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ABSTRACT

Binary Neural networks (BNN) have emerged as an attractive computing
paradigm for a wide range of low-power vision tasks. However, state-of-the-
art (SOTA) BNNs do not yield any sparsity, and induce a significant number of
non-binary operations. On the other hand, activation sparsity can be provided by
spiking neural networks (SNN), that too have gained significant traction in re-
cent times. Thanks to this sparsity, SNNs when implemented on neuromorphic
hardware, have the potential to be significantly more power-efficient compared
to traditional artifical neural networks (ANN). However, SNNs incur multiple
time steps to achieve close to SOTA accuracy. Ironically, this increases latency
and energy—costs that SNNs were proposed to reduce—and presents itself as a
major hurdle in realizing SNNs’ theoretical gains in practice. This raises an in-
triguing question: Can we obtain SNN-like sparsity and BNN-like accuracy and
enjoy the energy-efficiency benefits of both? To answer this question, in this pa-
per, we present a training framework for sparse binary activation neural networks
(BANN) using a novel variant of the Hoyer regularizer. We estimate the threshold
of each BANN layer as the Hoyer extremum of a clipped version of its activation
map, where the clipping value is trained using gradient descent with our Hoyer
regularizer. This approach shifts the activation values away from the threshold,
thereby mitigating the effect of noise that can otherwise degrade the BANN accu-
racy. Our approach outperforms existing BNNs, SNNs, and adder neural networks
(that also avoid energy-expensive multiplication operations similar to BNNs and
SNNs) in terms of the accuracy-FLOPs trade-off for complex image recognition
tasks. Downstream experiments on object detection further demonstrate the effi-
cacy of our approach. Lastly, we demonstrate the portability of our approach to
SNNs with multiple time steps. Codes are publicly available here.

1 INTRODUCTION

Due to its low memory footprint and use of cheaper pop-count operations instead of energy-
expensive multiply-and-accumulates (MAC), BNNs have emerged as a promising low-power al-
ternative to compute- and memory-expensive deep neural networks (DNN) (Rastegari et al., 2016;
Liu et al., 2020a; 2018a). Recent works have proposed novel network architectures (Bethge et al.,
2021; Zhang et al., 2022; Shi et al., 2022; Hu et al., 2022) and training algorithms (Zhijun Tu &
Wang, 2022a; Xu et al., 2021b; Rastegari et al., 2016; Bulat & Tzimiropoulos, 2019; Geng et al.,
2023; Chen et al., 2021; Xu et al., 2021a; Kim et al., 2021; Wang et al., 2023; Lee et al., 2022)
to approximate the full-precision representation of the weights and activations with 1-bit bi-polar
values without significant drop in accuracy.

However, most of these efforts induce a significant number of non-binary operations which degrade
the computational efficiency. For example, ReactNet-based BNNs (Liu et al., 2020a; Zhijun Tu
& Wang, 2022b) incur custom non-linear functions, including RPReLU that are significantly more
complex compared to threshold or ReLU operations, duplicated basic blocks that significantly in-
crease the total number of floating point operations (FLOPs) and parameter count. Moreover, all
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these BNNs employ the sign quantization function to generate the bi-polar weights and activation
values. However, bi-polar activations do not yield any sparsity and thus can not benefit any com-
putational efficiency from hardware that can leverage sparsity. Moreover, as shown in (Wang et al.,
2020b; Lin et al., 2023; Falkena et al., 2023), it is also unclear whether sign is the optimal binariza-
tion function.

In contrast, SNNs can provide significant sparsity, even up to 80% for ultra-low number of time steps
(Chowdhury et al., 2021). However, this comes at the cost of significant accuracy drop (Datta et al.,
2021) without any specialized neuron model (Datta et al., 2023b). In an attempt to push the frontier
of sparsity-accuracy trade-off, we propose a class of uni-polar binary activation neural networks
(BANNs) that can enjoy sparsity similar to SNNs while getting rid of the temporal dimension, and
achieve BNN-like accuracies. Our BANNs are more compute-efficient than existing bi-polar BNNs.
This efficiency stems from the fact that we can skip the memory access of the weight and the eventual
accumulate/bit-count operation when the corresponding activation value is 0.

Our Contributions. Our training framework for BANNs is based on a novel application of the
Hoyer regularizer and a novel Hoyer thresholding layer. More specifically, our threshold is training-
input-dependent and is set to be equal to the Hoyer extremum of a clipped version of the activation
tensor, where the clipping value is trained using gradient descent with our Hoyer regularizer. In
this way, compared to traditional uni-polar BNNs and SNNs with ultra-low number of time steps,
our threshold increases the rate of weight updates and our Hoyer regularizer shifts the activation
distribution away from this threshold, improving convergence. We consistently surpass the accura-
cies obtained by SOTA uni-polar BNNs (Wang et al., 2020b; Sakr et al., 2018) on diverse image
recognition datasets with different convolutional architectures. Compared to SNNs, and adder neu-
ral network (AddNN) models that are also compute-efficient, our BANN models yield higher test
accuracy with a ∼5.5× reduction in floating point operations (FLOPs), thanks to the extreme spar-
sity enabled by our training framework. Incorporating the training framework of BANNs can also
improve the test accuracy in advanced bi-polar BNNs. Downstream tasks on object detection also
demonstrate that our approach surpasses the test mAP of existing BNNs and SNNs. Our approach
can also be incorporated to SNNs with multiple time steps, thereby leading to small but significant
accuracy increase at the cost of significant increase in memory and compute cost. Thus, our pro-
posed approach acts as a continuum between one time-step sparse BNNs and low time-step SNNs,
and can help bridge both the BNN and SNN communities for low-power vision tasks.

2 PRELIMINARIES

2.1 HOYER REGULARIZER

Based on the interplay between ℓ1 and ℓ2 norms, a new measure of sparsity was first introduced in
(Hoyer, 2004), based on which, (Yang et al., 2020) proposed a new regularizer, termed the Hoyer
regularizer for the trainable weights that was incorporated into the loss term to train DNNs. We
adopt the same form of Hoyer regularizer for the activation to train our BANN models as H(ul) =(

∥ul∥1

∥ul∥2

)2
(Kurtz et al., 2020). Here, ∥ul∥i represents the ℓi norm of the activation tensor ul, and the

superscript t for the time step is omitted for simplicity. Compared to the ℓ1 and ℓ2 regularizers, the
Hoyer regularizer has scale-invariance (similar to the ℓ0 regularizer). It is also differentiable almost
everywhere (see equation 1) where |ul| represents the element-wise absolute of the tensor ul.

