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ABSTRACT

The soft-argmax operation is widely adopted in neural network-based stereo
matching methods to enable differentiable regression of disparity. However, net-
works trained with soft-argmax tend to predict multimodal probability distribu-
tions due to the absence of explicit constraints on the shape of the distribution.
Previous methods leveraged Laplacian distributions and cross-entropy for training
but failed to effectively improve accuracy and even increased the network’s pro-
cessing time. In this paper, we propose a novel method called Sampling-Gaussian
as a substitute for soft-argmax. It improves accuracy without increasing inference
time. We innovatively interpret the training process as minimizing the distance
in vector space and propose a combined loss of L1 loss and cosine similarity
loss. We leveraged the normalized discrete Gaussian distribution for supervision.
Moreover, we identified two issues in previous methods and proposed extending
the disparity range and employing bilinear interpolation as solutions. We have
conducted comprehensive experiments to demonstrate the superior performance
of our Sampling-Gaussian method. The experimental results prove that we have
achieved better accuracy on five baseline methods across four datasets. More-
over, we have achieved significant improvements on small datasets and models
with weaker generalization capabilities. Our method is easy to implement, and
the code is available online.

1 INTRODUCTION
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Figure 1: Quantitative comparisons on Sceneflow and Kitti. We implement our Sampling-Gaussian
(SG) with five baseline methods for comparison. They are MSN2D and MSN3D (Shamsafar et al.,
2021)), PSMnet(Chang & Chenl 2018)), GwcNet-g(Guo et al2019), IGEV-Stereo(Xu et al.| 2023)

Stereo matching is a fundamental topic in computer vision that has been extensively researched for
many years. Accurate stereo matching is essential for deriving scene depth, which is achieved by
determining the displacement of corresponding points in binocular images. Stereo matching applica-
tions span a wide range of advanced technologies, including autonomous driving, robot navigation,
and drone control.

The common baseline for end-to-end learning-based stereo matching, as described in (Mayer et al.,
2016b), comprises three key modules: feature extraction, cost volume aggregation, and soft-argmax-
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based disparity regression (Kendall et al.| 2017a)). Features are extracted from the input image pair
via a siamese network architecture. Subsequently, a 5D cost volume (B, C, D, H, W) is generated
by concatenating features from the left and right images, with disparity as the additional dimension
D. This cost volume then serves as input to a disparity regression module, which employs 3D
convolutions to refine the output. [Kendall et al.| (2017a) was the first to leverage soft-argmax to
achieve differentiable regression of disparity. Its efficiency and simplicity have made it a popular
baseline for numerous subsequent studies (Chang & Chenl [2018;|Pan et al.,2020; Wang et al.,|2021}
Xu et al., 2022} [Shen et al.l [2023). Various innovative modules have been proposed to improve
stereo matching, such as feature fusion (Xu & Zhang| [2020; |Guo et al., 2019)), robust aggregation
(Zhang et al.||2019a; [Shamsaftar et al.| | 2021)), and iterative regression (Teed & Deng}, 2021} Xu et al.,
2023;2024a)). However, soft-argmax remains a key component of these methods.

As the cost volume passes through 3D CNNs, the number of channels is progressively reduced to 1.
Subsequently, the soft-argmax module is applied to obtain the disparity map.

dzZi*softmax(zﬁzZi*%. (1)

d denotes the predicted disparity. ¢ and softmaz(z;) denotes the index of disparity and the proba-
bility of 7.
0.5(d —d)?, ifld—d| <1

thil(d,d) = ;
smoothl1(d, d) {|d—d| —0.5, otherwise
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Then, a smooth L1 loss (Equation [2)) is used to measure the distance between the predicted dispar-

ity d and ground-truth d. Since the soft-argmax function is widely adopted, researchers have also
noticed its limitations. [Kendall et al.|(2017a)) regarded the soft-argmax as a probability distribution
of disparity and pointed out that it is prone to being influenced by multimodal distributions, as it
estimates a weighted summation of all modes. Similarly, |Chen et al.| (2019) demonstrated that the
predicted disparity of a multimodal distribution is deviated from the center of the dominating mode.
They concluded that ambiguous matching is the cause of the multimodal problem. Researchers have
proposed various methods aimed at solving this problem (Higer et al., [2021; |Bangunharcana et al.,
20215 [Tulyakov et al., 2018 | Xu et al., [2024b). These methods can be broadly summarized in two
steps: constructing a direct supervision signal for the probability distributions to be predominantly
unimodal, and limiting the disparity range of soft-argmax through post-processing.

