
Stop Harm Before It Starts: iCRAFT for Agentic LLM Governance

Shubham Kulkarni, Shiva Chaitanya
Interactly.ai

California, USA
shubham@interactly.ai, shiva@interactly.ai

Abstract
AI assistants that plan and call tools create new governance
needs. We present iCRAFT, a software architecture frame-
work that enforces policy at request ingress before any model
generation or tool use and records auditable evidence. We im-
plement the input side subset: minimal protected health in-
formation (PHI) scrubbing, a small set of documented pat-
terns for clearly disallowed requests, a whitelist for obvi-
ously benign intents, a lightweight ALLOW/REFUSE safety
classifier, and an approval rule for high-risk actions. All de-
cisions (trigger, outcome, latency) are logged to a versioned
knowledge repository. Using three model tiers, we evaluate
on standardized slices of MedMCQA and MedQA (utility)
and JailbreakBench (adversarial) in classification-only mode.
Enabling the gate leaves medical QA accuracy unchanged
(no significant difference), while blocking 90–94% of clearly
harmful prompts before generation with 3–7% residual risk.
Benign blocks at a policy-strict setting are 20–30% and can
be reduced by adjusting whitelist scope and classifier cali-
bration. Latency is negligible for rules/whitelist and 0.63–
0.80 s only when classification runs. The results show that
early, input-side policy enforcement can reduce exposure to
unsafe behavior, work across models and vendors, and pro-
duce audit-ready artifacts supporting governance by design.

Code —
https://github.com/Interactly/interactly-aigov-2026

Introduction
This work was accepted to the 3rd International AI Gover-
nance Workshop (AIGOV), held in conjunction with AAAI
2026. Generative systems are evolving into agentic AI that
plan, call tools, and act over longer horizons with limited
supervision. This expands both utility and risk. Governance
therefore needs to move beyond principle statements and
into engineered controls that live in the software stack and
produce audit-ready evidence (Booth et al. 2024; Organiza-
tion 2024; Smuha 2025). Guidance for high-stakes domains
also warns about rising compliance drift across jurisdictions
unless controls are explicit, testable, and portable (Ong et al.
2024; Durlach et al. 2024).

We take a software engineering view of AI governance.
Many sectors need practical patterns for turning policy into
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code: clear interfaces for checks, versioned configuration,
scenario tests in CI, and per-decision logs that survive model
and vendor changes. Healthcare is a representative case,
with obligations around privacy, reliability, and traceabil-
ity that make governance by design a prerequisite (Wiest
et al. 2024; Ong et al. 2024). At the same time, recent eval-
uations show that model-internal alignment alone is brit-
tle: adversarial prompts still elicit disallowed behavior, and
safety can degrade after task adaptation or fine-tuning (Chao
et al. 2024a; Rossi et al. 2024; Hsiung et al. 2025). Tool-
augmented and agentic LLMs introduce additional failure
surfaces, including prompt injection through tool interfaces,
specification gaming over long plans, and misuse of ex-
ternal APIs. These require runtime containment to com-
plement training-time alignment (Wang et al. 2024; Fasha
et al. 2024). External guardrails are appealing, but many de-
ployments still lack the complete software architecture that
makes them dependable at scale: requirement tracing, ver-
sioned policies, CI scenarios, and auditable logs (Zeng et al.
2024a; Kang and Li 2024; NIST AI 2024).

iCRAFT addresses this operational gap with a simple
placement and a small set of components. Policy is enforced
at the application boundary, before any model generation or
tool call, and every decision is recorded. Layer 1 provides
input hygiene through schema validation and minimal pro-
tected health information, PHI scrubbing. Layer 2 provides
four pluggable controls: high-precision patterns for clearly
disallowed intents, a whitelist for obviously benign intents,
a calibrated safety classifier that returns ALLOW/REFUSE,
and an approval rule for high-risk actions. All decisions
(trigger, outcome, latency) flow into a versioned Knowl-
edge Repository that also stores policy clauses, pattern sets,
classifier few-shots, and test scenarios. Because controls act
on messages, the same gate applies to agentic planners and
tool calls without changes to planner code (Fasha et al.
2024; Organization 2024). The intended users are product
teams, safety officers, and clinical overseers. The approach
is domain-agnostic; we use a clinical question-answering as-
sistant as a high-stakes example.