∂H(ul)

∂ul
=
2∥ul∥1
∥ul∥22

(
sign(ul) · ∥ul∥2 −

∥ul∥1
∥ul∥2

ul

)
(1)

Letting the gradient ∂H(ul)
∂ul

=0 and making all the ul positive, the value of the Hoyer extremum

becomes E(ul)=
∥ul∥2

2

∥ul∥1
. This extremum is the minimum, because the second derivative is greater

than zero for any value of the output element. Training with the Hoyer regularizer can effectively
help push the activation values that are larger than the extremum (ul>E(ul)) even larger and those
that are smaller than the extremum (ul<E(ul)) even smaller.
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2.2 BINARY NEURAL NETWORKS

Given a input ol−1 ∈ Rc×h×w and weight w ∈ Rn×c×k×k of a layer l, we can get the output
ul ∈ Rc×h′×w′

by convolution operation as ul = ol−1 ∗ wl. To accelerate the inference process,
bi-polar BNNs (Liu et al., 2020a; Zhijun Tu & Wang, 2022b) partition the input and weight into two
clusters, -1 and +1 with sign function as Eq. 2.

sign(x) =
{
1, if x ≥ 0;

−1, otherwise
(2)

To yield sparsity similar to ReLU activation, uni-polar BNNs (Wang et al., 2020b; Sakr et al., 2018)
parition the weights to -1 and +1, while the activations to 0 and 1 as illustrated below in Eq. 3.

zl =
ul

vthl
ol =

{
1, if zl ≥ 1;

0, otherwise
(3)

where zl denotes the normalized activation output, and vthl denotes a trainable threshold parame-
ter. While our BANNs primarily focus on sparse uni-polar activations with full-precision weights
(activations are significantly more difficult to binarize compared to weights (Lin et al., 2017b; Ding
et al., 2019)), we also demonstrate the efficacy of BANNs with binary weights (-1 and +1) for a fair
comparison with BNNs.

3 PROPOSED TRAINING FRAMEWORK

Our approach is inspired by the fact that Hoyer regularizers can shift the pre-activation distributions
away from the Hoyer extremum in a DNN (Yang et al., 2020). Our principal insight is that setting our
activation threshold to this extremum shifts the distribution away from the threshold value, reducing
noise and improving convergence. To obtain our BANNs, we present a novel Hoyer threshold layer
that sets the threshold based upon a Hoyer regularized training process, as described below.

3.1 HOYER THRESHOLD LAYER

Figure 1: (a) Comparison of our Hoyer threshold function with
existing uni-polar binary activation functions where the blue
distribution denotes the shifting of pre-activation values away
from the threshold using Hoyer regularized training, (b) Pro-
posed derivative of our Hoyer threshold function.

As illustrated above in Eq. 3, a
binary neuron with a unit step ac-
tivation function is difficult to op-
timize with straight through es-
timator (STE) based approaches
(Bengio et al., 2013), which ei-
ther approximates the binary neu-
ron functionality with a continu-
ous differentiable model or sur-
rogate gradient approaches used
in SNNs (Panda & Roy, 2016;
Lee et al., 2016). This is because
the number of ones in the acti-
vations becomes too low to ad-
just the weights sufficiently using
gradient descent. If a pre-synaptic neuron does not output 1, the synaptic weight connected to it can-
not be updated because its gradient from neuron i is calculated as guj

×oi, where guj
is the gradient

of the activation uj and oi is the output of neuron i.

Therefore, it is crucial to reduce the value of the threshold to generate enough 1s for better network
convergence. However, a sufficiently low value of threshold can generate a one for every neuron,
but that would yield random outputs in the final classifier layer. Hence, it is challenging to yield the
optimal threshold for each layer. Previous works (Wang et al., 2020b) show that this problem can
be partially mitigating by training the threshold term vthl using gradient descent. However, that still
leads to a large accuracy gap with the SOTA bi-polar BNNs, especially for ImageNet-level tasks.

In contrast, we propose to dynamically down-scale the threshold (see Fig. 1(a)) based on the ac-
tivation using our proposed form of the Hoyer regularizer. In particular, we clip the activation
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corresponding to each convolutional layer to the trainable threshold vthl obtained from the gradient
descent with our Hoyer loss, as detailed later in Eq. 12. Unlike existing approaches (Rathi et al.,
2020a; Chowdhury et al., 2021) that require vthl to be initialized from a pre-trained full-precision
model, our approach can be used to train BANNs from scratch with a Kaiming uniform initializa-
tion (He et al., 2015) for both the weights and thresholds. In particular, the normalized down-scaled
threshold value, with which we compare the normalized activation zl, for each layer is computed as
the Hoyer extremum of the clipped activation tensor as shown in Fig. 1(a) and below.

zclip
l =


1, if zl>1

zl, if 0≤zl≤1

0, if zl < 0

ol=hs(zl)=

{
1, if zl≥E(zclip

l )

0, otherwise
(4)

Note that our normalized threshold E(zclip
l ) is less than the normalized threshold whose value is 1

for any output (proof in supplementary materials). Hence, our actual threshold value E(zclip
l )×vthl

is indeed less than the trainable threshold vthl used in earlier works (Datta & Beerel, 2022; Rathi
et al., 2020a). We also observe that the Hoyer extremum in each layer changes only slightly during
the later stages of training, which indicates that it is most likely an inherent attribute of the dataset
and model architecture. Hence, to estimate the threshold during inference, we calculate the expo-
nential average of the Hoyer extremums during training, similar to batch normalization (BN) layers,
and use the same during inference.

3.2 HOYER REGULARIZED TRAINING

The loss function (Ltotal) of our proposed approach is shown below in Eq. 5.

Ltotal = LCE + λHLH = LCE + λH

L−1∑
l=1

H(zclip
l ) (5)

where LCE denotes the cross-entropy loss calculated on the softmax output of the last layer L,
and LH represents the Hoyer regularizer calculated on the input of our Hoyer threshold layer after
dividing the threshold term vthl and clipping. The weight update for the layer L−1 is computed as

∆WL−1=
∂LCE

∂wL−1
+λH

∂LH

∂wL−1
=

∂LCE

∂oL−1

∂oL−1

∂uL−1

∂uL−1

∂wL−1
+λH

∂LH

∂uL−1

∂uL−1

∂wL−1

=

(
∂LCE

∂oL−1

∂oL−1

∂uL−1
+λH

∂H(zclip
L−1)

∂uL−1

)
oL−2

(6)

∂LCE

∂oL−1
=

∂LCE

∂uL

∂uL

∂oL−1
= (s− y)wL (7)

where s denotes the output softmax tensor, i.e., si = eu
i
L∑N

k=1 uk
L

where ui
L and uk

L denote the ith and

kth elements of the activation tensor of the last layer L, and N denotes the number of classes. Note
that y denotes the one-hot encoded tensor of the true label, and ∂H(uL)

∂uL
is computed using Eq. 1.

