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Abstract

Multi-arm bandit experimental designs are increasingly being adopted over standard
randomized trials due to their potential to improve outcomes for study participants,
enable faster identification of the best-performing options, and/or enhance the
precision of estimating key parameters. Current approaches for inference after
adaptive sampling either rely on asymptotic normality under restricted experiment
designs or underpowered martingale concentration inequalities that lead to weak
power in practice. To bypass these limitations, we propose a simulation-based
approach for conducting hypothesis tests and constructing confidence intervals for
arm specific means and their differences. Our simulation-based approach uses posi-
tively biased nuisances to generate additional trajectories of the experiment, which
we call simulation with optimism. Using these simulations, we characterize the
distribution potentially non-normal sample mean test statistic to conduct inference.
We provide guarantees for (i) asymptotic type I error control, (ii) convergence of
our confidence intervals, and (iii) asymptotic strong consistency of our estimator
over a wide variety of common bandit designs. Our empirical results show that our
approach achieves the desired coverage while reducing confidence interval widths
by up to 50%, with drastic improvements for arms not targeted by the design.

1 Introduction

In recent years, adaptive experimental designs have gained increasing popularity over the classic
randomized controlled trial. Bandit algorithms, where treatment assignment probabilities are updated
sequentially and simultaneously with data collection, are increasingly used for objectives such as
welfare maximization during experimentation [1, 20], quickly identifying well-performing option(s)
[8, 11], and maximizing power against particular hypotheses [16, 25, 37]. Compared to classic fixed
designs, modern approaches offer the promise of flexible, efficient experimentation by leveraging
information collected during the experiment.

However, once the experiment is over, researchers are still interested in using adaptively collected
data to conduct inference on a variety of different quantities, including those not targeted by the
design. For example, while an adaptive design may sample the best-performing option at a higher rate,
experimenters may still be interested in conducting inference on all offered options in the experiment.
Policymakers may be interested in whether the best-performing option outperforms other alternatives
with a certain level of statistical significance to assess the credibility of their conclusions. Such goals
necessitate after-study inference. However, while adaptive experiments offer numerous benefits, they
pose challenges for after-study inference [2, 22]. Unlike classic randomized controlled trials, standard
hypothesis tests and confidence intervals are not guaranteed to provide their nominal error control
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(e.g., contain the true target of inference with a pre-specified desired error probability) due to the
dependence across observations induced by adaptive sampling

Existing works addressing this issue primarily rely on two distinct approaches. Some works [4,
13] propose reweighing approaches in order to enforce asymptotic normality and use Wald-style
confidence intervals. These approaches, however, restrict the class of experiment designs. Sampling
schemes must have nonzero probability of selecting an option at each timestep of the trial, which
excludes popular designs such as explore-then commit (ETC) and upper-confidence-bound style
(UCB) algorithms. As an alternative to asymptotic normality, anytime valid inference approaches
[5, 7, 8, 24, 32, 33] ensure correct error control across all adaptive designs. These approaches,
however, are often underpowered in many use cases due to protecting for all possible sampling
schemes, rather than the exact design used for data collection.

Contributions. We provide a novel asymptotic inference approach for adaptive experimental designs.
Our approach relies on a simulation procedure that adds positive bias towards estimated nuisances,
which we call simulation with optimism. Our procedure conducts hypothesis tests for values of
arm means and their differences using these simulated distributions, providing natural confidence
intervals and point estimates. We prove that our approach maintains desired type I error control over
a wide class of commonly used designs, including designs which violate the conditional positivity
assumption necessary for asymptotic approaches. Crucially, we show the benefits of our approach
on both synthetic data and real-world data collected adaptively from the Amazon MTurk platform.
Across experiments, our method demonstrate improvements in interval widths and estimation error
by up to 50%, with dramatic improvements for parameters not specifically targeted by the design.

Outline. In the remainder of this section, we provide a brief overview of inference approaches for
data collected under adaptive designs. In Section 2, we introduce the notation and set-up for our
problem. In Section 3, we introduce our algorithm. We provide intuition for our algorithm using a
simple ETC example, and show our approach protects type I error under multiple designs commonly
used in practice. In Section 4, we test our approach on both synthetic setups and real-world data
collected from a political science survey experiment, showing that our approach achieves tighter
confidence intervals while preserving Type I error control.

1.1 Related Works

Reweighing for Asymptotic Normality. Many existing works aim to provide valid inference and
hypotheses tests by reweighing existing estimators [6] for a fixed sampling scheme and stopping time.
These reweighing schemes [4, 13, 35] aims to stabilize variances and recover the conditions of a
martingale central limit (MCLT) theorem [14], enabling standard Wald-style confidence intervals
based on asymptotic normality. Popular approaches [13] propose weighing schemes that heuristically
aim to reduce variance, under variance convergence conditions sufficient for ensuring asymptotic
normality. These approaches rely on strict rates of exploration for asymptotic normality to hold.
Specifically, at each timestep, the design must have nonzero probability of selecting a given arm,
conditional on the observed history. This is violated even in the simplest of adaptive sampling
schemes, such as ETC and UCB. To provide inferential guarantees without such restrictions, other
works have proposed inferential tools that satisfy anytime validity, which provides valid inference
across all potential experiment designs.

Anytime Valid Inference. Anytime valid inference [15, 24] sidesteps asymptotic normality altogether
in order to provide inferential guarantees under any experiment design. Nonasymptotic anytime valid
inference rely on martingale concentration inequalities [30] to obtain their guarantees. However, these
approaches require known bounds on the moment generating function of the underlying distribution
[15]. To improve power and sidestep these limitations, other works have provided anytime valid
approaches with asymptotic guarantees [5, 32], which rely on invariance principles [21] to obtain
their approximate guarantees. While these approaches provide better power empirically than exact
approaches, asymptotic anytime valid approaches are often still conservative due to protecting for all
potential designs after a burn-in period, rather than the experiment design used in the study.

Existing Simulation-Based Approaches. Instead of enforcing asymptotic normality or providing
anytime valid guarantees, our approach leverages a generative simulation procedure to approximate
the distribution of our test statistic. Due to each observation depending on the entire history, bootstrap
and block bootstrap approaches [10, 28] are not directly applicable to adaptively collected data.
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Previous works in this setting focus specifically on tractable experiment designs, such as play-the-
winner [34] sampling algorithm, in order to obtain analytical limiting distributions for inference.
Other works [26] leverage a bootstrap procedure using an estimate of the data-generating distribution
in the case of Bernoulli data. Our approach most closely aligns with the latter approach. However,
our method can (i) handle more than two arms, (ii) accommodates nonparametric arm distributions,
and (iii) applies to a wide class of adaptive experiment designs commonly used in practice.

2 Notation and Set-up

Throughout this work, we denote random vectors and random variables as X and X in uppercase.
We denote realizations of random vectors and random variables as x and x in lowercase. We use the
set [N ] to denote the set of integers {1, ..., N}, and use the subscripts Xt as the time index for t ∈ N.
We use θ∗, η∗ to denote the true underlying value of unknown parameters θ, η in the experiment.

We aim to analyze data sequences generated by interactions between an environment and an experi-
menter in the multi-armed bandit setting. We assume there exists K treatments (or arms), each with
a distribution Pa corresponding to each arm a ∈ [K] = {1, ...,K}. Over successive rounds t ∈ N,
an action At from an action set [K] is selected, then generates an outcome Xt ∈ R according to
a distribution PAt

. The action At is selected based on a known policy πt : Ht−1 → ∆K , where
Ht−1 = (Ai, Xi)

t−1
i=1 denotes all observations up to time t−1 and ∆K denotes the probability simplex

over [K]. The experiment terminates at time T , resulting in an observed sequence HT = (Ai, Xi)
T
i=1.

We denote the number of pulls and the sample mean of arm a up to time t ∈ [T ] as Nt(a) =∑t
i=1 1[At = a] and µ̂t(a) =

∑t
i=1 1[At=a]Xi

Nt(a)
respectively. We assume that the sampling scheme

π = {πt}t∈T is known, as is common in practice for adaptive experiments. Furthermore, we put the
following assumptions on our adaptive design {πt}t∈[T ] and arm distributions {Pa}a∈[K].

Assumption 1 (Infinite Sampling). For each a ∈ [K], limT→∞ NT (a) diverges to infinity almost
surely for any set of arm distributions {Pa}a∈[K].

This assumption is generally satisfied in practice, even in designs that aggressively aim to maximize
the average outcome. Regret-optimal sampling schemes (i.e., sampling schemes that achieve the
largest possible expected value within the trial duration) satisfy Assumption 1 by sampling all arms
at least on the order of log(T ) [19]. Assumption 1 does not imply conditions such as conditional
positivity, where the probability of selecting an arm a ∈ [K] must remain above zero for all t ∈ [T ].
Remark 1 (Assumption of Known Policy). We note that knowledge of the experiment policy is a
standard assumption for after-study inference in adaptive experiments. Even when using reweight-
ing/martingale methods, knowledge of the policy (i.e. full knowledge of conditional propensity scores
at each time t) is required to implement existing inference approaches. Zhang et al. [36] use a
reweighted estimator based on the martingale central limit theorem (MCLT) that directly leverages
the true propensity scores in each term of the summation, and propose a weighting scheme that also
incorporates the true propensity scores. Bibaut et al. [3] use a different reweighting approach for a
similar inference approach based on the MCLT and still require knowledge of the true propensity
scores at each time to construct their confidence interval. Lastly, Hadad et al. [13] build upon unbi-
ased scoring rules that leverage the propensity scores in the denominator (similar to the augmented
inverse propensity weighted (AIPW) approach), and assume that the conditional propensities (and
therefore the sampling scheme) are known.

