence we focus on the manifold density pµ.

3 DISENTANGLEMENT

We now define disentanglement; illustrate it for the linear case, justifying our disentanglement claim
for LVAEs in §2; and work up to explaining how it arises in a (non-linear) Gaussian VAE. (See Fig. 1)
Definition D1 (Disentanglement). Let g :Z → X be c.i.d.a.e.. We say pµ is disentangled if, for
each z∈Z , there exist 1-D densities {fi} such that pµ factorises as

pµ
(
g(z)

)
=

d∏
i=1

fi
(
ui(z)

)
, (5)

where each factor fi is the 1-D push-forward of p(zi) along the axis-aligned line obtained by moving
in the i-th latent coordinate while keeping all others fixed; ui is the co-ordinate of g(z) along the
image of that line; and random variables {ui(z)} are mutually independent under z ∼ p(z).

D1 defines disentanglement as factorisation of the pushforward density pµ into 1-D factors, precisely
the distributional independence expected when “changing one factor leaves the others unaffected.”

LVAE disentanglement: Consider an LVAE with diagonal posterior covariance Σ and decoder
d(z)=Dz, D∈Rm×d (§2). The mean manifold Md

.
= {µ=Dz | z ∈Z} is linear with Gaussian

density pµ=N (µ;0,DD⊤) (e.g. see Fig. 2, right), From §2, the SVD of the data matrix defines the
optimal decoder D∗=U∗S∗V∗ (i.e. U∗

.
=UX , S∗

.
=(ΛX−σ2I)

1/2 and V∗=R=I due to diagonal
Σ). As for any Gaussian, pµ factorises as a product of independent 1-D Gaussians along eigenvectors
of its covariance D∗D

⊤
∗ =U∗S

2
∗U

⊤
∗ , i.e. columns ui of U∗, hence pµ =

∏
i N (ui; 0, s

i2) where
ui

.
=ui⊤µ∈R. Since ui = ui⊤D∗z = sizi, each ui depends only on a distinct zi, a co-ordinate in

the standard basis of Z (over which densities are independent 1-D Gaussian). Thus:
• pµ factorises as a product of independent push-forward densities fi(µ)=N (ui⊤µ; 0, si2); and
• the decoder maps each axis-aligned direction zi to a distinct factor fi,

3
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satisfying D1. Note that synthetic data µ=Dz generated by re-sampling zi, holding zj ̸=i constant,
differ only in component (or “feature”) ui, agreeing with the common perception of disentanglement.

Dropping diagonality: To emphasise that disentanglement depends on diagonal posteriors, we
consider full posterior LVAEs, where R ̸= I in general. The above argument follows except that
columns ri of R in Z map to independent ui directions in X . Meanwhile, standard basis vectors
in Z map in directions ui⊤R, which are arbitrary with respect to ui directions. Hence axis-aligned
traversals in latent space correspond to several entangled components ui changing in generated
samples. We demonstrate this empirically in Fig. 2 (see caption for details).

4 FROM DIAGONAL POSTERIORS TO DECODER CONSTRAINTS

Prior works draw a link between disentanglement in Gaussian VAEs and diagonal posteriors from an
approximate relationship between optimal posteriors and decoder derivatives (Rolinek et al., 2019;
Kumar & Poole, 2020). In fact, this relationship is exact by the Price/Bonnet Theorem and Opper &
Archambeau (2009): the ELBO with Gaussian posteriors is optimised when their covariances satisfy

Σ
−1

x = I − 1
βEq(z|x)[Lz(x)]

∗
= I + 1

βσ2Eq(z|x)[J
⊤
z Jz − (x−d(z))⊤Hz] , (6)

where Lz(x) =∇2
z log pθ(x|z) is the log likelihood Hessian; and Jz

.
= dx

dz and Hz
.
= d2x

dz2 are the
Jacobian and Hessian of the decoder (all terms evaluated at z ∈ Z). Step two (*) assumes the
likelihood is Gaussian. Eq. 6 immediately generalises the classical linear result in Eq. 3 and relates
σ2 .

=Var[x|z] and Σx
.
=Var[z|x], showing that (un)certainty in x and z go hand in hand, as expected.

Importantly to disentanglement, Eq. 6 shows that diagonal Σx constrains derivatives of the decoder.
In practice, the J⊤

z Jz term alone is found to be approximately diagonal (Fig. 3, left) (Rolinek et al.,
2019; Kumar & Poole, 2020), suggesting that each term diagonalises. We thus formalise this as a
property and consider its implications (C1-C2), which will prove equivalent to disentanglement:
Property P1. J⊤

z Jz and (x−d(z))⊤Hz in Eq. 6 are each diagonal for z concentrated around E[z|x].

Lemma 4.1 (Disentanglement constraints). For a trained Gaussian VAE and x, z satisfying P1:
C1) Right singular vectors Vz of the decoder Jacobian Jz are standard basis vectors, i.e. after

relabeling/sign flips of the latent axes, we have Vz = I;

C2) The matrix of partial derivatives of singular values ( ∂si∂zj
)i,j is diagonal, i.e. ∂si

∂zj
=0 for all i ̸=j.

Proof. See Appendix A. C1 follows from the SVD of Jz; C2 from observing that directions r(z) =
x− d(z)∈X of the directed Hessian term are, to a first approximation, tangent to the manifold.

Why β affects disentanglement: Setting β > 1 in Eq. 1 is found to enhance disentanglement
(Higgins et al., 2017; Burgess et al., 2018). We show that β implicitly controls the likelihood variance
in Appendix B and thus β > 1 dilates posteriors (while the β-ELBO remains a valid objective). We
will show that C1-C2 equate to disentanglement (§5), thus Eq. 6 suggests a rationale for why β>1
enhances disentanglement: it broadens the regions (i.e. posteriors) over which decoder derivatives are
diagonalised, hence where disentanglement constraints C1-C2 are encouraged; also increasing the
overlap of posteriors where multiple constraints apply simultaneously (see Fig. 6, right).

5 FROM DECODER CONSTRAINTS TO DISENTANGLEMENT

To see how disentanglement relates to constraints C1-C2, defined in terms of the Jacobian SVD of
the generative function g (or decoder d), we consider the Jacobian SVD in detail.

The Jacobian SVD: For Jz =USV ⊤, singular vectors (columns of V , U ) respectively define
(local) orthonormal bases: the V -basis, {vi} for Z at z; and the U -basis, {ui} for the tangent space
to Mg at x=g(z). Letting v

.
=V ⊤z and u

.
=U⊤x denote a point z and its image x=g(z) in those

bases, the chain rule gives an interpretation of the Jacobian’s SVD, Jz=USV ⊤= ∂x
∂u

∂u
∂v

∂v
∂z : U and

V ⊤ are simply local co-ordinate systems in each domain, and S= du
dv is the Jacobian of a map v 7→u

expressed in those co-ordinates, under which only respective dimensions interact (∂ui

∂vj
=0, i ̸=j).

