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Abstract

Computer vision foundation models, such as DINO or001
OpenCLIP, are trained in a self-supervised manner on large002
image datasets. Analogously, substantial evidence suggests003
that the human visual system (HVS) is influenced by the004
statistical distribution of colors and patterns in the natu-005
ral world, characteristics also present in the training data006
of foundation models. The question we address in this pa-007
per is whether foundation models trained on natural images008
mimic some of the low-level characteristics of the human009
visual system, such as contrast detection, contrast masking,010
and contrast constancy. Specifically, we designed a pro-011
tocol comprising nine test types to evaluate the image en-012
coders of 45 foundation and generative models. Our results013
indicate that some foundation models (e.g., DINO, DINOv2,014
and OpenCLIP), share some of the characteristics of human015
vision, but other models show little resemblance. Founda-016
tion models tend to show smaller sensitivity to low contrast017
and rather irregular responses to contrast across frequen-018
cies. The foundation models show the best agreement with019
human data in terms of contrast masking. Our findings sug-020
gest that human vision and computer vision may take both021
similar and different paths when learning to interpret im-022
ages of the real world. Overall, while differences remain,023
foundation models trained on vision tasks start to align with024
low-level human vision, with DINOv2 showing the closest025
resemblance.026

1. Introduction027

Computer vision foundation models, such as DINO [8] or028
OpenCLIP [22, 31], show exceptional ability to generalize029
to different tasks and are becoming cornerstones of many030
computer vision methods. They owe their exceptional per-031
formance to self-supervised training on very large image032
datasets. The human visual system also owes much of its033
capability to being able to perceive the world, over many034
years from infancy to childhood [6]. A question arises: if035
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Figure 1. To determine whether image encoders of foundation
models exhibit a similar low-level characteristic as human vision,
we test them on psychophysical stimuli for which human data is
available. We want to test the alignment of contrast encoding be-
tween human and computational vision models.

the neural network and the visual system are trained by be- 036
ing exposed to a large number of images of the world, will 037
they share their low-level vision characteristics? If they do, 038
we will know that those low-level characteristics arise nat- 039
urally and likely reflect the statistics of real-world scenes. 040
If they do not, it means that human low-level vision charac- 041
teristics are specific to the optical/biological limitations of 042
human vision rather than natural image statistics. Our anal- 043
ysis is meant to shed some light on how the vision, either 044
biological or computational, may develop from observing 045
samples of the world, taking either the same or different 046
routes to accomplish their respective tasks. 047

In particular, we are interested in the characteristics that 048
are well understood and measured in human vision science 049
using psychophysical methods: contrast detection [4], con- 050
trast masking [25] and contrast constancy [17]. Contrast 051
detection and contrast masking quantify the ability of the vi- 052
sual system to detect small contrast patterns, either on uni- 053
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form backgrounds (contrast detection) or on backgrounds054
with patterns (contrast masking). Contrast detection and055
masking capture the “bottlenecks” of the visual system —056
the characteristic that may prevent us from detecting pat-057
terns that are too dark or too small. Similarly, cameras used058
for computer vision are limited by the MTF of the lens, sen-059
sor resolution, photon and sensor noise, and we can expect060
that computer vision methods may need to deal with similar061
limitations.062

Contrast constancy is the term used in vision science063
to describe the invariance of the visual system to spatial064
frequency [17] and partially luminance [24, 30]. George-065
son and Sullivan [17] showed that the perceived magnitude066
of the contrast that is well above the detection threshold067
(supra-threshold) appears to us the same regardless of spa-068
tial frequency. This is a very important characteristic as it069
allows us to see contrast (and therefore objects) the same070
regardless of the viewing distance; otherwise, the frequen-071
cies would change with the viewing distance and hence the072
contrast appearance. A partial constancy (invariance) is also073
observed across luminance [24, 30], though there is a sig-074
nificant deviation from constancy at lower luminance levels,075
once the visual system needs to rely on the rod vision. The076
invariance is also an important feature of many computer vi-077
sion methods. For example in SIFT features [27] have been078
designed to be invariant to the changes in contrast, bright-079
ness, scale, and rotation. In our experiments, we used the080
supra-threshold contrast matching test to assess whether the081
models exhibit the characteristic of contrast constancy.082