2.1 Problem Statement

In this work, we focus on conducting inference on arm-specific means and their pairwise differences.
We denote µa = EPa

[X] as the mean of arm a for each arm a ∈ [K], and use τa,a′ = µa − µa′ to
denote the difference in means between arms a and a′. We use θ to denote our target parameter (i.e.,
an arm-specific mean or their pairwise difference). Our goal is to conduct pointwise hypothesis tests
for values of θ and construct confidence intervals for θ∗ that provide asymptotic type I error control at
level α. We formally define asymptotic error control for our hypothesis tests and confidence intervals,
starting with hypothesis tests in Definition 1.
Definition 1 (Type I Error Control). Let ξ : (θ0, α,HT ) → {0, 1} be a test for null hypothesis
θ = θ0 with nominal Type I error probability α. Let ξ(θ0, α,HT ) = 1 denote rejection of the null
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θ = θ0. We say that the test ξ(θ0, α,HT ) has Type I error control if the probability of rejecting θ0
when θ∗ = θ0 is at most α as T → ∞, i.e.

lim sup
T→∞

Pθ∗=θ0 (ξ(θ0, α,HT ) = 1) ≤ α. (1)

Similarly, we define error control for confidence intervals with respect to the probability that a
constructed interval does not contain θ∗, the ground truth value of our target parameter of interest θ.
Definition 2 (Coverage of Confidence Set). Let C(α,HT ) be a mapping from a prespecified α-level
and the observed data HT to an interval in R. We say that the set C(α,HT ) has asymptotic coverage
1− α if θ∗ is contained in the (random) confidence interval with at least probability 1− α, i.e.

lim sup
T→∞

P (θ∗ ̸∈ C(α,HT )) ≤ α (2)

A test with type I error control directly leads to a confidence interval for the true value of θ. By
including all values of θ not rejected by a test with type I error control, one obtains a confidence
set with the desired coverage level. In the following section, we provide our simulation-based test
that satisfies the asymptotic error control condition in Definition 1 for common adaptive designs. By
inverting this test, we construct asymptotically valid confidence intervals that satisfy Definition 2 and
heuristic point estimates for our parameter of interest.
Remark 2 (Why asymptotic control?). One may ask why we seek asymptotic control, rather than
control for any sample size T ∈ N. We note that this is in line with standard approaches for
statistical inference. Empirically well-powered approaches for inference with adaptively collected
data [3, 5, 13] only offer asymptotic guarantees as in Definitions 1 and 2. Even in standard settings
where observations are distributed independently, the most common mode of inference is the Wald
confidence interval, which offers only asymptotic guarantees for type I error and coverage.

3 Simulation Based Inference

To simplify exposition, we focus on arm-specific means as our target parameter, using µ1, the mean
of arm 1, as our running example. We provide equivalent results for the difference-in-means target
parameter in Appendix B. We first provide the pseudocode our simulation-based inference approach.
We then discuss nuisance estimation, and introduce the principle of simulation with optimism. We
demonstrate the importance of this principle with case study using a simple ETC design, and provide
theoretical guarantees regarding type I error for designs used commonly in practice. Finally, we
provide our confidence interval and point estimate that leverage our testing procedure. We show
minimal convergence guarantees for both approaches, and discuss their practical considerations.

3.1 Pseudocode for our Approach

Our approach for conducting tests and constructing confidence intervals is based on a generative
procedure for producing simulated experiment trajectories under the null hypothesis θ = θ0. While
the null hypothesis specifies the value of the target parameter, we require arm distributions and means
for all other arms in order to simulate trajectories, which we refer to as nuisance parameters. We
provide a simulation procedure in Algorithm 1, which generates observations from each arm with
Gaussian noise1. Under the Gaussian noise trajectory simulation, we set our nuisances η to be the
means of all arms other than target arm 1, as well as the variances for all arms. Note that we do not
assume that the true underlying arm distributions follow a normal distribution.

Given our trajectory simulation procedure, we provide our approach for point null hypothesis testing
in Algorithm 2. Our procedure first computes the sample mean test statistic ρ(HT ) = µ̂T (1) on
the observed data HT . We then generate B trajectories of our experiment using Algorithm 1 to
approximate the distribution of the sample mean test statistic under the null θ = θ0. We reject the
point null θ = θ0 if the observed sample mean ρ(HT ) falls below (or above) the lower (or upper)
α/2 quantile of the simulated distribution, resembling a standard two-sided test. In Algorithm 2, we
return our decision to reject/accept the null θ = θ0 and its corresponding p-value.

1In the setting of parametric arms (e.g., Bernoulli arms), where arm means specify each arm’s distribution,
the nuisance parameters η for target parameter θ = µ1 are just all other arm means µ−1 = [µ2, . . . , µK ].
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Algorithm 1 Trajectory Simulation
1: input: observed data HT , sampling scheme π, point null value θ0.
2: Estimate nuisance parameters η̂ = [µ̂2, ..., µ̂K , σ̂2

1 , ..., σ̂
2
2 ].

3: Set Ĥ0 = {∅}, and set t = 0.
4: for t in [T ] do
5: Sample At according to the policy πt : Ĥt−1 → ∆[K].
6: Generate Xt according to the normal distribution N(1[At ̸= 1]µ̂At

+ 1[At = 1]θ0, σ̂
2
At
).

7: Set Ĥt = Ĥt−1 ∪ (At, Xt).
8: Return ĤT .

Algorithm 2 Point Null Testing via Resimulation
1: input: observed data HT , sampling scheme π, type I error α, sim. number B, null value θ0.
2: Estimate nuisance parameters η̂, and estimate observed test statistic ρ(HT ) =

∑T
t=1 1[At=1]Xt∑T
t=1 1[At=1]

.
3: for i in [1, B] do
4: Generate trajectory H

(i)
T by resimulating the experiment according to Algorithm 1.

5: Calculate the test statistic from the generated trajectory ρ̂(i) = ρ(H
(i)
T ).

6: Denote the CDF of the simulated distribution as F̂ (x) = 1
B

∑B
i=1 1[ρ̂

(i) ≤ x]. Calculate
F̂ (ρ(HT )), the CDF of simulated test statistic evaluated at the observed test statistic ρ(HT ).

7: Return
(
1− 1

[
α/2 ≤ F̂ (ρ(HT )) ≤ 1− α/2

]
, F̂ (ρ(HT ))

)
.

The choice of the sample mean test statistic ρ(HT ) = µ̂T (1) is motivated by minimal power results
for our test. Specifically, under Assumption 1, the sample mean test statistic guarantees that Algorithm
2 rejects the nulls θ0 ̸= θ∗ as the trial duration grow large. We formalize this in Lemma 1 below.
Lemma 1 (Test of Power 1.). Let θ = θ0 be the point null, and assume Assumption 1 holds.
Furthermore, assume that for all a ∈ [K], the variances of distribution Pa is finite. Then, if θ0 ̸= θ∗,
the probability that Algorithm 2 rejects θ0 converges to 1 almost surely as T → ∞.

Lemma 1 is a direct consequence of the strong law of large numbers for sample means, which holds
under the conditions of Assumption 1 even under adaptive designs. While asymptotic power is
guaranteed by choosing the sample mean as our test statistic, obtaining valid type I error guarantees
is obtained by our method of estimating nuisances η̂. By estimating nuisances optimistically, we
show that our simulation-based test provides valid error control.

3.2 Simulating with Optimism

The estimation of nuisances η plays a crucial role in controlling the type I error rate. Even with
simple adaptive designs in the two-armed case, simple plug-in nuisances do not provide type I error
guarantees even if nuisances are estimated at parametric (i.e. Θ(1/

√
T )) rates. As a leading example

of this phenomenon, we present a simple ETC design with two arms in Example 1.
Example 1 (Two-Armed ETC). Let K = 2, and arm outcome distributions P1, P2 be any two
distributions with finite variance. For t ≤ T/2, let πt map to the uniform distribution over [K]. For
t > T/2, let Pπt(At = a) = 1 for a = argmaxa µ̂T/2(a), and Pπt(At = a) = 0 otherwise.

Consider the case where both arm distributions are known to be Bernoulli, such that the only nuisance
η is µ2, the mean of arm 2. When µ∗

1 = µ∗
2 = 1/2, the limiting distribution of the sample mean test

statistic ρ(HT ) is given in Equation 3, where Zi’s denote i.i.d. standard normal variables.

lim
T→∞

√
T (ρ(HT )− µ∗

1) →d
Z1 + 1 [Z1 ≥ Z2]

√
2Z3

1 + 2 (1 [Z1 ≥ Z2])
(3)

If the distribution of observed statistic ρ(HT ) and the simulation-based statistic ρ(H
(i)
T ) are asymp-

totically equivalent under the correctly specified null θ0 = 1/2, the CDF of ρ(H(i)
T ) converges to

that of ρ(HT ). This directly implies that Algorithm 2 provides asymptotic control of type I error.
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Figure 1: Plot of Realized Type I Error Rate with Plug-in and Optimistic Nuisances for ETC adaptive
design with two arms. Y -axis corresponds to the difference between realized and nominal (i.e.
desired) type I error rates. Shaded regions denote 90% confidence intervals for error rates over 10,000
simulations. Additional details for this set-up are provided in Appendix C.