The last layer does not have any threshold and yields full-precision outputs.

The weight and threshold update computations for the hidden layers are in Appendix A.1.

Note that all the derivatives to update the trainable parameters can be computed by Pytorch auto-
grad, except the derivative ∂ol

∂zl
, whose gradient is zero almost everywhere and undefined at zl=0.

We extend the existing idea of surrogate gradient descent (SGD) (Neftci et al., 2019) in SNNs to
compute this derivative for our BANNs with Hoyer threshold layers, as illustrated in Fig. 1(b) and
mathematically defined as follows.

∂ol

∂zl
=

{
scale×1 if 0 < zl < 2

0 otherwise
(8)

where scale denotes a hyperparameter that controls the dampening of the gradient. Note that ol
jumps from 0 to 1 at zl=1. We assume the surrogate gradient is non-zero spanning a width of 1 in
both directions around zl=1.
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Table 1: Comparison of the test accuracy of our BANNs with full-precision DNNs for object recog-
nition. Model∗ indicates that we remove the first max pooling layer, and Sp. denotes sparsity.

Network dataset DNN (%) BANN (%) Sp. (%)
VGG16 CIFAR10 94.10 93.44 78.13
ResNet18 CIFAR10 93.34 92.50 74.17
ResNet18∗ CIFAR10 94.28 93.88 83.88
ResNet20 CIFAR10 93.18 92.39 76.31
ResNet34∗ CIFAR10 94.68 93.53 83.96
ResNet50∗ CIFAR10 94.90 94.07 82.21
VGG16 ImageNet 70.08 68.00 75.52
ResNet50 ImageNet 73.12 66.98 76.11

Figure 2: Layerwise spiking activities for a VGG16 across time steps ranging from 5 to 1 (average
spiking activity denoted as S in parenthesis) representing existing low-latency SNNs including our
work (which represents one time step) on (a) CIFAR10, (b) ImageNet, (c) Comparison of the total
energy consumption between SNNs with different time steps and full-precision DNNs.

4 EXPERIMENTAL RESULTS

Datasets & Models: Similar to existing BNN and SNN works (Rathi et al., 2020b;a; Liu et al.,
2020a), we perform object recognition experiments on CIFAR10 (Krizhevsky, 2009) and ImageNet
(Deng et al., 2009) dataset using VGG16 (Simonyan & Zisserman, 2014) and several variants of
ResNet (He et al., 2016) architectures. For object detection, we use the MMDetection framework
(Chen et al., 2019) with PASCAL VOC2007 and VOC2014 (Everingham et al., 2010) as training
dataset, and benchmark our BANN models and the baselines on the VOC2007 test dataset. We use
the Faster R-CNN (Ren et al., 2015) and RetinaNet (Lin et al., 2017a) framework, and substitute the
original backbone with our BANN models pretrained on ImageNet.
Object Recognition Results: For training the recognition models, we use the Adam (Kingma &
Ba, 2014) optimizer for VGG16, and use SGD optimizer for ResNet models. As shown in Table 1
with FP weights, we obtain the SOTA accuracy of 93.44% on CIFAR10 with VGG16; the accuracy
of our ResNet-based BANNs on ImageNet also surpasses the existing works. Note that our ResNet
models are based on the spike-element-wise (SEW) architecture (Fang et al., 2020) as detailed in
Appendix A.2. On ImageNet, we obtain a 68.00% top-1 accuracy with VGG16 which is only ∼2%
lower compared to the iso-architecture full-precision counterpart. All our BANN models yield a
sparsity of ∼75% or higher on both CIFAR10 and ImageNet, which is significantly higher com-
pared to existing SNNs/BNNs as shown in Fig. 2.
Accuracy Comparison with SNNs: We compare our results with various SOTA ultra low-latency
SNNs for image recognition tasks in Table 2. Our BANNs yield comparable or better test accuracy
compared to all the existing works on both CIFAR10 and ImageNet, with significantly lower infer-
ence latency (due to the existence of multiple time steps in SOTA SNNs). The only exception for
the latency reduction is the one-time-step SNN proposed in (Chowdhury et al., 2021), however, it
increases the training time significantly as illustrated later in Fig. 3.
Energy Efficiency Comparison with SNNs and full-precision DNNs: We compare the energy-
efficiency of our BANNs with full-precision DNNs and existing multi-time-step SNNs in Fig. 2.
The compute-efficiency of BANNs stems from two factors: 1) sparsity, that reduces the number of
synaptic operations in convolutional and linear layers compared to full-precision DNNs according
to SNNflops

l = Sl × DNNflops
l (Chowdhury et al., 2021), where Sl denotes the average number of

spikes per neuron per inference over all timesteps in layer l. Note that the sparsity induces a small
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Table 2: Comparison of our BANN models to existing SNNs. SGD and hybrid denote surrogate
gradient descent and pre-trained DNN followed by SNN fine-tuning respectively. (qC, dL) denotes
an architecture with q convolutional and d linear layers. T.S denotes the number of time steps.
*Results reported without autoaugmentation and cutout for fair comparison with our work.

Ref. Training Architecture Acc. (%) T.S
Dataset : CIFAR10

(Meng et al., 2022) SGD PreAct-ResNet19 95.40 20
(Deng et al., 2021) DNN-SNN conversion VGG16 92.29 16
(Bu et al., 2022a) DNN-SNN coonversion VGG16 90.96 8
(Zhang & Li, 2020) SGD 5C, 2L 91.41 5
(Rathi et al., 2020a) Hybrid VGG16 92.70 5
(Zheng et al., 2021) STBP-tdBN ResNet19 93.16 6
(Datta & Beerel, 2022) Hybrid VGG16 91.79 2
(Bu et al., 2022b) DNN-SNN conversion VGG16 91.18 2
(Fang et al., 2020) SGD 5C, 2L 93.50 8
(Deng et al., 2023)* SGD ResNet18 94.58 2
(Xiao et al., 2022) SGD VGG (sWS) 93.73 6
(Deng et al., 2022) SGD ResNet19 94.16 2
(Li et al., 2021b) SGD ResNet18 93.13 2
(Chowdhury et al., 2021) Hybrid VGG16 93.05 1
(Chowdhury et al., 2021) Hybrid ResNet20 91.10 1
Ours Adam+Hoyer Reg. VGG16 93.44 1