Singular Vector Paths and Seams: The directional derivative Jzv
i=USV ⊤vi=siui shows that

a small perturbation by right singular vector vi at z∈Z translates under g to a small perturbation in

4
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Figure 3: (left) Empirical support for P1: Rolinek et al. (2019) show that VAEs with diagonal Σx have
increased orthogonality in the decoder Jacobian (C1). (right) Seam factorisation: For continuous, injective,
differentiable a.e. (c.i.d.a.e.) g : Z →X , with Jacobian Jz∗ and manifold Mg ⊆ X , singular-vector paths
Vk
z∗ ⊆Z (D3, dashed blue) following right singular vectors vk of Jz∗ (solid blue), map to seams Mk

g,z∗ ⊆Mg

(D4, dashed red) following left singular vectors uk at g(z∗)∈X (solid red). zk∈Z are standard basis vectors.

direction ui at g(z)∈Mg . By extension, if a path in Z follows vi at each point (as a vector field) its
image on Mg is expected to be a path following ui. Note that wherever the Jacobian is continuous,
each of its SVD components is continuous. Since columns of an SVD can be validly permuted, their
order must be fixed for paths over “i-th” singular vectors to be well defined:

Definition D2 (Regular set and continuous SVD). For c.i.d.a.e. g : Z → X , define the regular set

Zreg
.
=

{
z ∈ Z

∣∣∣ Jz exists, has full column rank, and s1(z) > · · · > sd(z) > 0
}
.

Vector fields z 7→ vi(z), z 7→ ui(z) and singular values z 7→ si(z) can be made continuous on each
connected component of Zreg by fixing the SVD Jz=UzSzV

⊤
z .34

With this, we define paths following i-th singular vectors: singular vector paths, or s.v. paths, Vi
z

follow vi in Z (Def. 3, blue dashed lines in Fig. 3); and seams, Mi
g,z follow ui over the manifold

(Def. 4, red dashed lines in Fig. 3) By construction, g maps s.v. paths to seams (proved in Lemma C.1).

Singular vector paths and seams naturally extend the notion that right singular vector perturbations
map to distinct left singular vector perturbations (since S is diagonal). Key to disentanglement is
how 1-D densities over s.v. paths push-forward under g to 1-D densities on the manifold Mg:

Lemma 5.1 (Factorisation over seams). Let g : Z → X be c.i.d.a.e. and the prior factorise as
p(z) =

∏d
i=1 pi(zi) (e.g. standard Gaussian). Then, the manifold density pµ on Mg factorises as

pµ
(
g(z)

)
=

d∏
i=1

pi(zi)
si(z) , for every z∈Zreg. (7)

Moreover, each factor pi(zi)
si(z) is the 1-D density over the i-th seam Mi

g,z at x= g(z), obtained by
pushing forward the 1-D marginal pi(zi) over Vi

z , the i-th s.v. path though z.

Proof. See Appendix C. Follows from the standard change–of–variables formula.

Summary: Singular paths in Z are the latent curves along which g changes in the corresponding
seam on Mg (Lemma C.1). Lemma 5.1 states that pµ decomposes as a product of 1-D densities
along seams, each the push–forward of the marginal over the i-th latent s.v. path – precisely the
factorisation condition required for disentanglement (Eq. 5). Disentanglement also requires that s.v.
paths are axis-aligned (in general they may curve, as in Fig. 3) and that factors are independent, i.e.
only factor i changes over seam i. We now show that these extra properties follow from C1 and C2.

Theorem 5.2 (Disentanglement ⇔ C1-C2). Let g :Z →X be c.i.d.a.e. and the prior factorise
as p(z) =

∏d
i=1 pi(zi) (e.g. standard Gaussian). The push-forward density pµ on the manifold

Mg={g(z)} is disentangled (D1) if and only if g satisfies C1 and C2 almost everywhere.

Proof. See Appendix D.1

Thm. 5.2 means that C1-C2 are precisely the constraints needed for the factorisation in Eq. 7 to
become disentanglement: C1 causes s.v. paths to axis-align and pi(zi) to be independent; C2 rules
out si (of factor i) varying in co-ordinates zj ̸=i, ensuring seam factors are independent (see Fig. 4).

3e.g. start from an arbitrary point, order singular values strictly decreasing and choose signs continuously.
4Restricting to Zreg only excludes points where Jz is undefined or has repeated singular values; these edge cases
can be avoided without affecting the results. All statements are made on a fixed connected component of Zreg.
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Figure 4: Pushing forward p(z), from singular vector paths to seams: 1-D marginals pi(zi) over s.v. paths
Vi
z∗ (dashed blue) factorise p(z); and push-forward to 1-D seam densities over seams Mi

f,z∗ (dashed red) that
factorise pµ (Lemma 5.1). (left) For linear f without C1 (e.g. full-Σx LVAE), Vi

z∗ are straight lines but need
not axis-align (as shown in Fig. 2, right). (right) For c.i.d.a.e. f satisfying C1-C2 (e.g. Gaussian VAE under
P1), Vi

z∗ are axis-aligned (by C1) and seam densities are independent components (by C2) that factorise pµ.
(Criteria for disentanglement (D1) are underlined.)

Thus, to the extent a Gaussian VAE with diagonal posteriors induces property P1 by Eq. 6, it
expressly disentangles the decoder’s push-forward density; and to the extent disentanglement is
observed, diagonalisation constraints C1-C2 must hold. This provides a firm justification for how
disentanglement emerges in VAEs, while the relationship between Eq. 6 and constraints C1-C2 also
suggests a plausible rationale for why disentanglement arises inconsistently (Locatello et al., 2019).

6 IDENTIFIABILITY

We now investigate if a model, capable of fitting the data (i.e. data is generated under the model class),
learns the true generative factors up to some symmetry, or could settle on a spurious factorisation.

Corollary 6.1 (LVAE Identifiability). Let data be generated under the linear Gaussian LVM Eq. 2
with ground-truth g(z)=W z, W = UWSWV ⊤

W ∈Rm×d of full column rank and distinct singular
values. Let an LVAE with diagonal posteriors be trained on n samples, and as n→∞ its learned
parameters yield p(d)

µ ≡ p(g)
µ on the mean manifold. Then the LVAE achieves disentanglement (D1)

and identifies ground-truth independent components on Mg up to permutation and sign (P&S).

Proof. See Appendix D.2 (Follows from the uniqueness of the SVD).

Thus, if an LVAE learns to model the data, it learns the ground truth independent factors.

Remark 6.2 (VW immaterial). Ground-truth right singular vectors VW are not recoverable from p(x)
under the PPCA/LVAE model; this is not a lack of identification. With a standard Gaussian prior,
any orthonormal change of basis of z preserves independence and leaves p(x) unchanged. The only
data-relevant object is UWSW ; the arbitrary basis in which W was written has no bearing on p(x).

The linear case hints at why independent factors may be identifiable more generally, since it depends
on the Jacobian SVD, fundamental to the non-linear case. Taking this hint, we show that if a manifold
density admits a seam factorisation (as in Lemma 5.1), that seam factorisation is unique (P&S)
and intrinsic to pµ, agnostic to any generative process or parameterisation. It follows that if the
push-forward of a decoder fits pµ, then its seams must align with the intrinsic seams of pµ (P&S); and
subsequently that a Gaussian VAE fitting pµ identifies ground truth factors (P&S). (Proofs in D.3)

Lemma 6.3 (Seams are Intrinsic). Let M ⊆ X carry a manifold density pµ. Assume that on
a regular set Mreg there exist scalar functions {ui(x)}di=1 (each varying only along a 1-D curve
through x, i.e. a seam) and 1-D densities {fi} such that

pµ(x) =

d∏
i=1

fi
(
ui(x)

)
, x ∈ Mreg, (8)

and that the on-manifold Hessian Hx
.
=∇2

x log pµ(x) has pairwise distinct eigenvalues a.e. on Mreg.
Then for each x ∈ Mreg, the d seam directions (along which exactly one ui varies) are determined
intrinsically by pµ, as eigenvectors of Hx, unique up to permutation and sign (P&S).
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Lemma 6.4 (A matching decoder finds seams). Under assumptions of Lemma 6.3, let d : Z→X
be c.i.d.a.e. with factorised prior p(z) =

∏
i pi(zi) and push-forward density p(d)µ ≡ pµ matching on

Md
.
= {d(z)} = M. If d satisfies C1–C2 a.e., then for any z and x = d(z):

• left singular vectors Uz of Jz coincide with the seam directions in Lemma 6.3 (up to P&S);
• the images under d of singular-vector paths (D3) are exactly the seams through x;
• along the i-th seam, the factor fi is the 1-D push-forward of pi(zi) (as in Lemma 5.1).