However, standard estimates for the nuisance µ2 fail to provide distributional convergence. Using the
sample mean estimate µ̂T (2), the limiting distribution of ρ(H(i)

T ) is given by

lim
T→∞

lim
B→∞

√
T
(
ρ(H

(i)
T )− µ∗

1

)
→d

Z1 + 1
[
Z1 ≥ Z2 +

Z2+1[Z2>Z1]
√
2Z4

1+2(1[Z2>Z1])

]√
2Z3

1 + 2
(
1
[
Z1 ≥ Z2 +

Z2+1[Z2>Z1]
√
2Z4

1+2(1[Z2>Z1])

]) , (4)

which does not match the distribution of the observed test statistic ρ(HT ).

Remark 3 (Failure Even With Parametric Rates). For Example 1, we show in Appendix D that for
ρ(HT ) and ρ(H

(i)
T ) to share the same distribution, we require

√
T (µ̂2 − µ∗

2) →p 0. Even with T

independent samples from arm 2, the right-hand side of Equation 4 becomes Z1+1[Z1≥Z2+Z4/2]
√
2Z3

1+2(1[Z1≥Z2+Z4/2])
,

failing to match the distribution of the observed test statistic ρ(HT ). As a result, asymptotic equiv-
alence in the distribution for the test statistic ρ(HT ) and the simulated distribution of ρ(H(i)

T ) is

unachievable, even if nuisances are estimated at parametric rates on the order of Θ
(
1/
√
T
)

.

Given that the distribution of the simulated test statistic ρ(H
(i)
T ) does not converge to that of ρ(HT ),

one may wish to avoid nuisance estimation altogether. A simple way to do so is to scan over all
possible values of the nuisances that affect both the experiment design and the distribution of the
test statistic. In the ETC example above, this means sweeping over all possible values of µ2 to test a
single-point null θ = θ0. We reject the null θ = θ0 if we reject this null for every value of µ2 using
Algorithm 2. With a grid fidelity of G over arm mean values, K arms, and B number of simulations,
we require GK−1B number of experiment simulations to test a single point null θ0. This approach
becomes computationally infeasible rapidly for even moderate values of K and G.

3.2.1 Preserving Type I Error with Optimistic Nuisances

To avoid such an approach while preserving type I error, we add a small, positive bias to the estimated
arm means in the nuisance vector when simulating new trajectories, which we call simulation with
optimism. By adding positive bias to the mean of arm 2 in our ETC example, we obtain valid
type I error control as the number of simulations B grows large. Figure 1 plots the difference in
realized and nominal error rates under µ2 = µ̂T (2) (plug-in) and our optimistic simulation procedure
µ2 = µ̂T (2) + log logNT (2)/

√
NT (2). Optimistic nuisances result in type I error rates matching

the nominal level, while the plug-in approach results in error rates up to 12% larger than desired.

Beyond our simple ETC example, the principle of optimism when simulating experiment runs
controls type I error for a various designs, including reward-maximizing designs that violate positivity
conditions necessary for popular reweighing approaches [13] (Example 2) and clipped experimental
designs commonly used in practice (Example 3).

Example 2 (UCB). Let the arm distributions be any set of distributions {Pa}a∈[K] with means µ
such that for all a ∈ [K], there exists a B such that Pa is B-subgaussian. Let πt(Ht−1) select the
arm At = argmaxa∈[K]

(
µ̂t−1(a) +

√
2 log(T )/Nt−1(a)

)
.
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Example 3 (Clipped Reward Maximizing Scheme). Let the arm distributions be any set of any set of
distributions {Pa}a∈[K] with finite variance and means µ, where there exists a unique optimal arm
a∗ such that µa∗ > µa for all a ∈ [K] \ {a∗}. Let πt(Ht−1) be a randomized algorithm such that
with probability γ > 0, we select over the arms uniformly, and with probability 1− γ, we select an
arm such that P(At ̸= a∗) ≤ c/t, where c is a constant independent of t.

We present our results for optimistic nuisance estimation across all examples in Theorem 1, which
provides an approach for estimating the nuisance vector η for Algorithm 1 that preserves type I error.
Theorem 1 (Error Control with Optimism). For nuisance estimation in Algorithm 1, set µ̂a =

µ̂T (a) + ϵa, where (i) ϵa > 0, and (ii)
√

log logNT (a)
NT (a) /ϵa → 0 as T → ∞. Let σ̂2

a =

1
NT (a)

∑T
i=1 1[At = a] (Xi − µ̂T (a))

2. Denote Algorithm 2’s decision to accept/reject the null
hypothesis θ0 as ξ(θ0, HT , α). Then, for all α ∈ [0, 1], type I error is asymptotically controlled under
Examples 1, 2, and 3 as the number of simulations B grows large, i.e.,

lim sup
T→∞

lim
B→∞

P (ξ(θ∗, α,HT ) = 1) ≤ α. (5)

Because we add positive noise to all other mean arms (other than target arm 1), we call our procedure
simulation with optimism. Intuitively, our approach is inspired by the fact that in many common
designs, larger values for other arms’ means leads to less samples being allocated to target arm 1.
Although fewer samples naturally lead to larger upper (and smaller lower) quantiles for ρ(HT )’s
distribution in the i.i.d. case, it is unclear whether this holds for adaptively collected data. In Appendix
D, we show that this holds across all examples discussed in Theorem 1.

Among our three examples, Example 1 is unique in that it does not permit asymptotic inference using
a stability condition [18] such as Example 2 or with inverse-propensity-weighted estimates such as
Example 3. Our approach uniquely addresses designs such as ETC, where (i) the number of arm pulls
does not converge in probability as T → ∞ and (ii) observations cannot be reweighted for a similar
form of stabilization as in Hadad et al. [13]. Our approach offers a valid form of inference beyond
using only the data collected in the exploration period or conservative finite-sample inference.
Remark 4 (Applicability of Theorem 1). While Examples 1 and 2 describe explicit sampling schemes
(explore-then-commit and one particular version of UCB respectively), Example 3 consists of a
broad range of experimental designs. In particular, Example 3 corresponds to regret-optimal (i.e.
reward-maximizing) algorithms modified with a positive lower bound on its selection probabilities,
provided that the experiment has a unique best arm. To connect regret optimality with the conditions
of Example 3, note that the minimum possible regret scales on the order of log(T ) as T → ∞ [8]. As
such, a bandit algorithm is only regret optimal if and only if there exists a fixed constant c such that
suboptimal arms are pulled at the rate c/t at each timepoint due to

∑T
t=1 1/t ≈ log(T ). Example

3 therefore captures any reward-maximizing scheme known to be theoretically optimal (e.g. UCB
variants such as MOSS-UCB [9], Thompson Sampling [12]) modified with clipping for arm instances
with a unique best arm. We note that these clipped schemes are often used for empirical studies in
the literature, with applications from political science surveys [23] to digital health interventions
[12], where one typically assumes that a best arm exists. Thus, while our examples may seem limited,
many real-world applications use the experiment designs covered in Examples 1, 2, and 3.

Decay of Bias Term. The order of the bias ϵ in Theorem 1 is a direct consequence of the law of
iterated logarithm, which states that the difference between the sample mean and the true mean is on
the order of

√
log logNT (a)/NT (a). By adding positive bias that dominates this term as T → ∞,

Theorem 1 ensures that our approach adds asymptotically positive bias to the arm mean nuisances.
Remark 5 (Selecting bias term ϵ.). While Theorem 1 provides a lower bound on the order of the
bias ϵ, it does not specify an upper bound. In Appendix D, we justify our choice to make ϵ → 0
as NT (a) → ∞ using our ETC setup in Example 1. We show that with vanishing bias ϵ, our
simulation procedure has higher power, leading to larger probabilities for rejecting mispecified
nulls and smaller confidence interval widths. We empirically validate our choice of vanishing bias
ϵ = log logNT (a)/

√
NT (a) used in Figure 1 in Appendix C.

Importantly, simulation with optimistic nuisances preserves the computational tractability of this
procedure. While sweeping over all possible nuisance values requires GK−1B number of simulations
for type I error control, our hypothesis testing procedure with optimism reduces the number of
simulations to simply B, removing the runtime dependence on grid fidelity G and number of arms K.
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Algorithm 3 Confidence Interval and Point Estimate
1: input: observed data HT , sampling scheme π, Type I error α, simulation number B, grid of

target parameter values Θ0.
2: Initialize Ĉ(α) = {ρ(HT )} as the set containing the sample mean test statistic.
3: for θ0 in Θ0 do
4: Run Algorithm 2 with null hypothesis θ0, denoting accept/reject and the estimated quantile

value as
(
ξ(θ0, HT , α), F̂ (θ0)

)
.