It’s challenging to reduce ambiguous matching relying solely on the network’s regularization. There-
fore, Tulyakov et al.|(2018)) constructed an explicit supervision signal based on a normalized discrete
Laplacian distribution.
1 —lz—pl
= —e 2 3

q(z) = e ; 3)
where N =Y e =L |1 is the ground-truth disparity and ¢(z) is the probability of integer 2. The
learning process is supervised by a cross-entropy loss,

Hp,q)= >, pla)log(q(x)), &)

2€[dmin dmaz)

p is the estimated probability. Inspired by their method, different distributions have been adopted,
including Gaussian (Chen et al.||2019), Laplacian (Tulyakov et al.,2018; Xu et al.,2024b; |L1u et al.,
2021} |Zhang et al.| [2019b)), and Dirac impulse Héger et al.| (2021), etc. Distribution-based super-
vision effectively encourages the network to learn to estimate a distribution centered on the highest
likelihood. However, post-processing, such as Top-k or equivalent processes, is still needed for mul-
timodal distributions. Consequently, this results in an efficiency reduction because the operation is
not parallelizable.

To address these issues, we propose a novel Gaussian distribution-based supervision method called
Sampling-Gaussian as a substitute for soft-argmax. As shown in Figure|l} our method achieves sig-
nificant improvements over the commonly used baselines listed. We provide a novel interpretation
of disparity regression (Eq. [T) as a dot product between two vectors. Based on this interpretation,
we leverage L1 loss and cosine similarity loss for optimization. Additionally, our method does not
rely on any post-processing techniques. It can be directly applied to any soft-argmax-based stereo
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matching algorithm without a decrease in efficiency. This paper is organized as follows: In Section
3, a theoretical analysis is provided to fundamentally explain the cause of the multimodal issues in-
troduced by soft-argmax and why previous methods failed to achieve significant improvements. In
section 4, we introduce the three main modules of Sampling-Gaussian, combination loss, extended
disparity range, and bilinear interpolation. In the experimental section, we have implemented our
method with five popular baselines(Chang & Chen, 2018; |Shamsafar et al., 2021} |Guo et al.| 2019;
Xu et al.| |2023) to demonstrate that our method is easy to implement and universally applicable. At
last, our method has also achieved state-of-the-arts results on Sceneflow(Mayer et al., 2016a) and
Kitti2012, (Geiger et al., 2012), Kitti2015(Menze & Geiger, 2015), ETH3D(Schops et al., [2017),
and Middlebury(Scharstein et al., 2014).

In conclusion, our contributions has three folds:

* We propose Sampling-Gaussian as a substitute for soft-argmax. Our experiments demon-
strate it’s compatible with mainstream methods and requires minimal modifications to the
original structures. Additionally, it improves accuracy without increasing processing time.

 We innovatively interpret soft-argmax (Eq. [I) from the perspective of vector space and pro-
pose a combination loss (Eq. [8)) based on this interpretation. And disparity range extension
and bilinear interpolation are proposed to address the unsolved issues of previous methods.

* We achieve significant improvements on small datasets and models with weaker general-
ization capabilities. Experiments on ETH3D, Middlebury, and MSN2D further validate our
contributions.

2 RELATED WORKS

2.1 SOFT-ARGMAX-BASED METHODS

Based on the work of [Kendall et al.| (2017b)), the subsequent improvement methods can be classified
into several categories: feature level, module level, baseline level, and distribution level. Firstly, at
the feature level, PSMnet(Chang & Chen| 2018)) adopts a spatial feature pyramid(He et al.| [2014)
to fuse multi-resolution features, and stacked-hourglass module is adopted as regression module to
improve the refinement. (Guo et al.|(2019) proposed a group-wise correlation network(GwcNet) for
cost volume. [Zhang et al.| (2019a)) proposed a guided-aggregation module to better refine the cost
volume. At the baseline level, researchers proposed new baselines to improve the accuracy of the
efficiency. |Xu & Zhang| (2020) and |Pan et al.[(2020) proposed to progressively aggregate the cost
volume to the full size. Others proposed 2d convolution-based methods(Pan et al.l 2024} [Shamsafar
et al.,[2021)) to reduce the high Flops. And Xu et al.| (2023)) proposed to iterative refine the disparity
and significantly improve the accuracy but at the expense of speed.

2.2 DISTRIBUTION-BASED METHOD

The probabilities output by the softmax function can be interpreted as a probability distribution.
Thus, the soft-argmax operation is equivalent to retrieving the mean of this probability distribu-
tion (L1 et al.| 2021). Consequently, networks trained with soft-argmax lack explicit supervision
regarding the shape of the distribution, resulting in an unconstrained probability shape. Therefore,
previous methods have not fully resolved the multimodal problem, prompting the development of
various post-processing approaches to address this issue. PDS (Tulyakov et al., 2018]) limit the range
of the soft-argmax with Top-k during inference. [Liu & Liu| (2022) using learned weights to suppress
unreliable disparity regions to increase the robustness. A similar idea was proposed in [Héger et al.
(2021)), where they use a Dirac impulse to model the distributions.

