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Abstract

The zero-shot capabilities of large language models make them powerful tools for1

solving a range of tasks without explicit training. However, it remains unclear how2

these models achieve such performance, or why they can zero-shot some tasks but3

not others. In this paper, we shed some light on this phenomenon by investigating4

algorithmic stability in language models: how perturbations in task specifications5

may change the problem-solving strategy employed by the model. While certain6

tasks may benefit from algorithmic instability (for example, sorting or searching7

under different assumptions), we focus on a task where algorithmic stability is8

needed: two-operand arithmetic. Surprisingly, even on this straightforward task,9

we find that Gemma-2-2b employings substantially different computational models10

on closely related subtasks. Our findings suggest that algorithmic instability may11

be a contributing factor to language models’ poor zero-shot performance across12

many logical reasoning tasks, as they struggle to abstract different problem-solving13

strategies and smoothly transition between them.14

1 Introduction15

Language models have demonstrated remarkable capabilities across diverse benchmarks. However, it16

is unclear how the individual computational components in the model are working together to drive17

this performance [30, 25]. Specifically, for any given task, we do not understand the decision criteria18

of these models [5]. Identifying and explaining the computational mechanisms that drive model19

behavior would help us improve performance [18, 23], enhance interpretability [29, 9], and mitigate20

harmful their behavior [14].21

In this paper, we focus on algorithmic phase transitions and stability. Across many natural tasks,22

we expect strong learners to exhibit both algorithmic stability and instability. For example, for23

two-operand addition, we expect a strong learner to add four-digit numbers in the same way as it24

adds eight-digit numbers. On the other hand, we may expect a set of competition math problems to25

be algorithmically unstable since solving them may require a range of techniques from counting to26

geometry. Intuitively, the reasoning of a generalizable model should be stable under perturbations27

across algorithmically stable problems and vice versa. Surprisingly, we find that language models28

exhibit algorithmic instability even on simple tasks such as arithmetic.29

For a given task, we first identify various algorithms implemented by the model to solve the task,30

then isolate sufficient conditions that either enable, or disable, transitions between them. Seminal31

works, such as [19, 31], have shown that Transformers [27] implement different algorithms in tandem32

to solve the same task. Additionally, the interactions between these parallel algorithms are highly33

sensitive to training and architectural hyperparameters. Similarly, [18] presented a case study of34

circuits within the same model reused to perform two distinct tasks. Our work builds off of these35
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Figure 1: (a) Accuracy of Gemma-2-2b on two-operand addition as the number of digits in both
operands vary. Accuracy is measured through exact string match. (b) t-SNE plot (with perplexity=3)
where each point is the algorithm Gemma-2-2b implements for a m,n-digit addition problem. We
capture algorithmic similarity measuring the importance of each attention head. (c) Sample circuits
from 8, 1-, 6, 3-, and 4, 4-digit addition, from left to right. These tasks are representative of the phases
we identify: symmetry, interior, and boundary

results. For the same task, as complexity increases, we present preliminary evidence that shows36

models undergo periods of algorithmic stability and sharp phase transitions.37

We illustrate this phenomena on arithmetic problems, specifically, two-operand addition. Arithmetic,38

especially where the operands have many digits, represents a complex task for language models [12,39

9, 16, 22]. The task complexity may be controlled by changing the number of digits in each operand.40

And the task encompasses sufficiently rich algorithms, since there are many possible implementations41

that span a host of problem-solving strategies such as look-up table, divide-and-conquer, or dynamic42

programming.43

A growing body of literature—mechanistic interpretability—isolates components of interest by first44

perturbing them and then observing their downstream effects on model behavior [20, 3, 31]. If45

removing a neuron collapses performance, then it is likely that neuron and its subsidiaries were46

necessary for the performance and vice versa [28, 17, 11]. After a collection of mechanisms are47

found, fine-grained interpretability techniques [6, 19, 1, 24, 2, 31, 18] are applied to generate a48

human-understandable explanation of how the computational mechanisms are operating together.49

In sum, our contributions are threefold:50

• We present evidence that for operand arithmetic, language models undergo sharp algorithmic51

phase transitions. This may provide a sufficient explanation for their lack of generalization across52

arithmetic tasks.53

• We present novel methods and techniques to quantify these changes in contrast to many of the54

existing qualitative techinques that currently exist in mechanistic interpretability.55

• We conjecture a preliminary framework to explain the source of these transitions.56

