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Abstract001

Retrieval-Augmented Generation (RAG) has002
been broadly adopted to mitigate hallucinations003
in large language models (LLMs) by ground-004
ing their outputs in external documents. How-005
ever, when dealing with long, coherently struc-006
tured texts, the standard assumption that each007
chunk is self-contained often fails—vital con-008
text may span multiple segments. This break-009
down undermines retrieval reliability and ulti-010
mately impairs generation quality. Our empiri-011
cal findings reveal that in long-document sce-012
narios, as many as 92% of user queries require013
cross-chunk semantic dependencies to produce014
sufficiently supported answers. This observa-015
tion aligns with cognitive frameworks like the016
Zeigarnik Effect and Kintsch’s Construction-017
Integration Model, both emphasizing the need018
to track incomplete information until a coher-019
ent whole is formed. To address these chal-020
lenges, we propose a Self-Questioning RAG021
(SqRAG) framework. The core idea is to022
generate and integrate question–answer pairs023
that explicitly capture inter-chunk connections,024
thereby enhancing the retrieval process to ac-025
count for global context rather than isolated seg-026
ments. Experimental evaluations demonstrate027
that SqRAG not only reduces hallucinations but028
also improves coherence and factual accuracy029
across multiple benchmarks, confirming that030
modeling cross-chunk dependencies is key to031
robust and context-rich generation.032

1 Introduction033

Retrieval-Augmented Generation (RAG) frame-034

works have emerged as a powerful technique for035

tasks that involve processing and comprehend-036

ing long documents. By splitting a lengthy text037

into manageable chunks, retrieving the most rele-038

vant segments, and conditioning a Large Language039

Model (LLM) on these retrieved passages, RAG040

systems can address user queries with contextually041

grounded responses (Gao et al., 2023). However,042

this approach typically assumes that each retrieved043

chunk is both sufficiently informative and semanti- 044

cally self-contained (Barnett et al., 2024). In prac- 045

tice, crucial information may be scattered across 046

multiple segments, and simply breaking a docu- 047

ment into chunks can disrupt the logical flow and 048

holistic understanding of the text. 049

Consider the example illustrated in Figure 1 (b), 050

where the user poses the question: “Who is the 051

federal leader of the political party that Ken Epp 052

belongs to?” The document is divided into mul- 053

tiple chunks, each containing crucial pieces of 054

information (e.g., Ken Epp’s affiliation with the 055

Conservative Party of Canada and details about its 056

leader). However, a standard RAG pipeline (Lewis 057

et al., 2020) might retrieve only a subset of these 058

chunks—omitting the segment that explicitly iden- 059

tifies the federal leader—thereby producing an in- 060

complete answer (e.g., merely stating Ken Epp’s 061

party without mentioning Andrew Scheer). This 062

shortcoming arises from the inability to perform co- 063

hesive reasoning across multiple chunks. Although 064

each chunk is accurate in isolation, the system fails 065

to integrate them seamlessly. This exemplifies a 066

critical limitation of RAG for long texts: it lacks an 067

explicit mechanism to preserve semantic continuity 068

and ensure coherence across chunks. 069

Some works aim to model structured relation- 070

ships in the retrieval space via knowledge graphs, 071

such as GraphRAG (Edge et al., 2024) and Ligh- 072

tRAG (Guo et al., 2024), which organize re- 073

trieved text as graphs. GraphRAG and LightRAG 074

construct entity-relation graphs without capturing 075

deeper semantic dependencies across text chunks. 076

Other efforts explore changing the retrieval unit 077

itself (e.g., Dense X Retrieval (Chen et al., 2023)), 078

treating propositions as retrieval units. Neverthe- 079

less, as each proposition typically relates to just one 080

discrete chunk, it can be extracted imprecisely or 081

compressed excessively, which neither guarantees 082

accurate semantic representation nor resolves cross- 083

chunk dependencies. Similarly, approaches like 084
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Related Material

Chunk: Epp was a member of the
Conserva�ve Party of Canada in the

House of Commons of Canada...

Chunk: ...Elected as a Canadian Alliance
MP in 2000....

Chunk: ...The 2017 Conserva�ve Party of
Canada leadership elec�on was held on

May 27, 2017.  Party members chose
Andrew Scheer as leader, replacing

Stephen Harper...

Ground Truth: Andrew Scheer

Human Agent

Answer: Ken Epp was a member of the
Conservative Party of Canada. 

Input
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Augmented
Generation

 Query: Who is the federal leader of the

  poli�cal party that Ken Epp belongs to?
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  poli�cal party that Ken Epp belongs to?
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...
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Conservative Party of Canada. The federal
leader of the Conservative Party of Canada
before Andrew Scheer was Stephen Harper.

Input
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Generation

 Query: Who is the federal leader of the

  poli�cal party that Ken Epp belongs to?

Retrieve
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Figure 1: Comparison of a Human Agent, Vanilla RAG, and Our SqRAG Approach. (a) A human agent can
easily connect information from multiple chunks (e.g., Ken Epp was a member of the Party, and Andrew Scheer is
that party’s federal leader). (b) Vanilla RAG system retrieves only partial information and produces an incomplete
answer, indicating Ken Epp’s affiliation without identifying the correct federal leader. (c) Our SqRAG approach
integrates cross-chunk reasoning by prompting the system to ask and answer intermediate questions, leading to a
fully grounded response (Andrew Scheer). This example is drawn from one of the cases in our experimental results.
For more details, please refer to Table 11 and Table 13 (Appendix E Case Study).

FLARE (Jiang et al., 2023) and Self-RAG (Asai085

et al., 2023) implement active retrieval that allows086

the LLM to choose what to retrieve on the fly087

based on user query, but they still rely on discrete088

text chunks whose semantic content remains frag-089

mented.090

A helpful conceptual lens to motivate a more091

cohesive retrieval strategy is the Zeigarnik Effect,092

a psychological principle noting that humans tend093

to remember and maintain focus on incomplete or094

unresolved tasks (Fox, 2020). By analogy to RAG,095

one can think of each chunk’s semantic dependen-096

cies as “unfinished business” that the model should097

not simply discard upon moving to another seg-098

ment. By prompting the system to explicitly pose099

and answer pending questions that arise while read-100

ing the document, SqRAG imitates how people101

hold partial information in mind, awaiting addi-102

tional context to complete the picture. This process103

maintains a thread of “semantic suspense” that en-104

courages the model to preserve and revisit cross-105

chunk connections. Moreover, the question–answer106

(QA) pairs generated from these dependencies can107

either serve as standalone retrievable units or be108

inserted back into the source text as annotations. In109

both cases, these QA pairs assist the LLM during110

Retrieval, Augmented context construction, and111

Generation phases, enabling it to produce more co- 112

herent and contextually accurate responses, which 113

is shown in Figure 1 (c). Additionally, since these 114

steps occur during the indexing phase, they do not 115

impose extra computational latency at retrieval time 116

(Section 4.4 Time Cost). 117

Our main contributions are as follows: 118

• We illustrate the ubiquitous presence of cross- 119

chunk semantic dependencies in RAG tasks in- 120

volving longer texts, and underscore their impor- 121

tance for performance gains. (Section 2) 122

• We create enhanced documents that better lever- 123

ages global context for user queries by incorpo- 124

rating cross-chunk semantic information. Com- 125

pared with RAG methods relying solely on dis- 126

crete text chunks, our proposed method demon- 127

strates superior performance. (Section 4) 128

• We analyze the reasons behind the framework’s 129

efficacy (Section 4.4 Case Study) and further 130

apply the method in reverse, constructing a high- 131

quality Chinese QA dataset for long texts (Sec- 132

tion 4.4 Dataset Generation). 133

2 Ubiquity of Cross-Chunk Semantic 134

Dependencies 135

Semantic dependencies across textual chunks are a 136

pervasive feature of narrative and expository texts, 137
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where crucial information often appears in widely138