Theorem 6.5 (Gaussian VAE Identifiability). Let data be generated by c.i.d.a.e. g : Z→X with
factorised prior p(z)=

∏d
i=1 pi(zi). Let a Gaussian VAE with diagonal posteriors learn a decoder

d : Z → X . Suppose both g and d satisfy C1–C2 and manifold densities match: p
(d)
µ ≡ p

(g)
µ on

M={g(z)}={d(z)}. If, eigenvalues of the tangent Hessian (see proof) are pairwise distinct a.e.,
then d identifies ground-truth independent components on Mg , up to permutation and sign (P&S).

Thus, if a Gaussian VAE fits the push-forward of a Gaussian distribution under the conditions of 5.2,
then the VAE identifies and disentangles the ground truth generative factors (up to permutation/sign).

Remark 6.6. P&S symmetry is optimal since seams follow ui, with no inherent order or orientation.

We can also consider fitting a Gaussian VAE to data sampled from the push-forward of other priors.

Corollary 6.7 (BSS). In Theorem 6.5, if priors p(g)(z) and p(d)(z) factorise and p
(g)
µ ≡ p

(d)
µ with

C1-C2 holding a.e., then the seam decomposition pµ on M is unique up to permutation and sign,
and g and p(g)(z) are recoverable up to an axis-aligned diffeomorphism ϕ

.
= g−1◦ d : Z → Z .

Proof. Immediate from proof of Theorem 6.5, which does not depend on the form of p(z). The
diffeomorphism follows since Mg=Md and by injectivity of d, g.

Remark 6.8 (Gaussian p(z) unidentifiability). Classical non-linear ICA aims to identify ground
truth factors of the model in Theorem 6.5 with deterministic pθ(x|z)=δx−d(z), which is impossible
if p(z) is Gaussian (Khemakhem et al., 2020; Locatello et al., 2019). Corollary 6.1 and Theorem 6.5
show that under a probabilistic formulation together with constraints C1–C2 induced by diagonal
posteriors, we obtain identifiability without requiring extra side information, e.g. auxiliary variables.5

In summary, we have defined disentanglement, shown that it holds if and only if C1-C2 hold, and
that seam factors are unique and therefore identifiable, up to expected symmetry.

7 EMPIRICAL SUPPORT

We include empirical results to illustrate disentanglement and support our claims. From our analysis,
we expect (i) diagonal posteriors to promote diagonalised derivative terms; and (ii) diagonalised
derivatives to correlate with disentanglement.

Both (i) and (ii) are well illustrated in the linear case where ground truth factors are known analytically.
Fig. 2 shows results for diagonal and full covariance LVAEs learning Gaussian parameters (see caption
for details). All models learn optimal parameters as expected (left); but, as (i) predicts, only diagonal
covariances cause right singular vectors of Jz to converge to standard basis vectors, V →I (C1),
(centre); hence latent traversals map to independent components along left singular vectors ui (right),
yielding disentanglement (D1), predicted by (ii). This evidences diagonal covariances “breaking the
rotational symmetry” of a Gaussian prior. While the linear case seems trivial, it is a fundamental
demonstration since our analysis shows that disentanglement in general follows the same rationale.
Interestingly Fig. 3 shows that learning parameters a disentangled model is notably slower (left), due
to the rate at which V → I (centre). A diagonal covariance model must find one of a finite set of
solutions among the infinite solutions of a full covariance model.

Various studies show further empirical support. Supporting (i) and (ii), Rolinek et al. (2019) show that
columns of a decoder’s Jacobian are more orthogonal (i.e. V →I , C1) in VAEs with diagonal posterior
than those with full posteriors (Fig. 3, left), and that diagonality correlates with disentanglement.
Supporting (ii), Kumar & Poole (2020) show that directly inducing column-orthogonality in the
decoder Jacobian promotes disentanglement.

5Unidentifiability proofs typically make use of an arbitrary rotation applied to the Gaussian prior (cf R in Eq. 3),
but we have seen that C1 removes such symmetry, even in the linear case (Fig. 2). (See also Remark 6.2.)
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Diagonal posteriors Full posteriors

Diag
β : 1

Diag
1e−3

Full
1

(t) J⊤
z J ;

(b) (x−d(z))Hz

Figure 5: Diagonal vs Full Posteriors: (left) (bottom) disentanglement metrics and estimated diagonality
of Eq. 6 terms (see Appendix E). With diagonal posteriors, disentanglement and diagonality are correlated
(supporting P1), relative to full posteriors; (top) heatmaps of mutual information between model latents and
ground truth factors. (right) derivatives in Eq. 6. terms are less diagonal for lower beta or full posteriors. (All
results averaged over multiple runs)

Complementing prior work, we train diagonal and full posterior Gaussian VAEs (d= 10) on the
dSprites dataset, for which the 5 ground truth generative factors are known (all results averaged
over 5 runs). How well each latent co-ordinate identifies a ground truth factor can be estimated
explicitly from their mutual information, and a function of mutual information often captures a
model’s overall disentanglement, e.g. the mutual information gap (MIG, Chen et al. (2018)). Fig. 5
(main plots) reports MIG, axis alignment score (AAS) (a novel metric based on the entropy of the
mutual information distribution) and derivative diagonality estimates against β (see Appendix E for
details). For diagonal posterior VAEs (left), disentanglement and diagonality both broadly increase
with β. For full posteriors (right) no clear trend is observed. The heatmaps above (aligned with plots
by β) show mutual information between each latent co-ordinate and ground truth factor (ordered
greedily to put highest mutual information scores along the diagonal). We see that for diagonal
posterior VAEs, disentanglement increases with β and that individual latent co-ordinates (horizontal)
correlate with distinct ground truth factors (vertical), whereas that trend is not observed for full
posteriors. For illustration, Fig. 5 (right) shows heatmaps of the d×d derivative terms in Eq. 6 (J⊤

z Jz

term top, Hessian term bottom), each for diagonal covariances, β = 1 (l); diagonal covariances,
β=0.001 (c); and full covariances, β=1 (r) (each averaged over a batch). We perform comparable
analysis on the CelebA dataset of natural face images, reported in Appendix F.

