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Abstract

Recent LLMs have enabled significant advance-001
ments for conversational agents. However, they002
are also well known to hallucinate, producing003
responses that seem plausible but are factually004
incorrect. On the other hand, users tend to005
over-rely on LLM-based AI agents, accepting006
AI’s suggestion even when it is wrong. Adding007
positive friction, such as explanations or get-008
ting user confirmations, has been proposed as009
a mitigation in AI-supported decision-making010
systems. In this paper, we propose an account-011
ability model for LLM-based task-oriented di-012
alogue agents to address user overreliance via013
friction turns in cases of model uncertainty and014
errors associated with dialogue state tracking015
(DST). The accountability model is an aug-016
mented LLM with an additional accountabil-017
ity head that functions as a binary classifier to018
predict the relevant slots of the dialogue state019
mentioned in the conversation. We perform our020
experiments with multiple backbone LLMs on021
two established benchmarks (MultiWOZ and022
Snips). Our empirical findings demonstrate that023
the proposed approach not only enables reliable024
estimation of AI agent errors but also guides025
the decoder in generating more accurate ac-026
tions. We observe around 3% absolute improve-027
ment in joint goal accuracy (JGA) of DST out-028
put by incorporating accountability heads into029
modern LLMs. Self-correcting the detected030
errors further increases the JGA from 67.13031
to 70.51, achieving state-of-the-art DST per-032
formance. Finally, we show that error correc-033
tion through user confirmations (friction turn)034
achieves a similar performance gain, highlight-035
ing its potential to reduce user overreliance.036

1 Introduction037

Conversational agents have reached remarkable ad-038

vancements with the advent of large language mod-039

els (LLMs). However, they are prone to halluci-040

nations, generating information that is incorrect or041

I would like to find a park attraction, please.

Ground Truth Dialogue State

U0

U1
I would like an area near town.

There are 5 options. What area would you like?
S1

Accountability
Model

{attraction-type: park, attraction-area: centre}

{attraction-type: park, attraction-area: centre}  ✔

Self-Correction

Predicted False Negative: attraction-area

Add 
"attraction-area: centre"

Generated Dialogue State

{attraction-type: park}

Slot Probability
  attraction-type:   0.99   
  attraction-area:   0.81  
  attraction-name: 0.03    
  ....

User Confirmation

Did you mention attraction
area to be centre ?

Agree.

Figure 1: Overview of Accountability Modeling. The
model simultaneously generates the dialogue state and
estimates slot probabilities (of being included in the
dialogue state), then detects potential errors using the
estimated slot probabilities. The errors can either be self-
corrected or confirmed by the user via friction turns.

not grounded in reality (Ji et al., 2023; Huang et al., 042

2023). At the same time, users often tend to over- 043

rely on LLM-based AI agents, accepting AI sug- 044

gestions even when they are erroneous (Passi and 045

Vorvoreanu, 2022; Klingbeil et al., 2024). In task- 046

oriented conversations, such overreliance causes in- 047

correct or incomplete task execution, undermining 048

the system’s reliability. To address this issue, we 049

employ accountability modeling, where account- 050

ability refers to the model’s ability to explain or 051

justify its actions (Doshi-Velez et al., 2019; Nov- 052

elli et al., 2022). Accountability modeling of task- 053

oriented dialogue systems enables the identifica- 054

tion and resolution of errors or unintended conse- 055

quences, thereby alleviating user overreliance. 056
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Task-oriented dialogue systems (TODS) are de-057