Numerous works on adversarial attacks demonstrated083
that the classification performance of deep learning mod-084
els can be greatly degraded by visually inconsequential085
changes [19]. At the same time, human vision does not suf-086
fer from such adversarial vulnerability [41]. This is one of087
the most salient arguments put forward to state that deep088
architectures are different from human vision. Here, we089
propose a different methodology to study this question. We090
consider the deep neural network to be a black box and com-091
pare its responses to well-understood and measured charac-092
teristics of the human visual system. In particular, we want093
to check whether the foundation vision models share the094
same “bottlenecks” and invariance properties as the visual095
system. To achieve this, we test foundation models on ba-096
sic vision stimuli, such as Gabor patches and band-limited097
noise, and compare the response of those models with the098
psychophysical data collected from human observers.099

In summary, our contributions are as follows:100

• We developed a protocol to evaluate the similarity be-101
tween machine vision models and the human visual sys-102
tem. This protocol includes contrast detection, contrast103
masking, and contrast constancy, subdivided into nine104
distinct test types that collectively capture the low-level105
fundamental characteristics of human vision.106

• We tested the image encoders of 45 foundation and gen- 107
erative models. The results reveal similarities between 108
certain foundation models (e.g., DINOv2 and OpenCLIP) 109
and human vision, particularly in the contrast masking 110
test. However, differences persist across other tests. 111

2. Related Work 112

Since the advent of deep learning, machine vision models 113
based on DNNs and foundation models [12, 20, 23, 29] 114
have successfully handled numerous advanced visual tasks. 115
However, researchers have observed that machine vision 116
operates differently from human vision. [15] revealed that 117
standard convolutional neural networks (CNNs) trained on 118
ImageNet are strongly biased toward texture recognition 119
rather than shape, which contrasts with human visual pat- 120
terns. [41] provided further evidence that deep neural net- 121
works (DNNs) differ significantly from the HVS, demon- 122
strating poor robustness in object classification under 3D 123
viewpoint changes and image distortions, and showing vul- 124
nerability to adversarial examples, which are rarely prob- 125
lematic for humans. [5] pointed out that DNNs performing 126
well in benchmark tests share little overlap with biological 127
vision mechanisms and fail to account for many findings in 128
psychological studies of human vision. This highlights a 129
clear distinction between machine and human vision, lead- 130
ing to the rise of interest in domain adaptation [7] and mak- 131
ing networks robust to adversarial attacks [43]. 132

But there is also evidence that the gap between neural 133
network-based machine vision models and human vision 134
is gradually narrowing. [37] compared vision transformers 135
(ViT) [12] and CNNs, finding that ViT not only achieves su- 136
perior task accuracy but also exhibits weaker inductive bi- 137
ases, with error patterns more consistent with human errors. 138
[16] discovered that the long-standing robustness gap be- 139
tween humans and CNNs in handling distortions is shrink- 140
ing. [9, 18] also demonstrated that foundation models like 141
DINO [8] and CLIP [32] can generate more accurate and 142
robust metrics for low-level perceptual similarity. 143

Most of the aforementioned studies focus on high-level 144
task performance (e.g., accuracy, consistency, ...), which 145
may not reveal whether computation models suffer from 146
the same bottlenecks and rely on the same invariances as 147
human vision. To that end, [2, 26] have attempted to re- 148
veal CSF characteristics within pretrained architectures by 149
training a head with a contrast discrimination classifier. The 150
problem with this approach is that it introduces a bias by re- 151
lying on a classifier trained to compare contrast. Such stud- 152
ies also make an incorrect assumption that CSF explains 153
both near-threshold and super-threshold vision, while con- 154
trast constancy results (see Section 4.3) show that this is not 155
the case. In contrast, we examine networks’ low-level char- 156
acteristics without additional task-specific training, consid- 157
ering both near-threshold and supra-threshold vision. 158
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3. Testing framework159

We first explain the tested models, testing methods, result160
visualization, and the strategy we used to summarize and161
quantify our results.162

3.1. Tested models and testing methodology163

The objective is to evaluate the responses of machine vi-164
sion foundation models to stimuli commonly used in hu-165
man vision research and to compare these responses with166
psychophysical human data. We tested a representative set167
of 45 models, encompassing the most influential large vi-168
sion foundation models, including the variants of DINO [8],169
DINOv2 [11, 29], OpenCLIP [22, 31], SAM [23], SAM-170
2 [33], and MAE [21], as well as the encoder used for171
the latent space of generative model Stable Diffusion (SD-172
VAE, [34]). Additionally, we report the responses of Col-173
orVideoVDP [28], which is an image and video quality met-174
ric that explicitly models low-level human vision and acts as175
a reference for a low-level human vision model. All models176
and their variants are listed in Figure 6.177