separated segments (Wolfe, 2005; Sangers et al.,139

2021; Xu et al., 2024). Cognitive theories, such140

as Kintsch’s Construction-Integration Model, sug-141

gest that human readers naturally bridge these gaps142

to construct a coherent mental representation of143

a text (Soares and Corrêa, 2001). Similarly, the144

Zeigarnik Effect, introduced in the Introduction145

section, underscores how unresolved dependencies146

in earlier segments can shape and enhance com-147

prehension when later information emerges. These148

perspectives collectively highlight the foundational149

role that cross-chunk dependencies play in generat-150

ing contextually grounded and cohesive reasoning.151

To empirically examine the influence of cross-152

chunk semantic dependencies, we conducted an153

experiment on the NarrativeQA (Kočiskỳ et al.,154

2018) dataset, obtained from the LongBench (Bai155

et al., 2024) framework. This dataset consists of156

long-form narratives intended to test the ability of157

models to synthesize context from distributed tex-158

tual segments. Specifically, each narrative was split159

into 512 token chunks, and for each chunk, GPT-160

4o-mini (Hurst et al., 2024) was used to generate161

ten contextually relevant questions. We then com-162

bined all questions from every chunk to form a163

single, pooled question set. Another GPT-4o-mini164

was tasked with answering a subset of 40 semanti-165

cally similar questions for each chunk, thereby sim-166

ulating both retrieval and multi-chunk reasoning.167

Our metrics encompassed the total number of ques-168

tions answered, the percentage of valid answers,169

and the proportion of valid answers that drew on170

intra-chunk1 versus cross-chunk2 information.171

Figure 2 presents the results of this experiment.172

Remarkably, 92% of the valid answers required in-173

tegrating content across multiple chunks, whereas174

only 8% of valid answers drew solely on a single175

chunk. This finding strongly indicate that meth-176

ods treating each chunk as self-contained are in-177

sufficient for effectively handling long documents.178

Instead, a strategy that explicitly models and rec-179

onciles dependencies spanning multiple chunks is180

essential. By capturing and integrating cross-chunk181

semantic dependencies, RAG frameworks can gen-182

erate answers that are not only more accurate but183

also more coherent and contextually aligned. Such184

an approach leverages question-driven semantic185

1The chunk containing the question is the same as the
chunk providing the valid answer.

2The chunk containing the question differs from the chunk
providing the valid answer.

Valid Answers
26%

Invalid Answers
74%

Cross Chunk
Answers,92%

Intra Chunk
Answers, 8%

Invalid
Answers

Valid
Answers

Cross Chunk
Answers

Intra Chunk
Answers

Figure 2: Why Do We Need Cross-Chunk Informa-
tion? According to the pie chart, 92% of valid an-
swers depend on information from multiple chunks (i.e.,
cross-chunk answers), while only 8% stem from a single
chunk (i.e., intra-chunk answers).

linking to establish a cohesive retrieval mecha- 186

nism—a strategy at the core of SqRAG, which we 187

detail in the following sections. 188

3 SqRAG: Self-Questioning RAG System 189

3.1 Overview 190

Building on the insight that cross-chunk depen- 191

dencies are crucial for long-text question answer- 192

ing, our method (depicted in Figure 3) is divided 193

into two main stages: an Index Phase (Algo- 194

rithm 1) and an Inference Phase (Algorithm 2). 195

In the Index Phase, the original document D 196

is split into chunks N = {n1, n2, . . . , ni}. We 197

then use a dedicated Q-LLM to generate ques- 198

tions for each chunk, gather these questions to 199

a question database QuestionsDB and employ an 200

A-LLM to produce corresponding answers for rel- 201

evant questions in this QuestionsDB. All validated 202

question–answer pairs are merged into a central 203

repository, qaDB. In the Inference Phase, we 204

retrieve from qaDB the QA pairs most relevant 205

to the user query qu. These pairs are then in- 206

serted back into their respective chunks to form 207

an enhanced document Nenh, which incorporates 208

sufficient cross-chunk dependencies. Finally, we 209

adopt a retrieval mechanism combined with an 210

ANSWER-LLM—essentially a RAG-based pro- 211

cess where the retrieval is performed overNenh—to 212

generate the refined response au. Further details 213

about the notation and functions used throughout, 214

are provided in Appendix A. 215
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Figure 3: Overview of the Self-Questioning RAG Method. Table 11 presents real examples of each data structure
used in the method from an actual experiment.

3.2 Index Phase216

During the Index Phase, the user uploads a217

document-based knowledge repository, which the218

system converts into a searchable index. During219

this step, we extract question–answer pairs from the220

original document, explicitly capturing any cross-221

chunk dependencies.222

Step 0: Chunk Splitting. We first invoke the223

function Split(D, cs), which partitions the docu-224

ment D into overlapping segments of size cs. This225

yields a set of chunks, N = {n1, n2, . . . , ni, . . . }.226

Step 1: Question Generation. Next, for each227

chunk ni ∈ N , we use Q-LLM to generate poten-228

tial questions by invoking Qi = Q-LLM(ni). It is229

to capture any inquiries that may arise from the230

local context of each chunk.231

Step 2: Answer Generation. For each chunk232

ni, a relevant subset of questions Q′
i is selected233

from QuestionsDB. These relevant questions234

serve as “semantic placeholders” for bridging dif-235

ferent chunks of the document. The function236

SelectRelevant(QuestionsDB, ni) treats each ques-237

tion in QuestionsDB as a retrieval unit, using con-238

tent of ni as the query. Corresponding answers239

and their evidences3 Ai are then generated by240

A-LLM(Q′
i, ni). This step enables the model to241

articulate the knowledge required to answer ques-242

tions that may span both local and broader contexts243

3Evidence refers to the original text that supports the an-
swer, with a one-to-one correspondence to each answer.

within the text. To ensure answer quality, the func- 244

tion Eval(Ai) filters out incomplete or incorrect 245

responses by detecting a predefined prefix, “[I can- 246

not answer],” which is accomplished by prompting 247

A-LLM. Only validated answers are retained in 248

AnswersDB. 249

Step 3: Integrate Questions and Answers. Fi- 250

nally, we combine QuestionsDB and AnswersDB 251

into a unified repository, resulting in a cohe- 252

sive database of question–answer pairs that ref- 253

erence specific chunks in N . By this design, 254

qaDB captures cross-chunk dependencies in these 255

pairs, thereby streamlining retrieval in the subse- 256

quent Inference Phase. Concretely, Merge pairs 257

each question qi from QuestionsDB with its cor- 258

responding valid answers and evidence ai stored 259

in AnswersDB (linked via pre-saved ask-node and 260

answered-node IDs). This approach explicitly mod- 261

els cross-chunk dependencies by associating ques- 262

tions and answers across different chunks. 263

3.3 Inference Phase 264

In the Inference Phase, the user poses a query to 265

the system, which then leverages the previously 266

uploaded knowledge base to assist in generating 267

answers. Specifically, we insert query-relevant 268

question–answer pairs back into the original doc- 269

ument to create an enhanced version, and we sub- 270

sequently apply a standard RAG process on this 271

enhanced document. 272
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Algorithm 1 SqRAG in Index Phase

1: Input: D: support document, cs: chunk
size, Q-LLM: question LLM , A-LLM: answer
LLM, Eval: answer evaluation method

2: Step 0: Chunk Splitting.
3: N ← Split(D, cs)
4:

5: Step 1: Question Generation
6: for each ni ∈ N do
7: Qi ← Q-LLM(ni)
8: QuestionsDB← QuestionsDB ∪Qi

9: end for
10:

11: Step 2: Answer Generation
12: for each ni ∈ N do
13: Q′

i ← SelectRelevant(QuestionsDB, ni)
14: Ai ← A-LLM(Q′

i, ni)
15: A′

i ← Eval(Ai)
16: AnswersDB← AnswersDB ∪A′

i

17: end for
18:

19: Step 3: Integrate Questions & Answers
20: qaDB← Merge(QuestionsDB,AnswersDB)
21: Output: questions with answers database

qaDB

Step 4: Retrieve & Insert User Query Rele-273

vant QAs. Given a user query qu, we first identify274

a subset of question–answer pairs relevant to qu275

by calling SelectRelevant(qaDB, qu). The function276

SelectRelevant(qaDB, qu) treats each question in277

qaDB as a retrieval unit, using the content of qu278

as the retrieval query. After retrieval, we apply279

Nenh = Insert(N ,RelevantQAs), augmenting doc-280

ument N with the user query relevant QA pairs281

RelevantQAs. The content of each QA insertion282

is formatted as “({question qi} {answer aki })”4,283

similar to a note taken while reading a book. The284

insertion location is determined based on fuzzy285

string matching between the chunk content and the286

QA pair content. A buffer count is used during287

the insertion process to ensure there is no QA over-288

lap. This insertion process effectively integrates the289

previously generated cross-chunk insights into the290

primary text body. After this step, we obtain an en-291

hanced documentNenh with the same format as the292

original document N but enriched with thoughtful,293

cross-dependent notes embedded within.294

Step 5: RAG with Enhanced Database.295

4For example, “(Who is Charlie? Charlie is my pet.)”.