Dataset : ImageNet
(Bu et al., 2022b) DNN-SNN conversion ResNet34 59.35 16
(Li et al., 2021b) SGD ResNet18 71.24 5
(Rathi et al., 2020a) Hybrid VGG16 69.00 5
(Fang et al., 2021) SGD ResNet34 67.04 4
(Fang et al., 2021) SGD ResNet152 69.26 4
(Deng et al., 2023)* SGD ResNet34 65.77 2
(Duan et al., 2022) SGD ResNet34 68.28 4
(Deng et al., 2022) SGD ResNet19 68.00 4
(Rathi et al., 2020a) Hybrid VGG16 69.00 5
(Zheng et al., 2021) STBP-tdBN ResNet34 67.05 6
(Chowdhury et al., 2021) Hybrid VGG16 67.71 1
Ours Adam+Hoyer Reg. VGG16 68.00 1

overhead of checking whether the 1-bit activation is zero, which consumes 0.05pJ in 28nm Kintex-7
FPGA platform according to our post place-and-route simulations. 2) Use of only AC (1.8pJ) op-
erations that consume 7.4× lower compared to each MAC (13.32pJ) operation in our FPGA setup
for floating point (FP) representation. Note that the binary activations can replace the FP multipli-
cations with logical operations, i.e., conditional assignment to 0 with a bank of AND gates. These
replacements may be realized using existing hardware depending on the compiler and the details of
their data paths. Building a custom accelerator that can efficiently implement these reduced opera-
tions is also possible (Wang et al., 2020a; Frenkel et al., 2019; Lee & Li, 2020). Additionally, our
BANNs also enjoy superior memory-efficiency compared to existing multi-time-step SNNs since
the latter requires the membrane potentials and weights to be fetched from and read to the on-/off-
chip memory for each time step. Our BANNs can avoid these repetitive read/write operations as
it does involve any state and lead to a T× reduction in the number of memory accesses compared
to a T-time-step SNN model. Compared to traditional bi-polar BNNs, our BANNs can also reduce
the number of memory accesses with the support of zero gating logic leveraging the high activation
sparsity. This can be achieved by skipping the reading of the weights when the activation associated
to it is zero. However, the exact savings in memory energy will depend on the weight reuse scheme
and the underlying hardware. We have provided the detailed energy model of traditional BNNs,
multi-time-step SNNs, BANNs, and full-precision DNNs, considering the sparsity overhead and
memory accesses without any weight reuse scheme, in Appendix A.9. We compare the layer-wise
spiking activities Sl for time steps ranging from 5 to 1 in Fig. 2(a-b) that are computed based on the
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Table 3: Accuracies from different strategies to train BANNs on CIFAR10

Training Strategies Pretrained
DNN(%) BANN (%) Sparsity (%)

Pre-trained+fine-tuning 93.15 91.39 23.56
Iterative training (N=10) 93.25 92.68 10.22
Iterative Training (N=20) 92.68 92.24 9.54
Proposed Training - 93.13 22.57

Table 4: Accuracies and energies of weight quantized BANN models based on VGG16 on CIFAR10
where FP is 32-bit floating point.

Dataset Bits Acc. (%) Spiking
Activity (%) Energy (mJ)

CIFAR10 FP 93.44 22.57 18.67
CIFAR10 6 93.11 22.46 7.46
CIFAR10 2 92.94 21.39 5.66
CIFAR10 1 92.80 22.68 5.02
ImageNet FP 68.00 24.48 424.3
ImageNet 2 66.86 23.82 231.3
ImageNet 1 64.62 23.99 221.8

replicated implementation of an existing low-latency SNN (Rathi et al., 2020a), against our work
(where the spiking activity denotes the number of 1s) that represents a time step of 1. Note, the
spike rates decrease significantly with time step reduction from 5 to 1, leading to considerably lower
FLOPs in our one-time-step SNNs. These lower FLOPs, coupled with the 7.4× reduction for AC
operations and the sparsity overhead, lead to a 22.7× and 31.9× reduction in compute energy on
CIFAR10 and ImageNet respectively with VGG16. Considering the memory accesses as provided
in our energy models in A.9, the total energy reduces by 70.28× and 81.13×.
Comparison with different training strategies: Based on existing BNN and SNN literature, we
hypothesize that two training strategies that can be effectively used to train BANNs, other than our
proposed approach.
Pre-trained DNN, followed by BANN fine-tuning. Similar to the hybrid training proposed in (Rathi
et al., 2020b), we pre-train a full-precision DNN model, and copy its weights to the BANN model.
Initialized with these weights, we train our BANN with normal cross-entropy loss.
Iteratively convert ReLU neurons to binary neurons. First, we train a DNN model which uses the
ReLU activation with threshold, then we iteratively reduce the number of the ReLU neurons whose
output activations are multi-bit. Specifically, we first force the activation values in the top N per-
centile to output 1, and those in bottom N percentile percent to output 0, and gradually increase N
until the accuracy drops beyond a certain threshold or all neuron outputs are either 1 or 0.
Proposed training from scratch. With our proposed Hoyer threshold layer and Hoyer regularized
training, we train a BANN model from scratch. Our results with these training strategies are shown
in Table 3, which indicates that it is difficult for training strategies that involve pre-training and fine-
tuning to approach the accuracy of full-precision models with BANNs. One possible reason for this
might be the difference in the distribution of the pre-activation values between the DNN and BANN
models (Datta & Beerel, 2022). Our Hoyer threshold layer and our Hoyer regularizer, can help train
a BANN model with SOTA accuracy from scratch.
Effect on Quantization: In order to further improve the energy efficiency of our BANNs, we per-
form quantization-aware training of the weights in our models to 1−6 bits for both CIFAR10 and
ImageNet. This transforms the FP ACs to 1−6 bit ACs, thereby leading to a 4.8−13.8 reduction in
compute energy as obtained from our FPGA simulations. The reduced weight precision also reduces
the memory access cost by ∼5−32× with efficient bit-packing (bit, 2021) for 1−6 bits according to
our FPGA simulations. Note that we only quantize the convolutional layers, as quantizing the linear
layers lead to a noticeable drop in accuracy. As shown in Table 4, when quantized to 6 bits, our
VGG-based BANN incur a negligible accuracy drop of only 0.02% on CIFAR10, while reducing
the total energy by 3.3× (energy computed from the models developed in A.9). Even with 1-bit
quantization, our model can yield an accuracy of 92.80% without any special modification, while
still yielding a sparsity of ∼78%.
Comparison with AddNNs & BNNs: We compare the accuracy and energy of our BANN
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Table 5: Accuracy & Energy Comparison of our BANNs to AddNNs and BNNs

Reference Dataset Acc.(%) Energy (mJ)
Uni-polar BNNs

(Sakr et al., 2018) CIFAR10 89.6 4.94
(Wang et al., 2020b) ImageNet 59.7 215.0

Bi-polar BNNs

(Diffenderfer & Kailkhura, 2021) CIFAR10 91.9 14.72
AddNNs

(Chen et al., 2020) (FP weights) CIFAR10 93.72 95.22
(Chen et al., 2020) (2-bit weights) CIFAR10 92.08 24.57
(Chen et al., 2020) (FP weights) ImageNet 67.0 2291.2

Our BANNs

This work (FP weights) CIFAR10 93.44 18.67
This work (1-bit weights) CIFAR10 92.80 5.02
This work (FP weights) ImageNet 68.00 424.3
This work (1-bit weights) ImageNet 64.62 221.8

Table 7: Test accuracy obtained by our approach with multiple time steps for SNNs on CIFAR10.