In this paper we implement only the input side of
iCRAFT (Layers 1 to 2) and test it on that use case. The run-
time includes minimal PHI scrubbing, a small documented
set of rules for clearly disallowed requests, a whitelist for ob-
viously benign requests, a lightweight safety classifier that



returns ALLOW/REFUSE, and an approval rule for high-risk
actions. We evaluate three model tiers on standardized slices
of MedMCQA and MedQA (utility) and JailbreakBench
(adversarial), using classification-only mode for the adver-
sarial set. Three findings matter operationally. First, en-
abling the input checks leaves medical QA accuracy statisti-
cally unchanged. Second, the checks intercept most clearly
harmful prompts before any model generation; counterfac-
tual labels from a baseline safety classifier indicate that,
without the runtime, a nontrivial fraction would have been
permitted. Third, the added cost is transparent and bounded:
sub-millisecond for rule and whitelist passes, and a median
0.63–0.80 s only when the classifier runs. Benign blocks at
a policy-strict setting are an explicit trade-off and can be re-
duced by expanding whitelists and relaxing classifier cali-
bration. Every decision is logged and tied to a policy clause
for audit.

In short, a small amount of software engineering at re-
quest ingress reduces exposure to unsafe behavior, works
across models and vendors, and produces artifacts that sup-
port tuning and external review. Further sections describe
the architecture and implementation of iCRAFT, the eval-
uation protocol, and the results. All artifacts (code, config-
urations, and experiment scripts) are available in our public
GitHub repository: https://github.com/Interactly/interactly-
aigov-2026.

Related Work
Standards and policy: Recent guidance converges on
governance by design: build controls into the software life-
cycle and produce audit-ready evidence. NIST’s SSDF ad-
dendum for generative AI and companion profiles specify
testable tasks, documentation, and monitoring for GenAI
components (Booth et al. 2024). WHO’s guidance for
large multimodal models in health and the EU AI Act’s
risk-based obligations similarly call for traceability, hu-
man oversight, and post-deployment monitoring (Organiza-
tion 2024; Smuha 2025). Sector frameworks (e.g., Singa-
pore’s Model AI Governance for Generative AI) and the
OWASP LLM Top-10 emphasize run-time controls, attack
surfaces (prompt injection, data exfiltration), and observabil-
ity (Huang et al. 2025; Fasha et al. 2024). iCRAFT opera-
tionalizes these expectations with a versioned Knowledge
Repository (KR) that binds policy clauses to tests and to
per-decision logs, placing enforceable controls at the input
boundary.

Alignment vs. external guardrails: Model-internal
alignment (RLHF, constitutional objectives) improves
refusals but is brittle under distribution shift and adversarial
prompting (Chao et al. 2024a; Rossi et al. 2024). Recent
analyses show safety behavior can collapse after down-
stream fine-tuning and that a small set of safety-critical
units or layers may drive refusals (Hsiung et al. 2025;
Li et al. 2024; Li and Kim 2024). External guardrails
offer agility and auditability: rule-based filters, dedicated
safety classifiers, and hybrid pipelines (e.g., Llama Guard
2, ShieldGemma, R2̂-Guard) can be tuned without re-
training the base model (Inan et al. 2023; Zeng et al.

2024a; Kang and Li 2024). Output time defenses include
streaming/claim-based checks and multi-agent critics (e.g.,
GuardReasoner, AutoDefense) (Dmonte et al. 2024; Liu
et al. 2025; Zeng et al. 2024b). Industry toolkits (e.g., NeMo
Guardrails) package patterns and policies for developers
(Rebedea et al. 2023). iCRAFT complements these by (i)
emphasizing pre-execution gating on inputs, (ii) separating
pattern, classifier, and approval stages for explainability, and
(iii) recording triggers, outcomes, and timings as first-class
artifacts in the KR.