2 Identifying Phase Transitions Across Task Perturbations57

All of our subsequent experiments are performed with Gemma-2-2b [26] on two-operand addition.58

We discuss generalizing our methodologies in Appendix C. Therein, we also present preliminary59

experimental results for these additional settings. We specifically choose arithmetic because we60

expect a model that performs well to learn general rules and algorithms. Intuitively, we expect any61

model which performs addition successfully to be algorithmically stable. That is, there is no change62

between how the model adds two four digit numbers and two eight digit numbers. Surprisingly, in63

the following subsections, we reveal this not to be the case for Gemma-2-2b. These findings suggest64

that algorithmic instability may be a contributing factor to language models’ poor performance on65
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many logical reasoning tasks, as they struggle to abstract different problem-solving strategies and66

smoothly transitions between them.67

2.1 Preliminaries68

We consider problems in the form of a + b where a, b ∈ Z+ and a, b ≤ 10
9 − 1. For the sake of69

brevity, we refer to a as Opr1 and b as Opr2. Let us denote the class of m,n-digit addition problems70

as the set {(a, b) ∶ 10m−1
≤ a ≤ 10

m − 1, 10
n
≤ b ≤ 10

n − 1}. In other words, Opr1,Opr2 have71

m,n digits, respectively. We aim to characterize the algorithm implemented by the model for any72

m,n-digit addition problem and then observe the differences as both m,n change. When the prompt73

the language model, on a given problem a + b = ?, we first pass it k = 2 few-shot examples from74

problems of the same class. We ablate over this hyperparameter, but observe no significant change in75

performance as k increases. For brevity, let us denote the number of digits in Opri as ♯Opri. In all of76

our experiments we vary the number of digits in each operand between one and eight.77

2.2 Baseline Performance78

To get a rough idea of what the model’s performance looks like without any intervention, we79

benchmark Gemma-2-2b across all problem classes. For every problem class, we sample n = 100080

problems. These results are shown in Fig. 1 (a). We see that as the task complexity increases (as the81

number of digits in each operand increase), the performance of the model monotonically decreases.82

Moreover, the performance of the model is not symmetric. That is, the performance on a + b is83

different from b+a with a positive bias towards Opr1 having more digits. We can see also see that the84

magnitude of asymmetry increases as the number of digits in both operands increase. Notice also that85

the boundaries of the matrix in Fig. 1 does not obey this property, in the sense that it’s performance86

does not degrade as quickly as the number of digits in each operand increases, nor does it change as87

much as the number of digits change.88

Proposed phases. Based on this initial observation, we propose three main phases defined by89

the drastic changes in performance. More specifically, we partition the set of all tasks into three90

sets: symmetric, boundary, interior. We say that a task is symmetric if ♯Opr1 = ♯Opr2. We say that91

a task is on the boundary if either ♯Opr1 = 1 or ♯Opr2 = 1. And lastly, a task on the interior is92

any task that does not fall into either of these categories. Across the set of tasks, we see that as the93

model transitions between these tasks, performance changes drastically. We then specifically reverse94

engineer the circuits from each of these categorizations and compare them structurally. The details95

on this operation can be found in the next section.96

2.3 Reverse Engineering Arithmetic Circuits97

To find the causal subcircuits responsible for the algorithmic behavior of the model, we use activation98

patching. Activation patching is the process through which we isolate components in the computa-99

tional graph that is either necessary or sufficient for the task at hand. Since we are interested in the100

circuits for each task, we reverse engineer them independently. Let Dn,m be the set of all n,m-digit101

addition problems. Similar to the setup in [17, 29, 9, 18], we perform circuit denoising. Fix some102

x ∈ Dn,m and let y be the solution to this addition problem. We first perform a clean run: passing x103

through to the model and storing all of the intermediate activations. Then, we perform a corrupted104

run: sample some other x′
∈ D such that x′

≠ x which also has answer y′ ≠ y. In other words, we105

want to find an input such that its expected output should be different from the clean input.106

Now that we have the activation caches for both the clean and corrupted run, to determine if a107

computational component in the model has a sufficient causal impact on the performance of the108

model, we start by running the corrupted input through the model and then at the component of109

interest, patching in the output of that component from the clean then. Then, for every subsequent110

computational component, we recompute its output. Let y∗ denote the model prediction with the111

replaced components.112

To quantitatively measure the impact of this computational component, we measure P(y∗ = y∣x′) −113

P(y∗ = y∣x). This is estimated by simply averaging the Softmax of the target tokens in the logit114

layer across all of the token indices that we are predicting. Note that there are many other methods115

for measuring this change in performance, and we discuss them in detail in Appendix A.116
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Figure 2: For each subtask, each heatmap represents the probability that that particular attention head
will be in the top 5% of the most influential attention heads. We split the boundary subtask into two
cases: where ♯Opr1 > ♯Opr2 and vice versa.