To test these models, we need to be able to compare pairs178
of images and assess the “perceived” difference between179
them. For example, for a pattern detection task, a pair of im-180
ages could be a Gabor patch (test) and a uniform field (ref-181
erence), as shown on the left of Figure 2. As such patterns182
are calibrated in physical light units in vision science, we183
generate these patterns as luminance maps, scaled in physi-184
cal units of cd/m2. These luminance maps are then mapped185
from the linear space to the sRGB color space using a dis-186
play model (display peak luminance of 400 cd/m2) and fed187
into the image encoder of the foundation model for feature188
extraction. Note that the sRGB space is almost universally189
used to represent training datasets and is expected input for190
the tested encoders. To ensure that models can operate on191
small contrast values, we modified them to accept floating-192
point values (instead of 8-bit integers) as input. This was193
necessary as the quantization artifacts in 8-bit images are194
often larger than the detection thresholds of human vision.195

To investigate whether the distances in the feature space196
reflect the perceptual detection thresholds and invariances,197
we experimented with a series of distance measures, includ-198
ing L1 and L2. We found the cosine similarity expressed as199
a relative angle (Sac) yielded results most consistent with200
the psychophysical data. Sac is defined as:201

Sac =
1

π
arccos

(
FT · FR

∥FT∥ ∥FR∥

)
, (1)202

where FT and FR are the test and reference feature vectors203
(feature maps reshaped into one dimension), and · denotes204
the dot product. Sac = 0 indicates two input images are205
equivalent, while Sac = 1 indicates large differences.206

To compare the encoder responses with psychophysical207
data, we need to be able to map the image sampling fre-208

Test

Reference

Display 
Model

Linear
↓

sRGB

Test Feature Vector 𝐹୘

Reference Feature Vector 𝐹

Image
Encoder

Image
Encoder

𝑆ୟୡ =  
1

𝜋
arccos

𝐹୘ ȉ 𝐹

𝐹୘ 𝐹

Display 
Model

Linear
↓

sRGB

Figure 2. Pipeline for computing Sac. Generate test and reference
images in the linear luminance space ( cd/m2), transform them
to the sRGB color space using a display model, and input each
into the image encoder. Reshape the output features into one-
dimensional vectors FT and FR, then compute Sac.

quency into the spatial frequency on the retina. For that, 209
we select the effective resolution of 60 pixels-per-degree, 210
which is typical for modern monitors. We note, however, 211
that the choice of this parameter is arbitrary and the model 212
similarity scores can be shifted by a small multiplier along 213
the spatial frequency axis. The luminance maps are gener- 214
ated at the resolution of 224×224 pixels, corresponding to 215
the size of 3.7×3.7 visual degrees. 216

For ColorVideoVDP, we do not use sRGB encoding as 217
the metric can directly work on physical units. We directly 218
use its quality score instead of Sac. Note that the primary 219
focus of this study is on foundation models, with the Col- 220
orVideoVDP metric used solely for comparison purposes. 221

3.2. Model alignment score 222

Most of our results will be represented as contour plots of 223
model responses, providing qualitative interpretation. Here, 224
we explain our measure of model alignment, which pro- 225
vides quantitative scores. 226

As an example, we take the leftmost contour plot in row 227
(a) of Figure 5. Each point on the contour plot corresponds 228
to Sac between the test image as shown in Figure 3 and a 229
uniform field of the same mean luminance. The dashed line 230
represents human contrast detection data, predicted with 231
castleCSF [3]. A well-aligned model should show one of 232
the contour lines that follows the dashed castleCSF line. We 233
cannot directly use the Sac values along the dashed line as 234
the measure of alignment because some models result in 235
Sac = 0 for most points near the detection threshold (they 236
detect no difference). Therefore, instead, we rely on the 237
measure of change in Sac in the neighborhood of the dashed 238
line. 239

For a well-aligned model, the perceived differences in 240
the neighborhood of the detection threshold (dashed line) 241
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Figure 3. Gabors with different spatial frequencies (x-axis) and
contrast (y-axis) used as the test images in the contrast detection
tests (Section 4.1). “cpd” denotes cycles per degree. Note that the
high-frequency patterns can be rendered with aliasing artifacts on
the screen or in print — those were not present in our tests.