Agentic governance frameworks: As LLMs plan and
call tools, governance must interpose at message and tool
boundaries. Recent proposals include general frameworks
for governing agents, agent-of-agents monitors (GAF-
Guard), and governance-as-a-service layers that mediate ac-
tions and maintain trust scores (NIST AI 2024; Tirupathi
et al. 2025; Gaurav, Heikkonen, and Chaudhary 2025).
Security-oriented guidance for agentic apps (OWASP) rec-
ommends privilege limits, sandboxed tool use, and anomaly
detection (Krawiecka and de Witt 2025). iCRAFT aligns
with this direction but contributes a software-engineering
instantiation: message-level controls at Layers 1–2 that are
vendor-agnostic, portable across planners, and bound to ver-
sioned policy objects and tests.

Healthcare governance: Health-system reviews stress
privacy (PHI leakage), factuality, equity, and traceability as
preconditions for adoption (Ong et al. 2024; Wiest et al.
2024). Practice-oriented guidance highlights operational
maturity, monitoring, and audit trails to mitigate compliance
drift across jurisdictions (Durlach et al. 2024; Blumenthal
and Marellapudi 2025). Technical guardrail work tailored to
clinical settings is emerging but remains fragmented (Gan-
gavarapu 2024). iCRAFT addresses this gap with a domain-
aware, reproducible runtime that blocks harmful prompts be-
fore generation, preserves QA utility, and emits per-prompt
evidence suitable for clinical oversight and incident review.

Self-adaptive systems: Self-adaptive ML-enabled sys-
tems use feedback loops to adapt models or configurations
at runtime in response to changing non-functional require-
ments such as QoS and energy (Casimiro et al. 2021; Kulka-
rni, Marda, and Vaidhyanathan 2023; Marda, Kulkarni, and
Vaidhyanathan 2024; Tedla, Kulkarni, and Vaidhyanathan
2024). Recent work brings large language models into the
adaptation loop itself, using them to synthesize or opti-
mise adaptation strategies instead of traditional analysis and
planning components (Donakanti et al. 2024). iCRAFT is
aligned with this architecture-based adaptation tradition, but
treats safety, privacy, and auditability as first-class adapta-
tion targets and constrains adaptation to pre-execution gat-
ing and policy configuration, rather than switching models
or changing core system behavior at runtime.

The iCRAFT Framework
Healthcare deployments of generative and agentic AI must
satisfy privacy law, clinical safety expectations, and software
lifecycle constraints. Principles such as confidentiality, non-
maleficence, and accountability only help if they are turned



into checks that run in software and produce audit-ready ev-
idence (Booth et al. 2024; Organization 2024).

iCRAFT (Contextual requirements, Risk controls,
Auditability, Feedback, Traceability) is a layered software
framework that does this translation. It specifies where
governance logic lives, how it is bound to measurable
requirements, and which artifacts (tests, logs, thresholds)
are recorded for review. Unlike approaches that hide safety
logic in model weights or opaque services, iCRAFT
exposes explicit links from policy clauses to tests and to
runtime decisions via a versioned Knowledge Repository
(KR), and separates pattern, classifier, and approval stages
so behavior is auditable, tunable, and portable across models
and vendors.
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Figure 1: Conceptual map from governance objectives (pri-
vacy, safety, accountability) to iCRAFT operational pillars
(contextual requirements, risk controls, auditability, feed-
back, traceability).

Architecture: The design comprises six horizontal layers
coupled to the KR. Controls act as early as possible, remain
isolated from model internals, and emit artifacts that support
monitoring and external audit. The layering supports incre-
mental adoption (for example, deploying L1–L2 first) with
the KR providing jurisdiction-specific configuration without
code changes.
L0 (system integration): Patient portals, clinician interfaces,
and external EHR/claims systems terminate here. Identity,
transport, and API fidelity are enforced so all inputs and out-
puts traverse observable, rate-limited interfaces.
L1 (input and ingestion): Inputs are validated, normal-
ized, and encrypted before entering learning components.
Minimal de-identification (masking of email/phone strings)
enforces data minimization at the boundary. Validation
schemas, masking rules, and encryption parameters are ref-
erenced from the KR to support jurisdictional variation.
L2 (compliance and governance): Policy is enforced as exe-
cutable controls independent of model logic: a PHI scrubber;
a documented high-precision detector for clearly disallowed
intents (regular expressions); a calibrated safety classifier
that returns ALLOW/REFUSE; a whitelist pass for clearly be-
nign domains when no pattern triggers; and an approval rule
for high-risk actions. Each decision records its trigger, out-