We only patch the outputs of the attention heads and do not touch any of the MLPs. This is because the117

prevailing sentiment is that the attention heads are responsible for any algorithmic manipulations of118

the tokens that the model is doing, whereas the MLPs are mainly for knowledge and fact retrieval [7,119

8, 10]. Also, note that when we perform patching, we are patching the entire activation from the120

clean input into the model, there exists more granular methods of patching (for example, patching121

only a specific token in at an attention head) that we explore in the latter sections.122

We perform activation patching over n = 1000 clean and counterfactual inputs for each task. The123

resulting circuits for all of the tasks can be found in Appendix E. We also present a detailed analysis124

of the different classes of circuits we find in the following subsections.125

2.4 Circuit Stability Under Across Task Classes126

Now that we have found the circuits, we want to see whether there is agreement in the set of127

components we have found within the proposed task classes we identify. As a result of activation128

patching, we have, for each attention head, the amount of performance we recover by patching in the129

clean output associated with it. Thus, using t-SNE we compare these heatmaps by projecting it into130

R2. The result of this is shown in Fig. 1 (b). We see that within the classes we identify: symmetric,131

interior, boundary. Algorithmic similar is generally conserved, but between the different classes the132

algorithms are drastically different. Some sample circuits within each of these classes are shown133

in Fig. 1 (c). The algorithmic differences between the tasks may be one explanation for the phase134

transition in performance as well.135

We also plot the Pearson correlation between the influence activations between every pair of tasks.136

This is shown in Fig. 4. Through these plots demonstrate the existence of phase transitions across137

tasks for the model, it remains to characterize these phase algorithmically and reverse engineer the138

specific algorithms being applied in each of these phases. In this paper, we analyze the former and139

give some insight into how to achieve the latter based on our observations.140

2.5 Characteristics of Phases141

Herein, we characterize the different algorithmic classes we claim to have identify based on their142

circuit diagrams. Please see Appendix E to see all of the circuits that we discover. Note that to143

determine the underyling circuit, we look at the top 10% of all attention heads based on their influence144

score. We briefly discuss this hyperparameter and its effects on our results in Appendix B.145
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We find that all of the subcircuits are activating in layer 0, specifically attention head 0 and also in the146

last layer at attention head 7. We posit that this interaction is responsible for task identification and147

also writing the final answer to the output stream.148

Symmetric. The 1, 1-digit addition circuit is different from all of the other circuits. This specific149

circuit is shown in the appendices. We hypothesize that this circuit is performing retrieval and150

memorization. Moreover, all of the algorithms for the phases that we identify below “call” this151

subcircuit as a recursive function.152

We defer the analysis of 1, 1-digit addition to the following sections and herein analyze the circuits153

of n, n-digit addition where n > 1. It can be observed that most of the circuits that fall into this154

classification are top-heavy. That is, most of their influential attention heads lie in layers 17-14.155

Moreover, there are also activations concentrated about the middle layers of the network, mostly156

layers 5, 8. Specifically, we see that across all of the circuits attention heads 12.4, 12.2 and 17.7 are157

activating strongly. There are also early activations in the first layer across heads 0.0, 0.2, 0.3. Please158

refer to Fig. 6 to see all of the circuits associated with this subtask. This is shown in Fig. 2.159

Boundary. In contrary to the circuits that we found in the symmetric subtasks, we found that there160

are generally two peaks of activations: in the early layers and in the latter layers. Specifically, when161