5: If ξ(θ0, HT , α) = 0, then set Ĉ(α) = Ĉ(α) ∪ {θ}.
6: Return Confidence interval Ĉ(α) and point estimate θ̂ = argminθ∈Ĉ(α) |F̂ (θ)− 1/2|.

3.3 Confidence Intervals and Point Estimation

Our approach for confidence interval construction and point estimation (provided in Algorithm 3)
directly leverages the point null testing approach of Algorithm 2. Given a set of null values, we run
our hypothesis testing procedure in Algorithm 2 for each null value. Our confidence interval Ĉ(α) is
the subset of nulls that are not rejected by our hypothesis testing procedure. As our point estimate,
we select the null that maximizes the minimum difference between quantile of observed test statistic
and quantile rejection thresholds {α/2, 1− α/2}, which gives the expression in Algorithm 3. We
provide minimal convergence results for our confidence intervals and point estimate in Lemma 2.

Lemma 2 (Convergence of Point Estimate and Confidence Sequence). Let Assumption 1 hold, and
assume arm variances are finite. Furthermore, assume θ∗ ∈ Θ0, i.e. the true null value is contained
in the grid of tested nulls in Algorithm 3. Then, for any α ∈ [0, 1], our confidence interval converges
almost surely to a zero-width set containing only θ∗, and our point estimate θ̂ converges to θ∗ almost
surely, i.e.

lim
T→∞

lim
B→∞

Ĉ(α) →a.s. {θ∗}, lim
T→∞

lim
B→∞

θ̂ →a.s θ
∗. (6)

Both convergence results in Lemma 2 are direct consequences of Lemma 1, which provides uniform
guarantees of rejection for all nulls θ0 ̸= θ∗. Because all θ0 ̸= θ∗ are rejected almost surely, the
confidence set Ĉ(α), which consists of nulls that fail to be rejected, converges to {θ∗}. Similarly,
because θ̂ ∈ Ĉ(α), θ̂ must also converge to θ∗.

Remark 6. One may ask whether our assumption that the ground truth value θ∗ lies in the set of tested
target parameter values Θ0 is reasonable, particularly for continuously valued θ. In cases where θ
is known to lie in a bounded interval Θ̃, one may set Θ0 to be a grid over Θ̃ as an approximation.
We demonstrate that this does not affect empirical performance in Section 4 below. For unbounded
parameters, one may use another confidence interval to get a bounded interval, then use a finely
spaced grid over this interval for Θ0 using an adjusted α-level2.

Runtime Relative to Other Methods Our runtime results in Appendix C show that to construct
our confidence intervals run in reasonable times for moderate values of G, the size of the grid, and B,
the number of simulations per null value. Even when run locally, our confidence intervals take less
than a minute to construct. In applications such as political science (shown in our case study example)
or healthcare, where data collection is expensive/time-consuming and tight inference is of paramount
importance, we expect that runtime of our approach will not be the bottleneck for data analysis.
Furthermore, we note that existing approaches often use simulation as a subroutine for their estimation
procedure. As discussed in Remark 1, reweighing/MCLT approaches for inference on adaptively
collected data require knowledge of the true conditional propensity scores. To obtain the true
conditional propensity scores under popular sampling schemes such as Thompson sampling (which
does not have clear, closed-form propensity scores such as ϵ-greedy sampling schemes), works such
as [36] and [13] simulate the sampling policy π using history Ht−1 to obtain conditional propensity
scores πt at each time point. While the reweighing/MCLT approaches do not directly require
resimulation, it is common practice to estimate the true propensity scores needed for reweighing
approaches by simulating the known sampling policy.

2We discuss this approach in Appendix A using the anytime valid bounds of Waudby-Smith et al. [32]
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Figure 2: Coverage probabilities, average CI widths, and MSE for synthetic setup, with T values 200,
400, 800, 1600. Results are averaged over 200 simulations. Shaded region denotes 1 standard error.

4 Experimental Results

We provide experimental results for type I error and confidence interval widths across both syn-
thetic and real-world data. For all experiments, we set type I error rate α = 0.1, and set
ϵ = log logNT (a)/

√
NT (a), which satisfies the conditions of Theorem 1. We provide additional

details, including runtime, baseline pseudocode, and results for alternative setups, in Appendix C.

Synthetic Experiment Setup. For the synthetic experiments, we set K = 3 and set our target
parameter to be the mean of arm 1. All arms are distributed according to a Bernoulli distribution with
mean vectors µ = [0.45, 0.5, 0.55], [0.5, 0.5, 0.5], and [0.55, 0.5, 0.45] corresponding to the worst
arm, no signal, and best arm settings respectively. For our confidence intervals, we test a grid of
100 null values evenly spaced between [0, 1], the range of mean values, with B = 200 simulations
per mean value. To compute mean square error (MSE), we use the null θ0 with p-value F̂ (ρ(HT ))
closest to 0.5 as a heuristic point estimate. As our baselines, we test three distinct approaches for
valid inference for adaptively collected data: (i) an empirical Bernstein anytime valid approach [31],
(ii) an asymptotic approach based on variance stabilizing weights [13, 36], and (iii) an asymptotic
approach based on variance minimizing weights [13]. To accommodate the latter two approaches, we
present results using a modified UCB (Example 2) scheme with clipping at the rate of t−0.7.

Real-World Data. To assess the performance of our approach on real-world data, we reanalyze
the results of an adaptive experiment run by Offer-Westort et al. [23]. The adaptive experiment
design used a batched Thompson sampling procedure with T = 1000 on Amazon’s MTurk platform.
Arms correspond to different wordings of the ballot measure, and outcomes corresponding to binary
responses indicating whether the respondent would support the measure. As an additional baseline,
we provide the intervals reported by Offer-Westort et al. [23]. For each confidence interval based
on our simulation procedure, we test a grid of 200 null values evenly spaced between [0, 1], with
B = 1000 simulations per null value, and use the same heuristic as above for our point estimate.

The sampling policy for the collected data falls under Example 3. In Appendix B.1. of Offer-Westort
et al. [23], the authors state "For estimation and hypothesis testing, we have assumed that there
is a unique best arm." Empirical results in Figures 3 and 4 of [23] (right-side figures correspond
to our data) suggest that this is true. In page 19 of [23], the authors discuss clipping, which was
enforced through sampling with Thompson sampling with probability 0.9, and uniformly at random
with probability 0.1. This satisfies the clipping requirement, where γ = 0.1 as defined in Example

9



Figure 3: 90% Confidence Intervals for real-world data. The difference in CI widths between our
simulation-based approach and the smallest width interval among baselines is annotated as ∆W .

3. Existing work [17] has shown that batched TS preserves the problem-specific regret optimality.
Following the argument outlined in Remark 4, it follows that there exists a fixed constant c < ∞
such that P(At ̸= a∗) ≤ c/t. Thus, our approach offers valid inference on this dataset.

Discussion of Results. Our empirical results demonstrate the key benefits of our simulation-based
approach: across both synthetic and real-world data, our simulation-based confidence intervals tend
to produce smaller confidence intervals, while maintaining similar coverage (e.g. type I error) as
existing approaches. Across all experiments, confidence interval widths are reduced by as much as
50% relative to the next best method, demonstrating the benefits of simulation-based inference.

Figure 2 plots the results of our synthetic experiments with respect to T , the total duration of
the experiment. The rates of coverage (i.e. the probability that the null θ = µ∗

1 is not rejected)
demonstrates that our approach provides similar type I error guarantees to the two other asymptotic
methods. Given similar coverage/error rates, our simulation-based confidence intervals and point
estimates provide the tightest confidence intervals on average and smallest MSE across all setups.
The largest gains, particularly in terms of confidence interval width, are in the setting where we
conduct inference on the worst arm, where we see up to 50% reductions in average width.

Our real-world experiments demonstrate similar results to our synthetic setup. For arms that appear to
be the worst-performing (such as Proposal 3 (CA)), our simulation-based approach reduces confidence
interval widths drastically. The three proposals with the lowest support see reductions of up to roughly
50% in terms of confidence interval width relative to the intervals reported by Offer-Westort et al.
[23]. While the best performing arms see a slight increase in interval width, we note that the width
decreases in the worst performing arms are significantly larger than the width gains in the best
performing arms. Intervals grow by at most 0.059 relative to the best performing baseline, while
being decreasing widths up to 0.1. Furthermore, simulation outperforms all existing baselines for a
majority of treatment arms and is never widest among all approaches.