signed to assist users in completing a task or goal058

through conversations. Dialogue state tracking059

(DST) is a crucial component of TODS that ac-060

counts for understanding the user intentions and061

keeping track of the dialogue state. The dialogue062

state contains the intents communicated by the user063

and is generally represented as a set of slot-value064

pairs. The DST task is to predict the dialogue state065

after each user turn, as shown in Fig. 1. It can066

also be seen as a function or API call in end-to-end067

TODS (Li et al., 2024b; Xu et al., 2024). There are068

three types of error associated with DST output:069

• False Positives: Predicted slots that were not070

mentioned in the dialogue so far.071

• False Negatives: Slots that were mentioned072

in the dialogue but are missing from the pre-073

dicted dialogue state.074

• Value Errors: The slot is relevant, but its075

value is wrong with respect to the dialogue076

context.077

Task-oriented dialogues are highly sensitive to078

these errors, as even a single mistake can signif-079

icantly alter the conversation’s trajectory. LLM-080

based DST models generally predict the correct081

slot value for the relevant slots, making value errors082

a minor concern. However, false positive/negative083

errors occur more frequently and are critical to task084

success. For instance, in Fig. 1, the model ini-085

tially predicts {attraction-type: park} as the086

dialogue state, causing attraction-area to be a087

false negative slot for this prediction. As a result,088

the system may recommend parks that are not near089

or centre of the town, potentially leading the user090

to book an unsuitable option due to overreliance on091

the system. Such issues can degrade the user expe-092

rience in real-world task-oriented conversations.093

In this work, we propose an accountability model094

for task-oriented conversations to mitigate user095

overreliance. Our approach aims to enhance the096

prediction of DST by detecting and correcting false097

positive and false negative errors, thereby ensuring098

greater accountability. To achieve this, we integrate099

an accountability head into the backbone LLMs,100

which is a binary classifier to predict the slots in101

the dialogue state. This augmented LLM not only102

generates the dialogue state but also estimates the103

probability of each slot being included in the dia-104

logue state. The slot probabilities help to identify105

the possible false positive/negative slots. These er- 106

rors are then corrected using a dedicated algorithm 107

(Algo 1) that removes false positive slots and adds 108

false negative slots (with the appropriate values), 109

thereby improving the accuracy of DST prediction. 110

For instance, in Fig. 1, while attraction-area 111

is missing from the initial prediction, the account- 112

ability head assigns it a high probability of 0.81, 113

detecting it as a potential false negative, which is 114

subsequently corrected. Rather than self-correcting, 115

the conversational agent can also confirm the de- 116

tected errors with the user through a conversation 117

turn, as shown in Fig. 1. In recent literature, such 118

mindful interactions or friction turns prompting 119

analytical thinking have been explored to address 120

overreliance on AI (Mejtoft et al., 2019; Naiseh 121

et al., 2021; İnan et al., 2025). Therefore, slot 122

probabilities from the accountability head can help 123

introduce friction turns, such as confirming model 124

uncertainty and errors, to mitigate user overreliance. 125

The contributions of this work are as follows: 126

• We propose a generative LLM-based account- 127

ability model for DST capable of detecting 128

false positives and false negatives. 129

• Accountability modeling improves the DST 130

performance of backbone LLMs on two 131

widely used corpora (MultiWOZ and Snips). 132

For MultiWOZ, the injection of the account- 133

ability head in Llama, Mistral, and Gemma 134

shows an absolute improvement of approxi- 135

mately 3% in joint goal accuracy. 136

• Self-correcting errors identified by the ac- 137

countability head further enhance the dialogue 138

state prediction, achieving 70.51% joint goal 139

accuracy and surpassing the performance of 140

state-of-the-art DST models. 141

• Accountability modeling enables the correc- 142

tion of dialogue states via user confirmations 143

which achieves a performance gain compara- 144

ble to the self-correction strategy, highlighting 145

its potential to reduce user overreliance. 146

2 Related Work 147

DST was initially solved independently from the 148

other TODS modules. In this approach, DST is 149

formulated as a slot-filling task, where the task is 150

to find the relevant slots and then fill out the slot 151

values. Finding the relevant slots is posed as a 152

classification task, while various strategies have 153
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Large Language Model

Context (Ct)
(Task Information + Conversation History)

<eos> Dialogue State (Bt)
{s1: v1, s2: v2}

LIN
(Accountability head)

BCE loss LM loss1 1 .... 0
s1 s2 sn

ϕt

Figure 2: Model architecture of the LLM-based generative accountability modeling for DST.

been explored to find the slot values like pick-list-154

based (Mrkšić et al., 2017; Nouri and Hosseini-155

Asl, 2018; Zhong et al., 2018), generative (Wu156

et al., 2019; Kim et al., 2020), and reading compre-157

hension (Gao et al., 2019; Heck et al., 2020; Dey158

and Desarkar, 2021). Although using models with159

fewer parameters compared to modern LLMs, these160

methods exhibit decent DST performance. With161

additional training with synthetic data and sophis-162

ticated training, these models have been shown to163

achieve state-of-the-art DST performance (Ye et al.,164

2022a,c). However, they are difficult to extend to165

an end-to-end TODS framework.166

With the advancements in Transformer (Vaswani167

et al., 2017) based LLMs, the paradigm shifted to-168

wards fully generative and end-to-end modeling of169

TODS (Hosseini-Asl et al., 2020; Lin et al., 2020;170

Mehri et al., 2020). These methods show com-171

petitive DST performance compared to the earlier172

methods. Recently, prompt-based LLM methods173

have been studied extensively for zero-shot and174

few-shot DST (Hu et al., 2022; Su et al., 2022;175

Hudeček and Dusek, 2023; Xu et al., 2024). De-176

spite their impressive performance, confidence esti-177

mation of dialogue states in generative LLM-based178

methods is challenging. LLMs are generally over-179

confident with the predictions, resulting in high180

confidence even for spurious predictions (Huang181

et al., 2024; Xiong et al., 2024; Li et al., 2024a).182

In recent work, Sun et al. (2024) addresses the183

problem of reliable confidence estimation for DST.184

However, estimating the confidence for the false185

negatives is not possible as they are not part of the186

generated dialogue state (Feng et al., 2023a; Xu187

et al., 2024). Note that slot-filling-based methods188

are not susceptible to this issue as they have dedi-189

cated classifiers to predict the slots. This work aims190

to combine the advantages of both approaches for191

accountability modeling of DST.192

3 Methodology 193

This section presents a brief background of LLM- 194

based generative DST, followed by our proposed 195

accountability model and its application in correct- 196

ing predicted dialogue states. 197

3.1 Generative DST 198

In this method, DST is solved like standard nat- 199

ural language generation tasks using LLMs. Let 200

Dt = {(S0, U0), ...(Sn, Un)} be a task-oriented di- 201

alogue where St and Ut represent the system and 202

user utterances at turn t, respectively. Let Ct rep- 203

resent the dialogue context, which includes Dt as 204

well as optional task-related information and slot 205

descriptions. Let Bt = {s1 : v1, s2 : v2, ...} be the 206

dialogue state at turn t where (si, vi) represents the 207

ith slot-value pair. For multi-domain datasets (like 208

MultiWOZ and Snips), si is expressed as domain- 209

slot pair. The LLM is trained using the standard 210

language model (LM) loss, defined as follows, 211

LLM = − 1

T

T∑
n=1

log p(Btn |Bt<n , Ct; θ) (1) 212

where θ denote the parameters of the LLM and Btn 213

is the nth token of the tokenized Bt with T tokens. 214

3.2 Accountability Modeling for DST (AMD) 215

In this work, we propose to add an accountability 216

head to make the LLM-based DST generation ac- 217

countable. The accountability head functions as a 218

classifier to determine whether a slot has been spec- 219

ified in the given context. Let ϕt ∈ Rd be the encod- 220

ing of the last token (separator or end-of-sentence) 221

of the context Ct, as shown in Fig. 2. Then, the 222

binary-cross entropy (BCE) of the accountability 223

head for a turn t is computed as follows. 224

p = σ(LIN(ϕt)) ∈ R|S| (2) 225
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Algorithm 1: Dialogue State Correction
Input:
B = predicted dialogue state,
S = set of slots,
p = slot probabilities
τfp = false positive threshold,
τfn = false negative threshold,
D = dialogue history
Output: Corrected dialogue state (B′)

1 B′ = {}
/* Step 1: Filtering false positives */

2 for slot, value ∈ B do
3 if pslot ≥ τfp then
4 B′[slot]← value

/* Step 2: Add false negatives */

5 S′ ← Set of slots in B
6 for slot ∈ S \ S′ do
7 if pslot ≥ τfn then
8 B′[slot]←

generateSlotValue(D,B, slot)

9 return B′

226

LBCE = − 1

|S|
∑
s∈S

(ys·log ps+(1−ys)·(1−log ps))