♯Opr1 > ♯Opr2, we find that generally attention heads in layer 5 (5.5, 56) are strongly activated, as162

well as attention heads in layer 14 (14.3, 14.7). Similar to the circuits when ♯Opr1 = ♯Opr2, we see163

that attention heads in the early layers are strongly activated such as 2.2, as well as the same attention164

heads in the first layer of the previous circuits.165

We also notice that within the boundary class as well, there seems to be two distinct behaviors. This166

is seen in Fig. 1. When ♯Opr1 > ♯Opr2 we see different circuits compared to ♯Opr2 > ♯Opr1. The167

subcircuits that correspond to these cases are further highlighted in Fig. 2. We find that much more168

attention heads are involved in the computation of this latter case compared to the former. Not only169

that, there are specific high impact attention heads in the middle layers that are disjoint from each170

other. These attention heads are highlighted in Fig. 2.171

Interior. Lastly, circuits on the interior are generally diffuse through out the model. This can be172

observed in the right-most panel of Fig. 2. We find that in general many of the attention heads in the173

middle layer that are shared between the symmetric case and boundary cases can be found as subset174

of high impact attention heads in this subtask.175

3 What’s in a phase? One possible explanation176

Though we have identified that phase transitions occur within the large langauge model, it remains to177

demonstrate what these stages actually are and the algorithmic differences between them rather than178

just identifying the computational difference.179

Herein, we present our framework which we call Dynamic Recursive Tooling. We first demonstrate180

how for simple addition problems (when both operands only have 1 or 2 digits), LLMs directly181

memorize the answer. However, as the task complexity increases, for example when the digits of182

one of the operands increase, the LLM quickly transitions to a different new algorithm through a183

divide and conquer schema. Next, as the task complexity increases again by increasing the number184

of digits in both operands, we discover that the algorithm changes to one that resembles dynamic185

programming. We provide some preliminary experimental evidence for these stages and conjecture186

about the effect the architecture plays into these interactions.187

Retrieval. Based on the substructures that we discover in the circuits where ♯Opr1 > 1 or ♯Opr2 > 1,188

we hypothesize that for 1, 1-digit addition, the model is storing the results of these as memories189

and then simply retrieving them. Then, for subsequent tasks that rely on these problems, the model190

recursively “calls” these components. This behavior is shown in the first panel of Fig. 3.191

Bypass Retrieval. When either ♯Opr1 = 1 or ♯Opr2 = 1, we propose that the model performs bypass192

retrieval. That is, for any digit in the operand that is not in the ones or tens place, the model first193

separates these digits from the rest of the digits, then independently processes them. The ones and194

tens digits are added to the other one digit operand. This is done through retrieval. Let us denote195

the portion of digits that were separated out as the bypassed digits of the number. Once retrieval is196
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complete, we hypothesize that the bypassed digits are joined together with the retrieval digits through197

a concatenation operation.198

Opr1 Opr2

Retrieval:

Bypass Retrieval:

Recursive Tooling:

retrieval

re
tr

ie
v
a
l

retrieval in parallel

subject relation object

Figure 3: Our hypothesis for the mechanisms be-
hind the different phases.

Recurisve Tooling. For ♯Opr1 > 1 and199

♯Opr2 > 1, we hypothesize that the model is200

performing recursive tooling. Essentially, it is201

combining the techniques from the two previous202

situations together into one algorithm. First it203

is performing all single digit addition through204

direct retrieval. Then, it performs single digit205

retrieval again among the resultant, shifted val-206

ues. This process is shown in the last panel207

of Fig. 3. In the appendix, we show some pre-208

liminary evidence for each of these stages and209

discuss detailed experimental set ups that lead210

us to these hypotheses.211

4 Discussion212

In this paper, we explored algorithmic phase213

transitions induced by changes in task complex-214

ity. Surprisingly, we find that even on simple215

tasks such as arithemtic, language models ex-216

hibit sharp algorithmic phase transitions across217

different subtasks. Our work presents a novel218

method to operationalize and quantify this transi-219

tion by identifying and comparing the structures220

of the underlying circuits driving these behav-221

iors. Our work relies on a host of seminal tech-222

niques in mechanistic interpretability [29, 9, 21]. Specifically, we heavily rely on activation patching223

to identify these subcircuits. The limitations of activation patching are known and discussed exten-224

sively throughout the literature, however, they still remain the most effective methods to tractably225

identify subcircuits. One potential source of future work is to test the robustness of the subcircuits226

that we identified by perturbing the weights of the network itself. In this way, finding a subcircuit227

that is minimax-optimal.228

Moreover, our work operationalizes algorithmic changes as structure changes. We are the first to229

propose clustering techniques to quantify these structural changes. However, there may exist other230

methods of quantifying this change. We leave this open and it could serve as a good basis for future231