5 Conclusion

This paper introduces a simulation-based method for conducting inference in experiments with
adaptive designs, where traditional confidence intervals and hypothesis tests often fail. By simulating
the experiment under the null hypothesis using optimistic nuisances with positive bias, the method
ensures valid type I error control. Across both synthetic and real-world experiments, empirical results
show that our simulation-based approach significantly reduces confidence interval widths—up to 50%
smaller for undersampled arms—while maintaining accurate statistical coverage. Future directions
of our method include extensions for (i) additional experiment designs beyond our examples, (ii)
valid error control under settings with contextual information, (iii) inference approaches that allow
sequential testing across time.
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paper’s contributions and scope?
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Justification: All claims made are justified by the theoretical/empirical results provided in
the paper. We provide additional robustness checks for these claims in Appendix C.
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made in the paper.
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• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to
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tant role in developing norms that preserve the integrity of the community. Reviewers
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Guidelines:
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides all such details in Section 4 and Appendix C.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All code necessary to run the experiment is provided in the supplementary
material. We provide documentation for hyperparameters and related details in Appendix C
and Section 4.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
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A Additional Results for Inference on Means

A.1 Intuition on Vanishing Bias ϵa

A natural question is why we choose the bias term to vanish. Under the conditions of Theorem 1,
simply setting µ̂a = 1 (the upper bound of the support) preserves Type I error. To see the value of
vanishing positive bias, consider the ETC design discussed in Section 3.2, but µ∗

2 < µ∗
1 < 1. The

limit distribution of ρ(HT ), the sample mean of arm 1, takes the form:

lim
T→∞

√
T (ρ(HT )− µ∗

1) →d
2σ∗

1Z1 + 2
√
2σ∗

1Z2

3
=

2σ∗
1Z3√
3

, (7)

where σ∗
1 =

√
µ∗
1(1− µ∗

1) is the true standard deviation of arm 1 and Z1, Z2, Z3 are i.i.d. normal
random variables. If we set the nuisance value η̂ = µ̂2 equal to the maximum possible value of 1,
then, for any null value θ0, the distribution of the test statistic using simulated trajectories H(i)

T is
given by

lim
T→∞

√
T
(
ρ(H

(i)
T )− θ0

)
→d 2Z1

√
(1− θ0)θ0 (8)

for all θ0 ∈ [0, 1). In contrast, under a simulation procedure where η̂ → µ∗
2, the limiting distribution

of the test statistic takes a piecewise form, given by the following:

lim
T→∞

√
T
(
ρ(H

(i)
T )− θ0

)
→d

2Z1

√
(1− θ0)θ0 + (1[θ0 > µ2])Z3

√
8(1− θ0)θ0

1 + 2 (1[θ0 > µ2])
. (9)

While the power (i.e. the probability of rejection when θ0 ̸= µ∗
1) is unchanged for values of θ0 < µ∗

2, a
vanishing bias term results in improved power for all values of θ0 > µ∗

2. When θ0 > µ2, the simulated
distribution of the test statistic ρ(H

(i)
T ) is more tightly centered around the value θ0 compared to the

choice of µ̂2 = 1 by a factor of 1/
√
3. As a result, the probability that our observed test statistic

ρ(HT ) lies beyond the lower and upper quantiles of simulated distribution is larger under nuisances
η̂ that converge to η∗.

A.2 Confidence Intervals for Unbounded Parameter Spaces.

While the main body of our paper focuses on bounded parameter spaces (e.g. θ∗ ∈ [0, 1]), one can
construct a bounded region of the parameter space by using the confidence interval in Theorem 2.2 of
Waudby-Smith et al. [32] with α1, then use α2 for Algorithm 2, where α1 + α2 = α. This maintains
statistical validity by a union-bound argument. Note that to preserve power as close as possible to our
simulation procedure, one should set α2 ≫ α1, as α1 is only used to construct a bounded set over
which we construct a fine grid.

B Inference on Difference in Means

For our difference-in-means parameter, our approach is almost unchanged. Without loss of generality,
assume that our target parameter is now θ = µ1−µ2. We can use the same exact approach as the main
boyd of our paper, where we use a plug-in estimate µ̂2 with positive bias and now vary θ = µ1 − µ2.
Note that in effect, varying θ = µ1 − µ2 is the same as varying θ = µ1 in our simulations. We opt
for the same test statistic as before.

Note that to preserve statistical validity, one cannot select µ1 (or µ2) into the nuisance vector η̂
while looking at the data. However, if one knows that the design will pull an arm more often (e.g.
control-augmented sampling such as Offer-Westort et al. [23]), then one should use the arm that will
be pulled more often to improve power.

One may ask why we do not recommend using a test statistic such as the difference in sample means.
Note that by using two sums (rather than one) as our test statistic, the variance of our test statistic
increases, and therefore results in less power. As such, randomly selecting one of the arms’ sample
mean as the test statistic for the difference-in-means target parameter will have higher power (lower
variance) than including both means.
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C Additional Experimental Results

All computational results in both the main body and the appendix were run locally on a 14-inch
MacBook Pro with an Apple M2 Pro chip and 16GB of memory.

C.1 Runtime

Our confidence interval runtimes (i.e. the time to construct a confidence set) depend on G, the number
of point nulls in Θ0, our set of nulls, and B, the number of simulations done per null. In particular,
our runtime scales on the order of O(GB). To demonstrate this scaling, we provide runtime results
in Table 1, using the real-world dataset collected under a batched Thompson sampling scheme.

G B Runtime (seconds)
50 50 11.50 ± 0.22
50 100 20.21 ± 0.32
100 50 20.66 ± 0.30
100 100 39.17 ± 0.36

Table 1: Table of runtimes for constructing confidence intervals for the real-world dataset.

Our table verifies our runtime scaling. As G doubles, the runtimes doubles exactly. Likewise, as B
doubles, the runtime also doubles. We note that these runtimes are obtained by running this code
locally. Running experiments on a cluster or a HPC setup will likely improve performance, but
runtimes are reasonable even even on local devices. As such, we do not believe our approach is
prohibitively expensive computationally.

C.2 Additional Experiment Details

Synthetic Experiments We provide additional pseudocode for all sampling schemes used in our
experiments. We begin with our clipped modifications to UCB, where we provide our clipping
procedure in Algorithm 4.

Algorithm 4 Clipped Adaptive Design with Decaying Exploration
1: Input: horizon T , arm number K, sampling scheme π, decay rate β ∈ [0, 1].
2: Initialize µ̂0(a) = 0, NT (a) = 0 for all a ∈ [K].
3: Sample each arm a ∈ [K] once.
4: for t ∈ [T ] do
5: Sample b ∼ Unif[0, 1].
6: if b ≤ t−β then
7: Sample an arm At ∈ [K], with P(At = a|Ht−1) = 1/K.
8: else
9: Sample an arm At ∼ πt(Ht−1).

10: Return trajectory HT .

For our clipped UCB scheme, we use the sampling scheme π described in Example 2. An-
other choice of π we test below is the ϵ-greedy scheme, where πt(Ht−1) selects the arm At =
argmaxa∈[K] µ̂t−1(a), and explore based on the decay rate β ∈ [0, 1]. For both our clipped UCB and
ϵ-greedy scheme, we set β = 0.7, matching the exploration decay rates found in Hadad et al. [13].

Real-World Experiments The real-world dataset we use for constructing confidence intervals
was collected by Offer-Westort et al. [23] on the Amazon MTurk Platform. Here, 1000 participants
were recruited from June 21st, 2018 to June 30th, 2018, where each subject was paid 1$ for their
participation. We construct confidence intervals on the RTW treatments and responses. The wordings
of each ballot measure can be found in Table 2 of Offer-Westort et al. [23], and are based on ballot
measures in Missouri, North Dakota, Oklahoma, and South Dakota.
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Details for Figure 1 In Figure 1, we generate observations from two arms, both with rewards
Xt ∼ N(0, 1). We slightly modify our ETC example, where we sample both arms T/10 times, and
commit to the arm with the largest empirical mean at time T/5 for the remaining duration of 4T/5.
We set T = 5000, with 10,000 replications for Figure 1.

C.3 Additional Experiment Results

We provide additional experimental results regarding (i) a different sampling scheme as our adaptive
design and (ii) a different choice of bias for the ETC example in Figure 1.

ϵ-Greedy Design We choose the ϵ-greedy design as an additional candidate for our approach.
This design is known to have poor limiting distribution properties (see the first figure of Khamaru
and Zhang [18]). We present our results in Figure 5. Our conclusions remain unchanged, as we
see the largest gains (e.g. decreases in interval width) for the means of arms that are sampled less
often. Interestingly, we see that our heuristic for selecting the point estimate outperforms all other
approaches here. We plan to investigate this in future work by providing theoretical guarantees
regarding our point estimate approach.

Choice of Bias Term To investigate our choice of optimistic bias term, we test multiple different
choices of ϵa in Figure 4 under the same setting as Figure 1.

• Bias 1 denotes ϵa = log logNT (a)√
NT (a)

.

• Bias 2 denotes ϵa = logNT (a)√
NT (a)

• Bias 3 denotes ϵa = 1.

Bias 2 and 3 are intended to demonstrate that our choice of bias term (Bias 1), which is close to the
lower bound rate of

√
log logNT (a)/NT (a) in Theorem 1, is preferable in practice. While All three

methods provide appropriate type I error control (as defined in Definition 1), Bias 1 (the bias term
used in our paper) demonstrates superior power for nulls θ0 = 0.02 close to the ground truth value
of θ∗ = 0. This suggests that the bias term ϵa should be set as close to

√
log logNT (a)/NT (a) as

possible.

Figure 4: Top: Type I error rates based on magnitude of bias term ϵa, using the null θ∗ = 0. Bottom:
Power against the null θ0 = 0.02
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Figure 5: Coverage probabilities, average CI widths, and MSE for synthetic setup using the clipped
ϵ-greedy scheme, with T values 200, 400, 800, 1600. Results are averaged over 200 simulations.
Shaded region denotes 1 standard error.