should increase as the contrast increases (the sensitivity de-242
creases), Furthermore, the values should be similar along243
the dashed line. The measure these two properties, we sam-244
ple the Sac values for the points that are shifted in contrast245
(vertical direction) from the dashed line by a multiplier m,246
where 0.5≤m≤2 (note the logarithmic scale in the contour247
plot in Figure 5). We collect such data for multiple fre-248
quencies (or other dimensions) along the dashed line and249
calculate the Spearman rank order correlation between the250
multipliers m and the Sac values. If the properties men-251
tioned above are preserved, the correlation coefficient value252
rs should be close to 1.253

The above strategy is used for all contrast detection and254
contrast masking experiments. For the contrast matching255
experiment, we use the root mean squared error (RMSE)256
between the model and human matching data, expressed as257
the logarithm of contrast.258

4. Experiments259

4.1. Contrast detection and CSF260

We begin by testing the foundation models’ ability to detect261
low-contrast (near-threshold) patterns (e.g., Gabor patches,262
band-limited noise) and compare their performance with the263
human data. As the reference human data, we rely on the264
caslteCSF [3], which is the recent contrast sensitivity func-265
tion, modeling contrast detection of both achromatic and266
chromatic patterns.267

Spatial Frequency Contrast sensitivity of the human eye 268
is typically associated with the variation across the spatial 269
frequency. The visual system exhibits a band-pass charac- 270
teristic, with a peak sensitivity between 2 and 4 cycles per 271
degree (cpd), depending on the luminance and other param- 272
eters of the stimulus. The lower sensitivity of the visual sys- 273
tem at lower frequencies is associated with the mechanism 274
of lateral inhibition [4], which helps to reduce the influence 275
of (low-frequency) illumination on the perceived images. 276
Such invariance to illumination is a desirable property if the 277
goal is to recognize objects regardless of illumination con- 278
ditions. The drop in sensitivity at high frequencies is as- 279
sociated with the limitations of eye optics (achromatic con- 280
trast) and cone density (chromatic contrast). Here we want 281
to test whether the computer-vision foundation models pick 282
up similar traits when trained on natural images. 283

To test encoder responses across frequencies, we gener- 284
ated a 2D array of image pairs, in which the reference image 285
had uniform luminance, and the test image contained a Ga- 286
bor patch, as shown in Figure 3 (refer to Supplementary for 287
the visualization of other stimuli). We generate such Gabors 288
for achromatic (see Figure 4-a) and chromatic modulation 289
(see Figure 4-c,d). We also tested band-limited noise (see 290
Figure 4-b). The test patterns had fixed size but varying spa- 291
tial frequency (x-axis) and contrast (y-axis). Because most 292
of the contrast detection data are plotted as the function of 293
sensitivity, we follow this convention and plot the sensitiv- 294
ity, which is the inverse of the contrast. This corresponds to 295
the reversal of the axis on the logarithmic plots, which we 296
use in our analysis. The other parameters of the stimuli are 297
listed in Table 1. Although we tested multiple variants of 298
each foundation model, here we show only the variant with 299
the highest complexity and best performance on its original 300
high-level tasks. The contour plots for other variants can be 301
found in the Supplementary. 302

The contour plots of foundation model responses 303
are shown together with a contrast sensitivity function 304
(castleCSF [3]) in rows (a)–(d) of Figure 5. If the foun- 305
dation models had the same contrast detection characteris- 306
tics as the human eye, we would expect the smallest differ- 307
ence (the lowest Sac) contour line to follow the black dashed 308
curve of castleCSF. This is not the case for any of the tested 309
foundation models. Some models, and in particular DI- 310
NOv2 and SD-VAE, show overall band-pass characteristics, 311
in particular for noise and achromatic Gabors. SD-VAE has 312
a drop of sensitivity at lower frequencies much larger than 313
that of the visual system. The responses to chromatic pat- 314
terns (rows (c) and (d)) tend to be less regular than to achro- 315
matic patterns and lack the shift toward lower frequencies, 316
which is observed in the human data. Both OpenCLIP and 317
SAM-2 show a very inconsistent response across the spatial 318
frequencies. 319

From the data, we can conclude that foundation models 320
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(f) Area – Gabor Ach.(e) Luminance – Gabor Ach.