(3)227

where S is the set of slots, σ is the element-wise228

sigmoid operation, LIN represents a linear layer,229

ps denotes the probability of slot s, and ys ∈ {0, 1}230

indicates the label for slot classification denoting231

the presence/absence of slot s in the ground-truth232

dialogue state (Bt). The final training objective of233

the accountability model is defined as follows.234

LAccount = LLM + λ ∗ LBCE (4)235

where λ ∈ [0, 1] is a hyperparameter to control the236

weight of the BCE loss. Note that we do not gener-237

ate the dialogue policy or response, as our primary238

objective is to study the utility of accountability239

modeling in preventing user overreliance. We plan240

to explore the complete end-to-end modeling with241

an accountability head as an extension of this work.242

The accountability head helps estimate the slot243

probabilities for all the slots, which can be used to244

detect the false positive and negative slots in the245

predicted dialogue state. Furthermore, the inclu-246

sion of the accountability head acts as an auxiliary247

loss that helps in the learning of dialogue state gen-248

eration. Any information about the correct slots249

can make the dialogue state generation easier. Note250

Dataset #Slots Mode #Dialogues #Turns

MultiWOZ 30
Train 8420 56668
Validation 1000 7374
Test 999 7368

Snips 53
Train 13084 13084
Validation 700 700
Test 700 700

Table 1: Data statistics of MultiWOZ and Snips.

that ϕt is learned to optimize both LBCE and LLM. 251

Therefore, ϕt encodes the knowledge about the rel- 252

evant slots, which can improve the accuracy of the 253

generation of the dialogue state. 254

3.3 Dialogue Sate Correction using 255

Accountability Model 256

The slot probabilities output by the classifier can 257

be used to self-correct (SC) the generated dialogue 258

state, either by removing slot-value pairs from the 259

dialogue state or forcing the LLM to continue state 260

generation by providing it with the missing slot 261

names. Algo 1 shows the dialogue state correction 262

algorithm. Let τfp and τfn be the false positive and 263

false negative thresholds. Let B be the generated 264

dialogue state and p ∈ R|S| be the slot probabilities 265

of the classifier. 266

The first step of Algo 1 attempts to filter the 267

possible false positives, while the second step 268

helps to include the possible false negatives. Let 269

generateSlotValue() be the function to generate 270

the slot value for false negative slots (Line 8, 271

Algo 1). The function generates the slot value 272

for a given slot by appending the slot name to the 273

generated dialogue state (B) and runs the model 274

decoder to complete the generation. We select the 275

optimal τfp and τfn that maximizes the joint goal 276

accuracy of the validation set using grid search. 277

Instead of self-correcting, we can correct the 278

detected errors through user confirmation. This 279

experimentation is discussed in Section 6. 280

4 Experiment Setup 281

4.1 Dataset 282

We experiment with two widely used datasets: i) 283

MultiWOZ (Budzianowski et al., 2018), and ii) 284

Snips (Coucke et al., 2018). MultiWOZ is one 285

of the largest multi-domain conversation corpora 286

for task-oriented dialogue containing multi-turn 287

conversations. We use MultiWOZ 2.4 (Ye et al., 288

2022b), which contains fewer annotation errors and 289

inconsistencies than the other MultiWOZ versions. 290

On the other hand, Snips is a similar dataset for 291
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Model Type MultiWOZ Snips
JGA ↑ Slot-F1 ↑ FPR ↓ FNR ↓ JGA ↑ Slot-F1 ↑ FPR ↓ FNR ↓

Llama

MSFT 64.34 95.23 12.17 23.72 92.43 97.76 5.14 4.71
MAMD 67.13 ↑ 4.3 95.90 13.17 18.28 93.57 ↑ 1.2 98.00 4.71 4.43
MAMD+SC 70.51 ↑ 9.6 96.51 12.83 14.44 93.71 ↑ 1.4 98.17 4.00 4.00

Mistral

MSFT 65.86 95.68 11.90 20.41 92.57 97.57 6.28 5.28
MAMD 68.58 ↑ 4.1 96.19 11.35 16.94 93.71 ↑ 1.2 98.06 4.85 4.43
MAMD+SC 69.84 ↑ 6.0 96.37 12.74 14.19 94.00 ↑ 1.5 98.17 4.57 4.14

Gemma

MSFT 62.12 95.05 6.35 28.84 91.43 97.37 5.71 5.29
MAMD 65.05 ↑ 4.7 95.68 12.47 20.15 91.86 ↑ 0.5 97.86 5.43 5.29
MAMD+SC 66.27 ↑ 6.7 96.03 16.08 15.08 92.00 ↑ 0.6 98.00 5.14 5.14

Table 2: Comparison of the DST performance on the MultiWOZ 2.4 and Snips test datasets with different LLM
backbones. The relative JGA improvement of proposedMAMD andMAMD+SC, compared to the respectiveMSFT

baseline, is highlighted in blue. The best results are indicated in bold font.

spoken language understanding, containing only292

single-turn conversations. The basic statistics of293

both datasets are shown in Table 1.294

4.2 Evaluation Metric295

DST is primarily evaluated using joint goal accu-296

racy (JGA). JGA is defined as the percentage of297

turns where the predicted dialogue state exactly298

matches the ground-truth (Henderson et al., 2014).299

Additionally, we report the Slot-F1 score, which300

measures the slot-level F1 performance. We also301

analyze false positive rate (FPR) and false negative302

rate (FNR) for certain results. FPR and FNR is303

defined as the percentage of turns containing false304

positive and false negative slots, respectively.305

4.3 Model Architectures and Variants306

We study the utility of the proposed accountabil-307

ity model applying it to three LLMs - Llama 3.1308

(8B) (Dubey and et al., 2024), Mistral (7B) (Jiang309

et al., 2023), and Gemma (7B) (Team and et al.,310

2024). We use the instruction-tuned version of the311

three models. The model nomenclature used in our312

experiments is described as follows.313

• MSFT: Model trained using supervised fine-314

tuning (SFT) for dialogue state generation315

with only LLM (Eqn. 1), which is methodolog-316

ically similar to LDST (Feng et al., 2023b)317

with minor modifications.1318

• MAMD: Proposed Accountability Model for319

DST (AMD) with accountability head, fine-320

tuned with LAccount (Eqn. 4).321

• MAMD+SC: MAMD after Self-Correcting322

(SC) the dialogue state using Algo 1.323
1LDST (Feng et al., 2023b) is trained to generate the

value for a single slot where all possible slot-values from
the database is provided in the context as meta-data, limiting
its scalability. In contrast, MSFT is trained to generate the
full dialogue state without using any such meta-data.