Violation of Assumptions To test whether our approach is sensitive to violations of our assumptions,
we test Beta-Bernoulli Thompson sampling without batching and clipping, a design that does not
satisfy the requirements of any of our examples. We provide the results for inference on the best
arm and the worst arm for a three-armed experiment with µ = [0.55, 0.5, 0.45]. We set α = 0.1
and T = 400, and all other parameters identical to those used in Section 4. We note that we set the
horizon to a relatively small number to avoid issues with zero propensity scores (which would make
our baselines produce trivial results). We report our results with 100 simulations of our method in the
Tables 2 and 3 below, with one standard deviation provided in the ± terms.

Method Coverage CI Width MSE
Anytime-Valid 0.98± 0.01 0.23± 0.002 0.006± 0.000
Stable Weights 0.89± 0.03 0.14± 0.002 0.004± 0.000
Two Point Weights 0.84± 0.04 0.16± 0.002 0.006± 0.000
Simulation 0.87± 0.03 0.13± 0.002 0.004± 0.000

Table 2: Inference on best arm mean µ3 = 0.55.

Method Coverage CI Width MSE
Anytime-Valid 0.88± 0.03 0.31± 0.001 0.005± 0.000
Stable Weights 0.69± 0.05 0.18± 0.001 0.005± 0.000
Two Point Weights 0.69± 0.05 0.21± 0.001 0.006± 0.000
Simulation 0.88± 0.03 0.21± 0.001 0.004± 0.000

Table 3: Inference on worst arm mean µ1 = 0.45.

Our results demonstrate that relative to the baselines, the simulation procedure provides tighter
confidence intervals without sacrificing type I error. When conducting inference on the best arm,
our approach achieves close to the nominal coverage level, while producing the tightest confidence
interval among all methods. For the worst arm, we see that stable weights and two point weights,
inference approaches based on martingale central limit theorems (MCLT), provide relatively small
confidence intervals, but suffer from significant undercoverage. In contrast, both our anytime-valid
baseline and our simulation approach result in coverage close to nominal levels. Between these two
methods, our simulation approach produces much smaller confidence intervals, demonstrating its
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benefits empirically. Thus, while we may currently lack theoretical guarantees for general sampling
algorithms, our simulation approach retains its competitive inference performance without sacrificing
type I error empirically.

D Proofs of Theoretical Results

We use ω to index sample paths from the set of all sample paths Ω, where P (Ω) = 1. For a random
variable X , we use the notation X(ω) to index its sample path. Before providing our proofs, we
provide a technical lemma from existing work that provides almost sure convergence guarantees. For
completeness, we provide these results below.
Lemma 3 (Fact E.1, Shin et al. [27]). Suppose that there exists a process (Yn)

∞
n=1 indexed by n, and

Yn → Y a.s. as n → ∞. Furthermore, assume that there exists an index process (N(t))
∞
t=1 indexed

by t such that N(t) → ∞ a.s. as t → ∞. Then YN(t) → Y as t → ∞.

We also provide a simplified version of the law of iterated logarithm, which underlies the magnitude
of the positive bias term ϵa added to preserve type I error.
Lemma 4 (Law of Iterated Logarithm [32]). Let (Xi)

∞
i=1 be a sequence of i.i.d. random variables

with mean µ and variance σ2 < ∞. Let µ̂T = 1
t

∑T
i=1 Xi. Then, the following holds almost surely:

lim sup
T→∞

√
T |µ̂T − µ|

σ
√
2 log log T

= 1. (10)

As a direct application of Lemmas 3 and 4, we obtain a simple, yet useful result regarding our
optimistic nuisances µ̂a.
Corollary 1 (Almost-Sure Positive Bias). Let µ̂a = µ̂T (a) + ϵa, where µ̂T (a) denotes the sample
mean up to time t and ϵa satisfies the conditions posed in Theorem 1. Let Assumption 1 hold, and
assume arm variances are finite. Then, as T → ∞, µ̂a ≥ µ∗

a almost surely, i.e.

P
(
lim sup
T→∞

{ω ∈ Ω : 1 [µ̂a(ω) ≥ µ∗
a] = 0}

)
= 0. (11)

Proof of Corollary 1. This follows directly from Lemmas 3 and 4. For completeness, we provie this
result by contradiction. Assume there exists a set of sample paths Ω′ ⊆ Ω such that P(ω′) > 0,
and P(lim supT→∞{ω ∈ Ω′ : 1[µ̂a(ω) ≥ µ∗

a] = 0}) = 1. Then, this implies that for ω ∈ Ω′, the
following must hold:

lim sup
ω∈Ω′, T→∞

µ̂a(ω)− µ∗
a = lim sup

ω∈Ω′, T→∞
µ̂T (a)(ω) + ϵa(ω)− µa ≤ 0. (12)

Multiplying by
√

NT (a)(ω)

σ∗
a

√
2 log logNT (a)(ω)

on both sides, we obtain

lim sup
ω∈Ω′, T→∞

√
NT (a)(ω) (µ̂T (a)(ω)− µ∗

a)

σ∗
a

√
2 log logNT (a)(ω)

+

√
NT (a)(ω)

σ∗
a

√
2 log logNT (a)(ω)

ϵa ≤ 0. (13)

By the condition on ϵa in Theorem 1, the second term on the LHS diverges to infinity, so the first term
must diverge to negative infinity. However, note that by Lemmas 3 and 4, the following must hold:

lim sup
ω∈Ω,T→∞

√
NT (a)(ω)|µ̂T (a)(ω)− µ∗

a|√
2 log logNT (a)(ω)

= 1. (14)

Because Ω′ ⊆ Ω, we obtain the following inequality:

lim sup
ω∈Ω′,T→∞

√
NT (a)(ω)|µ̂T (a)(ω)− µ∗

a|√
2 log logNT (a)(ω)

≤ lim sup
ω∈Ω,T→∞

√
NT (a)(ω)|µ̂T (a)(ω)− µ∗

a|√
2 log logNT (a)(ω)

= 1, (15)

which results in a contradiction and therefore completes our proof.

Lastly, we present a known result regarding asymptotic normality of sample means.
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Lemma 5 (Asymptotitc Normality under Stability [18]). Let Pa have finite variance, and assume
that there exists a constant N∗

a (T ) such that the following holds:

(i) NT (a) →P N∗
a (T ) as T → ∞

(i) N∗
a (T ) → ∞ as T → ∞.

Then, whenever σ̂a is a consistent estimate of σ∗
a,
√

NT (a)
σ̂a

(µ̂T (a)− µ∗
a) →d N(0, 1).

We will leverage this result heavily for the proof of Examples 2 and 3 in Theorem 1.

D.1 Proof of Lemma 1

By the infinite sampling condition in Assumption 1, as T → ∞, NT (a) → ∞ for all a ∈ [K] for
any underlying arm distributions {Pa}a∈[K]. Note that this includes any potential choice of null θ0
used in Algorithms 1 and 2. By direct application of Lemma 3 and the strong law of large numbers
(SLLN), under any choice of null value θ0, the sample mean test statistic ρ(H

(i)
T ) →a.s. θ0. By

definition of almost sure convergence, using i to denote the simulation number and ω to index the
sample path of the observed experiment,

P
(
lim sup
T→∞

{i ∈ [B], ω ∈ Ω : |ρ(H(i)
T )(ω)− θ0| > ϵ}

)
= 0 for all ϵ > 0. (16)

For any θ0 ̸= θ∗, let ϵ∗ = |θ0−θ∗|
3 . As T → ∞, for all ω ∈ Ω, Equation 16 implies that there exists

an T1(ω) < ∞ such that supi∈[B] |ρ(H
(i)
T )(ω)− θ0| < ϵ∗ for all T > T1(ω).

For the observed test statistic ρ(HT ), by Assumption 1 and Lemma 3, we obtain ρ(HT ) →a.s. θ
∗,

i.e. for all ω ∈ Ω, there exists a T2(ω) < ∞ such that |ρ(HT )(ω)− θ∗| < ϵ∗ for all T > T2(ω).

Putting these results together, we obtain that for any ω ∈ Ω, there exists a finite T ∗(ω) =

max (T1(ω), T2(ω)) < ∞ such that supi∈[B] |ρ(H
(i)
T ) − θ0| < ϵ∗ and |ρ(HT ) − θ∗| < ϵ∗. As

a result, we obtain the quantile of ρ(HT ) with respect to the simulated test statistic distribution(
ρ(H

(i)
t )
)B
i=1

is either zero or one. To see this, without loss of generality, assume that θ0 < θ∗.