(a)     Spatial Frequency – Gabor Ach. (b)     Spatial Frequency – Noise Ach. (c) Spatial Frequency – Gabor RG (d) Spatial Frequency – Gabor YV

(g)     Phase-Coherent Masking (h)     Phase-Incoherent Masking

Figure 4. Examples of test images for contrast detection and contrast masking. The detailed explanation of the stimuli can be found in the
Supplementary. “Ach.” denotes achromatic.

Table 1. Key parameters for all our tests. Note that “Radius” does not apply when the pattern is not a Gabor.

Test Spatial Frequency (cpd) Luminance ( cd/m2) Radius (degree) Contrast
Spatial Frequency - Gabor Achromatic 0.5 - 32 100 1 0.001 - 1
Spatial Frequency - Noise Achromatic 0.5 - 32 100 - 0.001 - 1

Spatial Frequency - Gabor RG 0.5 - 32 100 1 0.001 - 0.2
Spatial Frequency - Gabor YV 0.5 - 32 100 1 0.001 - 0.2

Luminance - Gabor Achromatic 2 0.1 - 200 1 0.001 - 1
Area - Gabor Achromatic 8 100 0.1 - 1 0.001 - 1
Phase-Coherent Masking 2 (mask) / 2 (test) 32 0.5 (test) 0.005 - 0.5 (mask) / 0.01 - 0.5 (test)

Phase-Incoherent Masking 0 - 12 (mask) / 1.2 (test) 37 0.8 (test) 0.005 - 0.5 (mask) / 0.01 - 0.5 (test)
Contrast Matching 5 (reference) / 0.25 - 25 (test) 10 - 0.005 - 0.629 (reference)

do not follow the sensitivity pattern of the visual system,321
but some may show a band-pass characteristic that is asso-322
ciated with the CSF. Many models show lower sensitivity323
at lower frequencies, which may indicate that those models324
obtained some invariance to (low-frequency) illumination325
through training.326

Luminance The sensitivity of the human eye increases327
with the luminance. In dim light, human contrast sensitivity328
increases proportionally to the square root of retinal illu-329
minance, following the DeVries-Rose law. Conversely, in330
bright light, sensitivity follows Weber’s law, remaining in-331
dependent of illuminance [36]. In this experiment, we want332
to test whether the computer vision models lose sensitivity333
at lower luminance levels. Such a loss could be justified by334
camera noise, which increases in terms of contrast as the335
light intensity decreases [1].336

To produce contour plots, we generated a 2D array of337
image pairs in a similar manner as for spatial frequency338
variations in the section above, but instead of varying spa-339
tial frequency, we varied luminance, as shown in Figure 4-340
e. As a reminder, we did not pass the absolute lumi-341
nance values directly to each model but instead converted342

them to display-encoded (gamma-corrected) sRGB space 343
— the colour space used for training datasets (see Figure 2). 344
Such an encoding partially compensates for perceptual non- 345
uniformity of luminance. 346

The results, shown in row (e) of Figure 5, indicate a 347
systematic drop in sensitivity with luminance for all tested 348
models. The drop in sensitivity of those models is faster 349
than that observed in the human data, in particular for Open- 350
CLIP. 351

We can conclude that the models trained on sufficiently 352
large datasets mimic the sensitivity of the visual system 353
to luminance but with a faster drop in sensitivity. This, 354
however, may be the result of using sRGB representation 355
for training datasets, which were presumably mostly well- 356
exposed and contained relatively little information in darker 357
image regions. 358

Area Stimulus area (size) significantly affects sensitivity, 359
as larger stimuli activate more retinal cells. Sensitivity in- 360
creases with area up to the saturation point, denoted as the 361
critical area [35]. The response to stimuli of different sizes 362
tests the model’s ability to pool information across the vi- 363
sual field. 364
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Figure 5. Selected representative experimental results. Each row represents a test, and each column corresponds to a model, selected as the
best-performing in their original tasks. (a)-(f): contour plots of contrast detection Sac, with the ground truth castleCSF [3]. (g),(h): contour
plots of contrast masking Sac, with the ground truth from [13] and [14], respectively. (i): results from the contrast matching experiment,
where different colors represent different Cr values. The dashed lines are human results [17], while the solid lines are model-predicted
results from Equation 2. Results for all models are in the supplementary material.
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Figure 6. The quantified similarity error between all 45 models
and HVS under 9 different tests. For the Contrast Detection and
Contrast Masking tasks, Spearman Correlation was used as the
metric, with higher values (closer to 1) indicating greater similar-
ity to human vision. For the Supra-threshold Contrast Matching
task, RMSE was used as the metric, with lower values (closer to
0) indicating better similarity.