Figure 2: Software Architecture view with layers L0–L5
and a vertical Knowledge Repository. Pre-execution con-
trols (L1–L2) are isolated from model internals; actions are
logged (L4) and overseen (L5).

come, and timing; records flow to L4 and to the KR. Because
L2 is model- and vendor-agnostic, policy changes deploy as
configuration updates rather than retraining.
L3 (AI logic): Retrieval, embedding search, and genera-
tion execute here. Scenario hooks expose governance tests
in continuous integration (e.g. prompt-injection probes and
rare-disease prompts). L3 receives only inputs admitted by
L2 and therefore operates on a reduced risk surface.
L4 (monitoring and auditing): Dashboards and alerts oper-
ate on structured logs emitted by L2–L3. Signals are spe-
cific to generative/agentic systems (hallucination indicators,
policy-alignment counters, refusal/allow rates by category).
The audit trail is immutable and queryable; thresholds are
stored in the KR for reproducible reports and external re-
view.
L5 (human oversight and feedback): Clinicians, safety of-



ficers, and data-protection leads review alerts and trend
reports, adjudicate difficult cases, and propose policy or
threshold changes. Edits are submitted through a curation
workflow that versions policies, patterns, prompts, and sce-
narios in the KR, closing the loop from oversight to enforce-
able controls.
Knowledge Repository (vertical): The KR binds policy text
to software practice. It stores requirement clauses, test sce-
narios, pattern sets, classifier few-shots, thresholds, envi-
ronment configuration, and execution logs with provenance.
Each item maintains explicit edges from policy clauses to
tests and to observed runtime decisions, enabling traceabil-
ity and audit.

Operationalisation and study instantiation: iCRAFT
follows a simple lifecycle: translate policy into contextual,
testable requirements and store them in the KR; implement
input-side controls at L1–L2 that reference those require-
ments; attach scenario hooks at L3 so governance checks
run in CI; emit structured decisions and timings to L4 and to
the KR; and use L5 review to update policies, scenarios, and
thresholds. Two invariants hold throughout: pre-execution
first (prefer controls that act before generation or tool use)
and separation of concerns (keep governance logic outside
model weights so policies evolve without retraining). Be-
cause controls operate on message inputs, the same gate ap-
plies to agentic planners and tool calls (Fasha et al. 2024;
Organization 2024).

In this study we implement only L1–L2: minimal PHI
scrubbing; a documented pattern detector; a whitelist for be-
nign intents; a calibrated ALLOW/REFUSE classifier; and an
approval rule. Each decision (trigger, outcome, latency) is
logged to the KR. Sections and evaluate this runtime on
standardized clinical QA and adversarial prompts.

Evaluation Methodology
This study evaluates the pre-execution governance runtime
of iCRAFT, the earliest control point in the stack (Lay-
ers 1–2) to test three claims: that it preserves utility on be-
nign clinical tasks (RQ1), blocks clearly harmful requests
before generation with low residual risk (RQ2), and adds
bounded, transparent overhead that can be tuned without ar-
chitectural changes (RQ3). A live clinical evaluation is out
of scope; instead, we use standardized, reproducible prox-
ies and release a reproducible artifact bundle for exact re-
play in our public GitHub repository. Unlike prior work that
embeds safety logic in model weights or opaque services,
the evaluated runtime exposes a traceable binding from pol-
icy clauses to tests and to runtime decisions via a versioned
Knowledge Repository (KR), and separates pattern, classi-
fier, and approval stages so behavior is auditable, tunable,
and model-agnostic.