Then, for T > T ∗(ω), denoting F̂ (·) as the quantile function on
(
ρ(H

(i)
t )
)B
i=1

, for all ω ∈ Ω,

F̂ (ρ(HT )(ω)) =
1

B

B∑
i=1

1[ρ(HT )(ω) ≤ ρ(H
(i)
T )(ω)] (17)

=
1

B

B∑
i=1

1
[
(ρ(HT )(ω)− θ∗)−

(
ρ(H

(i)
T )(ω)− θ0

)
+ θ∗ − θ0 ≤ 0

]
(18)

≤ 1

B

B∑
i=1

1

−
|ρ(HT )(ω)− θ∗|︸ ︷︷ ︸

<ϵ∗

+
∣∣∣ρ(H(i)

T )(ω)− θ0

∣∣∣︸ ︷︷ ︸
<ϵ∗

+ θ∗ − θ0 ≤ 0

 (19)

≤ 1

B

B∑
i=1

≤ 1

[
−2(θ∗ − θ0)

3
+ (θ∗ − θ0) ≤ 0

]
(20)

=
1

B

B∑
i=1

1

[
θ∗ − θ0

3
≤ 0

]
= 0. (21)

Note that F̂ is bounded between 0 and 1, so F̂ (ρ(HT )(ω)) must be 0. Line 19 follows from
the almost sure convergence results discussed previously and the fact that the indicator function
monotonically increases as the LHS inside the indicator decreases. Line 20 follows by definition
from the definition of ϵ∗. Lastly, our final result follows from our assumption that θ∗ > θ0. Our proof
proceeds analogously in the case where θ0 > θ∗, with the end result showing that F̂ (ρ(HT )(ω)) = 1.
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As a result, we obtain that for any ω ∈ Ω, we reject θ0 ̸= θ∗ almost surely in Algorithm 2, i.e.

P
(
ω ∈ Ω : lim

T→∞
F̂ (ρ(HT )(ω)) ∈ {0, 1}

)
= 1. (22)

D.2 Proof of Theorem 1

We prove the results for Theorem 1 for each case separately, beginning with Example 1. Before
proceeding, we prove a result regarding the convergence of the variance estimators in Lemma 6.

Lemma 6 (Convergence of Variance Estimates.). Let Assumption 1 hold, let arm variances be
finite, and let σ̂2

a be defined as in Theorem 1. Then, our variance estimate is strongly consistent, i.e.
σ̂2
a →a.s. σ

2
a.

Proof of Lemma 6. To prove this result, we first expand the variance estimator as follows:

σ̂2
a =

1

NT (a)

T∑
i=1

1[At = a](Xi − µ̂T (a))
2 (23)

=
1

NT (a)

T∑
i=1

1[At = a]X2
i︸ ︷︷ ︸

(a)

−

(
1

NT (a)

T∑
i=1

1[At = a]Xi

)2

︸ ︷︷ ︸
(b)

(24)

We now show that (a) →P (µ∗
a)

2 + (σ∗
a)

2 and (b) →P (µ∗
a)

2.

For term (b), note that by Assumption 1 and Lemma 3,
(

1
NT (a)

∑T
i=1 1[At = a]Xi

)
→a.s. µ

∗
a. By

the continuous mapping theorem, (b) →a.s. (µ
∗
a)

2.

For term (a), we can further decompose the estimate as follows:

(a) =
1

NT (a)

T∑
i=1

1[At = a](Xi − µ∗
a + µ∗

a)
2 (25)

=
1

NT (a)

T∑
i=1

1[At = a](Xi − µ∗
a)

2

︸ ︷︷ ︸
(i)

+
1

NT (a)

T∑
i=1

1[At = a]2(Xi − µ∗
a)(µ

∗
a)︸ ︷︷ ︸

(ii)

+(µ∗
a)

2 (26)

Term (i) converges almost surely to (σ∗
a)

2 by definition of variance, the strong law of large numbers,
and Lemma 3. Term (ii) converges to 0 almost surely due to the fact that 1

NT (a)

∑T
i=1 1[At =

a](Xi − µ∗
a) →a.s. 0. As a result, we obtain (a) →a.s. (σ

∗
a)

2 + (µ∗
a)

2.

Putting the convergence results of (a) and (b) together, we obtain that σ̂2
a →a.s. (σ

∗
a)

2.

We also provide a simple, but useful result regarding the limiting type I error control under two key
conditions.

Lemma 7 (Asymptotic Type I Error Control). Let ω ∈ Ω denote a sample path, such that the set
of sample paths has probability 1, i.e. P(Ω) = 1. Let F (·) and F̂ (·)(ω) denote the CDF of the
test statistic distribution for observed test statistic ρ(HT ) and simulated test statistic ρ(H

(i)
T ) under

sample path dependent nuisances η̂(ω). Let F−1 and F̂−1(ω) denote their respective quantile
functions. Assume that the following conditions hold:

(i) lim supT→∞ F
(
supω∈Ω F̂−1 (α/2) (ω)

)
+
(
1− F

(
infω∈Ω F̂−1 (1− α/2) (ω)

))
≤ α,

(ii) P
(
ρ(HT ) ∈

{
F̂−1 (α/2) (ω), F̂−1 (1− α/2) (ω)

})
= 0 for all ω ∈ Ω.
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Then, denoting the decision for rejecting/accepting the ground truth null θ∗ as ξ(θ∗, α,HT ),
lim sup
T→∞

lim
B→∞

P (ξ(θ∗, α,HT ) = 1) ≤ α, (27)

i.e. type I error is asymptotically controlled.

Condition (i) of Lemma 7 states that the quantiles of the simulated distribution for all sample paths
ω are more extreme than that of the observed test statistic distribution. Condition (ii) is a technical
condition for an application of the continuous mapping theorem, and is satisfied in most general cases
(e.g. the distribution of ρ(HT ) is dominated by the Lebesgue measure). Below, we show how these
two conditions provide valid type I error control.

Proof of Lemma 7. We first write out the event in which we reject the null θ∗, then leverage the
Glivenko-Cantelli theorem and the dominated convergence theorem to obtain the desired results.
Denoting F̂B(·)(ω) as the simulated CDF with B simulations, we obtain the following inequality:

lim sup
T→∞

lim
B→∞

P (ξ(θ∗, α,HT ) = 1) (28)

= lim sup
T→∞

lim
B→∞

P
({

F̂B (ρ(HT )) (ω) ≥ 1− α/2
}

∪
{
F̂B (ρ(HT )) (ω) ≤ 1− α/2

} )
(29)

= lim sup
T→∞

∫
ω∈Ω

1

[∫
1
[
ρ(HT ) ≥ ρ(H

(i)
T )
]
∈ [0, α/2] ∪ [1− α/2, 1] dF̂ (H

(i)
T )(ω)

]
dω (30)

Line 30 follows from (i) the dominated convergence theorem (DCT), (ii) the continuous mapping
theorem (CMT), and (iii) the Glivenko-Cantelli theorem as B → ∞. Note that because indicator
functions are bounded, we can move the limit with respect to B within the outer probability integral
using DCT, and by condition (ii) in Lemma 7, we can pass this limit within the indicator function
using CMT. By the fact that each ρ(H

(i)
T ) is identically and independently distributed, as B → ∞, the

Glivenko-Cantelli Theorem states that our empirical CDF function F̂B(·)(ω) converges to F̂ (·)(ω)
for all ω ∈ Ω. Further expanding our line 30, we obtain

lim sup
T→∞

lim
B→∞

P (ξ(θ∗, α,HT ) = 1) (31)

≤ lim sup
T→∞

∫
ω∈Ω

(
1

[∫
1
[
ρ(HT ) ≥ ρ(H

(i)
T )
]
∈ [0, α/2] dF̂ (H

(i)
T )(ω)

])
dω (32)

+

∫
ω∈Ω

(
1

[∫
1
[
ρ(HT ) ≥ ρ(H

(i)
T )
]
∈ [1− α/2, 1] dF̂ (H

(i)
T )(ω)

])
dω (33)

= lim sup
T→∞

∫
ω∈Ω

(
1
[
F̂ (ρ(HT ))(ω) ≤ α/2

])
dω +

∫
ω∈Ω

(
1
[
F̂ (ρ(HT ))(ω) ≥ 1− α

2

])
dω

(34)

= lim sup
T→∞

∫
ω∈Ω

(
1
[
ρ(HT ) ≤ F̂−1 (α/2) (ω)

])
dω (35)

+

∫
ω∈Ω

(
1
[
ρ(HT ) ≥ F̂−1

(
1− α

2

)
(ω)
])

dω (36)

= lim sup
T→∞

F

(
sup
ω∈Ω

F̂−1(α/2)(ω)

)
+

(
1− F

(
inf
ω∈Ω

F̂−1(1− α/2)(ω)

))
(37)

≤ α. (38)

The inequality in line 32 follows directly from a union bound argument. Line 37 follows from the
fact F (·) is a monotonically increasing function. The last line follows by condition (i) of Lemma 7,
giving us the desired result.

D.2.1 Proof for Example 1

We focus on two distinct cases: (i) µ∗
1 ̸= µ∗

2, and (ii) µ∗
1 = µ∗

2. Let σ∗
1 , σ∗

2 denote the true standard
deviations of arm 1 and 2 respectively.
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Analysis of Case (i) We first characterize the distribution of the observed sample mean test statistic
under the ETC design for Case (i), keeping the true arm distributions P1, P2 fixed. The observed
sample mean test statistic ρ(HT ) converges to the following distribution:

lim
T→∞

√
T
(ρ(HT )− θ∗)

σ̂1
→d

2Z1 + (1 [µ∗
1 ≥ µ∗

2]) 2
√
2Z2

1 + 2 (1[µ∗
1 ≥ µ∗

2])
(39)

where Zi denotes a standard normal random variable. The standard normal random variables are a
direct consequence of Slutksy’s lemma using the the central limit theorem and σ̂1 →P σ∗

1 (shown
in Lemma 6).The indicator term 1[µ∗

1 ≥ µ∗
2] denotes the commit stage, where arm 1 is sampled

T/2 additional times beyond the exploration stage. Because we assume µ1 ̸= µ2, the indicator
function 1[µ̂T/2(1) ≥ µ̂T/2(2)] converges to 1[µ∗

1 ≥ µ∗
2] almost surely. This follows from the fact

that P
(
ω ∈ Ω : limT→∞ 1[µ̂T/2(1)(ω) ≥ µ̂T/2(2)(ω)] ̸= 1[µ∗

1 ≥ µ∗
2]
)
= 0 by the SLLN.