Architecture Time steps Acc. (%) Spiking activity (%)
VGG16 1 93.44 21.87
VGG16 2 93.71 44.06
VGG16 6 94.14 101.22
ResNet18 1 91.48 25.83
RseNet18 2 91.93 33.24
ResNet18 6 92.01 83.82

models with recently proposed AddNN models (Chen et al., 2020) that also removes multi-
plications for increased energy-efficiency in Table 5. With the VGG16 architecture, on CI-
FAR10, we obtain 0.6% lower accuracy, while on ImageNet, we obtain 1.0% higher accu-
racy. Moreover, unlike our BANNs and SNNs, AddNNs do not yield any sparsity, and con-
sume ∼5.1× more compute energy (with the sparsity overhead incorporated) compared to
our BANNs on average across both CIFAR10 and ImageNet (see Table 5). We also com-
pare our BANN models with SOTA BNNs in Table 7 that replaces the costly MAC op-
erations with cheaper pop-count counterparts, thanks to the binary weights and activations.

Table 6: Impact of our proposed Hoyer regularized training frame-
work on the test accuracy with advanced BNNs

Work Acc. (%) Acc. w/ Hoyer (%)
PokeBNN-1.0x 73.4 73.6 (+0.2)
MeliusNet59 71.0 72.3 (+1.3)

ReCU (Resnet18) 66.4 67.8 (+1.4)

Our BANNs with 2-bit
quantized weights con-
sume 2.6× lower energy
compared to the bi-polar
BNNs (see (Diffenderfer
& Kailkhura, 2021) in
Table 5). This is due to the
improved trade-off between
the high sparsity activity
(∼78% as shown in Table 1)
provided by our BANN models, and less energy due to XOR operations and 1-bit memory access
compared to weight-quantized ACs and 2-bit memory access. On the other hand, our BANNs with
1-bit weights i.e., our sparse uni-polar BNNs consume similar energy compared to existing unipolar
BNNs (see (Sakr et al., 2018; Wang et al., 2020b) in Table 5) while yielding 2.6% higher accuracy
(92.80% vs 90.2%) on CIFAR10 and 4.9% higher accuracy (64.62% vs 59.7%) on ImageNet at
iso-architecture. Lastly, it is worth mentioning that though our sparse BNNs can surpass test
accuracies obtained by a few existing BNNs, it fails to yield accuracies similar to the SOTA bi-polar
BNNs (Zhang et al., 2022; Bethge et al., 2021; Zhijun Tu & Wang, 2022a; Xu et al., 2021b).
This is due to their higher expressivity (further explained in A.11) and network modifications
(e.g. ReactNet with PReLU compared to our simple VGG and ResNets) that increases the FLOPs
by more than 2×. However, applying our proposed training technique on these BNNs results in
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0.2−1.3% increase in test accuracy as shown in Table 6. This is done using the same way as using
the Hoyer extremum of the normalized and clipped activation as the threshold, where the clipping
is done at -1 and +1 (instead of 0 and +1 for our BANNs). This demonstrate the efficacy of our
proposed method.
Extension to SNNs: We extend our proposed approach to multi-time-step SNN models by adopting
the standard LIF model (Sengupta et al., 2019) for the neurons but computing the threshold based
on the Hoyer extremum defined in Eq. 3 and unrolling the gradients derived in Section 3.2 using
traditional backpropagation through time (Rathi et al., 2020a). As shown in Table 7, as time step
increases from 1 to 6, the accuracy of our model also increases from 93.44% to 94.14%, which
validates the effectiveness of our method. However, this accuracy increases comes at the cost of a
significant increase in spiking activity (see Table 7 where the spiking activity is computed across the
total number of time steps similar to (Sengupta et al., 2019)), increasing the compute energy. The
memory cost also increases due to the repetitive potential and weight accesses across time steps.

5 RELATIONSHIP BETWEEN SNN, BNN, AND BANN

Our BANNs are identical to uni-polar sparse BNNs (Sakr et al., 2018; Wang et al., 2020b) when
the weight precision is quantized down to 1-bit. Our BANNs are also identical to one-time-step
SNNs, and can be readily extended to traditional multi-time-step SNNs with the incorporation of the
membrane potential, using the traditional LIF model for the neurons where the membrane potential
integrates the weight modulated input spikes and leaks over time. We use the soft reset mechanism
that reduces the membrane potential by the threshold value when an output spike generated (Datta
et al., 2023a). It has been shown that soft reset minimizes the information loss by allowing the
spiking neuron to carry forward the surplus potential above the firing threshold to the subsequent
time step (). We use our proposed combination of Hoyer regularized training and Hoyer spike layer
to train the per layer threshold, while we train the weights and leak term using SGL. The dynamics
of our LIF model for our multi-time-step SNNs are shown below.

Ump
i (t)=λUi(t−1)+

∑
jWijSj(t), Si(t)=1 if Ump

i (t)>V th else 0, Ui(t)=Ump
i (t)−Si(t)V

th

Here Ui(t) denotes the membrane potential of the ith neuron at timer step t, Si(t) denotes the
binary output of the ith neuron at time step t, V th denotes the threshold, λ denotes the leak, and
Wij denotes the weight connecting the pre-synaptic neuron j and the neuron i.

The sparse activation in BANNs bears resemblance to SNNs while the difference is that there is no
temporal dimension. On the other hand, the 1-bit sparse activation in BANNs bears resemblance to
BNNs, in particular uni-polar BNNs, while the difference is that the weight precision is multi-bit.
Thus, BANNs can bridge the gap between BNNs and SNNs by bringing the activation sparsity of
SNNs to BNNs, and removing the temporal dimension of SNNs for equivalence with BNNs.