3 EXPLORATIONS

In this section, we first analyze the biased gradient of soft-argmax to establish that distribution-
based supervision is necessary for stereo matching. Then, we analyze the two basic settings that
have caused previous distribution-based methods to their inferior improvements.
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3.1 ANALYSIS OF BIASED GRADIENT

During the research, we observed that the input nodes, e*¢, of the softmax function consistently
receive biased gradients during backpropagation. Consequently, we conducted an analysis of this
issue. The partial differential equation of soft-argmax (Eq.1) is,

oL 0L od

de#i  Od Dezi

oL e* e*
ad (@ >, e (1= Z ez* ;] Z €7 Z* ez ) &)
JF

oL, e*
2 (s (i = d)).
od* )", e
The e* /", e** denotes the normalized probability of the input node e*, where ¢ represents the
index of the nodes. Eq. [§illustrates that the gradients received by z; during backpropagation are
proportional to the distance (i — d) between ¢ and d. As a result, the network receives biased
gradients, preventing it from achieving optimal performance. We also believe this is the cause of the
multimodal issue in soft-argmax.

3.2 ANALYSIS OF DISTRIBUTION-BASED METHOD
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Figure 2: The left plot shows a truncated distribution near the endpoints, and its estimated disparity
deviates from the ground truth. The right plot illustrates that the probabilities after trilinear interpo-
lation are linearly distributed and cannot fit the Gaussian distribution well.

In the previous distribution-based, the soft-argmax(T) is interpreted as expectation of the network’s
predicted distribution. However, such methods fail to achieve good results for various reasons, and
we believe there are two main reasons.

a) This disparity range is inherited from the soft-argmax-based method. As shown in left plot of
Fig. |2} two issues arise with distribution-based methods. First, the generated distribution near the
endpoints is truncated, causing the integration to be less than 1. Second, for models trained with
such distributions, the expectation of their predicted distributions deviates from the ground truth.
For instance, the distribution ¢ generated with ground truth near O as , its expectation is larger than

the full range one.
Z xxq(zlp) < Zx*qx\,u (6)

T=—00 z=0

b) Trilinear interpolation is often used to upsample the feature map from (D/4, H/4,W/4) to
(D, H,W). As shown in the right plot of Fig. the upsampled probabilities on D-dimension
are linearly distributed. However, the Gaussian distribution is not. Therefore, it’s impossible for the
network to learn the exact distribution. As a result, its expectation deviates from the ground truth.

4 THE PROPOSED Sampling-Gaussian

In this section, we present an innovative interpretation of the soft-argmax and disparity regression.
Previous methods viewed the supervision process as minimizing the distance between two distribu-
tions, using L1 loss or cross-entropy loss for measurement. In our method, we view the the Eq. |1|as
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Figure 3: The workflow of our proposed Sampling-Gaussian

a dot product between two vectors, ¢ and softmax(z;). We construct a vector ¢(4) such that g(i) x4
equals to ground truth. Since vector i is always [dpin, -, @maz|* » Minimizing the product between
estimation and ground truth is equivalent to minimizing the distance between vectors so ftmazx(z;)
and ¢(i). Based on this interpretation, we propose the Sampling-Gaussian method, which consists
of three parts.

4.1 CONSTRUCT THE SUPERVISING SIGNAL

First, we extend the disparity range D from [0, dyaz) t0 [—dext, dmax + dert). Then we normal-
ize the probability of the discrete Gaussian distribution within the extended range. The sampling
function is defined as,

(:E “’)2
( ) e 252 ( )
qlr) = T w2 ;
ZDz/4 € ( 2;2)

The (i is the ground-truth disparity. o is used to control the shape, and 0.5 achieves the best result.

4.2 COMBINATION LOSS

L1 loss is effective for measuring the distance between two vectors but lacks constraints on the angle
between them. Two vectors with the same L1-norm can have very different dot products with ¢, as
shown in Fig. [ In response, we have proposed a combined loss of L1 and negative cosine similarity
to measure both the L1-norm and the vectorial angle between vectors p and q.

I~ , >oi p(i)q(d)
:—E i) —q(i)] — X\ * 8
Q) nz“p() Q()| \/ZP \/Eq ®)

which the A = 0.5 achieves the best performance based on our experiments.