4.4 Training Details 324

All the models are implemented using the PyTorch 325

and Huggingface libraries in Python 3.12. We used 326

LoRA (Hu et al., 2021) finetuning with rank (r) 327

8, α = 32, and dropout 0.1. We used AdamW 328

optimizer with learning rate 5e-5 to fine-tune both 329

MSFT andMAMD. We trained all the models for 330

4 epochs and chose the final model with minimum 331

validation loss. The prompts used for model fine- 332

tuning are provided in Appendix A.2. In Eqn. 4, 333

the optimal λ is selected based on the JGA score 334

of the validation set. The best λ was found to be 335

0.25 except for Mistral-Snips and Gemma-Snips, 336

where λ = 0.1 resulted in the best validation per- 337

formance. ForMAMD+SC, the false positive (τfp) 338

and the false negative (τfn) threshold is selected 339

similarly based on the validation performance. We 340

observed that (0.1, 0.5) and (0.05, 0.9) are the best 341

(τfp, τfn) for MultiWOZ and Snips, respectively. 342

These optimal values of λ, τfp, and τfn are used to 343

show the test performance in the rest of the article. 344

5 Results and Analysis 345

5.1 DST Performance 346

Table 2 compares the DST performance of the dif- 347

ferent model variants described in Section 4.3. Ta- 348

ble 3 shows the comparison with the previous base- 349

lines. The observations are summarized as follows. 350

Impact of Accountability Head: In Table 2, 351

we observe that adding the accountability head 352

in MAMD improves the performance of MSFT. 353

Both joint goal accuracy (JGA) and Slot-F1 are im- 354

proved for all the backbone models in both datasets. 355

Overall, in MultiWOZ, we can observe an absolute 356

improvement of around 3%. Similarly, we observe 357

approximately 1% improvement for Snips. The 358

margin of improvement in Snips is lower as it is rel- 359

atively easier than MultiWOZ. The improvement in 360
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Type Model JGA
Zero-Shot GPT-4o (Sun et al., 2024) 36.10

Few-Shot IC-DST (Hu et al., 2022) 62.43
OrchestraLLM (Lee et al., 2024b) 52.68
CorrectionLM (Lee et al., 2024a) 57.35

SFT

TRADE (Wu et al., 2019) 55.05
SUMBT (Lee et al., 2019) 61.86
SimpleTOD (Hosseini-Asl et al., 2020) 57.18
TripPy (Heck et al., 2020) 64.75
SOM-DST (Kim et al., 2020) 66.78
Seq2Seq (Zhao et al., 2021) 67.10
TripPy-R (Heck et al., 2022) 69.87
LDST (Feng et al., 2023b) (10% data) 62.45
MAMD (Ours) 67.13
MAMD+SCMAMD+SCMAMD+SC (Ours) 70.51

Table 3: JGA comparison between various DST models
on the MultiWOZ 2.4 test data.

JGA with the accountability head can be attributed361

to the significant reduction in FNR for MultiWOZ362

and the reduction in both FPR and FNR for Snips.363

Impact of Self-Correction: MAMD+SC self-364

corrects the predicted dialogue states of MAMD365

using Algo 1. We use the optimal τfp and τfn thresh-366

olds that maximize the JGA of the validation set (as367

described in Section 4.4). We can observe that self-368

correcting the dialogue state improves DST perfor-369

mance significantly. Considering the best results370

in Table 2,MAMD+SC improves the performance371

of the baseline MSFT model by 9.6% and 1.5%372

for MultiWOZ and Snips, respectively. We also373

observe that correcting false negatives significantly374

reduces the FNR in both MultiWOZ and Snips.375

However, false negative correction can sometimes376

introduce spurious slots (discussed in Section 5.2),377

leading to a higher FPR inMAMD+SC compared378

toMAMD in certain MultiWOZ instances where379

false negatives are more prevalent than false posi-380

tives. This happens because we optimized τfp and381

τfn to maximize JGA rather than FPR or FNR. In382

Snips, self-correction reduces both FPR and FNR383

because of the more balanced occurrence of false384

positives and false negatives.385

Comparison with previous baselines: Table 3386

compares our proposed MAMD and MAMD+SC387

with various zero-shot, few-shot, and supervised388

fine-tuning (SFT) baselines on the MultiWOZ 2.4389

dataset. The results demonstrate thatMAMD+SC390

outperforms both zero-shot and few-shot baselines391

and achieves state-of-the-art performance com-392

pared to SFT baselines. For fair comparison, we do393

not consider models such as STAR (Ye et al., 2021)394

and ASSIST (Ye et al., 2022a) that use additional395

synthetic data for training and generally achieve396

higher JGA (around 80%).397

Type τfp τfn Cost JGA ↑ FPR ↓ FNR ↓
MAMD 0 1 0 67.13 13.17 18.28
Filter
False
Positives

0.1 1 0 68.15 11.16 18.92
0.2 1 0 68.01 9.54 20.63
0.3 1 0 67.24 8.24 22.86

Add False
Negatives

0 0.9 1.5 67.55 13.59 17.19
0 0.7 4.7 68.59 14.68 14.60
0 0.5 7.5 69.31 16.39 12.11
0 0.4 8.9 68.97 18.28 10.74

Table 4: Impact of false positive and negative threshold
on dialogue state correction in MultiWOZ 2.4 test set
with Llama. “Cost” denotes the %turns where the model
generated values for false negative correction.