work, especially in the mechanistic interpretability subfield.232

Lastly, our results could have strong implications for improving and explaining the logical reasoning233

abilities of transformers in general. We demonstrated that even on this simple task, language models234

are unable to identify and learn generalizable algorithms. Perhaps this is a barrier for more complex235

reasonings as well as.236

5 Conclusion237

In this paper, we demonstrate that for two-operand addition, surprisingly, language models are not238

algorithmically stable. Specifically, the underlying algorithm that is used to solve the problem changes239

as the task is perturbed. Our results are the first to look at algorithmic stability with respect to task240

perturbations. We believe that this interpretability technique will allow researchers to better evaluate241

language model design choices. Moreover, it may also serve as a diagnostic tool to determine whether242

or not generalizing behavior is occuring. Specifically, we find that algorithmic instability correlates243

strongly with a lack of generalizability. We hope that these insights will bridge many of the toy244

examples in mechanistic interpretability to actual practitoiners.245
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A Activation Patching338

Activation patching is a mechanistic interpretability technique used to understand how specific internal339

activations of a neural network contribute to its output. The process involves selecting two similar340

prompts, running the model with one prompt (the source) and saving its internal activations, then341

running the model with the second prompt (the destination) while overwriting selected activations342

within the second prompt with those from the source prompt. This allows us to observe how343

the model’s behavior changes when certain activations are altered. Thus, we can identify which344

components of the model are responsible for specific outputs. There are generally two techniques of345

activation patching known as denoising (inserting clean activations into corrupted runs to see if they346

restore correct behavior) and noising (inserting corrupted activations into clean runs to see if they347

disrupt behavior). These techniques allow us to analyze circuits within neural networks and reveale348

whether certain activations are necessary or sufficient for specific behaviors.349

B Addition Experiment350

Much of the current work that’s examining the accuracy of LLMs utilize word problems and much351

more complex math than simple arithmetic to evaluate their skills [4, 13, 15]. These studies rely352

both on an LLM’s ability to interpret a word problem and its complex mathematical reasoning.353

The complex math problems implicitly require arithmetic in order to solve them correctly, but by354

investigating complex math ability, we cannot conclude whether the inaccuracy lies in the LLM’s355

higher order mathematical reasoning, or it’s understanding of basic operations. Thus, to study why356

LLMs do not perform well with mathematical tasks, we fed LLMs purely arithmetic queries to357

separate LLMs’ semantic reasoning from its math capability, and its ability to write proofs from its358

basic ability to wield foundational mathematical techniques.359

The structure of the prompts followed the few-shot prompting model where two example problems,360

"100 + 200 = 300\n520 + 890 = 1410\n", preceded an addition problem such as "478 + 23 = ". We361

chose to utilize the few-shot prompt model to condition Gemma towards a specific format.362

C Extensions363

As the presence of artificial intelligence continues to grow, the number of LLMs in exisence has364

followed suit. Above, we see the addition accuracy results of other popular LLMs. Architecture365

varies widely between models, but we hope to utilize our experiments to investigate the mechanisms366

of other LLMs and contribute to improving the accuracy and transparency of the inner workings of367

these black boxes.368
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D Additional Results369
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Figure 4: For a fixed model, Gemma-2-2b, this illustrates the Pairwise-Pearson correlations between
the attention head contributions found through activation patching. Each cell intuitively captures the
pairwise subcircuit similarity between subtasks (see the x, y-axes labels).
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E Circuits370
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Figure 5: Circuits found for subtasks on the boundary. The attention heads shown are the top 10% of
the most influential heads with respect to our patching metric. Since we do not patch any of the MLP
layers, some of them are simply omitted from the graphs for brevity.
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Figure 6: Circuits for the subtasks that are considered to be symmetric. The attention heads are the
top 10% of the most influential heads with respect to our patching metric. Between any two attention
heads from different layers, if there are not other influential attention heads between them we omit
showing all of the MLPs between them for brevity sake. However, we do not patch or remove and of
the MLPs.

12


	Introduction
	Identifying Phase Transitions Across Task Perturbations
	Preliminaries
	Baseline Performance
	Reverse Engineering Arithmetic Circuits
	Circuit Stability Under Across Task Classes
	Characteristics of Phases

	What's in a phase? One possible explanation
	Discussion
	Conclusion
	Activation Patching
	Addition Experiment
	Extensions
	Additional Results
	Circuits