6 CONCLUSIONS

In this work, we propose BANNs trained using a novel variant of Hoyer Regularizer and a Hoyer
threshold layer that jointly optimizes the distribution of the BANN pre-activations and the placement
of the BANN threshold in order to improve the accuracy-FLOPs trade-off compared to existing
networks. Our Hoyer regularizer introduces a loss term that penalizes the normalized and clipped
activation values around their Hoyer extremum (which depends on the SGD trained threshold). Our
proposed Hoyer threshold layer takes advantage of this distribution shift by setting the IF threshold
to the Hoyer extremum. Our BANN models surpass test accuracies obtained by existing SNN, uni-
polar BNN, and AddNN models with similar or better energy-efficiency. Our training framework can
also improve the accuracy of a number of advanced bi-polar BNNs. Our SNNs can further improve
the inference energy and latency efficiency with recently proposed in-sensor computing systems
(Datta et al., 2022d;a;c) where the bandwidth between the sensor that implements the first few CNN
layers and the back-end processing unit that implements the remaining layers can be significantly
reduced, thanks to the binary activations for only one time step (Datta et al., 2023c).
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A APPENDIX

A.1 THRESHOLD & WEIGHT UPDATES DUE TO HOYER LOSS

For a hidden layer l, the weight update is computed as

∆Wl=
∂LCE

∂wl
+λH

∂LH
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=
∂LCE

∂ol

∂ol

∂zl

∂zl
∂ul

∂ul

∂wl

+λH
∂LH

∂ul

∂ul

∂wl
=
∂LCE

∂ol

∂ol

∂zl

ol−1

vthl
+λH

∂LH

∂ul
ol−1

(9)

where ∂LH
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can be computed as
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Figure 3: BANN architectures corresponding to (a) VGG and (b) ResNet based models.

This is because LH is the sum of the Hoyer regularizer of the first l−1 layers, the lth layer, and the
layers after the lth layer. While computing ∂LH

∂ul
, the gradient of the 1st part is 0, and the gradient

of the 2nd (3rd) part is captured in the second (first) term in Eq. 8. Note that ∂LH

∂ul+1
is the gradient

backpropagated from the (l + 1)
th layer, that is iteratively computed from the last layer L (see Eqs.

7 and 11). Also, note that for any hidden layer l, there are two gradients that contribute to the Hoyer
loss with respect to the activation ul; one is from the subsequent layer (l+1) and the other is directly
from its Hoyer regularizer. Similarly, ∂LCE

∂ol
is computed iteratively, starting from the penultimate

layer (L−1) defined in Eq. 7, as follows.
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wl+1

vthl
(11)

Finally, the threshold update for the hidden layer l is computed as

∆vthl =
∂LCE

∂vthl
+λH
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=
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∂ol

∂ol

∂zl

∂zl
∂vthl

+λH
∂LH

∂vthl

=
∂LCE

∂ol

∂ol

∂zl

−ul

(vthl )2
+λH

∂LH

∂ul+1

∂ul+1

∂vthl

(12)
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∂ol
· ∂ol

∂vthl
= wl+1 ·

∂ol

∂zl
· −ul

(vthl )2
(13)

Note that we use this vthl , which is updated in each iteration, to estimate the threshold in our BANN
model using Eq. 4.

A.2 NETWORK ARCHITECTURE

We adopt a series of network architectural tricks for our BANNs (Datta & Beerel, 2022; Chowdhury
et al., 2021; Rathi et al., 2020a). As shown in Fig. 3(a), for the VGG variant, we use the max pooling
layer immediately after the convolutional layer that is common in many BNN architectures (Raste-
gari et al., 2016), and introduce the BN layer after max pooling. Similar to recently developed
multi-time-step SNN models (Zheng et al., 2021; Li et al., 2021a; Deng et al., 2022; Meng et al.,
2022), we observe that BN helps increase the test accuracy with one time step. In contrast, for the
ResNet variants, inspired by (Liu et al., 2018b), we observe models with shortcuts that bypass every
block can also further improve the performance of the SNN. We also observe that the sequence of
BN layer, Hoyer spike layer, and convolution layer outperforms the original bottleneck in ResNet.
More details are shown in Fig. 3(b).

A.3 ABLATION STUDIES

We conduct ablation studies to analyze the contribution of each technique in our proposed approach.
For fairness, we train all the ablated models on CIFAR10 dataset for 400 epochs, and use Adam as
the optimizer, with 0.0001 as the initial learning rate. Our results are shown in Table 8, where the
model without Hoyer threshold layer indicates that we set the threshold as vthl similar to existing
works (Datta & Beerel, 2022; Rathi et al., 2020a) rather than our proposed Hoyer extremum.
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Table 8: Ablation study of the different methods in our proposed training framework on CIFAR10.

Arch. Hoyer
Reg.

Hoyer
Spike Acc. (%) Sparsity (%)

VGG16 × × 88.42 84.38
VGG16 ✓ × 90.45 79.52
VGG16 × ✓ 92.90 78.30
VGG16 ✓ ✓ 93.13 77.43
ResNet34 × × 87.41 77.22
ResNet18 ✓ × 90.95 79.50
ResNet18 × ✓ 91.17 74.13
ResNet18 ✓ ✓ 91.48 74.17

Table 9: Comparison of our BANNs with full-precision DNNs & BNNs on VOC2007 dataset.

Framework Backbone mAP(%)
Faster R-CNN Original ResNet50 79.5
Faster R-CNN Bi-Real (Liu et al., 2018b) 65.7
Faster R-CNN ReActNet (Liu et al., 2020b) 73.1
Faster R-CNN BANN ResNet50 73.7
Retinanet Original ResNet50 77.3
Retinanet BANN ResNet50 (ours) 70.5
YOLO BANN DarkNet (Kim et al., 2019) 53.01
SSD BNN VGG16 (Wang et al., 2020c) 66.0

With VGG16, our Hoyer regularizer approach leads to a 2.03% increase in accuracy. Together, with
our Hoyer threshold layer, the accuracy improves by 2.68% to 93.13% while also yielding a 2.09%
reduction in sparsity.

We observe a similar trend for our network modifications and Hoyer threshold layer with ResNet18.
However, Hoyer regularizer in this case also increases the sparsity from 72.38% to 77.22% to
79.50%, while also negligibly reducing the accuracy. In summary, the combination of our Hoyer
regularizer and Hoyer threshold layer yield the SOTA BNN/SNN performance.