Our understanding of the interplay between β and disentanglement is that higher β implies higher
expected noise, weakening reconstructions but enhancing disentanglement; while lower β (less
assumed noise) tightens reconstructions but limits disentanglement to concentrated, potentially
disconnected regions of Z (§4). This suggests that the heuristic of starting with β high and reducing
it over training may give both disentangled and higher quality samples. We run experiments on the
dSprites dataset and report results in Appendix G for constant β baselines (1, 0,001), and exponentially
reducing β (1→ 0.001) over training. The results are as expected results, showing that annealing
β gives both sharp reconstructions and good disentanglement. Noting also the resemblance to the
“de-noising” process in denoising autoencoders and diffusion models, this suggests that dynamically
varying β is an interesting direction for future research.

8 RELATED WORK

Higgins et al. (2017) showed that disentanglement in VAEs is enhanced by setting β > 1 in the
(β-)ELBO (Eq. 1). Burgess et al. (2018) conjectured that diagonal posterior covariances may cause
disentanglement. Rolinek et al. (2019) showed supporting empirical evidence (Fig. 3) and derived an
approximate relationship between diagonal posteriors and Jacobian orthogonality, conjectured to then
cause disentanglement. Kumar & Poole (2020) generalised the argument, reaching an approximation
to the identity in Eq. 6. We make the link between posterior covariances and decoder derivatives
precise in Eq. 6 and, by giving disentanglement a formal definition, show how it follows from Eq. 6
via constraints C1-C2, confirming the conjecture.

Lucas et al. (2019); Bao et al. (2020) and Koehler et al. (2022) study properties of linear VAEs.
Notably Lucas et al. (2019) show the equivalence of β and Var[x|z] in Gaussian VAEs, which we
generalise in Appendix B; and prove identifiability of LVAEs, which we generalise to the non-linear
case. Zietlow et al. (2021) show that disentanglement can be sensitive to perturbing the data. Reizinger
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et al. (2022) seek to relate the ELBO to independent mechanism analysis (Gresele et al., 2021),
which encourages column-orthogonality in the mixing function of ICA.6 We show that Jacobian
orthogonality (C1) is insufficient for disentanglement/identification of independent components,
which also requires (C2). VAEs relate closely to ICA (§2) and noisy ICA (Hyvarinen, 1998). The
latter assumes the same generative model but does not model the posterior, which we show is the
critical factor for disentanglement.

Ramesh et al. (2018) trace independent factors by following leading left singular vectors (our seams)
of the Jacobian of a GAN generator, whereas Chadebec & Allassonnière (2022) and Arvanitidis et al.
(2018) consider paths in latent space defined by the inverse image of paths over the data manifold (our
s.v. paths). Pan et al. (2023) claim that the data manifold is identifiable from a geometric perspective
assuming Jacobian-orthogonality, differing to our probabilistic factorisation approach. Bhowal et al.
(2024) consider linear and non-linear components of the encoder/decoder, loosely resembling our
Jacobian SVD view. However, dissecting a function into linear/non-linear components is not well
defined, whereas the SVD is unique (up to permutation/sign). Buchholz et al. (2022); Buchholz &
Schölkopf (2025) analyse identifiability by function classes, e.g. proving that conformal maps are
identifiable and orthogonal coordinate transformations (satisfying C1) are not. By comparison, our
C1-C2 are derived with respect to disentanglement, which implies an intrinsic density factorisation,
unique/identifiable up to symmetry (Thm 6.5). Brady et al. (2023); Lachapelle et al. (2023) analyze
additive/compositional decoders that have block-diagonal Hessians in pixel space, a strictly stronger
condition than our Thm 5.2, which allows, e.g., rotations/scale/colour changes that would not be
block-diagonal in pixel space.

9 CONCLUSION

Unsupervised disentanglement of generative factors of the data is of fundamental interest in machine
learning. Thus, irrespective of current popularity, understanding how a VAE disentangles the data
for free may offer useful insight for other paradigms. We take significant strides in this respect, in
particular proposing a simple, formal definition of disentanglement (D1) as factorising the manifold
density into independent components, each factor being the image of an axis-aligned traversal in
latent space. We also give a simple interpretation of β in a β-VAE, as adjusting the assumed variance
of the likelihood (generalising the known Gaussian case), justifying both why β > 1 promotes
disentanglement while degrading generative quality, and β < 1 mitigates posterior collapse.

Our key results (Definition 1, Lemma 5.1, Theorem 5.2, Lemma 6.3, Lemma 6.4, Theorem 6.5) are
not specific to VAEs, but are general to smooth push-forwards of a factorised prior, as also in GANs
and flows. We show via a relatively simple mechanism, the decoder Jacobian’s SVD, that under
suitable conditions a push-forward density factorises. Indeed the factorisation in the latent space
can be seen to project en masse onto the manifold, whereby independent densities over singular
vector paths in latent space push-forward to independent densities over seams on the manifold. We
show that the constraints needed for such a factorisation to reach disentanglement are precisely
those imposed, in aggregate and in expectation, by a VAE with diagonal posteriors, justifying both
why disentanglement arises and why it is also ephemeral (Locatello et al., 2019). Furthermore,
independent factors are provably identifiable, which is particularly significant given their proven
unidentifability under ICA with Gaussian prior.

Neural networks models are often considered too complex to explain, despite their increasingly
widespread deployment in everyday applications. An improved theoretical understanding seems
essential to optimally and safely take advantage of machine learning progress, particularly in critical
systems. We hope our work is a useful step in that direction, providing new insight into how the data
density decomposes over independent generative factors. Interestingly, our proof structure shows
that, irrespective of the complex non-linearity of a decoder, how the prior pushes forward can be
considered relatively simply.

VAEs (and variants e.g. AEs, SAEs) form part of a pipeline in many state-of-the-art models, e.g. latent
diffusion (e.g. Rombach et al., 2022; Pandey et al., 2022; Yang et al., 2023; Zhang et al., 2022) and
LLMs; other recent works show that supervised learning (Dhuliawala et al., 2024) and self-supervised
learning (Bizeul et al., 2024) can be viewed as latent models trained under ELBO variants. In future
work we will look to see if our results transfer to such other learning paradigms.
6We report apparent discrepancies in Reizinger et al. (2022) in Appendix H.
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A PROOF OF DECODER DERIVATIVE CONSTRAINTS

Property P1. J⊤
z Jz and (x−d(z))⊤Hz in Eq. 6 are each diagonal for z concentrated around E[z|x].

Lemma 4.1 (Disentanglement constraints). For a trained Gaussian VAE and x, z satisfying P1:

C1) Right singular vectors Vz of the decoder Jacobian Jz are standard basis vectors, i.e. after
relabeling/sign flips of the latent axes, we have Vz = I;

C2) The matrix of partial derivatives of singular values ( ∂si∂zj
)i,j is diagonal, i.e. ∂si

∂zj
=0 for all i ̸=j.

Proof. (Preliminaries): Recall p(z) = N (0, I) and p(x | z) = N (x; d(z), σ2I). Let q(z | x) =
N (z; e(x),Σx) be the trained posterior with Σx diagonal (by assumption). Denote the SVD of the
decoder Jacobian by

Jz = Uz Sz V
⊤
z , Uz ∈ Rn×d, Sz = Diag(s1(z), . . . , sk(z)), si(z) > 0.