Lastly, the system performs a standard RAG 296

pipeline on the enhanced document Nenh. It be- 297

gins by retrieve R = Retrieve(Nenh, qu), and 298

then augmented generates a final response au = 299

ANSWER-LLM(qu,R). In practice, this approach 300

yields more accurate and contextually grounded 301

responses compared to performing RAG on the 302

original document. The effectiveness of leveraging 303

question-driven links will be discussed in detail in 304

the following experimental results. 305

Algorithm 2 SqRAG in Inference Phase

1: Input: qaDB, N : chunks of document, qu:
user query, ANSWER-LLM: LLM to answer
user query

2: Step 4: Retrieve & Insert User Query Rele-
vant QAs

3: RelevantQAs← SelectRelevant(qaDB, qu)
4: Nenh ← Insert(N ,RelevantQAs)
5:

6: Step 5: RAG with Enhanced Database
7: R ← Retrieve(Nenh, qu)
8: au ← ANSWER-LLM(qu,R)
9: Output: LLM response au

4 Experiment 306

4.1 Experiment Setup 307

Datasets and Models. For our experiments, we 308

use four datasets from LongBench (Bai et al., 309

2024): NarrativeQA (Kočiskỳ et al., 2018), 310

MuSiQue (Trivedi et al., 2022), TriviaQA (Joshi 311

et al., 2017) and HotpotQA (Yang et al., 2018). 312

These datasets are carefully chosen to cover di- 313

verse tasks such as single-document long con- 314

text QA (NarrativeQA), multi-document QA (Hot- 315

potQA and MuSiQue), and few-shot QA (Triv- 316

iaQA), enabling a comprehensive evaluation of 317

long-context understanding. We use two types of 318

Large Language Models (LLM) as our ANSWER- 319

LLM, namely open source LLM (e.g. Llama 3.1 320

8B (Dubey et al., 2024)) and close source LLM 321

(e.g. GPT-4o-mini (Hurst et al., 2024)). For more 322

details, please refer to Appendix B.1. 323

Implementation Details. As summarized in 324

Table 4, we compare three baseline methods that 325

exemplify distinct categories of RAG techniques: 326

Vanilla RAG (Lewis et al., 2020), Dense X Re- 327

trieval (Chen et al., 2023), and FLARE (Jiang et al., 328

2023). Vanilla RAG belongs to the “Basic RAG” 329

category, constituting the canonical retrieve-and- 330
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OVERALL METRICS (CLOSE SOURCE LLM) OVERALL METRICS (OPEN SOURCE LLM)
METHOD

PRECISION RECALL F1 PRECISION RECALL F1

#NarrativeQA#
Vanilla RAG 29.55 46.20 27.07 29.00 41.58 26.07

Dense X Retrieval 28.38 35.52 23.05 29.25 38.38 25.72
FLARE 25.75 47.98 25.45 23.62 20.02 13.25
SqRAG 31.70 45.72 28.28 31.30 42.80 27.15

#MuSiQue#
Vanilla RAG 31.35 40.60 26.70 27.92 32.00 22.97

Dense X Retrieval 31.90 39.25 26.78 29.57 32.55 23.25
FLARE 29.38 47.42 27.70 25.85 29.72 18.98
SqRAG 32.92 41.95 28.35 32.43 33.48 25.68

#TriviaQA#
Vanilla RAG 90.68 71.12 73.90 81.85 71.10 69.70

Dense X Retrieval 90.03 70.47 72.80 80.53 69.15 67.22
FLARE 77.73 67.72 65.12 74.93 70.88 64.28
SqRAG 90.43 71.62 74.47 82.57 70.82 70.12

#HotpotQA#
Vanilla RAG 48.78 60.85 45.98 43.40 51.37 39.62

Dense X Retrieval 49.38 61.58 46.17 42.85 50.48 38.05
FLARE 37.10 60.65 36.50 35.70 38.60 26.57
SqRAG 48.92 60.50 45.78 45.85 51.50 41.12

Table 1: Main results.

generate pipeline and serving as a foundational ref-331

erence point for subsequent enhancements. Dense332

X Retrieval represents “RAG with Modified Re-333

trieval Units,” employing a dense embedding-based334

retrieval process that refines retrieval precision335

and boosts generation quality. FLARE falls un-336

der the “Active Retrieval RAG” category, intro-337

ducing comprehensive optimizations at the inter-338

face of retrieval and generation to reinforce fac-339

tual consistency and interactive elements. Because340

knowledge-graph-based baselines require exces-341

sive computational resources, we do not include342

them for comparison in this work.343

We implement all baseline methods and our344

own approach using the LlamaIndex® framework,345

along with prompt engineering to optimize the in-346

teraction between the retriever and the generator.347

Detailed prompt templates and strategies can be348

found in Appendix B.2.349

Evaluation Metrics. To evaluate the effective-350

ness of SqRAG, we use RAGCHECKER (Ru351

et al., 2024), which provides fine-grained claim-352

level analysis. We focus on overall system perfor-353

mance and do not utilize its diagnostic retriever354

or generator metrics, as comparing different re-355

triever and generator capabilities is not our primary356

goal. To reduce randomness in the evaluation, we357

employ four open-source LLMs (i.e., Llama 3.1358

8B (Dubey et al., 2024), Qwen 2.5 7B (Yang et al., 359

2024), Mixtral 8x7B (Jiang et al., 2024), Gemma 2 360

9B (Team et al., 2024)) as evaluators and ensemble 361

their scores to form the final outcome. For more 362

details, please refer to Appendix B.3. 363

4.2 Main Results 364

Table 1 summarizes the main outcomes for our 365

method and baselines (Vanilla RAG, Dense X Re- 366

trieval, and FLARE) under both closed-source 367

and open-source LLM evaluations. Across Narra- 368

tiveQA and MuSiQue, SqRAG generally achieves 369

the highest F1 scores, affirming the advantage of 370

explicit cross-chunk QA pairs. On TriviaQA, we 371

also outperform other baselines, although the over- 372

all gap is less pronounced because TriviaQA ques- 373

tions often require relatively less complex cross- 374

chunk reasoning. Notably, FLARE sometimes at- 375

tains higher recall, as it tends to generate overly 376

long or verbose outputs, thereby increasing recall 377

at the expense of precision. For HotpotQA—which 378

inherently involves shorter text spans—our method 379

does not always excel in the closed-source setting; 380

however, it demonstrates a clear advantage in the 381

open-source scenario, indicating that more limited 382

retrieval capabilities or LLM resources can amplify 383

the benefits of our cross-chunk linking strategy. 384
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4.3 Ablation Study385

Table 2 presents ablation results on the Narra-386

tiveQA dataset, highlighting the contribution387

of each component in our SqRAG frame-388

work. During the Index Phase, removing389

the questions relevant selection step (No390

SelectRelevant(QuestionsDB, ni)) slightly de-391

grades the F1 score to 27.10, indicating that392

focusing on chunk-relevant questions is crucial.393

Eliminating the evaluation function (Remove394

Eval(Ai)) also lowers the final performance,395

underscoring the importance of filtering out invalid396

or low-quality answers before populating the QA397

database.398

METHOD PRECISION RECALL F1

SqRAG 31.70 45.72 28.28
#Index Phase#

No SelectRelevant(QuestionsDB, ni) 30.20 44.50 27.10
Remove Eval(Ai) 30.40 44.17 27.30

#Inference Phase#
No RelevantQAs 28.25 43.88 24.95
Vanilla RAG 29.55 46.20 27.07
No Retrieval 20.50 31.32 17.45

Table 2: Ablation Study on NarrativeQA Dataset.