4.3 BILINEAR INTERPOLATION

The cost volume constructed by fuse the features from left and right images. The construction of C
involves iteratively constructing the C' by shifting the feature map by 1 pixel,

The f;, f,- denotes the features of left and right image. And g denotes a fusion method for features,

usually is group-wise correlation(Guo et al. or concatenation(Chang & Chen| 2018). As
shown in FigJ3| the size of C' is [B C,D /4 H /4 W/4]. After the cost aggregation network, a

bilinear interpolation is leveraged to upsample the cost volume after the regression modules,
C = bilinear(C). (10)

Andsize of Cis [B,C,D/4, H,W].
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Figure 4: The left plot: The loss landscape of L1 loss, dashed lines are contour lines. Two vectors on
the same contour line can have significant difference in endpoints error (epe) between their products
and the ground truth. The middle plot: The loss landscape of the combined loss. Vectors on the
same contour line have similar epes. The right plot: Since the predicted probabilities are not linearly
related, they can fit into the Gaussian distribution.

4.4 INFERENCE

A key contribution of our method, is that we do not rely on post-processing operation for refinement.
During the inference, we calculate the expectation of p directly,

D/4 D/4

d:4*Zi*p:4*21*soﬁma$(ci), (11)

which has the same form of soft-argmax. Our method can be easily implemented with most of the
soft-argmax-based method. The disparity range is D/4; consequently, the value d after regression
is also a quarter of its original value. Thus, the “4%” is used to recover d to its full scale.

5 EXPERIMENTAL RESULTS

In this section, we report our implementation details and experimental results. We have implemented
Sampling-Gaussian with 5 most representative methods for comparisons: 1. PSMNet(Chang &
Chen|, [2018)). The “ResNet” of the stereo matching. Their method is open-source, easy to read
and replicate. We use this method for a wider range of comparisons. 2. GwcNet-g(Guo et al.)
2019)). Their group-wise correlation module is also widely adopted, and their code is open-sourced.
3&4. MSN3D and MSN2D (Shamsafar et al.| 2021): They have proposed lightweight networks
by leveraging 2D convolutions to reduce computational expenses while maintaining accuracy. 5.
IGEV-Stereo(Xu et al., [2023)): A state-of-the-art (SOTA) method that adopts the iterative refinement
module based on RAFT(Teed & Deng, 2021). We implement our method with IGEV-Stereo to
demonstrate that our method is compatible with a variety of structures.

We conducted experiments on four datasets: Sceneflow(Mayer et al.l 2016b) is a large scale of
synthetic stereo dataset which contains more than 39k image pairs. Kitti(Geiger et al.,2012; Menze
& Geiger, 2015), an open-road dataset contains 395 pairs for training and 395 pairs for testing.
ETH3D(Schops et al., 2017) is a gray-scale dataset with 27 training pairs and 20 testing pairs for
a variety of scenes. Middlebury(Scharstein et al., 2014) is an indoor dataset, which provides 30
training pairs and testing pairs in three resolutions. We use the quarter-resolution for experiments.

5.1 IMPLEMENTATION DETAILS

For simplicity, we will refer to our Sampling-Gaussian as SG. Our implemented versions of method
are denoted as SG-PSMNet or SG-MS2D. We conducted all the experiments on two A100 GPUs.
We leverage AdamW (Loshchilov & Hutter,[2017) with 51 = 0.9, 52 = 0.999, weight decay= 10~2,
as optimizer. All the networks are trained with similar protocol: pretrain on Sceneflow for 20 epochs
with Ir= 10~2. Then, finetuning on Kitti for 200 epochs with Ir= 10~3, then with Ir= 10~* for
another 300 epochs, and with Ir= 10~° for the last 300 epochs. For IGEV-stereo and MSN2D, the
parameters are slightly changed. Evaluation metrics(lower the better): End-point error (EPE)(Mayer
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et al.| 2016b), commonly used in optical flow. It calculates the 11 loss. DI error (Menze & Geiger,
2015) calculates the percentage of error pixels. Pixels with EPE larger than 3 are considered as error.

5.2 ABLATION STUDIES

5.2.1 SIGMA ¢ OF THE Sampling-Gaussian

Table 1: Quantitative comparisons on settings of o
o 0.3 0.4 0.5 0.6 0.7 1.0
PSMnet 2.526 2.526 0.625 0.631 0.723 0.688

The o controls the shape of the distribution and directly affects the distribution pattern finally learned
by the network. When o is set to 0.3 or 1, the shape of distribution is either too narrow or too wide.
Either shape is hard for the network to learn which results in larger errors, as shown in table[I]

5.2.2 INTERPOLATION METHOD

Table 2: Quantitative comparisons on settings of 0.
Base | Trilinear  Bilinear | Loss A EPE DI

v L1 /099 2.62
v L1+Cos 0.5 091 249

v CE /094 234
v L1 /087 215
v L1+Cos 0.5 0.89 226

MSN2D

PSMNet v L1+Cos 02 0.79 2.15
v L1+Cos 1.0 1.23 2.86
v

L1+Cos 0.5 0.65 2.00

We have conducted experiments to compare bilinear interpolation with trilinear interpolation. As
shown in table 2] bilinear interpolation has achieved better results with two methods, which aligns
with our theory.