5.2 Impact of Varying False Positive and False 398

Negative Threshold 399

In this section, we study the impact of varying 400

the false positive threshold (τfp) and false negative 401

threshold (τfn) while correcting the dialogue states 402

using Algo 1. Table 4 shows the change in DST 403

performance by varying τfp and τfn. In our setup, 404

τfp = 0 and τfn = 1 indicate no correction for false 405

positives and false negatives, respectively. 406

Firstly, we study the impact of filtering only pos- 407

sible false positive slots whose probabilities are less 408

than τfp (Line 3-4, Algo 1). We can observe that 409

increasing τfp reduces FPR. However, this process 410

also filters correct slots with pslot < τfp, thereby 411

increasing the FNR. As a result, we can observe 412

that the JGA starts degrading when τfp > 0.1 due 413

to increasing FNR. Since we are discarding slots 414

based on a threshold, no additional cost is involved 415

in generating slot values. 416

Next, we analyze the impact of correcting only 417

possible false negative slots with different τfn (Line 418

5-8, Algo 1). We can observe that decreasing 419

τfn reduces FNR. However, this process also tries 420

to include false positive slots with pslot ≥ τfn, 421

thereby increasing the FPR. Consequently, JGA 422

drops when τfn < 0.5. Note that correcting false 423

negatives involves generating the slot values. In 424

Table 4, we denote this generation cost by the per- 425

centage of turns that require slot-value generation 426

to rectify false negatives. This generation cost is in- 427

versely proportional to τfn. On average, slot values 428

are generated for 1.1 slots per updated turn. 429

Fig. 3 shows the summary of the performance 430

gain achieved with dialogue state correction. We 431

observe thatMAMD+SC significantly enhances the 432

performance ofMSFT (9.6% relative) through self- 433

corrections. The best performance in MultiWOZ is 434

achieved with τfp = 0.1 and τfn = 0.5. However, 435

beyond a certain point, the JGA begins to decline 436
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ID Dialogue History Generated dialogue state Predicted Errors
Post-
Correct
Status

Example #1
PMUL3514
(MultiWOZ)

U0: I am looking for information in Cam-
bridge. {restaurant-pricerange:

expensive, hotel-pricerange:
moderate, hotel-stars: 0}%

False Positive:-
restaurant-pricerange:
expensive (0.02)

!S1: I need more specifics to help you. what
type of information do you need?
U1: I would like a moderately priced place
to stay. but only if it is a 0 star. I love a little
adventure!

Example #2
PMUL3919
(MultiWOZ)

U0: Can you find a theater to go to in town? {attraction-type: theatre}
%

False Negative:-
attraction-area:
dontcare (0.6)

!S1: Sure, do you have an area of town you
would like to visit?
U1: No, I am not concerned about that.

Example #3
MUL1289
(MultiWOZ)

U0: I am trying to plan a trip there but need
a cheap place to stay. {hotel-area: west,

hotel-pricerange: cheap,
hotel-internet: yes,
hotel-type: hotel}%

False Positive:-
hotel-type: hotel (0.06)
False Negative:-
hotel-name: finches bed
and breakfast (0.72)

!S1: Alexander bed and breakfast is located
in the centre. They are located at 56 saint
barnabas road.
U1: Hmm, i am looking for a place in the
west. It does not need to include internet.
S2: finches bed and breakfast is cheap.
U2: okay do they have free wifi?

Example #4
PMUL1091
(MultiWOZ)

U0: Can you locate for me a train that
leaves on tuesday after 3:15 pm? thanks. {train-leaveat: 15:15,

train-day: tuesday}!

False Negative:-
train-departure:
cambridge (0.75)

%S1: There is a train that leaves cambridge
at 15:00 and arrives at london kings cross
at 15:51 on tuesday.
U1: That’s too early. I need to leave after
15:15.

Example #5
MUL2053
(MultiWOZ)

U0: Hi there. Can you help me find a 2 star
rated hotel or guest house? {hotel-stars: 2,

hotel-internet: yes}%

False Negative:-
hotel-name: ashley
hotel (0.81), hotel-type:
hotel (0.52)

%S1: Ashley hotel is a 2 star hotel in 74
chesterton road.
U1: Does that include wifi?

Table 5: Illustrative example of dialogue state corrections using the proposedMAMD+SC model.
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Figure 3: Performance gain (JGA) with varying τfp
and τfn on MultiWOZ 2.4 test set with Llama. The x-
axis shows the %turns with false negative correction.
On average, 1.1 slots have been involved in the false
negative corrections consistently over the range of this
plot. Hence, we did not include it in the depiction.

as false negative corrections induce false positives,437

as previously discussed. Figure 3 also depicts the438

maximum JGA achievable through dialogue state439

correction using MAMD+OC where OC stands440

for Oracle-Correction. Instead of self-correcting,441

λ
MultiWOZ Snips

JGA Slot-F1 JGA Slot-F1
0 64.34 95.23 92.43 97.76

0.1 65.93 95.64 92.71 97.82
0.25 67.13 95.90 93.57 98.01

0.5 66.27 95.80 93.14 97.87
0.75 65.40 95.61 93.00 97.84

1.0 65.25 95.57 92.86 97.72

Table 6: Impact of varying λ in MAMD with Llama
backbone on test data.