During the Inference Phase, excluding the inser-399

tion of relevant QA pairs (No RelevantQAs) yields400

a more substantial drop to 24.95 F1, suggesting that401

injecting contextually linked QA pairs effectively402

facilitates cross-chunk reasoning. Comparisons403

with Vanilla RAG (27.07 F1) and a scenario where404

retrieval is omitted entirely (No Retrieval, 17.45405

F1) further confirm that both retrieval and question-406

driven augmentation are essential. Overall, these re-407

sults demonstrate that each mechanism—including408

question relevance selection, answer evaluation,409

and relevant QA insertion—plays a critical role in410

improving long-text QA performance.411

4.4 Discussion412

Time Cost. Table 3 compares the runtime of413

SqRAG against Vanilla RAG during the inference414

phase. SqRAG introduces two additional stages:415

SelectRelevant(qaDB, qu) and Insert. As shown in416

Table 3, these operations incur only negligible over-417

head for both closed-source (GPT-4o-mini) and418

open-source (Llama 3.1 8B) LLM settings.419

Answers Numbers. An important factor in420

SqRAG is the quantity of generated answers (an-421

swer numbers) inserted into each chunk. Small422

values (e.g., aq = 10) may fail to provide suffi-423

cient searchable context, while excessively large424

values (e.g., aq = 60 or aq = 80) risk introducing425

STAGE CLOSE LLM OPEN LLM

SqRAG
SelectRelevant(qaDB, qu) 0.0077 0.0089
Nenh ← Insert(N ,RelevantQAs) 0.0039 0.0022
RAG with Enhanced Database 0.3788 0.0250

Vanilla RAG RAG with Original Database 0.3696 0.0231

Table 3: Comparison of time costs (in seconds) between
SqRAG and Vanilla RAG during the inference phase.

substantial noise. Moderate values (e.g., aq = 20 426

or aq = 40) appear to strike a balance between 427

additional searchable context and minimal noise, 428

yielding stronger overall F1. For a more compre- 429

hensive analysis of answer selection strategies and 430

numerical results, please refer to Appendix C. 431

From Local to Global. Table 10 illustrates how 432

varying chunk sizes (256, 512, and 1024 tokens) 433

influence question-answering (QA) performance by 434

balancing local detail and global coverage. Smaller 435

chunks offer fine-grained local context, while larger 436

chunks provide a more holistic overview. For a 437

more detailed discussion of these trade-offs, please 438

refer to Appendix D. 439

Case Study. We present a case study to demon- 440

strate how different RAG methods can exhibit dis- 441

tinct error patterns and successes when handling 442

long-text QA tasks. By examining concrete exam- 443

ples of system outputs, readers can gain a more 444

nuanced understanding of each model’s strengths, 445

potential pitfalls, and the types of errors that may 446

arise. Details can be seen in Appendix E. 447

Dataset Generation. Beyond serving as a re- 448

trieval augmentation technique, our method can 449

also facilitate the construction of high-quality QA 450

datasets. In particular, since our framework fo- 451

cuses on identifying and explicitly modeling cross- 452

chunk semantic dependencies, the question–answer 453

pairs it produces tend to capture more complex rea- 454

soning steps that traditional RAG methods strug- 455

gle to retrieve and combine accurately. We ran 456

SqRAG on longer Chinese classical novels and 457

manually filtered out QA pairs with abundant cross- 458

chunk dependencies. These QA pairs naturally 459

spotlight intricate textual relationships—where crit- 460

ical information is scattered across multiple seg- 461

ments—thereby ensuring that the resulting dataset 462

challenges models to incorporate global context 463

and multi-step reasoning. This can be especially 464

valuable for developing new benchmarks or refin- 465

ing existing ones, pushing QA systems beyond sim- 466

ple fact extraction into deeper comprehension and 467

inference. Furthermore, compared with traditional 468

methods of generating QA datasets, our method 469

7



CATEGORY REPRESENTATIVE METHODS CHARACTERISTICS SHORTCOME

Basic RAG Vanilla RAG (Lewis et al., 2020) Splits text into coarse blocks and re-
trieves a subset.

It struggles in long-document scenar-
ios lacking broader context.

RAG with Modified
Retrieval Units

Dense X Retrieval (Chen et al., 2023),
HiQA (Chen et al., 2024)

Converts documents into modified
retrieval units.

It may overlook semantic dependen-
cies that span multiple propositions.

Knowledge Relationship
or Graph Based RAG

GraphRAG (Edge et al., 2024),
LightRAG (Guo et al., 2024),
HybGRAG (Lee et al., 2024)

Builds knowledge relationships or
graphs from documents.

These capture entity relationships
but may lose rich contextual cues
beyond the graph.

Active Retrieval RAG FLARE (Jiang et al., 2023), Self-RAG (Asai et al., 2023),
Adaptive-RAG (Jeong et al., 2024), CRAG (Yan et al., 2024),

CtrlA (Liu et al., 2024), Astute RAG (Wang et al., 2024a),
Speculative RAG (Wang et al., 2024b), Agentic RAG (Singh et al., 2025)

Dynamically selects refines re-
trieved content.

It can lead to lengthy outputs and of-
ten still uses naive text chunks lack-
ing cross-block semantic linkage.

Table 4: Summary of RAG methods

can effectively select questions containing cross-470

chunk information, thereby greatly reducing the471

burden of constructing a high-quality QA dataset,472

whereas previous approaches often struggled to473

produce questions of such caliber and required sig-474

nificant manual effort to sift through numerous gen-475

erated questions. We showcase representative ex-476

amples of these generated QA pairs in Appendix F,477

illustrating how they encapsulate nuanced, cross-478

chunk relations not readily evident within standard,479

locally-focused question sets.480

5 Related Work481

Vanilla RAG (Lewis et al., 2020) combines a pre-482

trained language model and an external knowledge483

source by first retrieving relevant documents and484

then generating answers. However, it may fail to485

capture cross-chunk semantic dependencies when486

dealing with long documents.487

RAG with modified retrieval units employs488

smaller or more fine-grained text segments. Dense489

X Retrieval (Chen et al., 2023) highlights that re-490

trieval granularity (e.g. propositions) can boost491

performance in certain tasks, while HiQA (Chen492

et al., 2024) refines multi-document retrieval for493

large-scale question answering. Both approaches494

address the rigid chunking of standard RAG but495

risk overlooking cross-segment semantics.496

Knowledge relationship based RAG methods497

build entity-level relationship or graphs to structure498

and retrieve relevant contexts. GraphRAG (Edge499

et al., 2024) extracts a graph of key entities for500

query-focused summarization, LightRAG (Guo501

et al., 2024) simplifies index construction for effi-502

cient retrieval, and HybGRAG (Lee et al., 2024)503

fuses textual and relational knowledge. These ap-504

proaches capture entity relationships but may lose505

rich contextual cues beyond the graph.506

Active retrieval RAG techniques iteratively re-507

fine retrieval and generation. FLARE (Jiang et al.,508

2023) and Self-RAG (Asai et al., 2023) actively 509

query external sources when low-confidence con- 510

tent is detected, while Adaptive-RAG (Jeong et al., 511

2024) adjusts its strategy based on question com- 512

plexity. CRAG (Yan et al., 2024) and Specula- 513

tive RAG (Wang et al., 2024b) introduce correc- 514

tive or drafting steps to improve factual ground- 515

ing, CtrlA (Liu et al., 2024) leverages internal 516

probes for guided retrieval, and Astute RAG (Wang 517

et al., 2024a) mitigates imperfect augmentation and 518

knowledge conflicts. Agentic RAG (Singh et al., 519

2025) surveys these agent-like approaches, illus- 520

trating their potential to adapt retrieval behavior on 521

the fly, but they often still rely on naive chunked 522

text lacking deeper semantic linkages. 523

Table 4 summarizes these RAG methods. 524

6 Conclusion 525

In this paper, we highlighted a key RAG challenge: 526

cross-chunk dependencies within lengthy, coher- 527

ent texts. Our empirical findings show that most 528

real-world questions span multiple segments, often 529

overlooked by conventional RAG pipelines. Mo- 530

tivated by psychological theories, we introduced 531

SqRAG, a framework that systematically generates, 532

integrates QA pairs to bridge these gaps and en- 533

rich contextual links. Experiments across diverse 534

datasets reveal that SqRAG outperforms existing 535

approaches in precision, recall, and overall coher- 536

ence. We further demonstrated how tuning the num- 537

ber of QA pairs, adjusting chunk sizes can refine 538

results. We hope this work inspires deeper explo- 539

ration of cross-chunk semantics for more robust 540

and context-aware retrieval generation systems. 541

Limitations 542

Although SqRAG enhances retrieval robustness 543

and reduces hallucinations, it has practical con- 544

straints. The index phase can be computationally 545
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expensive, especially for large or frequently up-546

dated corpora. Moreover, SqRAG relies on hav-547

ing sufficiently capable LLMs to handle enriched548

context and cross-chunk cues. Less powerful mod-549

els may not realize the same gains, limiting the550

method’s overall impact. Consequently, there is551

a trade-off between the computational overhead552

required and the precision benefits achieved for553

long-text retrieval and generation.554
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A Notation and Functions718