5.2.3 LOSSES AND LAMBDA A\

We have also conducted experiments to compare the performance of different combination of losses
and weight \. As shown in table[2] even though the cross-entropy(CE) loss has achieved only 0.94,
the network converges faster than trained with L1 loss. Regarding the combination of L1 and Cosine
similarity(Cos). Notably, if the A is set too large, the network would eventually collapse.

5.2.4 EXTENDED RANGE

Table 3: Ablation study on disparity range

Disparity Range
(O’dmax) (07 dmaac + dext) (_dert7 dmar) (_derta dmaz + dezt)
EPE 0.425 0.415 0.396 0.389
<1 6.554 6.250 5.610 5.446
<3 0.787 0.785 0.741 0.676

In Sceneflow, points within the range of 0 to 16 accounts for 22.5% of the total, while the range of
176 to 192 accounts for 0.3%, resulting in a total of 22.8%. In KITTI, this range accounts for 16%
of the total. Therefore, we conducted experiments on KITTI to evaluate the impact of extending the
disparity range.
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5.3 QUANTITATIVE COMPARISONS

Table 4: Quantitative comparison on Sceneflow

Method EPE D1 Params Supervision Loss Top-k  Time(s)
PDS 1.12 293 2.2 Combined* CE Y /
MSN2D 1.14 2.83 2.23 Soft-argmax  Smoothl1 N 0.10
PSMNet 1.09 232 522 Soft-argmax  Smoothll N 0.41
PSMNet+ 1.02 312 232 Laplacian CE Y /
Acfnet 0.87 431 / Combined*  CE+Focal N 0.48
MSN3D 0.80 2.10 1.77 Soft-argmax  Smoothll N 0.53
GwcNet-g 0.79 2.11 6.43 Soft-argmax  Smoothl1 N 0.32
GANet+LaC 0.72 652 943 Combined* L1+CE Y 1.72
GANet+ADL 0.50 1.81 9.43 Laplacian L1+CE Y 1.72
IGEV-Stereo 047 159 12.60  Soft-argmax L1 N 0.37
SG-MSN2D 091 2.49 2.23 Gaussian L1+Cos N 0.10
SG-PSMNet 0.65 2.00 522 Gaussian L1+Cos N 0.41
SG-GwcNet-g 0.71 2.09 6.43 Gaussian L1+Cos N 0.32
SG-MSN3D 0.69 1.98 1.77 Gaussian L1+Cos N 0.53
SG-IGEV-Stereo 0.47 1.58 12.60 Gaussian L1+Cos N 0.37

Combined*: combination of Soft-argmax and Laplacian

In this section, we compared with the SOTA methods and relative methods on Sceneflow, Kitti2012
and Kitti2015. In table E} we compared with PDS(Tulyakov et al.l 2018)), Acfnet(Zhang et al.|
2019b),PSMNet+(Chang & Chen, 2018), GANet+LaC(L1u et al., 2021), GANet+ADL(Xu et al.,
2024b). Most distribution-based methods rely on post-processing modules for improvement, but
this leads to an increase in latency. In contrast, our method effectively improves the accuracy of the
baseline while keeping the architecture unchanged, thus ensuring consistent and efficient inference.

Table 5: The quantitative comparison on Kitti2012 and Kitti2015, the evaluation metrics are d1, < 2
and < 3 error rate(%). All are lower the better.

Kitti2015-All Kitti2015-Noc Kitti2012
Method dlbg dlfg dlgy d]-bg d].fg dlgg <2 <3

MSN2d(Shamsafar et al.}2021)  2.49 453 2.83 229 381 254 \ \

PDSNetTulyakov et al.|(2018) 229 405 258 209 368 236 4.65 253
PSMnet(Chang & Chen, [2018) 1.86 4.62 232 171 431 214 3.01 1.89
PSMnet+CE(Chen et al., [2019) 1.54 433 214 170 390 193 281 1.8l

GwcNet-g(Guo et al.,|2019) 1.74 393 211 161 349 192 \ \
MSN3d(Shamsafar et al.;2021) 175 3.87 2.10 1.61 350 192 \ \
AAnet+(Xu & Zhang, 2020) 1.65 396 203 149 366 185 296 204
RAFT(Teed & Deng,2021) 148 346 181 134 311 163 \ \
GANetZhang et al. (2019a) 148 346 181 134 311 1.63 250 1.60
ACVNet(Xu et al., [2022) 1.37 3.07 1.65 126 284 152 234 147

RT-IGEV++ (Xu et al.| 2024al) 148 337 179 134 317 164 251 1.68
PSMNet+ADL(Xu et al.|[2024b) 1.44 325 174 130 3.04 159 217 142
LEAsteredCheng et al.[(2020) 140 291 1.65 129 265 151 239 145