Assume full column rank on the manifold (si(z) > 0). For Gaussian likelihood with variance σ2, the
Hessian of the log-likelihood w.r.t. z can be written

∇2
z log p(x |z) = − 1

σ2

(
J⊤
z Jz −

n∑
ℓ=1

r(z)ℓ Hℓ(z)
)
,

where r(z) = x− d(z) and Hℓ(z) ∈ Rk×k is the Hessian of the ℓ-th decoder coordinate, [Hℓ]pq =
∂2dℓ/∂zp ∂zq . Combined with the Opper–Archambeau fixed-point yields7

Σ−1
x = I − Eq

[
∇2

z log p(x |z)
]
= I + 1

σ2Eq

[
J⊤
z Jz

]
− 1

σ2Eq

[ n∑
ℓ=1

r(z)ℓ Hℓ(z)
]
. (9)

(C1): For diagonal Σx in Eq. 9 and z concentrated around e(z) under P1 (“no cancellation”), we
have

J⊤
z Jz is diagonal,

n∑
ℓ=1

r(z)ℓ Hℓ(z) is diagonal. (10)

Diagonal J⊤
e(x)Je(x)=Diag(s21, . . . , s

2
k) implies right singular vectors vi are the standard basis, up

to signed permutations. By relabelling latent axes and absorbing signs, Vz = I for all z visited by
the encoder, establishing C1.

(Directed Hessian is Tangent to Manifold): Since the model is well trained, we assume d(e(x))≈x.
For z = e(x) + δ with δ>0 small, a first-order Taylor expansion gives

d(z) = d(e(x)) + Je(x) δ +O(∥δ∥2) =⇒ r(z) = x− d(z) = −Je(x) δ +O(∥δ∥2).
Thus, for z concentrated around e(x), to first order, r(z) lie in the column space of Je(x), i.e. in the
span of the left singular vectors {ui(e(x))}ki=1 (columns of Uz):

r = Uza, a ∈ Rk (11)

Hence, we consider
∑n

ℓ=1 rℓ Hℓ(z) to be diagonal for all r ∈ span(Uz). In particular,∑n
ℓ=1 u

⊤
iℓ Hℓ(z) is diagonal for all rows ui of Uz and, by definition of slices Hℓ and Jz ,

[

n∑
ℓ=1

u⊤
iℓ Hℓ(z)]pq =

n∑
ℓ=1

u⊤
iℓ

∂2dℓ

∂zpzq
= (U⊤

z
∂Jz

∂zp
)iq (12)

(Diagonality of ( ∂si

∂zj
)i,j):

Differentiating U⊤
z Uz = Ik to get ∂U⊤

z

∂zj
Uz +U⊤

z
∂Uz

∂zj
= 0 shows Ωj(z) := U⊤

z
∂Uz

∂zj
∈ Rd×d is

skew-symmetric. Differentiating Jz=Uz Sz w.r.t. zj and premultiplying by U⊤
z then gives

U⊤
z

∂Jz

∂zj
= Ωj(z)Sz + ∂Sz

∂zj
. (13)

7we use: Σ−1
x = −Eq

[
∇2

z log p(x, z)
]
= −Eq

[
∇2

z log p(z) +∇2
z log p(x|z)

]
; ∇2

z log p(z) = −I .

12
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Figure 6: Illustrating β∝Var[x|z] (blue=data, red=reconstruction): (l) For low β (β=0.55), Var[x|z] is low
(by Eq. 6), and data must be well reconstructed (right, top). As β increases, Var[x|z] and so Var[z|x] increase,
and posteriors of nearby samples {xi}i increasingly overlap (right, bottom). For z in overlapping {q(z|xi)}i,
the decoder E[x|z] maps to a weighted average of {xi}i. Initially, close neighbours reconstruct to their mean
(β=2.2, 3.8), then small circles “become neighbours” and map to their centres. Finally (β=60), all samples
reconstruct to the global centroid. (reproduced with permission from Rezende & Viola, 2018) (r) illustrating
posterior overlap, (t) low β, (b) higher β.

Since Ωj(z) is skew-symmetric, all diagonal entries are zero; since ∂Sz

∂zj
is diagonal, all non-diagonal

entries are zero. Thus, of respective entries, only one is non-zero and can be considered separately.

From Eq. 12, only (Ωj(z)Sz):j elements can be non-zero, thus all elements of Ωj(z) must be zero
(by skew-sym.), ruling out rotation in the tangent plane8

For ∂Sz

∂zj
, diagonality (only (∂Sz

∂zj
)kk elements non-zero) and Eq. 12 (only (∂Sz

∂zj
):j elements non-zero)

imply that only elements (∂Sz

∂zj
)jj =

∂sj
∂zj

can be non-zero, eliminating mixed partials

∂si
∂zj

(z) = 0 for all i ̸= j,

i.e. the Jacobian of the singular-value map s(z) = (s1(z), . . . , sk(z)) is diagonal, proving C2.

B β CONTROLS NOISE VARIANCE

Choosing β>1 in Eq. 1 can enhance disentanglement (Higgins et al., 2017; Burgess et al., 2018) and
has been viewed as re-weighting ELBO components or as a Lagrange multiplier. We show that β
implicitly controls the likelihood’s variance and that the “β-ELBO” remains a valid objective.

Dividing the ELBO by a constant and suitably adjusting the learning rate leaves the VAE training
algorithm unchanged, hence consider Eq. 1 divided through by β with the log likelihood scaled by
β−1. For a Gaussian VAE with Var[x|z]=σ2, this exactly equates to a standard VAE with variance
βσ2 (Lucas et al., 2019). More generally, scaling the log likelihood by β−1 is equivalent to an implicit
likelihood pθ(x|z)1/β, where β acts as a temperature parameter: β → ∞ increases the effective
entropy towards uniform (the model assumes more noise in the data, fitting more loosely), and β→0
reduces it to a delta (reconstructions should be tight). Optimal posteriors fit to the implicit likelihood,
qϕ(z|x) ∝ pθ(x|z)1/βp(z), which thus dilate (β > 1) or concentrate (β < 1). This generalises the
Gaussian result (Lucas et al., 2019), showing that the β-ELBO is simply the ELBO for a different
likelihood model.9

Empirical support: Our claim, in effect that Var[x|z]∝β, is well illustrated on synthetic data in
Fig. 6 (Rezende & Viola, 2018, see caption for details). It also immediately explains blur in β-VAEs
since β>1 simply assumes more noise. It also explains why β<1 helps mitigate posterior collapse
(Bowman et al., 2015), i.e. when a VAE’s likelihood is sufficiently expressive that it can directly
model the data distribution, p(x|z)=p(x), leaving latent variables redundant (posterior “collapses”
to prior). As β→0, the effective variance of pθ(x|z), and the distributions it can describe, reduces.
Thus for some β<1 the effective variance falls below Var[x], rendering posterior collapse impossible
as some variance in x can only be explained by z. Thus our claim that β controls effective variance
explains well-known empirical observations, which in turn provide empirical support for the claim.

8we have: Ωj(z)kj = −Ωj(z)jk = 0, if j ̸=k; and Ωj(z)jj = 0 (skew-sym.).
9Technically, the β-ELBO’s value is incorrect without renormalising the implicit likelihood, but that is typically
irrelevant, e.g. for commonly used Gaussian likelihoods, only the quadratic ”MSE” term appears in the loss.
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C APPENDIX: SINGULAR VECTOR PATHS AND SEAMS

Definition D3 (i-th singular–vector path). Let g :Z → X be c.i.d.a.e.. For z∗∈Zreg, i∈{1, . . . , d},
the i-th singular–vector path (s.v. path) through z∗ is any C1 curve t 7→ zit with zi0 = z∗ satisfying

d
dtz

i
t = vi(zit) for t in its maximal interval Iz∗,i ⊆ R .