Table 5 and Table 6 present the symbol and function719

descriptions used in Algorithm 1 and Algorithm 2,720

respectively.721

B Experiment Setup722

B.1 Datasets and Models details723

LongBench is a bilingual, multitask benchmark724

designed to assess the long-context understanding725

capabilities of large language models. It consists726

of 21 tasks across six categories: single-document727

QA, multi-document QA, summarization, few-shot728

learning, synthetic tasks, and code completion.729

In English, the dataset contains an average con-730

text length of 6,711 words, whereas in Chinese it731

reaches 13,386 characters, providing a comprehen-732

sive framework for evaluating long-text applica-733

tions. Due to its focus on extended textual contexts,734

its broad task coverage, and its authoritative cu-735

ration by reputable institutions, we consider it a736

thorough assessment of models’ performance in737

diverse and realistic long-text understanding sce-738

narios. In our study, we employ four datasets from739

LongBench: NarrativeQA, MuSiQue, TriviaQA,740

and HotpotQA. Table 7 summarizes their key fea-741

tures.742

In terms of large language models, we utilize743

the lightweight and representative GPT-4o-mini744

and Llama 3.1 8B as the closed-source and open-745

source LLMs, respectively, to ensure a comprehen-746

sive evaluation of the experimental results.747

B.2 Prompts748

Figure 4 is the prompt for Q-LLM. Figure 5 is the749

prompt for A-LLM.750

B.3 Evaluation Metrics details751

To thoroughly evaluate our RAG system, we in-752

tegrated RAGCHECKER into our framework,753

which is a fine-grained evaluation framework de-754

signed to assess both the retrieval and generation755

components of RAG systems. It offers a suite of di-756

agnostic metrics that provide detailed insights into757

system performance. By extracting factual claims758

from generated responses and validating them759

against ground-truth answers, RAGCHECKER en-760

ables precise evaluations of correctness and com-761

pleteness.762

We implemented RAGCHECKER using the763

LlamaIndex® framework, which offers seamless764

integration and robust support for its functionali- 765

ties. To streamline model inference and manage 766

computational resources efficiently, we employed 767

Ollama® as a proxy server for model execution. 768

To reduce potential biases and randomness in 769

our evaluation process, we employed four open- 770

source LLMs as evaluators. Each model indepen- 771

dently assessed the generated responses, assigning 772

individual scores based on RAGCHECKER’s met- 773

rics. We then averaged these scores to yield the 774

final evaluation outcome, ensuring a balanced and 775

comprehensive assessment. Table 8 provides an 776

example of these evaluation scores. 777

C Answer Numbers 778

Table 9 illustrates how varying the number of an- 779

swers inserted into each chunk (aq) influences the 780

overall performance of our method on the Nar- 781

rativeQA dataset. A smaller value of aq (e.g., 782

aq = 10) provides insufficient additional context to 783

improve retrieval recall and F1 scores. Conversely, 784

as aq grows (e.g., aq = 60 or aq = 80), although 785

recall can improve in certain settings, the risk of 786

overloading each chunk with noisy QA pairs rises, 787

ultimately lowering precision and diminishing the 788

final F1. Thus, there is a trade-off between captur- 789

ing enough information to enhance retrieval and 790

overpopulating the chunks with less relevant details. 791

Our experiments suggest that moderate aq values 792

(e.g., aq = 20 or aq = 40) often yield an optimal 793

balance of informativeness and precision, resulting 794

in more consistent gains across both closed-source 795

and open-source LLM evaluations. 796

D From Local to Global 797

Table 10 illustrates how altering the chunk size 798

(e.g., 256, 512, and 1024 tokens) shifts the balance 799

between local context and global coverage. Smaller 800

chunks (e.g., 256 tokens) provide fine-grained lo- 801

cal detail but tend to increase the total number of 802

chunks, potentially yielding more local QA pairs 803

while making it harder to build a holistic view of the 804

document. Conversely, larger chunks (e.g., 1024 805

tokens) capture broader context in fewer segments, 806

thereby reducing the number of available QA pairs 807

and possibly losing nuanced local information. 808

Our results show that medium-sized chunks (e.g., 809

512 tokens) often strike a desirable trade-off: they 810

retain enough local structure to generate meaning- 811

ful QA pairs while also offering sufficient global 812

context for robust cross-chunk reasoning. Notably, 813
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although larger chunks can sometimes improve re-814

call (e.g., FLARE with 1024 tokens), precision815

may suffer if the model struggles to focus on the816

most relevant information. Overall, an intermediate817

chunk size appears most conducive to effectively818

leveraging cross-chunk dependencies for long-text819

QA tasks.820

E Case Study821

E.1 Overview822

In this section, we present a detailed case study823

of erroneous answers produced by several RAG-824

based models. To facilitate a structured analysis,825

we categorize these mistakes into four main error826

types and summarize in Table 12. By breaking827

down the types of errors and looking at cases from828

multiple datasets and multiple baselines, we can829

more intuitively evaluate different responses and830

analyze the causes of errors in detail.831

E.2 Cases of Data Structure in Method832

In this section, we present a detailed case study of833

the data structure used in our method, as shown834

in Table 11. As explained in section 3, the ques-835

tions are generated based on each chunk and stored836

in QuesionsDB (Step 1), and answers are gener-837

ated by A-LLM and stored in AnswersDB (Step838

2). Each question may corresponds to several an-839

swers from different chunks. The qaDB is formed840

by these question-answer pairs, which contain suf-841

ficient cross-chunk information for further RAG842

process (Step 3). The colors in Table 11 represent843

relevant information that are demand for giving844

true response to the query. Our method retrieves845

the question-answer pair that related to the query846

according to these information and insert them847

into the original context (Step 4). The question-848

answer pairs would provide sufficient cross-chunk849

evidence along with the original content to the850

RAG process. SqRAG then retrieves the top-k851

chunks to generate a more complete final answer852

(Step 5). The ground truth and the result of Vanilla853

RAG and our method are shown in the bottom of854

the table. As shown in the right part of Figure 1, the855

question-answer pairs in brackets of the retrieved856

chunks contains cross-chunk evidence and these857

information helps the model to integrate relevant in-858

formation and logical relationships between chunks859

and generate a more complete answer, while the860

Vanilla RAG simply focusing on each individual861

chunk to response.862

E.3 Cases of Different Methods’ responses 863

Table 13, Table 14, Table 15, Table 16, Table 17, 864

Table 18, Table 19, Table 20, Table 21 are cases of 865

different methods’ responses. We categorize these 866

responses into types in Table 12 and compare the re- 867

sults. These cases highlight common error patterns 868

in retrieval-augmented generation and demonstrate 869

how SqRAG mitigates them by effectively insert- 870

ing cross-chunk question-answer pairs (Section 3). 871

The additional retrieved Q&A content better pin- 872

points relevant context for the final generation step, 873

yielding more accurate and complete responses. 874

F Dataset Generation 875

Figure 6 visually compares the average document 876

length of our newly generated dataset, LONGNOV- 877

ELQA, to several established long-text QA bench- 878

marks, including L-Eval, TriviaQA, HotpotQA, 879

MuSiQue, NarrativeQA, and BookCorpus. No- 880

tably, as shown in the figure, most existing datasets 881

have average lengths ranging from roughly 7,000 882

tokens (L-Eval) up to around 89,000 tokens (Book- 883

Corpus). In contrast, our LONGNOVELQA corpus 884

consists of documents exceeding 600,000 tokens 885

on average, underscoring a substantial increase in 886

text length that encourages deeper cross-chunk rea- 887

soning, multi-step inference, and long-context un- 888

derstanding. 889

Table 22 further illustrates how SqRAG lever- 890

ages this vast context to generate question–answer 891

pairs that span multiple segments of text, highlight- 892

ing intricate dependencies and rendering purely 893

local retrieval strategies inadequate. In many cases, 894

questions demand synthesizing information from 895

distant parts of a text, compelling the model to in- 896

tegrate clues that may be scattered across hundreds 897

of pages. This extensive context also paves the way 898

for more complex inference, going beyond straight- 899

forward entity matching to reveal whether a model 900

can handle deeper reasoning. Additionally, rather 901

than relying on single-sentence queries or answers, 902

our dataset features longer, interlinked passages, 903

demonstrating how multiple pieces of text must be 904

retrieved, fused, and logically connected to arrive 905

at a correct solution. Together, these characteris- 906

tics underscore the dataset’s emphasis on robust 907

cross-chunk integration and genuinely challenging 908

long-text QA. 909
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SYMBOL DESCRIPTION

D The original support document.
cs Chunk size parameter for splitting the document.
N A set of document chunks (nodes) obtained by splitting D.
ni Each ni ∈ N is one chunk.
Qi A set of candidate questions generated by Q-LLM for a chunk ni.
qi Each qi ∈ Qi is one single question.
Q′

i A subset of questions selected from QuestionsDB that are relevant to a chunk ni.
Ai Raw answers with corresponding evidence generated by A-LLM for the questions Q′

i regarding
chunk ni.

ai Each ai ∈ Ai is one single answer and corresponding evidence.
A′

i Validated answers after applying Eval on Ai.
Q-LLM A Large Language Model used to generate questions from a given text chunk.
A-LLM A Large Language Model used to generate answers to given questions based on a provided chunk.