A.4 OBJECT DETECTION RESULTS

Object Detection Results: For object detection on VOC2007, we compare the performance ob-
tained by our BANN models with full-precision DNNs and BNNs in Table 9. For two-stage ar-
chitectures, such as Faster R-CNN, the mAP of our BANN models surpass the existing BNNs by
>0.6%. For one-stage architectures, such as RetinaNet (chosen because of its SOTA performance),
our BANN models with a ResNet50 backbone yields a mAP of 70.5% (highest among existing BNN,
SNN, AddNNs). Note that our BANN-based VGG and ResNet-based backbones lead to a signifi-
cant drop in mAP with the YOLO framework that is more compatible with the DarkNet backbone
(even existing DarkNet-based SNNs lead to very low mAP with YOLO as shown in Table 9).

A.5 PROOF OF THRESHOLD DOWNSCALING WITH HOYER EXTREMUM

In order to prove that our Hoyer regularized threshold is always less than or equal to the trainable
threshold vth, we first prove that the Hoyer extremum of zclip

l is less than or equal to 1. Let us use
cl to represent zclip

l , so ∀j, 0 ≤ cjl ≤ 1

Ext(cl) =
∥cl∥22
∥cl∥1

=

∑
j(c

j
l )

2∑
j c

j
l

≤
∑

j(c
j
l ·max(cjl ))∑

j c
j
l

≤ max(cjl )) ≤ 1

(14)
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Table 10: Comparison of our one- and multi-time-step SNN models to existing SNN models on
DVS-CIFAR10 and IBM-Gesture datasets.*Results are based on our replicated implementation.

Dataset Reference Training Architecture Acc. (%) T.S.

DVS-CIFAR10

(Deng et al., 2022) TET VGGSNN 83.17 10
75.20* 4*

(Li et al., 2022) tdBN+NDA VGG11 81.7 10
(Kim & Panda, 2021) SALT+Switched BN VGG16 67.1 20

This work Hoyer reg. VGGSNN 83.68 10
76.17 4

N-CalTech101
(Li et al., 2022) tdBN+NDA VGG11 78.6 10

(Kim & Panda, 2021) SALT+Switched BN VGG16 55.0 20
This work Hoyer reg. VGG11 79.92 10

So the Hoyer extremum of zclip
l is always less than or equal one, and thus, our Hoyer regularized

threshold, which is the product of vthl and Ext(zclip
l ) is always less than or equal to the trainable

threshold vthl .

A.6 DATASETS & HYPERPARAMETERS

For training VGG16 models, we using Adam optimizer with initial learning rate of 0.0001, weight
decay of 0.0001, dropout of 0.1 and batch size of 128 in CIFAR10 for 600 epochs, and Adam
optimizer with weight decay of 5e−6 and with batch size 64 in ImageNet for 180 epochs. For
training ResNet models, we using SGD optimizer with initial learning rate of 0.1, weight decay of
0.0001 and batch size of 128 in CIFAR10 for 400 epochs, and Adam optimizer with weight decay of
5e−6 and with batch size 64 in ImageNet for 120 epochs. We divide the learning rate by 5 at 60%,
80%, and 90% of the total number of epochs. Note that λh = 1e−8 for all our experiments.

When calculating the Hoyer extremum we implement two versions, one that calculates the Hoyer
extremum for the whole batch, while another that calculates it channel-wise. Our experiments show
that using the channel-wise version can bring 0.1−0.3% increase in accuracy. All the experimental
results reported in this paper use this channel-wise version.

For Faster R-CNN, we use SGD optimizer with initial learning rate of 0.01 for 50 epochs, and divide
the learning rate by 10 after 25 and 40 epochs each. For Retinanet, we use SGD optimizer with initial
learning rate of 0.001 with the same learning rate scheduler as Faster R-CNN.

A.7 EXTENSION TO SNNS FOR DYNAMIC VISION SENSOR (DVS) TASKS

The inherent temporal dynamics in SNNs may be better leveraged in DVS or event-based tasks
(Deng et al., 2022; Li et al., 2022; Kim & Panda, 2021; Kim et al., 2022) compared to standard static
vision tasks. Hence, we also evaluate our framework on two DVS datasets, namely DVS-CIFAR10
and IBM-Gesture. As illustrated in Table 10, we surpass the test accuracy of existing works (Li et al.,
2022; Kim & Panda, 2021) by 0.93% on average at iso-time-step and architecture. Note that the
architecture VGGSNN employed in our work and (Deng et al., 2022) is based on VGG11 with two
fully connected layers removed as (Deng et al., 2022) found that additional fully connected layers
were unnecessary for neuromorphic datasets. To compensate for the loss of momentum in SGD
and improve the accuracy, we adopt the temporal efficient training (TET) method in our framework
(Deng et al., 2022). In fact, our accuracy gain is more significant at low time steps, thereby implying
the portability of our approach to DVS tasks. Note that similar to static datasets, a large number
of time steps increase the temporal overhead in SNNs, resulting in a large memory footprint and
spiking activity.

A.8 ENERGY EVALUATION FRAMEWORK

A.8.1 COMPUTE ENERGY

The total compute energy (CE) of a BANN (BANNCE) can be estimated as

BANNCE=DNNop
1 Emac+

L∑
l=2

(SlDNNop
l Eac + EspDNNop

l )+

L∑
l=1

DNN com
l Ecom (15)
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because BANN receives full-precision input in the first layer (l=1) without any sparsity (Chowdhury
et al., 2021; Datta et al., 2022b; Rathi et al., 2020a). Note that DNN com

l denotes the total number
of comparison (thresholding) operations in the layer l with each operation consuming 1.64pJ energy
in our FPGA platform for FP reperesentation. Also, note that DNNop

l denote the total number of
floating point (MAC or AC) operations in layer l, where each FP MAC operation consumes 13.32pJ
energy, while each FP AC operation consumes 1.8pJ energy. Lastly, Sl denote the spiking activity
in the layer l, and Esp = 0.05pJ denotes the energy overhead due to sparsity, that is incurred in
checking whether the binary activation is zero.

The CE of the full-precision DNN (DNNCE) and bi-polar BNN (BNNCE) is estimated as

DNNCE =

L∑
l=1

DNNop
l Emac, BNNCE = DNNop

1 Emac +

L∑
l=2

DNNop
l Exor (16)

where we ignore the energy consumed by the ReLU operation (significantly lower compared to
thresholding operation) since that includes only checking the sign bit. Note that Exor denotes the
XOR energy incurred in the binary convolution/linear operations in bi-polar BNNs.

The compute energy of an SNN with a total of T time steps is denoted as

SNNCE=

T∑
t=1

(
DNNop

1 Emac+

L∑
l=2

(St
lDNNop

l Eac + EspDNNop
l )+

L∑
l=1

DNN com
l Ecom

)
(17)

where St
l denotes the activation sparsity of layer l at time step t, and we replicate the BANN energy

for all T time steps. Note that we ignore the potential reset energy since the number of reset opera-
tions is negligible compared to the FLOPs, and the energy consumed per reset operation is similar
to that of an AC operation.