We denote the path set by Vi
z∗

.
= {zit : t ∈ Iz∗,i} ⊆ Zreg.10 (See Fig. 3, left, dash blue lines).

Definition D4 (i-th seam). Let g :Z → X be c.i.d.a.e. with manifold Mg = {g(z)}. For z∗∈Zreg,
i∈{1, . . . , d}, the i-th seam through g(z∗) is any C1 curve t 7→ xi

t in Mg with xi
0 = g(z∗) satisfying

d
dtx

i
t = si

(
g−1(xi

t)
)
ui
(
g−1(xi

t)
)

for t in Iz∗,i .

We denote the path set Mi
g,z∗

.
= {xi

t : t ∈ Iz∗,i} ⊆ Mg and define seam coordinate

ui(t)
.
=

∫ t

0

si
(
g−1(xi

τ )
)
dτ, so d

dtui(t) = si
(
g−1(xi

t)
)
, ui(0) = 0.

ui measures position along the seam in units of si (strictly monotone as si>0). (See Fig. 3, right).

Lemma C.1 (Paths 7→ seams). Let g :Z → X be c.i.d.a.e., z∗∈Zreg, i∈{1, . . . , d}, and let Vi
z∗

be the i-th s.v. path through z∗. Then the image of Vi
z∗ under g is the i-th seam through g(z∗):

Mi
g,z∗ ={g(z) : z ∈ Vi

z∗}.

Proof. For xi
t
.
=g(zit), by the chain rule and SVD: dxi

t

dt = Jzi
t

dzi
t

dt = Jzi
t
vi(zit) = si(zit)u

i(zit), so
xi
t satisfies Def. 4.

Lemma 5.1 (Factorisation over seams). Let g : Z → X be c.i.d.a.e. and the prior factorise as
p(z) =

∏d
i=1 pi(zi) (e.g. standard Gaussian). Then, the manifold density pµ on Mg factorises as

pµ
(
g(z)

)
=

d∏
i=1

pi(zi)
si(z) , for every z∈Zreg. (7)

Moreover, each factor pi(zi)
si(z) is the 1-D density over the i-th seam Mi

g,z at x= g(z), obtained by
pushing forward the 1-D marginal pi(zi) over Vi

z , the i-th s.v. path though z.

Proof. By a standard change–of–variables (on embedded manifolds) and |J⊤
z Jz| =

∏d
i=1 s

i(z)2,

pµ
(
g(z)

)
= det(J⊤

z Jz)
−1/2 p(z) =

∏d
i=1 pi(zi)∏d
i=1 si(z)

, yielding Eq. 7.

For each i and x = g(z), the change–of–variables formula along Mi
g,z (i-th seam through x with

coordinate ui, Def. 4) at t = 0 gives the local pushed 1-D seam–density

f
(z)
i

(
ui(t)

) .
=

pi([z
i
t]i)

si(zi
t)

, d
dtui(t) = si(zit), ui(0) = 0, (14)

where t 7→ zit is the i-th singular–vector path through z (Def. 3) with local co-ordinate zii(t).
Evaluating at t = 0: f (z)

i

(
ui(0)

)
= pi(zi)

si(z) , shows that seam-densities are the factors of Eq. 7.

10Different choices of sign for vi reverse the time direction (t 7→ −t) but generate the same path set.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

D APPENDIX: DISENTANGLEMENT AND IDENTIFIABILITY PROOFS

D.1 PROOF OF NON-LINEAR DISENTANGLEMENT

Theorem 5.2 (Disentanglement ⇔ C1-C2). Let g :Z →X be c.i.d.a.e. and the prior factorise
as p(z) =

∏d
i=1 pi(zi) (e.g. standard Gaussian). The push-forward density pµ on the manifold

Mg={g(z)} is disentangled (D1) if and only if g satisfies C1 and C2 almost everywhere.

Proof. (C1/2⇒D1) By Thm. 5.1, the manifold density factorises pointwise as pµ(d(z))=
∏d

i=1
pi(zi)
si(z) .

By C1, Vz=I for all z, so the i-th singular–vector path through z is exactly the axis–aligned line
{z′ : [z′]i varies, [z′]¬i=[z]¬i}; by Lemma C.1 its image is the i-th seam through x=g(z) following
ui. By C2, si(z) depends only on zi. Define the seam coordinate ui along the i-th seam as in D4;
then ui is a strictly monotone function of zi, hence the 1-D push–forward of pi along that seam is
fi(ui) =

∣∣dui

dzi

∣∣−1

pi(zi) =
pi(zi)
si(zi)

, Thus pµ(g(z)) =
∏

i fi(ui(z)) with each fi evaluated on the i-th
seam. Finally, since ui is monotone in zi and {zi} are independent, the random variables {ui} are
independent; hence factors {fi(ui)} are statistically independent as required by D1.

(D1⇐C1/2) Assume pµ is disentangled under g. By D1, each factor fi is obtained by pushing
forward p(zi) along an axis-aligned line indirection zi, and the i-th seam follows Jzz

i =J i
z at z

(column i of Jz). By factor independence (D1), only fi can change along the i-th seam, hence all
other factors must be orthogonal to Ji, i.e. J⊤

z Jz is diagonal or Jz=UzSz (C1). Since fi depends
on si

.
=[Sz]ii and only si can change along seam i, then ∂si

∂zj
=0, i ̸=j (C2).

D.2 PROOF OF LINEAR VAE IDENTIFIABILITY

Corollary 6.1 (LVAE Identifiability). Let data be generated under the linear Gaussian LVM Eq. 2
with ground-truth g(z)=W z, W = UWSWV ⊤

W ∈Rm×d of full column rank and distinct singular
values. Let an LVAE with diagonal posteriors be trained on n samples, and as n→∞ its learned
parameters yield p(d)

µ ≡ p(g)
µ on the mean manifold. Then the LVAE achieves disentanglement (D1)

and identifies ground-truth independent components on Mg up to permutation and sign (P&S).

Proof. (Ground truth) With µ=W z and u
.
=U⊤

Wµ=SW (V ⊤
W z), then z∼N (0, I) and orthonormal

VW imply V ⊤
W z ∼ N (0, I), hence {ui

.
= uW ,i} are independent, ui ∼ N (0, s2

W ,i) and p(g)
µ =∏d

i=1 N (ui; 0, s
2
W ,i).

(Model) Let d(z)=Dz with SVD D=UDSDV
⊤

D . For an LVAE, the Hessian term in Eq. 6 is zero
and Assumption 1 is trivially satisfied. Thus, by Lemma 4.1, right singular paths are axis–aligned (C1,
note C2 is vacuous). Therefore, by the disentanglement theorem Theorem 5.2, p(d)

µ is disentangled
and factorises into statistically independent components along the decoder’s seams (columns of
UD). Since uD,i = sD,izi and zi ∼ N (0, 1), each seam factor is Gaussian with variance s2

D,i, i.e.
p(d)
µ =

∏d
i=1 N (uD,i; 0, s

2
D,i).

(Matching) Equality p(d)
µ ≡ p(g)

µ and distinct {sW ,i} imply uniqueness of the Gaussian product
decomposition, up to permutation. Thus the LVAE’s independent components (seam factors) match
ground-truth components up to permutation/sign, i.e. identifiability and disentanglement on Mg .