Eval An evaluation method or function that filters out not answered or low-quality answers.
QuestionsDB A database (set) of all generated questions from all chunks.
AnswersDB A database (set) of all validated answers corresponding to the questions in QuestionsDB.

qaDB A merged database of question-answer pairs formed from QuestionsDB and AnswersDB.
qu The user query posed during the inference phase.

RelevantQAs QA pairs from qaDB considered relevant to the user query qu.
Nenh The enhanced set of chunks after inserting relevant QA pairs into the original chunks.
R Relevant text retrieved from Nenh for the user query qu.
au The final answer generated by ANSWER-LLM using retrieved textR.

Table 5: Symbols and Their Descriptions

FUNCTION DESCRIPTION

Split(X, cs) Divides an input X (e.g., a document) into multiple chunks of size cs.
Q-LLM(X) Given a text input X (e.g., a chunk), generates a set of candidate questions.
A-LLM(Q,X) Given a set of questions Q and a text input X (e.g., a chunk), produces a set of corresponding

answers.
Eval(A) Given a set of raw answers A, filters and validates them, resulting in a subset of refined

answers.
SelectRelevant(X,Y ) From a given set or database X , selects the subset most relevant to Y (e.g., a chunk ni or a

user query qu).
Merge(Qdb,Adb) Merges separate question and answer databases Qdb and Adb into a unified QA database.
Insert(X,Y ) Integrates items from Y (e.g., QA pairs) into X (e.g., a database or set of chunks), producing

an enhanced version of X .
Retrieve(X,Y ) From a given set or database X , retrieves content most relevant to Y (e.g., a user query),

returning a set of pertinent information.
ANSWER-LLM(Q,R) Given a query Q (e.g., a user query) and retrieved content R, generates a final response or

answer.

Table 6: Functions and Their General Descriptions
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DATASET AVG. LENGTH DOC# LANGUAGE DESCRIPTION

NarrativeQA 18,409 20 English Focuses on single-document long-context QA, re-
quiring models to answer questions based on entire
stories or scripts, thus testing deep narrative under-
standing.

MuSiQue 11,214 200 English Involves multi-document QA, where models must
integrate information from multiple documents to
answer complex questions, assessing the ability to
synthesize information across sources.

TriviaQA 8,209 200 English Serves as a few-shot QA task, providing a limited
number of examples to evaluate the model’s ability to
generalize from minimal data, focusing on answering
trivia questions based on evidence documents.

HotpotQA 9,151 200 English Another multi-document QA dataset, it challenges
models to perform multi-hop reasoning by connect-
ing information from different documents to answer
questions, emphasizing explainability and diverse
reasoning paths.

Table 7: Descriptions of the four datasets used from LongBench Benchmark.

Q-LLM Prompt
Here is the context:

---------------------

{context_str}

---------------------

Given the contextual information, generate {num_questions} questions. 

Questions should be relevant to the context and should be specific and not abstract. 

Please provide these questions plainly, without any numbering or bullet points. 

Use the same language as the provided context. 

Figure 4: Q-LLM prompt.

Metric Llama 3.1 8B Qwen 2.5 7B Mixtral 8x7B Gemma 2 9B Overall Average

Precision 47.80 12.80 36.40 21.20 29.55
Recall 73.80 28.30 46.20 36.50 46.20

F1 Score 48.60 10.60 30.90 18.20 27.07

Table 8: Individual and Averaged Evaluation Scores from Multiple LLMs

OVERALL METRICS (CLOSE SOURCE LLM) OVERALL METRICS (OPEN SOURCE LLM)
METHOD

PRECISION RECALL F1 PRECISION RECALL F1

#NarrativeQA#
Vanilla RAG 29.55 46.20 27.07 29.00 41.58 26.07
aq = 10 30.30 44.80 27.93 28.07 40.88 25.75
aq = 20 31.70 45.40 29.35 30.30 42.50 27.75
aq = 40 31.80 49.47 30.17 30.07 42.02 27.85
aq = 60 30.45 45.60 28.73 27.80 41.77 25.50
aq = 80 31.90 45.15 28.98 25.90 40.33 24.02

Table 9: Influence of answer numbers on SqRAG.
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A-LLM Prompt

Here is the context:

---------------------

{context_str}

---------------------

Please read the context carefully and answer the following questions.

---------------------

{question}

---------------------

For each question:

- Base your answer ONLY on the provided information.

- Keep your answer as brief and direct as possible.

If you can answer, also provide one short Evidence excerpt directly quoted from the 

provided information.

- If you cannot answer, respond with '[I cannot answer]'.

- Use the same language as the provided information

Required response format:

Question 1: [Question text]

Answer 1: [Your answer]

Evidence 1: [Exact quote from the provided information or \"No supporting evidence 

found\"]

Question 2: [Question text]

Answer 2: [Your answer]

Evidence 2: [Exact quote from the provided information or \"No supporting evidence 

found\"]

[Continue for all questions]

Requirements:

- For every question, include the question text, answer, and evidence.

- Evidence MUST be an exact excerpt from the provided information.

- The number of answers must match the number of questions.

- Follow the exact format with line breaks as shown.

- Use the same language as the provided information.

Figure 5: A-LLM prompt.

OVERALL METRICS (CLOSE SOURCE LLM) OVERALL METRICS (OPEN SOURCE LLM)
METHOD

PRECISION RECALL F1 PRECISION RECALL F1

#Chunk Size = 256#
Vanilla RAG 30.00 43.17 26.80 27.00 37.35 23.48

Dense X Retrieval 28.48 35.55 22.22 26.98 35.92 22.70
FLARE 25.25 42.20 23.83 24.70 22.38 13.95

Ours 30.33 45.15 27.15 30.27 38.80 27.18
#Chunk Size = 512#

Vanilla RAG 29.55 46.20 27.07 29.00 41.58 26.07
Dense X Retrieval 28.38 35.52 23.05 29.25 38.38 25.72

FLARE 25.75 47.98 25.45 23.62 20.02 13.25
Ours 31.70 45.72 28.28 31.30 42.80 27.15

#Chunk Size = 1024#
Vanilla RAG 31.50 45.85 28.92 27.88 42.15 25.72

Dense X Retrieval 28.10 34.20 21.72 28.95 41.75 26.28
FLARE 26.00 49.25 25.00 26.10 24.92 16.52

Ours 32.48 49.23 30.63 23.95 38.33 21.45

Table 10: From local to global.
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Figure 6: Average Length of Well-known Long-text Datasets. L-Eval (7,217 tokens), TriviaQA (8,209), HotpotQA
(9,151), MuSiQue (11,214), NarrativeQA (18,409), and BookCorpus (89,237) all fall below 100,000 tokens on
average. By contrast, LONGNOVELQA reaches an average of 672,641 tokens, presenting a more challenging
environment for QA systems to handle global context and complex dependencies.
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Query Who is the federal leader of the political party that Ken Epp belongs to?

qaDB

QuestionsDB AnswersDB

chunk_id text chunk_id text

1 How did Epp’s political career progress after his in-
volvement with the Canadian Alliance?

36 Epp continued his political career as a member of the
Conservative party of Canada, representing the riding
of Edmonton—Sherwood Park from its creation in
June 2004 until he retired in 2006.

5 Who is the federal leader of the political party that
Pierre-Hugues Boisvenu is a member of?

5 Andrew Scheer

6 Who was the leader of the Conservative party of
Canada before Andrew Scheer ?

26 Stephen Harper

11 Who was elected as the leader of the Conservative party
of Canada in the 2017 leadership election?

11 Andrew Scheer was elected as the leader of the Con-
servative party of Canada.

12 Andrew Scheer was elected as the leader of the Con-
servative party of Canada in the 2017 leadership elec-
tion.

11 What was Stephen Harper’s role in the Conservative
party of Canada before Andrew Scheer took over?

11 Stephen Harper was the leader of the Conservative
party of Canada.

13 leader of the Conservative political party.