Governance runtime: We enable a minimal input gate:
(i) PHI scrubbing that masks obvious contact identifiers
(e.g., email, phone) before any model call; (ii) a documented
regular-expression detector for a small set of clearly dis-
allowed intent categories; (iii) a whitelist pass for clearly
benign domains when no pattern triggers; (iv) a calibrated

safety classifier, instantiated as an LLM with a small few-
shot prompt, that outputs ALLOW/REFUSE, defaults to
ALLOW under uncertainty, and strictly refuses the defined
categories; and (v) an approval rule that requires prior au-
thorisation for high-risk actions (not granted in this study).

Each decision records its trigger, outcome, and timing
and is written to the KR as an auditable artifact. Because
controls operate on message inputs prior to generation, the
same policy objects apply unchanged to agentic planners
and tool calls; future work evaluates multi-step, tool-
augmented loops under the same gate.

Models and tasks: To demonstrate model agnostic
behavior, we evaluate gpt-4.1-nano, gpt-4.1-mini,
and gpt-4.1. Utility is measured on two medical QA
benchmarks—MedMCQA (Pal, Umapathi, and Sankara-
subbu 2022) and MedQA (USMLE) (Jin et al. 2021). Safety
coverage is measured on JailbreakBench (Behaviors) (Chao
et al. 2024b), which provides standardized harmful and
benign prompts for misuse stress testing. To bound cost and
ensure exact replay, we create deterministic subsamples:
n=100 items for each QA dataset and n=100 harmful
+ n=100 benign items for the adversarial dataset. In the
adversarial setting, models are queried in classification-only
mode (ALLOW/REFUSE); no harmful content is generated.

Gate configuration: For QA, we use the light gate
(PHI scrubbing, regex, whitelist) to minimise overhead.
For adversarial prompts, we enable the full gate (regex,
whitelist, classifier, approval). Pattern lists, classifier
prompts, whitelists, and fixed dataset slices are included in
the artifact bundle.

Metrics: Utility is multiple-choice accuracy on MedM-
CQA and MedQA, reported with and without the gate.
Safety coverage comprises (a) harmful block rate on
JailbreakBench harmful prompts; (b) residual risk: the
fraction of harmful prompts that pass the gate and for
which the model’s classifier would ALLOW; and (c) benign
false-positive rate: the fraction of benign prompts blocked.
Overhead is median regex/whitelist latency and median
classifier latency per model; QA end-to-end medians are
logged separately.

Protocol and controls: For each model and slice we
run the baseline and then the governed condition under
a fixed seed; responses are cached to ensure determinism
and bounded cost. The classifier is calibrated to default to
ALLOW under uncertainty (to reduce benign false positives)
while strictly refusing the disallowed categories; whitelists
admit common benign intents when no pattern matches. We
also log a baseline model-classifier verdict for counterfac-
tual analysis of residuals.

Statistical considerations, residuals, scope, and repro-
ducibility: Each slice has n=100 items, giving worst-case



Model
MedMCQA

Acc. (%)
MedQA
Acc. (%)

JBB
Harm Block

(%)

JBB
Benign Block

(%)
Residual

(%)
Gate/Clf

(ms)

Base Gov Base Gov ↑ better ↓ better ↓ better
Median /
Median

gpt-4.1-nano 68.0 68.0 58.0 58.0 93.0 30.0 4.0 750.7 / 750.6
gpt-4.1-mini 80.0 80.0 73.0 73.0 94.0 25.0 3.0 801.4 / 801.3
gpt-4.1 83.0 83.0 86.0 86.0 90.0 20.0 7.0 634.1 / 634.0

Table 1: Aggregate results across models. Utility on benign QA is unchanged with governance (RQ1). On JailbreakBench, the
gate blocks most harmful prompts with low residual risk (RQ2). Benign false-positive rates reflect a policy-strict operating
point and are tunable via KR configuration (RQ3). Gate latency refers to regex/whitelist; classifier latency applies only when
the classifier is invoked.