D.3 PROOF OF GAUSSIAN VAE IDENTIFIABILITY

Lemma 6.3 (Seams are Intrinsic). Let M ⊆ X carry a manifold density pµ. Assume that on
a regular set Mreg there exist scalar functions {ui(x)}di=1 (each varying only along a 1-D curve
through x, i.e. a seam) and 1-D densities {fi} such that

pµ(x) =

d∏
i=1

fi
(
ui(x)

)
, x ∈ Mreg, (8)
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and that the on-manifold Hessian Hx
.
=∇2

x log pµ(x) has pairwise distinct eigenvalues a.e. on Mreg.
Then for each x ∈ Mreg, the d seam directions (along which exactly one ui varies) are determined
intrinsically by pµ, as eigenvectors of Hx, unique up to permutation and sign (P&S).

Proof. For x ∈ Mreg, let ui, . . . ,ud be unit tangent directions at x such that, along ui, only ui

varies locally while uj ̸=i remain constant, thus {ui} are orthonormal. Stack {ui} as columns of
Ux ∈ Rm×d and define seam coordinates u(x) .

= (u1(x), . . . , ud(x)). Thus, for each i, ∂x
∂ui

=u i

and by the chain rule,

[∇u log pµ(x)]i = ∂
∂ui

log pµ(x) = ( ∂x
∂ui

)⊤∇x log pµ(x) = u i⊤∇x log pµ(x) .

[∇2
u log pµ(x)]ij = ( ∂2x

∂uj ∂ui
)⊤∇x log pµ(x) + ( ∂x

∂ui
)⊤ [∇2

x log pµ(x)]︸ ︷︷ ︸
Hx

( ∂x
∂uj

) = u i⊤Hx u
j ,

where the last equality uses that the basis vectors {u i(x)} are fixed, so ∂2x
∂uj ∂ui

(x) = 0. In summary,

∇u log pµ(x) = U⊤
x ∇x log pµ(x), ∇2

u log pµ(x) = U⊤
x Hx Ux,

i.e. Hx = Ux [∇2
u log pµ(x)]U

⊤
x . (15)

By Eq. 8, log pµ(x) =
∑d

i=1 log fi(ui(x)), hence the central term ∇2
u log pµ(x) has components

[
∇2

u log pµ(x)
]
ij

=


∂2

∂u2
i
log fi(ui(x)) (i = j),

0 (i ̸= j),

and is diagonal. Thus Eq. 15 is an eigendecomposition with distinct eigenvalues (by assumption);
and seam directions ui are eigenvectors of ∇2

u log pµ(x) and so are unique up to P&S.

Implication for identifiability. Lemma 6.3 isolates the intrinsic geometry of pµ: once pµ is fixed,
the seams and their directions are fixed (P&S). Any Gaussian VAE decoder d matching pµ and
satisfying C1–C2 must therefore align its singular paths with those seams and inherit the same seam
factors.

Lemma 6.4 (A matching decoder finds seams). Under assumptions of Lemma 6.3, let d : Z→X
be c.i.d.a.e. with factorised prior p(z) =

∏
i pi(zi) and push-forward density p(d)µ ≡ pµ matching on

Md
.
= {d(z)} = M. If d satisfies C1–C2 a.e., then for any z and x = d(z):

• left singular vectors Uz of Jz coincide with the seam directions in Lemma 6.3 (up to P&S);
• the images under d of singular-vector paths (D3) are exactly the seams through x;
• along the i-th seam, the factor fi is the 1-D push-forward of pi(zi) (as in Lemma 5.1).

Proof. Since p
(d)
µ ≡ pµ, both induce the same Hx = ∇2

x log pµ(x). By Lemma 5.1 and C1,
log pµ(x) =

∑d
i=1

(
log pi(zi)− log si(z)

)
, with si depending only on zi by C2. Letting u = U⊤

z x,
the gradient along the manifold (on-manifold score) is given by
∇x log pµ(x) = Uz ∇u log pµ(x),

[
∇u log pµ(x)

]
i
= 1

si(z)
∂
∂zi

(
log pi(zi)− log si(z)

)
.

Differentiating again along the manifold gives the on-manifold Hessian Hx

∇2
x log pµ(x) = Uz [∇2

u log pµ(x)]U
⊤
z, [∇2

u log pµ(x)]ij=

{
1
si

∂
∂zi

[∇u log pµ(x)]i (i=j)

0 (i ̸=j)

Hence,
Hx = Uz Diag

(
1

si(z)
∂
∂zi

[
∇u log pµ(x)

]
i

)
U⊤

z

is an eigendecomposition. With a simple spectrum, eigenvectors are unique up to P&S and coincide
with the intrinsic seam directions in Lemma 6.3. By Lemma C.1, singular–vector paths map to seams;
and by Lemma 5.1, the factor along seam i equals the 1-D push-forward of pi(zi).

Note that the two proofs above adopt a similar technique, but Lemma 6.3 is entirely intrinsic to the
manifold (hence no mention of a Jacobian), whereas Lemma 6.4 is with reference to a parameterisation
of the manifold by a function d.
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D.4 PROOF OF GAUSSIAN VAE IDENTIFIABILITY

Corollary D.1 (Gaussian VAE Identifiability). Let data be generated by c.i.d.a.e. g : Z→X with
factorised prior p(z)=

∏d
i=1 pi(zi); let a Gaussian VAE with diagonal posteriors learn a decoder

d :Z→X . Suppose both g and d satisfy C1–C2 a.e. and manifold densities match, p(d)µ ≡p
(g)
µ , on the

common manifold M={g(z)}={d(z)}. If the tangent Hessian Hx has a simple spectrum a.e., then
d identifies the ground-truth seam decomposition (independent components) of p(g)µ , up to P&S.

Proof. (Matching U ) Equality p
(g)
µ ≡ p

(d)
µ implies the same Hx. By Lemma 6.3, its eigenvectors are

intrinsic and unique (P&S), so U
(d)
z = U

(g)
z (P&S, herein assume indices are relabelled to match).

(Matching S) In this common basis, under C1–C2, on-manifold scores are equal:[
∇u log p

(g)
µ (x)

]
i
= 1

s
(g)
i (z)

∂
∂zi

(
log pi(zi)− log s

(g)
i (z)

)
=

[
∇u log p

(d)
µ (x)

]
i
,

hence integrating along seam i (with z¬i fixed, using equality of pµ at a reference point to fix the
integration constant), 1-D seam factors pi(zi)

si
match. Since pi is fixed, s(d)i =s

(g)
i , i.e. S(d)

z =S
(g)
z .

With V
(d)
z =V

(g)
z =I by C1, it follows that J (d)

z = J
(g)
z and the seam decomposition is identified

up to P&S.

E DISENTANGLEMENT METRICS

Axis alignment score (AAS): Given a matrix of mutual information values, between each latent
co-ordinate and each ground truth factor, one can normalise over rows or columns to compute a
“distribution” of mutual information.

The entropy of each distribution gives a measure of how narrowly or sparsely information about a
ground truth factor is captured across latents or the spread of information about each factor captured
by a single latent. In either case, a “high entropy” distribution means information is widely spread,
while low entropy means information about a factor is concentrated in a single latent, i.e. disentangled.

Entropy of the mutual information distribution can be computed row-wise or column-wise. AAS is a
holistic metric combining the intuitions of both options into a single, robust score that evaluates how
close matrix M is to a permuted diagonal form (zero entropy, perfect disentanglement).