In this experiment, we vary the size of the Gaussian en-365
velope limiting stimulus size to observe its effect on model366
responses. We follow the same procedure as in the two pre-367
vious sections and generate pairs with a uniform field and a368
Gabor patch (see Figure 4-f). The parameters of the Gabor369
patch are listed in Table 1.370

The results, shown in row (f) of Figure 5, indicate that371
most models show summation across the area (the Sac val-372
ues increase with the area) and the rate of the increase varies373
across the models; DINO and SAM-2 have a smaller in-374

crease, SD-VAR has a higher increase of Sac than the hu- 375
man data, and only DINOv2 roughly matches human per- 376
formance. OpenCLIP shows no consistent patterns. We can 377
conclude that many models show spatial pooling character- 378
istic that shares the trend observed in human data, though 379
the actual slope of the increase is typically different. 380

4.2. Contrast masking 381

Contrast masking explains the decreased visibility of a sig- 382
nal (test) due to the presence of a supra-threshold back- 383
ground (mask). The masking function defines the relation- 384
ship between the threshold test contrast required for signal 385
detection and the mask contrast. Put simply, a pattern is 386
more difficult to detect in the presence of another pattern of 387
similar spatial frequency and orientation. A typical masking 388
characteristic of the visual system is shown in rows (g) and 389
(h) of Figure 5. It consists of a relatively shallow segment 390
at low mask contrast (near the detection threshold), with the 391
slope increasing for high mask contrast. The shape of the 392
curve is influenced by the specific properties of the mask 393
and test signals [10, 40]. We will consider the case in which 394
the masker is a sinusoidal grating of the same frequency 395
as the test pattern (phase-coherent masking, row (g)) and 396
when the masker is noise (phase-incoherent masking, row 397
(h)) [10, 13, 14], as shown in Figure 4-g,h. 398

First, we consider the fundamental form of phase- 399
coherent masking in which the masker image (reference 400
in Figure 2) is a sinusoidal grating and the test image is 401
the masker plus a Gabor patch of the same frequency and 402
phase as the masker (see Figure 4g). Contrast masking 403
data, shown as the dashed black curve in row (g) of Fig- 404
ure 5, shows the smallest contrast of the test Gabor that is 405
detectable in the presence of the masker of a given con- 406
trast. As the contrast of the masker increases, the smallest 407
detectable contrast of the test also needs to increase. How- 408
ever, such an increase starts only for a masker that has the 409
contrast sufficiently high to be detected. If the contrast of 410
the masker is near the detection threshold, we can observe 411
a dipper effect — the contrast detection is facilitated by a 412
masker [13, 39, 42]. Such an effect can be only observed in 413
phase coherent masking. 414

As an example of phase-incoherent masking, we will 415
consider a masker with band-limited noise and a test with 416
a Gabor patch — see Figure 4h. The human detection 417
thresholds for such masking patterns are similar to those 418
for phase-coherent masking, except that the dipper effect 419
disappears [38]. 420

The differences predicted by DINOv2 and OpenCLIP 421
are surprisingly well-aligned with the human contrast mask- 422
ing data — their responses roughly match the slopes of 423
the human data. The alignment is stronger for the phase- 424
incoherent masking. This is particularly notable for Open- 425
CLIP, which did not show any consistent trends for contrast 426
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detection. Other models do not show strong alignment with427
the human data.428

Overall, computational models are better aligned with429
human data for contrast masking than for contrast discrim-430
ination. One possible explanation is that the signals that431
induce contrast masking are plentiful in natural images, but432
contrast detection stimuli, which involve barely noticeable433
patterns on uniform backgrounds, are rare. Therefore, com-434
putational models are more likely to pick up the character-435
istic that is well represented in the training datasets.436