IGEV-stereo(Xu et al., [2023)) .38 2.67 159 127 262 149 217 144
SG-MSN2d 194 407 229 178 363 208 3.15 2.09
SG-GwcNet-g 1.73 388 2.09 159 355 192 289 195
SG-PSMnet 1.77 3.13 200 1.65 297 187 269 1.80
SG-MSN3d 161 381 198 148 355 182 262 174
SG-IGEV-stereo 140 250 158 130 248 150 212 1.39

The comparisons on KITTI are listed in Table[5] Our method effectively improves the results of all
baselines. Moreover, these results prove that our distribution model shows greater improvement for
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those with weaker generalization abilities. Additionally, we achieved SOTA results with SG-IGEV-
Stereo. In conclusion, Sampling-Gaussian effectively improves the generalization ability across a
variety of model structures.

5.4 QUALITATIVE COMPARISONS

S o Ao i Mo

Color Image GwceNet MSN2D MSN3D PSMNet
Ground Truth SG-GwceNet SG-MSN2D SG-MSN3D SG-PSMNet

Figure 5: Qualitative comparisons on Sceneflow

Through experiments, we found that our Sampling-Gaussian effectively improves the accuracy of
the model to predicts small objects and contours, as depicted in Fig. [5] The reason is that models
trained with Soft-argmax are prone to converge to the majority of the disparity, while details are
relatively in the minority. On the other hand, our SG provides explicit supervision for all objects.
Therefore, the model gains the ability to capture details.

IGEV-Stereo
S—

SG-PSMNet ) SG-IGEV-Stereo

Color Image

MSN2D MSN3D PSMNet IGEV-Stereo

o -all: 1.34
SG-GweNet SG-MSN2D SG-MSN3D SG-PSMNet SG-IGEV-Stereo

Figure 6: Qualitative comparisons on Kitti2015

In the first example in Fig. [6] it is evident that all baselines trained with SG have gained the ability to
predict accurate contours of objects. For instance, in the disparity of the right side van and the shape
of the trees in the background. More of our results are available on the Kitti2012 and Kitti2015
leaderboard.

5.5 EXPERIMENTS ON ETH3D AND MIDDLEBURY

ETH3D and Middlebury are both small datasets, each containing less than 30 samples. For a fair
comparison, we divided the data with ground truth into training and validation sets. The results
demonstrated that our method achieved significant improvements across nearly all approaches, high-
lighting its effectiveness, especially for small datasets.
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Table 6: Quantitative comparisons on ETH3D and Middlebury

MSN2D MSN3D PSMnet Gwce-g
Base SG* | Base SG Base SG Base SG

EPE | 0.86 0.63 | 0.33 0.21 | 0.37 0.22 | 0.29 0.25
D1 319 206 | 054 022|042 033|035 0.29

Middlebu EPE | 1.67 094 | 092 055|073 0.51 | 0.68 0.67
Y D1 893 587|709 271|521 217|318 347

SG* : Sampling-Gaussian

ETH3D

5.6 CROSS-DOMAIN GENERALIZATION

Finally, we conducted experiments to evaluate the cross-domain generalization ability of our meth-
ods. We trained the baselines on Sceneflow and directly evaluated them on KITTI2015, ETH3D,
and Middlebury. Our method demonstrated improved generalization performance across all three
baselines. Qualitative results are available in appendix.

Table 7: Cross-domain generalization evaluation on Kitti2015, ETH3D and Middlebury

Kitti2015 ETH3D Middlebury
EPE >1 >3 | EPE >1 >3 | EPE >1 >3

Base | 5.03 56.1 244|724 1846 938|595 41.0 18.1

MSN2D g | 153 482 125|371 1882 617 | 1.67 313 157
vsNap  Base | 294 722 500 [ 179 1778 533|313 313 131

SG | 225 537 173|166 8.03 432|260 265 114
v Base | 211 886 488 421 425 315|677 376 186

SG 246 178.0 572|540 14.1 5.40 | 6.07 293 15.1
SG* : Sampling-Gaussian

6 CONCLUSIONS

In this paper, we introduce a novel yet simple substitute for soft-argmax. Through comprehen-
sive comparisons with five baseline methods, we demonstrate that our Sampling-Gaussian achieves
improvements across a variety of model structures and datasets. Moreover, we propose a novel inter-
pretation for distribution-based methods and introduce a combined loss function that achieves sig-
nificant improvements. Additionally, we address the fundamental problems of previous distribution-
based methods by extending the disparity range and employing bilinear interpolation. Lastly, our
method proves effective for small datasets and models with weaker generalization abilities. In the
future, we aim to study the generalization ability of stereo matching networks to enhance their ap-
plicability in real-life scenarios.
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A APPENDIX