18 Stephen Harper was the leader of the Conservative
party of Canada before Andrew Scheer took over.

36
What political parties did Epp represent during his time
in the House of Commons?

0 Progressive Conservative

1 Epp represented the Progressive Conservative political
party and later joined the Canadian Alliance.

2 Epp represented the Progressive Conservative political
party.

36 Epp represented the Conservative party of Canada, the
Canadian Alliance, and the Reform political party of
Canada.

Retrieved
Chunks

(Chunk 1)......Epp was a member of the Conservative party of Canada in the House of Commons of Canada, representing
the riding of Edmonton—Sherwood Park since its creation in June 2004.(Which position did Jake Epp hold in the Canadian
government? Epp was a member of the Conservative party of Canada in the House of Commons.)(For which riding was
Jake Epp elected as a Member of Parliament? Edmonton—Sherwood Park) He was previously the MP for Elk Island from
1993 to 2004. He has also been a member of the Canadian Alliance (2000-2003) and the Reform political party of Canada
(1993-2000). Epp (What political parties did Epp represent during his time in the House of Commons? Epp represented the
Conservative party of Canada, the Canadian Alliance, and the Reform political party of Canada.) was a former mathematics
instructor ...Epp (How did Epp’s political career progress after his involvement with the Canadian Alliance? Epp continued
his political career as a member of the Conservative party of Canada, representing the riding of Edmonton—Sherwood Park
from its creation in June 2004 until he retired in 2006.) did not run in the 2008 federal election......

(Chunk 2)......The 2017 Conservative political party of Canada leadership election was held on May 27, 2017.
Party members chose Andrew Scheer as leader, replacing Stephen Harper,(Who was the leader of the Conservative party
of Canada before Andrew Scheer ? Stephen Harper) who led the Conservative party of Canada as its leader from 2004
following the merger of the Canadian Alliance and Progressive Conservative parties......

(Chunk 3)......Rona Ambrose, as interim leader, is ineligible to run for the permanent leadership unless there is
a change to the party’s constitution.(Who was the leader of the Conservative party of Canada before Andrew Scheer ?
Rona Ambrose was the leader before Andrew Scheer .)......

Ground Truth Andrew Scheer .

Vanilla RAG Ken Epp was a member of the Conservative Party of Canada. ✗ Incomplete

SqRAG Ken Epp was a member of the Conservative Party of Canada. The federal leader of the Conservative
Party of Canada before Andrew Scheer was Stephen Harper. ✓

Correct

Table 11: An example of the data structure in SqRAG: The chunk_id represents the chunk that the question and
answer belongs to. QuestionsDB contains several questions corresponding to the chunk_id, and AnswersDB contains
several answers to the question in QuestionsDB. The qaDB is formed by the question-answer pairs in QuestionsDB
and AnswersDB. The Retrieved Chunks are the top-k most relevant chunks with related question-answer pairs
inserted. The ground truth and the response of Vanilla RAG and SqRag are shown as the result.
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ERROR TYPE LABEL DEFINITION AND EXPLANATION

Unwarranted Ignorance Ignorance The response incorrectly concludes that the context or source
does not provide sufficient information, even though the relevant
details are present and retrievable. In other words, it claims “no
information is available” or “the context does not provide specific
details” despite evidence to the contrary.

Partial or
Incomplete Answer

Incomplete The response detects the correct topic or concept but fails to pro-
vide the specific or complete explanation. It settles on a vague or
partially correct factor.

Fabrication
(Hallucination)

Fabrication The response invents non-existent facts, characters, or details
not grounded in the provided context. These made-up elements
contradict the actual evidence or go beyond any plausible inference
from the text.

Contradiction or Direct
Factual Error

Contradiction The response asserts a claim that explicitly contradicts the query
and the context. It may state the opposite of what the text says.
This includes mixing up roles or factual violation.

Table 12: Types of Errors in RAG Responses

Question Who is the federal leader of the political party that Ken Epp belongs to?

Ground Truth Andrew Scheer .
Vanilla RAG Ken Epp was a member of the Conservative Party of Canada. ✗ Incomplete

Dense RAG Ken Epp was a member of the Conservative Party of Canada. ✗ Incomplete

Flare RAG Ken Epp was a member of the Canadian Alliance party. To find out the
federal leader during his time, I will search for Stockwell Day . During
Ken Epp’s time, the federal leader of the Canadian Alliance party was
Stockwell Day . ✗

Contradiction

SqRAG Ken Epp was a member of the Conservative Party of Canada. The federal
leader of the Conservative Party of Canada before Andrew Scheer was
Stephen Harper. ✓

Correct

Analysis: Vanilla RAG and Dense RAG only mention Ken Epp’s party without addressing its federal
leader. Flare RAG erroneously provides Stockwell Day. SqRAG correctly identifies Andrew Scheer as
the federal leader.

Table 13: Federal Leader of Ken Epp’s Political Party
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Question A participant of the Battle of Brechin is an instance of?

Ground Truth Scottish clan .
Vanilla RAG A participant of the Battle of Brechin is an instance of a historical figure

involved in a conflict during the Late Middle Ages in Scotland. ✗

Incomplete

Dense RAG A participant of the Battle of Brechin is an instance of a historical
figure involved in a significant conflict during the Late Middle Ages in
Scotland. ✗

Incomplete

Flare RAG A participant of the Battle of Brechin is an instance of a combatant in
a historical conflict . (Detailed discussion of roles/factions) ✗

Incomplete

SqRAG A participant of the Battle of Brechin is an instance of a historical figure
involved in the conflicts of the Scottish civil war during the reign of
James II of Scotland. ✓

Correct

Analysis: All four responses fail to identify that the participant is specifically a Scottish clan.

Table 14: Instance Classification of a Participant in the Battle of Brechin

Question Which is the body of water near George Mills’ place of birth?

Ground Truth River Thames .
Vanilla RAG The body of water near George Mills’ place of birth, Deptford, is

not specifically mentioned in the provided information. ✗

Ignorance

Dense RAG The body of water near George Mills’ place of birth, Deptford, is
not explicitly mentioned in the provided context. Therefore, the spe-

cific body of water cannot be identified. ✗

Ignorance

Flare RAG George Mills was born in Deptford, which is located in London, England.
However, the context does not provide specific information about the
body of water near Deptford. George Mills was born in Deptford, which
is located in London, England. However, the context does not provide
specific information about the body of water near Deptford, the body of
water near Deptford, London, is the River Thames . ✓

Correct

SqRAG George Mills was born in Deptford, which is located near the
River Thames . ✓

Correct

Analysis: Vanilla RAG and Dense RAG wrongly claim no mention of the body of water. Flare RAG
and SqRAG correctly identify the River Thames.

Table 15: Body of Water Near George Mills’ Birthplace
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Question Why was Mortimer Trefinnis once estranged from his siblings?

Ground Truth Because of the division of proceeds from selling the family business.
Vanilla RAG The context does not provide specific details regarding why Mortimer

Tregennis was once estranged from his siblings. ✗

Ignorance

Dense RAG Mortimer Tregennis was once estranged from his siblings due to a family
quarrel about money ✗

Incomplete

Flare RAG Mortimer Trefinnis was once estranged from his siblings due to a family
quarrel, followed by a reconciliation. However, the nature of that quarrel
and the authenticity of the reconciliation are left unclear. The family
quarrel between Mortimer Tregennis and his siblings was related to the
division of money after they sold their tin-mining venture. Although this
issue created some tension between them for a time, it was ultimately
forgiven and forgotten, leading to a reconciliation. The quarrel over the
division of money in the Tregennis family arose after they sold their

tin-mining venture to a company, which led to disagreements regarding
how the proceeds from the sale were to be divided among the family
members ✓

Correct

SqRAG Mortimer Tregennis was once estranged from his siblings due to feelings
surrounding the division of money after the family sold their tin-mining
venture. This financial matter created a temporary rift between them,
but it was eventually forgiven and forgotten, leading to a reconciliation
where they became "the best of friends together" ✓

Correct

Analysis: Vanilla RAG fails to identify the reason (unwarranted ignorance). Dense RAG mentions
money but omits the specific detail of dividing the proceeds from the family business. Flare RAG and
SqRAG both correctly specify the division of money.

Table 16: Estrangement of Mortimer Trefinnis

Question How is Drexl killed?