MAMD+OC corrects the output ofMAMD using 442

the oracle or ground-truth slot values in the Step 443

2 of Algo 1.MAMD+OC does not introduce false 444

positives while addressing false negatives, as only 445

the slots that correspond to the ground truth are 446

updated. The plot suggests that there is still room 447

to achieve higher JGA through self-correction. 448

5.3 Impact λ on DST performance 449

In this ablation study, we vary the value of λ in 450

Eqn. 4. In Table 6, for both datasets, we observe 451

that the JGA and Slot-F1 increase with λ initially 452

and then start dropping. Note that the primary task 453

here is to generate the dialogue state for which the 454

JGA or Slot-F1 is estimated. Now, increasing the λ 455

7



increases the importance of the accountability head,456

which starts affecting the generation head after a457

certain point. Therefore, although any λ ∈ [0, 1]458

can improve the base model, a thorough hyperpa-459

rameter optimization of λ is required to achieve the460

best possible DST performance.461

5.4 Qualitative Analysis462

In this section, we provide a qualitative analysis of463

theMAMD+SC model. Table 5 shows illustrative464

examples of the model prediction from the Multi-465

WOZ datasets. In the first example, the model de-466

tected a false positive slot (restaurant-pricerange)467

and filtered it to rectify the prediction. The second468

example contains a false negative slot (attraction-469

type), which is corrected successfully. In the third470

example, the model detects both false positive and471

false negative slots and successfully rectifies them.472

In the fourth example, the original prediction of473

the model is correct. However, self-correction474

adds an extra slot (train-departure), which makes475

the prediction wrong. The fifth one shows an in-476

stance where the algorithm partially corrects an477

error. Here, the model included hotel-name to its478

prediction but added a false positive (hotel-type) in479

the process because τfn was set to 0.5. This exam-480

ple demonstrates how addressing false negatives481

can sometimes introduce false positives.482

6 Preventing User Overeliance with483

Accountability Model484

So far, we have focused on analyzing the capability485

of the proposed accountability model in detecting486

errors and self-correcting them to improve DST487

performance. In this section, we discuss its appli-488

cation to prevent user overreliance on task-oriented489

conversational AI. The approach is based on intro-490

ducing positive friction (İnan et al., 2025) like user491

confirmations that can eventually lead to successful492

task completion. Let Et be the set of erroneous493

slot-value pairs predicted by MAMD. Given Et,494

a task-oriented conversational agent can introduce495

friction turns to get clarification on the unconfident496

slots. Introducing such friction turns have been497

shown to be helpful in preventing user overreliance498

on AI (Naiseh et al., 2021; İnan et al., 2025).499

To evaluate this method, we conduct an experi-500

ment using a user simulator. We employ “GPT-4o501

mini” (OpenAI and et al., 2024) as our user simula-502

tor. Given the dialogue history and a slot-value pair503

(detected as false negative or false positive), the504

Model Type JGA Slot-F1

Llama
MAMD 67.13 95.90
MAMD+SC 70.49 96.51
MAMD+UC 70.78 96.55

Mistral
MAMD 68.58 96.19
MAMD+SC 69.84 96.37
MAMD+UC 70.21 96.41

Gemma
MAMD 65.05 95.68
MAMD+SC 66.27 96.03
MAMD+UC 66.32 96.05

Table 7: Impact of correcting dialogue state using user
simulator on MultiWOZ test data. SC and UC denote
self-correction and user confirmation, respectively.

user simulator is asked to confirm if it mentioned 505

the slot-value pair by responding “Agree” (confirms 506

interest) or “Disagree” (rejects). We correct the di- 507

alogue state by removing the false positive slots 508

and adding the false negative slots confirmed by 509

the user. A detailed description of the experimental 510

setup is provided in Appendix A.2. Table 7 shows 511

the results of this experiment whereMAMD+UC 512

denotes the User Confirmation (UC) provided by 513

the simulator. We can observe that MAMD+UC 514

achieves comparable performance toMAMD+SC. 515

However, further improvements could be achieved 516

with a more advanced user simulator and refined 517

prompt engineering. Nevertheless, the experiment 518

highlights the utility of our proposed accountability 519

modeling in mitigating user overreliance in real- 520

world task-oriented conversations. 521

7 Conclusion 522

In conclusion, we present an LLM-based genera- 523

tive accountability modeling for task-oriented di- 524

alogue systems. The core idea of our approach 525

involves incorporating an accountability head into 526

backbone LLMs, which functions as a binary classi- 527

fier to predict the slots in the dialogue state. Doing 528

so not only enables the detection of both false posi- 529

tives and false negatives but also guides the gener- 530

ation of accurate dialogue states. We empirically 531

show that accountability modeling improves the 532

DST performance of backbone LLMs (Llama, Mis- 533

tral, and Gemma) on two widely used task-oriented 534

corpora (MultiWOZ and Snips). Identifying the 535

errors also enables self-correction of the dialogue 536

state, which helps to achieve state-of-the-art per- 537

formance. Finally, we demonstrate the utility of 538

the proposed accountability modeling to correct the 539

DST errors in an interactive setup via user confir- 540

mations, thereby preventing user overreliance. In 541

the future, we want to extend accountability mod- 542

eling for end-to-end task-oriented conversations. 543
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8 Limitations544

We recognize the following limitations regarding545

our work.546

• The accountability model assumes the data547

to be annotated along with a fixed number of548

domains and slots. This is why the model549

cannot be directly used for new or unseen do-550

mains/slots. However, the domains/slots are551

generally well-defined in task-oriented con-552

versations.553

• In this work, the notion of accountability is554

added by estimating the errors in the DST task.555

Hence, the proposed accountability modeling556

approach is specific to sequence tagging tasks557

like DST, information extraction, entity ex-558

traction, etc.559

9 Ethics Statement560

This work proposes accountability modeling for561

task-oriented conversational agents. We use the562

publicly available MultiWOZ and Snips datasets563

in full compliance with their terms of use. Our564

experiments do not use any private, confidential,565

or real personal data. Our model’s use of personal566

information is limited to the task-oriented conversa-567

tion of MultiWOZ and Snips. Since we use LLMs568

to generate dialogue states, there is minimal risk569

of generating harmful, biased, or discriminatory570

statements. We acknowledge such potential ethical571

concerns associated with this work.572
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Nikola Mrkšić, Diarmuid Ó Séaghdha, Tsung-Hsien 748
Wen, Blaise Thomson, and Steve Young. 2017. Neu- 749
ral belief tracker: Data-driven dialogue state tracking. 750
In Proceedings of the 55th Annual Meeting of the 751
Association for Computational Linguistics (Volume 1: 752
Long Papers), pages 1777–1788, Vancouver, Canada. 753
Association for Computational Linguistics. 754

Mohammad Naiseh, Reem S. Al-Mansoori, Dena Al- 755
Thani, Nan Jiang, and Raian Ali. 2021. Nudging 756
through friction: An approach for calibrating trust in 757
explainable ai. In 2021 8th International Conference 758
on Behavioral and Social Computing (BESC), pages 759
1–5. 760