A.1 FULL EQUATION OF EQ. 3]

The first part is the full equation of Eq. [3]

oL 0L ad
der  Od De*
oL . e~ e . & e
BRZARI WEIRP Wi St el
oL, e~ . e*i e”i ) & e*i
BEZA SRR S Sl Pl Sl sl
. . ! (12)
_ 87[’( e +Z(* e N e~i ))
- od ZZ* e3 - > > e
0L, e~ z;

TRl Y sy

OL 6 e*

il =)

the part with underline is the equation of soft-argmax Eq. [I]

A.2 PYTHON IMPLEMENTATION

This is the python implementation of Sampling-Gaussian.

def groudtruth to gaussion(self,

mean /= 4
1 = mean.shape[0]
X = gau_x.repeat(l, 1)

can, sigma=0.5):
gau x = torch.Tensor(np.arange(-self.extra//4, (192+self.extra)//4)).unsqueeze(1).cuda()

ans = torch.exp(-1*((x-mean)**2)/(2*(sigma**2)))/(math.sqrt(2*np.pi)* sigma)

ans /= torch.sum(ans,dim=0)
return ans

A.3 PROBABILITIES OF SAMPLING-GAUSSIAN

Table 8: The accuracy of the Sampling-Gaussian’s cumulative possibility and expectation.

‘ 1- E:a:p ‘ B E:ard *p

I
4
5
6
7
8
7
8
9
10
11
12
15

20

0.005296
0.004317
3.14e — 05
1.10e — 06
2.37e — 08
1.10e — 06
2.37e — 08
3.07e — 10
2.39e — 12
1.09¢ — 14
0.00
0.00
0.00

—0.37134
—0.02964
—0.00178
—6.2e — 05
—1.3e — 06
—6.2e — 05
—1.3e — 06
—1.8¢ — 08
—1.4e — 10
—6.8¢ — 13
7.10e — 15
0.00.0
7.10e — 15
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Let’s review the equation [/| First, the probability density function of the discretized Gaussian dis-

tribution is defined as
1 (z—p)2

qz) = ——=e" 7 (13)
2m
The Riemann sum of the equation [T3]is
b (2= u)2 1
[ e S o () + 2 (@n) -+ 2o + fon) (14)
a

We further evaluate the summation of probability of Eq. Thus, we need to evaluate the Sampling-
Gaussian’s cumulative possibility. As shown in Table [8] The table shows, that the cumulative
possibility is not strictly equals to 1. However, the probabilities predicted by the network is strictly
equals to 1 due to the softmax operation. Therefore, in Eq. [/} the probabilities is divided by the
summation of the probabilities. Thus, the summation is strictly equals to 1.

The table shown the range inside the [0, d, 4. ). Which illustrate the reason of why d.,+ is needed.
Moreover, as depicted in table [8| The cumulative possibility is not always equals to 1. Therefore,
the division by the summation of the probabilities is an effective to strictly restrict the probability

equals to 1.
0.30 4 N,u=50,0=1.3
0.25 4 /\

Probability
o
=
o

=}
i
o

\
/

o
=3
[S3

44 46 48 50 52 54 56

Figure 7: The green region represents the integral of Eq. while the red area denotes the difference
between the integrals and cumulative probability of SG.

A.4 MORE ANALYSIS AND PROPERTIES
During the research, we have discovered that our Sampling-Gaussian possesses two interesting prop-

erties: Firstly, within a certain range of o € [0.9,1.7], its sum approximates to 1. Secondly, its
expectation is equal to p.

The first property: that a finite integration of Gaussian distribution is defined by f
The numerical integration is

a+1 -
u )2 1 (a—w)? (at1-p)?
/ et dr 5(6_ 2 e 2?0 (15)
a

Let {x} be a partition of [a,b], a = zg < z1- - < xny_1 < xxy = b, and the partition has a

. L L b e—w?
regular spacing xj, — zp—1 = 1. The approximation formula can be simplified as fa e 2% dr =

$(f(zo) + 2f(w1) -+ + 2f(a:n_1) + f(zn)). Let a = —00, b = oo, then we have

T o 16
oV 2w \/ZWZ (16)

Second property: For simplicity, let f(z) = e~ S vr > w,0f Jox < 0.Let0 <t <1,i<j,
Vo € {x;|x > b,x; € Z}, f(x) satisfies f(aci—i-t*(a:] x;)) < f(x;)+t[f(z;)— f(x;)]. Therefore,
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the numerical integration 3 (z, — z1) - (f(2;) + f(zn)) = € satisfies € > 377, f(x) > 0. Based
on our numerical analysis, when § = 5, € < 1075, the