In a perfectly disentangled MI matrix, the sum of peak values per row equals the sum of peak values
per column, and both equal the total sum of the matrix. AAS measures the ratio of the ”sum of peaks”
to the ”total sum”:

sum_col_max = sum(max(mut_info, dim=0))
sum_row_max = sum(max(mut_info, dim=1)
aas = 0.5 * (sum_row_max + sum_col_max) / sum(mut_info)

Normalised off diagonal: For gradient terms (here, a d× d matrix M ) we compute a measure of
diagonality by computing the ratios of normalised off-diagonal absolute values to on-diagonal values.

d = M.shape[1]
num_off_diag = m * (m - 1)
M = abs(M)
M = diag(M)ˆ(-0.5) * M * diag(M)ˆ(-0.5) # normalise
mean_off_diag = (sum(M) - sum(diag(M))) / num_off_diag
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F EMPIRICAL RESULTS ON NATURAL DATA (CELEBA)

This appendix complements §7, applying the same architecture and training regime used for dSprites
(and as in Burgess et al. (2018)) to CelebA, a more complex natural dataset without introducing
new confounds. We vary β and compare diagonal vs full posterior covariances, reporting: (i)
latent traversals showing the dependence of disentanglement on posterior structure (Fig. 7); (ii) how
utilisation of the latent space varies with β and posterior structure (Fig. 8); (iii) diagonality of the
Price/Bonnet derivative terms (Fig. 9); and (iv) reconstruction/sampling quality (10). See captions for
detais.

Diagonal posteriors Full posteriors

Figure 7: Traversals over dimensions of highest variance (β = 4): Each row shows images generated as
individual latent dimensions zi are varied with rows ordered by latent activity (See Fig. 8 caption). For diagonal
posteriors (left), traversals more clearly demonstrate disentanglement, i.e. identification of distinct semantic
features with distinct latent dimensions, e.g. background shade (row 1), facial orientation (row 3), lighting (row
5), background colour (row 7). For full covariance posteriors, independent features are less clearly assigned to
distinct latent dimensions, i.e. less disentangled.

Diagonal posteriors Full posteriors

Figure 8: Active latent dimension depend on β (denoted by colour) and posterior covariance structure
(left/right): For a trained model and for each latent dimension zi, the variance x|zi is estimated by taking
equidistant traversals in latent space and computing the Euclidean distance between samples at each end of
the traversal. The plot show the (estimated) variance, or latent activity, per dimension ordered by magnitude
(log scale, mean over 5 runs, standard deviation indicated by shaded areas). With diagonal covariances (left),
there are relatively sharp cliff-edges implying that dimensions are (broadly) active or inactive and that axis-
aligned directions are preferred. The number of active dimension increases as β reduces and reconstructions get
“sharper”, requiring more information to be captured and thus greater capacity (i.e. latent dimensions). For full
posteriors (right), the distribution of variance over dimensions is much smoother and axis-aligned directions
have no special status.
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β

4

1

0.05
(a) Diagonal posteriors (b) Full posteriors

Figure 9: Heatmaps of Derivative Terms in Eq. 6 for CelebA for Diagonal and Full Posterior Covariances:
For each value of β (indicated on left), there are two rows for J⊤J (upper) and the directed Hessian (lower)
over 10 random test samples. Colour intensity indicates log magnitude of matrix entries. For each heatmap,
rows and columns correspond to a latent dimensions zi, ordered by latent activity (See Fig. 8 caption). We
show the top 20 most active dimensions. For diagonal covariances (left), the active dimensions are visible as a
darker block in the upper left, which grows with as β reduces (matching Fig. 8), and diagonal structure is visible
for active dimensions of J⊤J . Such structure is not visible for full covariances (right). The Hessians show
less discernable structure and we suspect that such a higher order derivative require more samples to be well
estimated for a complex distribution.

4

1

0.05
(a) Diagonal posteriors

4

1

0.05
(b) Full posteriors

Figure 10: Reconstructions and Samples for CelebA for a range of β values and Diagonal and Full Posterior
Covariances: For each value of β (left), there are two rows in three sections: (left) train samples (upper) and
reconstructions (lower); (mid) test samples (upper) and reconstructions (lower); and (right) samples (both rows).
As β reduces, reconstruction quality and samples improve (i.e. blur reduces). Reconstruction and sample quality
is broadly comparable for diagonal and full covariances, indicating that the latent space is reoriented towards
axis-alignment without necessarily impacting performance.

Summary: For diagonal posteriors, we observe: (a) a small set of active latents whose number
increases as β decreases; (b) stronger Jacobian orthogonality among active dimensions; and (c)
reconstructions/samples of comparable quality to the full-covariance model across β (Figures 7–10).
These match the predictions of our theory and mirror the synthetic/dSprites trends, supporting on
natural data the claim that diagonal posteriors drive C1–C2 in expectation.
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G REDUCING β OVER TRAINING

(a) β=1: good disentanglement, blurry reconstructions.

(b) β=10−3: no clear disentanglement, good reconstructions.

(c) β=1: good disentanglement, good reconstructions.

(d) Traversals from a random test sample

Figure 11: Testing the β-hypothesis: (top) high β (1) gives best disentanglement (see heatmap) but blurry
images (see top rows); (mid) low β (0.001) gives poor disentanglement but good reconstructions; (bottom)
lowering β over training (1→0.001) gives good disentanglement (see heatmap) and good reconstructions.
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H MATERIAL ERRORS IN REIZINGER ET AL. (2022)

We note what appear to be several fundamental mathematical errors in the proof of Theorem 1
in Reizinger et al. (2022) rendering it invalid. Theorem 1 claims an approximation to the exact
relationship given in Eq. 6

1. p.33, after “triangle inequality”: E
[
∥a∥2−∥b∥2

]
≤ E

[
∥a−b∥2

]
, where a=x−f, b=−

∑ ∂f
∂zk

...

• (dropping expectations for clarity) this has the form ∥a∥2 − ∥b∥2 ≤ ∥a− b∥2 (*)
• true triangle inequality: ∥a∥−∥b∥ ≤ ∥a−b∥ =⇒ |∥a∥−∥b∥|2 ≤ ∥a−b∥2 (by squaring)

– this differs to (*) since norms are squared inside the absolute operator on the L.H.S.
• counter-example to (*): b=x > 0, a=x+1 =⇒ ∥a∥2−∥b∥2 = |2x+1| > 1 = ∥a−b∥2

2. next step, p.33: E
[
∥(c−e) − (d−e)∥2

]
≤ E

[
∥c−e∥2 + ∥d−e∥2

]
where c= x, d=

f(z)−
∑ ∂f

∂zk
..., e=f(µ)

• this has the form of the standard triangle inequality ∥a−b∥ ≤ ∥a∥+∥b∥ except all norms are
squared.

• squaring both sides of the triangle inequality gives an additional cross term on the right that
the used inequality omits, without which the inequality does not hold in general.

3. first step, p.34: drops the K term, which bounds the decoder Hessian and higher derivatives (in
earlier Taylor expansion)

• this omission is similar to a step in Kumar & Poole (2020) but is not stated, e.g. in Assumption
1.

• since K is unbounded, any conclusion omitting it without justification is not valid in general.

I THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used to assist drafting this paper as follows:

• general review for errors, inconsistencies and readability;

• verifying proofs, generating code snippets or identifying code errors;

• creating figure 1.
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