10

https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://doi.org/10.18653/v1/2022.findings-emnlp.193
https://doi.org/10.18653/v1/2022.findings-emnlp.193
https://doi.org/10.18653/v1/2022.findings-emnlp.193
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=IkmD3fKBPQ
https://arxiv.org/abs/2311.05232
https://arxiv.org/abs/2311.05232
https://arxiv.org/abs/2311.05232
https://arxiv.org/abs/2311.05232
https://arxiv.org/abs/2311.05232
https://doi.org/10.18653/v1/2023.sigdial-1.21
https://doi.org/10.18653/v1/2023.sigdial-1.21
https://doi.org/10.18653/v1/2023.sigdial-1.21
https://doi.org/10.18653/v1/2023.sigdial-1.21
https://doi.org/10.18653/v1/2023.sigdial-1.21
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://arxiv.org/abs/2310.06825
https://doi.org/10.18653/v1/2020.acl-main.53
https://doi.org/10.18653/v1/2020.acl-main.53
https://doi.org/10.18653/v1/2020.acl-main.53
https://doi.org/10.1016/j.chb.2024.108352
https://doi.org/10.1016/j.chb.2024.108352
https://doi.org/10.1016/j.chb.2024.108352
https://doi.org/10.1016/j.chb.2024.108352
https://doi.org/10.1016/j.chb.2024.108352
https://arxiv.org/abs/2410.18209
https://arxiv.org/abs/2410.18209
https://arxiv.org/abs/2410.18209
https://doi.org/10.18653/v1/2024.naacl-long.79
https://doi.org/10.18653/v1/2024.naacl-long.79
https://doi.org/10.18653/v1/2024.naacl-long.79
https://doi.org/10.18653/v1/P19-1546
https://doi.org/10.18653/v1/P19-1546
https://doi.org/10.18653/v1/P19-1546
https://arxiv.org/abs/2403.09972
https://arxiv.org/abs/2403.09972
https://arxiv.org/abs/2403.09972
https://arxiv.org/abs/2403.09972
https://arxiv.org/abs/2403.09972
https://doi.org/10.18653/v1/2024.acl-long.471
https://doi.org/10.18653/v1/2024.acl-long.471
https://doi.org/10.18653/v1/2024.acl-long.471
https://doi.org/10.18653/v1/2024.acl-long.471
https://doi.org/10.18653/v1/2024.acl-long.471
https://doi.org/10.18653/v1/2020.emnlp-main.273
https://doi.org/10.18653/v1/2020.emnlp-main.273
https://doi.org/10.18653/v1/2020.emnlp-main.273
https://arxiv.org/abs/2009.13570
https://arxiv.org/abs/2009.13570
https://arxiv.org/abs/2009.13570
https://doi.org/10.1145/3335082.3335106
https://doi.org/10.18653/v1/P17-1163
https://doi.org/10.18653/v1/P17-1163
https://doi.org/10.18653/v1/P17-1163
https://doi.org/10.1109/BESC53957.2021.9635271
https://doi.org/10.1109/BESC53957.2021.9635271
https://doi.org/10.1109/BESC53957.2021.9635271
https://doi.org/10.1109/BESC53957.2021.9635271
https://doi.org/10.1109/BESC53957.2021.9635271


Elnaz Nouri and Ehsan Hosseini-Asl. 2018. Toward761
scalable neural dialogue state tracking. In NeurIPS762
2018, 2nd Conversational AI workshop.763

Claudio Novelli, Mariarosaria Taddeo, and Luciano764
Floridi. 2022. Accountability in artificial intelligence:765
What it is and how it works. AI & Society: Journal of766
Knowledge, Culture and Communication - Springer.767

OpenAI and et al. 2024. Gpt-4 technical report.768
Preprint, arXiv:2303.08774.769

Samir Passi and Mihaela Vorvoreanu. 2022. Overre-770
liance on ai: Literature review. Technical report,771
Microsoft Technical Report MSR-TR-2022-12. Mi-772
crosoft Corporation.773

Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta,774
Deng Cai, Yi-An Lai, and Yi Zhang. 2022. Multi-task775
pre-training for plug-and-play task-oriented dialogue776
system. In Proceedings of the 60th Annual Meet-777
ing of the Association for Computational Linguistics778
(Volume 1: Long Papers), pages 4661–4676, Dublin,779
Ireland. Association for Computational Linguistics.780

Yi-Jyun Sun, Suvodip Dey, Dilek Hakkani-Tur,781
and Gokhan Tur. 2024. Confidence estimation782
for llm-based dialogue state tracking. Preprint,783
arXiv:2409.09629.784

Gemma Team and et al. 2024. Gemma: Open models785
based on gemini research and technology. Preprint,786
arXiv:2403.08295.787

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob788
Uszkoreit, Llion Jones, Aidan N. Gomez, undefine-789
dukasz Kaiser, and Illia Polosukhin. 2017. Attention790
is all you need. In Proceedings of the 31st Interna-791
tional Conference on Neural Information Processing792
Systems, NIPS’17, page 6000–6010, Red Hook, NY,793
USA. Curran Associates Inc.794

Chien-Sheng Wu, Andrea Madotto, Ehsan Hosseini-Asl,795
Caiming Xiong, Richard Socher, and Pascale Fung.796
2019. Transferable multi-domain state generator for797
task-oriented dialogue systems. In Proceedings of the798
57th Annual Meeting of the Association for Compu-799
tational Linguistics, pages 808–819, Florence, Italy.800
Association for Computational Linguistics.801

Miao Xiong, Zhiyuan Hu, Xinyang Lu, YIFEI LI, Jie802
Fu, Junxian He, and Bryan Hooi. 2024. Can LLMs803
express their uncertainty? an empirical evaluation of804
confidence elicitation in LLMs. In The Twelfth Inter-805
national Conference on Learning Representations.806

Heng-Da Xu, Xian-Ling Mao, Puhai Yang, Fanshu Sun,807
and Heyan Huang. 2024. Rethinking task-oriented808
dialogue systems: From complex modularity to zero-809
shot autonomous agent. In Proceedings of the 62nd810
Annual Meeting of the Association for Computational811
Linguistics (Volume 1: Long Papers), pages 2748–812
2763, Bangkok, Thailand. Association for Computa-813
tional Linguistics.814

Fanghua Ye, Yue Feng, and Emine Yilmaz. 2022a. AS- 815
SIST: Towards label noise-robust dialogue state track- 816
ing. In Findings of the Association for Computa- 817
tional Linguistics: ACL 2022, pages 2719–2731, 818
Dublin, Ireland. Association for Computational Lin- 819
guistics. 820