Intuitively, BANNs with low-bit (≤6-bits) weights, consume lower compute energy compared to
BNNs since the energy savings due to the activation sparsity even with its overhead outweighs the
energy savings due to XOR operations compared to low-precision AC operations. BANNs also
consume lower compute energy compared to SNNs and DNNs due to the higher activation sparsity,
leading to less number of FP operations.

A.8.2 MEMORY ENERGY

Since memory accesses often dominate the total energy consumption in DNNs, we incorporate the
same in our energy model using (Ottati et al., 2023).

The memory energy of a BANN is estimated as

BANNME=

L∑
l=1
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l E
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o
l E
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(18)

where Ci
l , Co

l , kl, Hl, and Wl denote the number of input channels, number of output channels,
kernel size, output feature map height, and output feature map width respectively. Note that Esp

rd
and Esp

wr denote the energy incurred in reading a spike input and writing a spike output respectively
from/to the on-chip FPGA memory. On the other hand, Einp

rd denotes the read energy of each 8-bit
input pixel value, and Ewt

rd denotes the read energy of the weights from the memory.

The memory energy of a traditional bi-polar BNN is estimated as

BNNME=
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(19)
where Eof

wr denotes the energy incurred in writing the FP output feature map to the on-chip memory.
While Ewt

rd is lower for BNNs compared to multi-bit-weighted BANNs, BNNs incur higher output
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Table 11: Comparison of the different compute and memory energy numbers for FP weights and
membrane potentials obtained from our post place-and-route FPGA simulations on 28nm Kintex7
device.

Parameter Energy (pJ) Parameter Energy (pJ)
Emac 13.2 Ewt

rd=Emem
rd 33.4

Eac 1.8 Einp
rd 8.6

Ecom 1.4 Esp
rd 1.7

Esp 0.05 Esp
wr 3.8

Exor 0.08 Emem
wr 40.1

feature map write energy due to multi-bit outputs, and higher input feature map read energy due to
absence of spike sparsity.

In summary, BANN can hep reduce both the compute and memory energy compared to BNNs,
SNNs, and non-spiking DNNs, provided the hardware supports the activation sparsity.

The memory energy of an SNN with T time steps is estimated as

SNNME=

L∑
l=1
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where Emem
rd and Emem

wr denote the energies incurred in read and write operations of the membrane
potential respectively, that happens for every time step. Lastly, the memory energy of a FP DNN is
computed as

DNNME=
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(21)
where Eif

rd denotes the read energy of the full-precision input feature map, that is higher than the
spike read energy incurred in the BNN/BANN/SNN. Note that all the memory access energy num-
bers, Ewt

rd , Esp
rd , Esp

wr, Einp
rd , Eif

rd, Eof
wr, Emem

rd , Emem
wr , are obtained from our FPGA simulation setup

with a 42MB of on-chip (BRAM and URAM) capacity. Note that each of these numbers depend
on the bit-precision of the value read/written. For example, assuming that 32 spikes are encoded to
an 32b memory word, the energy associated with a spike read memory operation is almost same as
Ewt

rd

32 , for 32-bit FP weights. All these numbers, along with those for the compute operations, are
tabulated in Table 11, where the weights, membrane potentials, input and output feature maps have
FP representation.

Note that for SNNs, the memory footprint is primarily dominated by the read and write accesses
of the post-synaptic potential at each time step (Yin et al., 2022). This is because these memory
accesses are not influenced by the SNN sparsity since each post-synaptic potential is the sum of
k2cin weight-modulated spikes. For a typical convolutional layer, k = 3, cin = 128, and so it is
almost impossible that all the k2cin spike values are zero for the membrane potential to be kept
unchanged at a particular time step. Note that the number of input (output) feature map read (write)
accesses can be reduced with the spike sparsity, and typically do not dominate the memory footprint
of SNNs. Since BANNs do not have the temporal membrane potential, they can significantly reduce
the memory cost compared to SNNs. Compared to DNNs and BNNs, the memory cost, that is
dominated by the feature map accesses (with weight re-use), can be reduced in BANNs by the zero
gating logic that leverages spike sparsity.

A.9 TRAINING & INFERENCE TIME REQUIREMENTS

Because SOTA SNNs require iteration over multiple time steps and storage of the
membrane potentials for each neuron, their training and inference time can be sub-
stantially higher than the DNN/BNN counterparts. Though reducing their latency
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(a) VGG16 (b) ResNet20

Figure 5: Evolvement of the learned threshold value for each layer of VGG16 and ResNet20 on
CIFAR10.

to 1 time step can bridge this gap significantly, as shown in Figure 4, it signif-
icantly increases the training complexity due to the iterative time-step reduction.

Figure 4: Normalized training and inference
time/epoch with iso-batch (256) and hardware
(RTX 3090, 24 GB memory) conditions for (a)
CIFAR10 and (b) ImageNet with VGG16.

On average, our BANNs represent a 2.38× and
2.33× reduction in training and inference time
per epoch respectively, compared to the multi-
time-step training approaches (Datta & Beerel,
2022; Rathi et al., 2020a) with iso-batch and
hardware conditions.

Compared to the existing one-time-step SNNs
(Chowdhury et al., 2021), we yield a 19× and
1.25× reduction in training and inference time.
This inference time reduction is possibly due to
more efficient PyTorch tensor operations used
in our code which may be better optimized us-
ing the underlying CUDA compiler. Such sig-
nificant savings in training time, which trans-
lates to power savings in big data centers, can potentially reduce AI’s environmental impact.

A.10 COMPARISON OF LATENCY FOOTPRINT

Using a hardware validated latency model on ResNet-18, our 6-bit weighted BANNs incur 1.34×
higher latency compared to uni-polar BNNs, as activation sparsity favors energy not latency & pop-
count incurs lower latency than accumulates. On the contrary, our binary weighted BANNs incur
almost similar (0.96×) latency as a uni-polar BNN.

A.11 STABILITY OF HOYER REGULARIZED TRAINING

The effect of the Hoyer spike layer is a down-scaling of the thresholds obtained from SGD. How-
ever, because these thresholds are fixed during inference, the mapping to neuromorphic hardware
is no more complex than a traditional SNN. Moreover, since our training method incorporates the
learnable training threshold obtained via SGD, we report its evolvement during the training stage in
Fig. 5 (a) and (b) for VGG16 and ResNet20 respectively on CIFAR10. As we can see, our thresh-
old value stabilizes well during the later parts of the training for all the layers, demonstrating the
robustness of our method.
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