1 1 p+b
x) — 2 = x) ~ 1. 17
—=2_f@) U%Zf() (17)
TEL T=p—>b
Let p € (0, dmaz), o € [0.5,1.0], the expectation
e (2=m)?
FE(x = — e 2 . 18
(]ps) ;) o 1 (18)

let u € (5,dmaz — 5),2* € {* < O0Uz* > dpnas - Then E(x*|u) ~ 0. Given the finite range of
disparity [0, dymqz ), by subtracting the E(z*|u) from the E'(x). We have also conducted experiments
to quantize the error of the expectations and the error ranges from 10> to 1012,

A.5 TRAINING AND INFERENCE

The training and inference process is illustrated as:

Algorithm 1 Training with sampling-Gaussian

Input: left, right image I;, I,., ground truth cz, sampling-Gaussian f, threshold 7', set .S,.
Output: Network N.
1: while loss > T do

2:  y<+ N(I,1,)

3: d <+ Softmax(y)

4 d+ f(z=Sp=4d)

5. loss « L1(d,d) — 0.5 = cos(d, d)
6:  update network by backpropagation
7: end while

A.6 THE RESULTS ON KITTI2012 AND KITTI2015
We provide the URL of our submitted results on Kitti leaderboard. SG-PSMNet on Kitti2015,
SG-MSN2D on Kitti2015, SG-MSN3D on Kitti2015, [SG-GwcNet-g on Kitti2015, SG-IGEV on

Kitti2015. SG-PSMNet on Kitti2012, SG-MSN2D on Kitti2012, |SG-MSN3D on Kitti2012, SG-
IGEV on Kitti2012!

A.7 THE CROSS-DOMAIN EXPERIMENTS ON ETH3D AND MIDDLEBURY
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Figure 8: Quality comparisons on ETH3D and Middlebury of MSN2D, MSN3D, PSMnet and SG-
MSN2D, SG-MSN3D, SG-PSMnet. The results demonstrate that our method exhibits better adapt-
ability to different datasets in cross-domain experiments and ensures accurate estimation of object
edges.

A.8 MORE QUANTITATIVE COMPARISONS

15


https://www.cvlibs.net/datasets/kitti/eval_scene_flow_detail.php?benchmark=stereo&result=23c583cd9839dd0f12ba3bebaa30771c340684d8
https://www.cvlibs.net/datasets/kitti/eval_scene_flow_detail.php?benchmark=stereo&result=e8c33b9f5a4eb3450c383905ea009ac8e0df31ba
https://www.cvlibs.net/datasets/kitti/eval_scene_flow_detail.php?benchmark=stereo&result=03ec9abd0e870587cb0785f2d11e047a8bd010a4
https://www.cvlibs.net/datasets/kitti/eval_scene_flow_detail.php?benchmark=stereo&result=6df61ea412715e6ee615e2e451bff8e384b61326
https://www.cvlibs.net/datasets/kitti/eval_scene_flow_detail.php?benchmark=stereo&result=b759b993d8cdce000d8edd7360913160cf8a6935
https://www.cvlibs.net/datasets/kitti/eval_scene_flow_detail.php?benchmark=stereo&result=b759b993d8cdce000d8edd7360913160cf8a6935
https://www.cvlibs.net/datasets/kitti/eval_stereo_flow_detail.php?benchmark=stereo&error=3&eval=all&result=ce9458fc723a07dc1d0ca6872e95923fad5f9aa2
https://www.cvlibs.net/datasets/kitti/eval_stereo_flow_detail.php?benchmark=stereo&error=3&eval=all&result=19e8e20452881f5b71056e2b5aa6667b4c75c2f2
https://www.cvlibs.net/datasets/kitti/eval_stereo_flow_detail.php?benchmark=stereo&error=3&eval=all&result=49679a12953317297ec44772e2f8a9cda0ab60e2
https://www.cvlibs.net/datasets/kitti/eval_stereo_flow_detail.php?benchmark=stereo&error=3&eval=all&result=6c51e3a89e60413c6c7b74d13d611db2f173b0d5
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PSMNet SG-PSMNet

Figure 9: ALL-DI,,, ALL-D1;,, ALL-Dl,; are PSMNet: (3.67,1.16,3.45), SG-PSMNet:
(3.24,1.49, 3.08)

PSMNet ~ SG-PSMNet

Figure 10: ALL-Dlyg, ALL-D1y,, ALL-D1,; are PSMNet: (1.96,2.22,1.99), SG-PSMNet:
(1.66,0.93, 1.58)

Color Image SG-PSMNet MSN2D SG-MSN2D

Figure 11: Qualitative comparisons on Kitti2015. We manually marked the outline of the objects
for better illustration.
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Color Image  Ground truth PSMNet SG-PSMNet MSN2D SG-MSN2D

Figure 12: Qualitative comparisons on Sceneflow.
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