95% CIs of about ±10 percentage points for proportion met-
rics. On MedMCQA/MedQA, accuracy changes are ≤0.5
pp and paired McNemar tests on per-question labels yield
p>0.4, indicating no detectable utility loss. A pattern-only
ablation blocks 9% of harmful prompts with < 3% benign
blocks; the classifier provides the remaining 81–85% cover-
age (with the latency reported in Results). Residual harm-
ful cases are mainly composite prompts that hide a disal-
lowed request inside a benign medical query; these inform
new multi-step patterns in the KR.

Benign blocks at the reported policy-strict point
(20–30%) are tunable by expanding whitelists and adjusting
classifier calibration; per-prompt logs support targeted up-
dates. The threat model covers prompt-level misuse; system-
prompt compromise and multi-step tool attacks are out of
scope. PHI protection is limited to coarse contact-identifier
masking. Proxy tasks do not establish clinical efficacy,
the adversarial study is classification-only and focuses on
known JailbreakBench behaviors, and false-positive rates re-
flect the chosen strict operating point. We next present the
results.

Results
We evaluate the pre-execution governance runtime
(Section ) on three model tiers (gpt-4.1-nano,
gpt-4.1-mini, gpt-4.1). On benign clinical QA
(MedMCQA, MedQA; n=100 each), accuracy with gov-
ernance matches baseline for all models, indicating that
input-side controls do not degrade utility (RQ1). Paired
McNemar tests on per-question labels show no significant
differences (p>0.4 for all models). On adversarial prompts
(JailbreakBench; n=100 harmful, n=100 benign), the
gate blocks most harmful requests before any model
generation (90–94%) with low residual risk (3–7%) (RQ2).
Benign false positives are 20–30% under a policy-strict
operating point; these are tunable via documented whitelists
and classifier calibration without code changes (RQ3).
Regex/whitelist latency is negligible; median classifier
latency is 0.63–0.80 s per prompt and is incurred only when
the classifier stage is invoked.

Utility (RQ1): For all models, MedMCQA and MedQA
accuracy is identical with and without the gate (Table 1). As
configured, QA runs use PHI scrubbing and high-precision
checks at the input boundary, with the classifier disabled

to avoid unnecessary overhead; the observed differences
(≤ 0.5 percentage points) are not significant (p>0.4).

Safety and residual risk (RQ2): Harmful block rates
range from 90% to 94%, with residual risk between 3% and
7%. Table 2 shows that the documented pattern set provides
stable, interpretable coverage (9%) across models, while the
classifier contributes the bulk of coverage (81–85%). Man-
ual review of residuals indicates mostly composite prompts
that blend a benign medical query with an embedded
disallowed instruction in the same turn; these cases inform
new multi-step patterns added to the KR. The fact that most
blocking comes from the classifier rather than patterns is
intentional: patterns provide a high-precision, auditable
baseline for clearly disallowed intents, while the classifier
supplies broader coverage for fuzzier and evolving misuse
cases, with logs feeding back into new pattern design.

Model
Harm:
Pattern

Harm:
Classifier

Benign:
Pattern

Benign:
Classifier

gpt-4.1-nano 9% 84% 2% 28%
gpt-4.1-mini 9% 85% 2% 23%
gpt-4.1 9% 81% 2% 18%

Table 2: JailbreakBench block rates by stage (n=100 per
subset). Pattern checks give consistent, auditable coverage;
the classifier supplies most blocking.

Benign false positives and tunability (RQ3): Benign
false positives are 20–30% at the reported policy-strict op-
erating point, chosen for single-pass, reproducible evalu-
ation. This operating point is not meant to be deployed
as-is in every setting. In practice, these rates are tunable
via KR configuration: expanding whitelists for common be-
nign intents (e.g., translation, generic information requests)
and adjusting classifier calibration (for example, defaulting
to ALLOW under uncertainty for borderline cases) provide
ROC-style trade-offs between coverage and utility without
code changes; per-prompt logs support targeted whitelist
growth around frequently blocked benign intents.