4.3. Supra-threshold contrast matching437

While contrast detection and contrast masking explain the438
just detectable (near-threshold) contrast, most of the vision439
tasks, such as detection or recognition, involve well-visible440
(supra-threshold) contrast. Supra-threshold human vision441
has been studied in contrast-matching experiments in which442
the magnitude of one contrast is visually matched to the443
magnitude of another contrast of a different frequency [17]444
or luminance [24, 30]. One of the most significant findings445
of those studies is contrast constancy [17] — the ability of446
the visual system to match physical contrast across frequen-447
cies and luminance levels. The results of the seminal study448
of Georgeson and Sullivan [17] on matching contrast across449
frequencies are shown as dashed lines in row (i) of Figure 5.450
At small contrast, the dashed lines show a band-pass shape451
that follows the contrast sensitivity function. However, as452
the contrast is increased, the lines become flat showing lit-453
tle influence of frequency on contrast perception. This is454
an important property that lets us see objects to have the455
same appearance regardless of the viewing distance. Such456
a scale invariance is also important for neural networks that457
are tasked to detect or recognize objects regardless of their458
size.459

We followed the experimental setup from [17], where460
the reference was a 5 cpd, 10 cd/m2 sinusoidal grating, pre-461
sented at eight distinct contrast levels cr. The test stimulus462
had the same luminance but a different spatial frequency ρt.463
In [17], observers adjusted the test stimulus contrast ct until464
its apparent contrast matched that of the reference (contrast465
matching). In our experiments, we match contrast encod-466
ings of sinusoidal gratings: the (Sac(), eq. (1)), between a467
feature vector of a sinusoidal grating, F (ρ, c) of frequency468
ρ and contrast c, and a uniform field, U = F (ρt, 0). We find469
the test contrast ct that minimizes the expression:470

argmin
ct

(
Sac(F (ρr, cr), U)

Sac(F (ρr, 1), U)
− Sac(F (ρt, ct), U)

Sac(F (ρt, 1), U)

)2

, (2)471

where the reference frequency ρr = 5 cpd. The denomina-472
tors in the expression are used to normalize contrast across473
frequencies. We experimented with other contrast encod-474
ings, including a direct comparison of feature vectors, but475

the formula above resulted in the best contrast constancy 476
properties across the models. 477

The matching contrast predictions for foundation mod- 478
els are visualized as continuous lines in row (i) of Figure 5. 479
The plots show that only DINOv2 and OpenCLIP roughly 480
follow the dashed contrast constancy lines. Both models 481
show less attenuation (more constancy) at the highest spa- 482
tial frequencies, which could be advantageous when the 483
model needs to work with small-scale features. Both mod- 484
els show attenuation of low frequencies (below 1 cpd), sug- 485
gesting worse contrast constancy in that frequency range. 486
Other models, including DINO and SAM-2, suffer from 487
large instability across frequencies, or very heavy attenua- 488
tion of low frequencies in the case of SD-VAE. To conclude, 489
we can observe only partial contrast constancy for selected 490
models. 491

4.4. Model alignment scores 492

As the analysis of all 45 variants of the models is infeasible 493
in the scope of this paper, we prepared quantitative results 494
according to the method explained in Section 3.2 and sum- 495
marized them in Figure 6. Those let us make three observa- 496
tions: 497

First, ColorVideoVDP, which is a visual metric that 498
models human low-level vision, is better aligned with the 499
human data in almost all contrast detection tasks and in 500
terms of contrast constancy, as expected. However, certain 501
variants of OpenCLIP and DINOv2 can match or surpass 502
the ColorVideoVDP alignment in terms of contrast mask- 503
ing. Second, the alignment scores of different foundation 504
model variants (e.g., OpenCLIP) show significant variations 505
and alignment scores appear unrelated to the complexity of 506
the variants or their performance on higher-level tasks. Fi- 507
nally, DINOv2 variants, which have been trained to solve 508
vision tasks, show the greatest alignment with the human 509
data among all foundation models. 510

5. Conclusions 511

If we believe that the goal of both biological and computa- 512
tional low-level vision is to efficiently encode visual infor- 513
mation, we can expect that computational models trained 514
on large natural image datasets will share similarities with 515
human vision. In this work, we find that selected compu- 516
tational models, e.g., variants of DINOv2 and OpenCLIP, 517
show surprisingly high alignment with supra-threshold hu- 518
man contrast masking and contrast matching data, but little 519
alignment with the near-threshold contrast detection. This 520
means that computation models do not have the same “bot- 521
tlenecks” as human vision, but, through training, they attain 522
invariance and efficient contrast coding that resembles that 523
of the visual system. We hope that our testing protocol with 524
basic psychophysical stimuli will provide a useful tool for 525
examining future computational models of vision. 526
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