Ground Truth He is shot .
Vanilla RAG The information provided does not indicate that Drexl is killed. It de-

scribes a scene where he engages in violent confrontations, but there is
no mention of his death. ✗

Contradiction

Dense RAG Drexl is not killed ; he is still alive despite being shot and falling to the
ground. ✗

Contradiction

Flare RAG Drexl is killed when he points a shotgun at Floyd and shoots him. After-
ward, he is confronted by Big D, whom he also shoots, and ultimately he
is shot by Clarence . (Detailed account of their struggle) ✓

Correct

SqRAG Drexl is killed when he shoots Floyd with a shotgun and is then
shot by Clarence , resulting in his death. ✓

Correct

Analysis: Vanilla RAG and Dense RAG both contradict the context by claiming Drexl is not killed.
Flare RAG and SqRAG identify that Drexl is indeed shot by Clarence.

Table 17: The Death of Drexl
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Question Who greeted Jacob in his apartment after Jacob finally came to terms
with his military ordeal?

Ground Truth His son Gabe .
Vanilla RAG Jacob was greeted by the doorman, Sam , when he approached the lobby

of Sarah’s apartment building. ✗

Contradiction

Dense RAG Jacob was greeted by the doorman in his apartment. ✗ Contradiction
Flare RAG Jacob was greeted by his son, Gabe , in a moment filled with emotion

and love. (Elaboration on their emotional bond) ✓

Correct

SqRAG Jacob was greeted by his son, Gabe , in the apartment after he came to
terms with his military ordeal. ✓

Correct

Analysis: Vanilla RAG and Dense RAG incorrectly identify the doorman as the greeter, contradicting
the context. Flare RAG and SqRAG correctly recognize Gabe as the one who greeted Jacob.

Table 18: Greeting Jacob

Question Who played the girlfriend of who plays Marty McFly’s daughter in Back
to the Future 2?

Ground Truth Claudia Wells .
Vanilla RAG The context does not provide specific details regarding why Mortimer

Tregennis was once estranged from his siblings. (Erroneous copy from
another case) ✗

Ignorance

Dense RAG Jennifer Parker, who is Marty McFly’s girlfriend in the Back to the Future
series, was played by Claudia Wells in the first film and Elisabeth Shue
in the second and third films. Marty McFly’s daughter, Marlene, was
played by Michael J. Fox. ✓

Correct

Flare RAG The girlfriend of the actor who plays Marty McFly’s daughter in Back
to the Future Part II is not known , as the character of Marty McFly’s
daughter, Marlene, does not have a girlfriend in Back to the Future Part
II. ✗

Contradiction

SqRAG The girlfriend of Marty McFly’s daughter, Marlene, in Back to the Future
Part II is portrayed by Claudia Wells , who played Jennifer Parker. ✓

Correct

Analysis: Vanilla RAG reuses text from a different scenario and claims there are no details. Dense
RAG is effectively correct in identifying Claudia Wells. Flare RAG mistakenly states Marlene does
not have a girlfriend. SqRAG also correctly identifies Claudia Wells.

Table 19: Girlfriend of Marty McFly’s Daughter in Back to the Future 2
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Question What is the seat of the county sharing a border with the county in which
J. P. Hayes was born?

Ground Truth Green Bay .
Vanilla RAG The county in which J. P. Hayes was born is Outagamie County, Wiscon-

sin. The seat of Outagamie County is Appleton . ✗

Contradiction

Dense RAG The information provided does not specify the counties or their seats in
relation to J. P. Hayes’ birthplace of Appleton, Wisconsin . Therefore, it
is not possible to determine the seat of the county sharing a border with
that location based on the available details. ✗

Ignorance

Flare RAG The seat of the county sharing a border with the county in which J. P.
Hayes was born is Green Bay itself. ✓

Correct

SqRAG The seat of the county sharing a border with Brown County, where J. P.
Hayes was born, is Green Bay . ✓

Correct

Analysis: Vanilla RAG identifies the seat of Outagamie County rather than the correct neighboring
seat. Dense RAG incorrectly claims the information is missing. Flare RAG and SqRAG both correctly
state Green Bay.

Table 20: Seat of the County Near J. P. Hayes’ Birthplace

Question Who is the spouse of the current queen of England?

Ground Truth Philip Mountbatten .
Vanilla RAG The spouse of the current queen of England was Prince Philip , Duke of

Edinburgh. ✗

Incomplete

Dense RAG The current queen of England is Charles III , who is the eldest son of
Elizabeth II. ✗

Contradiction

Flare RAG The current queen of England is Queen Camilla, and her spouse is
King Charles III . ✗

Contradiction

SqRAG The spouse of the current queen of England was Philip Mountbatten ,
Duke of Edinburgh. ✓

Correct

Analysis: Vanilla RAG essentially names the correct person but was still deemed incorrect in the
dataset. Dense RAG and Flare RAG mix up the reigning monarch or consort. SqRAG properly
identifies Philip Mountbatten as the spouse of Queen Elizabeth II.

Table 21: Spouse of the Current Queen of England
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QUERY GROUND TRUTH VANILLA RAG RESPONSE CLUE

在故事中，宋江
和他的兄弟们讨
论招安时，有哪
些人表达了不同
的意见？

武松、李逵、鲁智深、
林冲、关胜和徐宁

在故事中，李逵表达了不同
的意见。他认为应该聚集军
马和百姓，反抗奸臣，而不
是接受招安。宋江则对李逵
的提议表示谨慎，建议再考
虑。 Incomplete

只见武松叫道：“今日也要招安，明日也
要招安去，冷了弟兄们的心！”黑旋风便
睁圆怪眼，大叫道：“招安，招安！招甚
鸟安！”鲁智深便道：“只今满朝文武，俱
是奸邪，蒙蔽圣聪，就比俺的直裰染做
皂了，洗杀怎得干净？招安不济事！便
拜辞了，明日一个个各去寻趁罢。”林冲
道：“朝廷中贵官来时，有多少装幺，中
间未必是好事。”关胜便道：“诏书上必然
写着些唬吓的言语，来惊我们。”徐宁又
道：“来的人必然是高太尉门下。”

戴宗在向知府报
告 宋 江 的 情 况
时，为什么会提
到宋江是个“失心
风”的人？

戴宗向知府报告宋江是
个“失心风”的人是为了
帮助宋江逃避罪责。因
为宋江题了反诗，知府
要抓他，戴宗为了救宋
江，便谎称宋江得了失
心疯，以此来帮助宋江
脱身。

在上下文中并没有提到戴宗
称宋江为“失心风”的人，因
此无法回答这个具体问题。
Ignorance

宋江听罢，挠头不知痒处，只叫得
苦，“我今番必是死也！”戴宗道：“我教
仁兄一着解手，未知如何？如今小弟不
敢担阁，回去便和人来捉你。你可披乱了
头发，把尿屎泼在地上，就倒在里面，诈
作风魔。我和众人来时，你便口里胡言乱
语，只做失心风便好。我自去替你回复知
府。”

信 中 提 到 的“闺
臣”对小山有什么
特殊的意义？

“闺臣”对小山而言，是
父亲唐敖为她改的名
字，寓意即使在伪周中
了才女，也是唐朝闺中
之臣，以明不忘记唐朝
之意。

信中提到的“闺臣”对小山有着
特殊的意义，因为“闺臣”是小
山父亲为她改的新名字，这
个名字承载了父亲的期望和
情感。小山在信中被告知必
须改名为“闺臣”，这不仅是对
她身份的重新定义，也体现
了父亲对她未来的关心与期
待。此外，改名的过程也象
征着一种责任和使命感，激
励小山在未来的生活中努力
求进。 Fabrication

小山道：‘父亲既说等我中过才女与我相
聚，何不就在此时同我回去，岂不更便？
并且命我改名‘闺臣’，方可应试，不知又
是何意？’若花道：‘据我看来，其中大有
深意：按‘唐闺臣’三字而论，大约姑夫因
太后久已改唐为周，其意以为将来阿妹赴
试，虽在伪周中了才女，其实乃唐朝闺中
之臣，以明并不忘本之意。’

老僧在寺院中待
了多久，为什么
称自己为“樗朽之
辈”？

老僧在寺院待了二百七
十岁，但他认为自己虚
度一生，山门也未曾出
去，见识短浅，所以称
自己为“樗朽之辈”。

老僧在寺院中待了百余年，
称自己为“樗朽之辈”是因为他
自谦，认为自己年岁已高，
经历过许多事情，显得有
些古老和衰败。 Incomplete

Fabrication

老僧道：“也有万里之遥了。我弟子虚度
一生，山门也不曾出去，诚所谓坐井观
天，樗朽之辈。”三藏又问：“老院主高寿
几何？”老僧道：“痴长二百七十岁了。”

Table 22: LongNovelQA Examples
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