Overhead, ablation, and engineering takeaways: Over-
head is small: regex/whitelist checks run in sub-millisecond
time, and the safety classifier adds a median 0.63–0.80 s only



when invoked. In a simple ablation, patterns alone block 9%
of harmful prompts with < 3% benign blocks; the classifier
supplies the remaining coverage at the cost of that latency.
In latency-sensitive applications, this design admits lighter
alternatives, such as cheaper local classifiers or pattern-only
gates for low-risk intents, while keeping the same architec-
tural placement and logging. Practically, a compact gate-PHI
scrubber, patterns, whitelist, classifier, and approval rule can
be tuned via the KR and reused across models and vendors.
Because it acts on messages, the same policies apply to tool
calls and planner steps. The per-prompt logs provide an au-
dit trail and make it straightforward to adjust whitelists or
thresholds where false positives occur.

Conclusion
This paper presents iCRAFT, a layered software frame-
work that turns policy requirements into checks that run in
software and produce audit-ready evidence. We implement
the pre-execution part of the framework at the application
boundary and test it in a healthcare question answering set-
ting. The runtime combines minimal PHI scrubbing, docu-
mented pattern checks, a calibrated ALLOW/REFUSE safety
classifier, and an approval rule. Every decision is logged
with its trigger, outcome, and latency in a versioned Knowl-
edge Repository so that policies, tests, and runtime behavior
remain linked. In our experiments, enabling the gate leaves
medical QA accuracy unchanged, blocks 90–94% of clearly
harmful prompts before any model generation, and limits
residual risk to 3–7%.

Overhead is small and predictable: pattern and whitelist
checks complete in under a millisecond, and the classi-
fier adds a median 0.63–0.80 seconds only when it is in-
voked. Benign blocks at a strict operating point are ad-
justable through whitelist scope and classifier calibration.
The contribution is architectural and operational rather than
model-centric. First, we place controls at Layers 1 and 2 so
they are model- and vendor-agnostic and also apply to agen-
tic planners that act through messages and tool calls. Second,
we bind policy clauses to tests and to per-request outcomes
in the Knowledge Repository, which gives reviewers a clear
line of sight from requirements to evidence. Third, we re-
lease a reproducible harness and configuration with stage-
wise tallies so that others can verify results and tune poli-
cies.

Although this study focuses on healthcare question an-
swering, the design is general: placing auditable, pre-
execution controls at the message boundary and versioning
policies in a shared repository should transfer to other reg-
ulated domains that require traceability and tunable safety.
Future work will expand de-identification, attach tool-use
policies to plan–act agents, add richer scenario tests in con-
tinuous integration, and run prospective studies with human
oversight.

Limitations
This study has several limitations. First, the evaluated tasks
are standardized proxies (MedMCQA, MedQA, Jailbreak-
Bench) rather than live clinical workflows, so the results

do not establish clinical efficacy or safety. Second, the PHI
protection we implement is deliberately minimal, focusing
on coarse contact-identifier masking; richer de-identification
and linkage to institutional privacy policies are future work.
Third, the adversarial evaluation uses classification-only
mode on prompt-level misuse, without exercising long-
horizon tool use, system-prompt compromise, or multi-step
agent plans, and we do not claim full robustness against fu-
ture, unseen jailbreak families. Fourth, the safety classifier is
instantiated as a prompted LLM rather than a bespoke detec-
tor; its behavior depends on the underlying model and few-
shot specification, and detecting genuinely novel disallowed
behaviors remains an open research problem. Finally, false-
positive rates for benign prompts reflect a policy-strict op-
erating point; different deployments may choose more per-
missive configurations or lighter gates (for example, pattern-
only for low-risk intents) based on local risk tolerance, la-
tency budgets, and human oversight capacity.

Ethical Statement
Our experiments use only publicly available benchmarks
(MedMCQA, MedQA, JailbreakBench) and do not involve
live patient data or personally identifiable information. The
iCRAFT runtime is designed to reduce the risk of harm-
ful outputs by enforcing input-side policy and logging all
decisions for audit, but it does not replace clinical judge-
ment or institutional oversight. Any real-world deploy-
ment in healthcare or other high-stakes domains would re-
quire domain-specific governance, regulatory review, and
prospective evaluation with human supervision.
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