Fanghua Ye, Jarana Manotumruksa, and Emine Yil- 821
maz. 2022b. MultiWOZ 2.4: A multi-domain task- 822
oriented dialogue dataset with essential annotation 823
corrections to improve state tracking evaluation. In 824
Proceedings of the 23rd Annual Meeting of the Spe- 825
cial Interest Group on Discourse and Dialogue, pages 826
351–360, Edinburgh, UK. Association for Computa- 827
tional Linguistics. 828

Fanghua Ye, Jarana Manotumruksa, Qiang Zhang, 829
Shenghui Li, and Emine Yilmaz. 2021. Slot 830
self-attentive dialogue state tracking. Preprint, 831
arXiv:2101.09374. 832

Fanghua Ye, Xi Wang, Jie Huang, Shenghui Li, Samuel 833
Stern, and Emine Yilmaz. 2022c. MetaASSIST: 834
Robust dialogue state tracking with meta learning. 835
In Proceedings of the 2022 Conference on Empiri- 836
cal Methods in Natural Language Processing, pages 837
1157–1169, Abu Dhabi, United Arab Emirates. Asso- 838
ciation for Computational Linguistics. 839

Jeffrey Zhao, Mahdis Mahdieh, Ye Zhang, Yuan Cao, 840
and Yonghui Wu. 2021. Effective sequence-to- 841
sequence dialogue state tracking. In Proceedings 842
of the 2021 Conference on Empirical Methods in Nat- 843
ural Language Processing, pages 7486–7493, Online 844
and Punta Cana, Dominican Republic. Association 845
for Computational Linguistics. 846

Victor Zhong, Caiming Xiong, and Richard Socher. 847
2018. Global-locally self-attentive encoder for di- 848
alogue state tracking. In Proceedings of the 56th An- 849
nual Meeting of the Association for Computational 850
Linguistics (Volume 1: Long Papers), pages 1458– 851
1467, Melbourne, Australia. Association for Compu- 852
tational Linguistics. 853
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λ
JGA

MultiWOZ Snips
0 64.24 91.14

0.1 66.13 92.00
0.25 66.57 92.86

0.5 66.25 92.43
0.75 65.34 92.04

1.0 65.15 91.76

Table 8: Impact of varying λ inMaccount with Llama
backbone on validation data.

A.2 Additional Details871

This section provides additional details related to872

model training and prompts. The experiments are873

performed on Nvidia A100 machines. The hidden874

size of Llama and Mistral is 4096, and 3072 for875

Gemma. The number of trainable parameters in876

our LoRA fine-tuned models is 3.6M for Llama877

and Mistral. On the other hand, the trainable pa-878

rameters of the Gemma model is 3.4M. Due to879

memory limitations in GPU, we use a batch size880

of 1. We increase the effective batch size to 8 by881

using gradient accumulation. The training time for882

MultiWOZ and Snips is approximately 20 and 6883

GPU hours, respectively. All the belief states are884

generated using a single run.885

Table 9 shows the prompt format used to formu-886

late the dialogue context (Ct) to generate the belief887

states. It contains the task information, slot descrip-888

tions, dialogue history, and output format. Note889

that Table 9 shows the prompt specific to Llama.890

The prompt remains exactly the same for Mistral891

and Gemma, except for the special tokens. For the892

Snips dataset, we use the same template with the893

Snips-specific slot description.894

In Section 6, we use two kinds of prompts to con-895

firm the predicted errors from the user-simulator.896

The prompt for confirming false positives is shown897

in Table 10, while the prompt for confirming false898

negatives is shown in Table 11.899
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<|begin_of_text|>You are a helpful assistant who can perform dialogue-state tracking. The user interacts with the system
to book entities from multiple domains (hotel, restaurant, attraction, taxi, and train) in Cambridge. Your goal is to find all
the intents shown by the user in the conversation.

The user can ask for a hotel by slots - hotel-name, hotel-type, hotel-parking, hotel-area, hotel-bookday, hotel-bookstay,
hotel-internet, hotel-bookpeople, hotel-stars, hotel-pricerange. The user can ask for an attraction by slots - attraction-
name, attraction-type, attraction-area. The user can ask for a restaurant by slots - restaurant-name, restaurant-food,
restaurant-area, restaurant-bookday, restaurant-booktime, restaurant-bookpeople, restaurant-pricerange. The user can
ask for a taxi by slots - taxi-arriveby, taxi-departure, taxi-leaveat, taxi-destination. The user can ask for a train by slots
- train-arriveby, train-day, train-leaveat, train-destination, train-departure, train-bookpeople. Do not capture any other
slots!

# Task
You will be provided with a chronological dialogue history between the system and the user. You must find all the user
intents and output them in JSON format.

# Sample Output
{"restaurant-name": "abc", "restaurant-food": "xyz"}
# Conversation History
<|start_header_id|>system<|end_header_id|>
S0<|eot_id|>
<|start_header_id|>user<|end_header_id|>
U0<|eot_id|>
...
<|start_header_id|>assistant<|end_header_id|>

Table 9: Prompt template for Llama model. S0 and U0 denote the system and user utterance for the Turn 0.

Dialogue history:
{Current Dialogue History}

It seems that some information might have been incorrectly predicted. Based on the current user utterance, please help
us clarify the following:

1. If the slot name is correct but the value is wrong, you can provide the correct value.
2. If the slot name should not appear at all, let us know to delete it.

# Statement: Slot was mentioned in the dialogue history and the value is Value.
- Please respond with one of the following options:
- "Agree" (if both the slot name and value are correct)
- "Not Agree: Update to [new value]" (if the slot name is correct but the value is wrong)
- "Not Agree: Delete" (if the slot name should not appear in the belief state)

Table 10: Prompt template for clarifying false positive with user simulator.

Dialogue history:
Current Dialogue History

It seems that some important information might be missing.
Based on the latest user utterance, could you please confirm the following:
Should the Slot be "Value"?

- Please respond with "Agree" if this information is correct.
- Respond with "Not Agree" if this information is incorrect.

Your confirmation will help us improve the accuracy of the prediction.

Table 11: Prompt template for clarifying false negative with user simulator.
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