We now show that for every sample path ω ∈ Ω, the simulated distributions of ρ(H(i)
T ) uniformly

protect type I error for θ0 = θ∗. To show this, note that the distribution of the simulated test statistic
ρ(H

(i)
T )(ω), depends on the plug-in estimate µ̂2(ω) used in the simulation.

We first note that the bias condition on ϵa in Theorem 1 states that
√

log logNT (2)
NT (2) /ϵa → 0. Under

Assumption 1, NT (2) → ∞ almost surely (a.s.), so this condition permits two regimes: setting ϵa
such that (a) bias term ϵa converges a.s. to zero, and (b) bias term ϵa does not converge a.s. to zero.

In setting (a), such as when ϵa = log logNT (a)√
NT (a)

, the test statistic ρ(H
(i)
T )(ω) converges in distribution

to RHS of Equation 39, matching the distribution of the true test statistic ρ(HT ). This follows
directly from the Slutsky’s lemma, now including a vanishing term ϵa →a.s. 0. As B → ∞, the
Glivenko-Cantelli theorem [29] ensures that the simulated distribution converges to that of the true
distribution, ensuring type I error guarantees.

In setting (b), such as when ϵa is a positive constant, the simulated distribution ρ(H
(i)
T ) for sample

path ω ∈ Ω takes the form in Equation 40. Note that our convergence in distribution denotes
convergence of the simulated distribution (over the randomness generated by Algorithm 1) for a fixed
sample path ω ∈ Ω as T → ∞.

lim
T→∞

√
T

(
ρ(H

(i)
T )(ω)− θ∗

)
σ̂1(ω)

→d
2Z1 + (1 [µ∗

1 ≥ µ∗
2 + ϵ2(ω)]) 2

√
2Z2

1 + 2 (1 [µ∗
1 ≥ µ∗

2 + ϵ2(ω)])
. (40)

We now examine the limiting behavior of ϵ2(ω) as T → ∞. If ϵ2(ω) < |µ∗
1 − µ∗

2| as T → ∞, then
we obtain the same distribution as the RHS in Equation 39. If ϵ2(ω) ≥ |µ∗

1 − µ∗
2| as T → ∞, then

the distribution of ρ(H(i)
T ) still provides valid type I error guarantees.

To show this, consider the case where µ∗
1 < µ∗

2. If ϵ2(ω) ≥ µ∗
2 − µ∗

1, then the distribution of the
observed test statistic ρ(HT ) and sample-path dependent simulated distribution ρ(H

(i)
T )(ω) match in

distribution due to 1[µ∗
1 ≥ µ∗

2+ϵ2(ω)] = 1[µ∗
1 ≥ µ∗

2]. In the case where µ∗
1 > µ∗

2, if ϵ2(ω) ≥ µ∗
1−µ∗

2,
the distribution of the observed test statistic obtains the limiting distribution

lim
T→∞

√
T
(ρ(HT )− θ∗)

σ̂1
→d

2Z1 + 2
√
2Z2

3
=d

2Z3√
3
, (41)

whereas the simulated test statistic distribution ρ(H
(i)
T )(ω) for sample path ω ∈ Ω takes the form

lim
T→∞

√
T

(
ρ(H

(i)
T )(ω)− θ∗

)
σ̂1(ω)

→d 2Z1 ∀ ω ∈ Ω. (42)

The observed test statistic has a tighter limiting distribution around θ∗ than our simulated test statistic,
resulting in valid type I error control. By the Glivenko-Cantelli theorem [29] for uniform almost
sure convergence for the empirical CDF (applied to the number of simulations B), we obtain the
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following result, where µ is a dominating measure for the test statistic ρ(H
(i)
T ).

lim
T→∞

lim
B→∞

P
({

F̂ (ρ(HT )) ≥ 1− α/2
}

∪
{
F̂ (ρ(HT )) ≤ 1− α/2

} )
(43)

= lim
T→∞

P
(
1

[∫
1
[
ρ(HT ) ≥ ρ(H

(i)
T )
]
∈ [0, α/2] ∪ [1− α/2, 1]

]
dµ(ρ(H

(i)
T ))

)
(44)

≤ lim
T→∞

P
(
1

[∫
1
[
ρ(HT ) ≥ ρ(H

(i)
T )
]
∈ [0, α/2]

]
dµ(ρ(H

(i)
T ))

)
(45)

+ lim
T→∞

P
(
1

[∫
1
[
ρ(HT ) ≥ ρ(H

(i)
T )
]
∈ [1− α/2, 1]

]
dµ(ρ(H

(i)
T ))

)
(46)

= Φ
(√

3Φ−1(α/2)
)
+
(
1− Φ

(√
3Φ−1(α/2)

))
(47)

≤ α/2 + α/2 = α, (48)

where Φ(·) and Φ−1(·) denote the CDF and quantile function of a standard random normal variable.
Line 44 follows from the Glivenko-Cantelli theorem as B → ∞ and the dominated convergence
theorem applied to our indicator functions in order to move the limits within the outer probability
integral. The inequality in line 46 follows from a simple union bound. Line 47 is a direct consequence
of the limiting results in equations (41) and (42). Finally, line 48 follows from the fact that (i)
Φ
(
Φ−1(α/2)

)
= α/2, (ii) Φ (·) is a monotone function, and (iii)

√
3Φ−1(α/2) ≤ Φ−1(α/2). This

finishes the proof in the case where µ∗
1 ̸= µ∗

2.

Analysis of Case (ii) When µ∗
1 = µ∗

2, the decision for the commit stage is nondeterministic as
T → ∞, resulting in the distribution of the observed test statistic ρ(HT ) taking the following form:

lim
T→∞

√
T
(ρ(HT )− θ∗)

σ̂1
→d

2Z1 + (1 [σ∗
1Z1 ≥ σ∗

2Z3]) 2
√
2Z2

1 + 2 (1[σ∗
1Z1 ≥ σ∗

2Z3])
. (49)

This result follows from similar arguments to the section above, but because µ∗
1 = µ∗

2, we are left
with only noise scaled by the standard deviations of each arm.

We now provide the limiting distribution for the simulated test statistic ρ(H
(i)
T ) for all sample paths

ω ∈ Ω. For a given sample path ω ∈ Ω, the limiting distribution takes the form

lim
T→∞

√
T

(
ρ(H

(i)
T )(ω)− θ∗

)
σ̂1(ω)

→d 2Z1 ∀ ω ∈ Ω. (50)

We prove the result of Equation 50 below. This result is a direct consequence of our additional bias
term ϵa, which satisfies the condition

(
log logNT (a)

NT (a)

)
/ϵa → 0. At time T/2 in our simulation, we

decide the arm 1 to sample an additional T/2 times based on the following indicator function (where
1 implies that we sample arm 1 T/2 additional times):

1

[
µ∗
1(ω) +

σ̂1(ω)√
T/4

Z1 ≥ µ̂T (2)(ω) + ϵ2(ω) +
σ̂2(ω)√
T/4

Z2

]
(51)

= 1
[√

T (µ∗
1 − µ̂T (2)(ω)) + 2σ̂1(ω)Z1 − 2σ̂2(ω) ≥

√
Tϵ2(ω)

]
(52)

= 1

[√
T

NT (2)(ω)

√
NT (2)(ω) (µ

∗
1 − µ̂T (2)(ω))√

log logNT (2)(ω)︸ ︷︷ ︸
(a)

+
2σ̂1(ω)Z1 − 2σ̂2(ω)√

log logNT (2)(ω)︸ ︷︷ ︸
(b)

≥ (53)

√
T

NT (2)(ω)

ϵ2(ω)√
log logNT (2)(ω)

NT (2)(ω)︸ ︷︷ ︸
(c)

]
. (54)

We analyze the limits of terms (a), (b), and (c) below.
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For term (a), we upper bound its limiting value and show that it must be finite. Note that T
NT (2)(ω) ≤ 2

for all ω ∈ Ω, and limT→∞

√
NT (2)(ω)√

log logNT (2)(ω)
|µ∗

1 − µ̂T (2)(ω)| ≤ σ∗
2

√
2 for all ω ∈ Ω by Lemmas 3

and 4 and the assumption that µ∗
1 = µ∗

2. Because we assume σ∗
2 < ∞, term (a) is upper bounded by

the constant σ∗
2

√
2. For term (b), note that σ̂1(ω) → σ∗

1 and σ̂2(ω) → σ∗
2 for all ω ∈ Ω, meaning that

the scalar values in the numerator are finite. Because NT (2)(ω) → ∞ for all ω ∈ Ω, term (b) → 0

for all ω ∈ Ω. Lastly, for term (c), we use the condition that
(
ϵ2(ω)/

(√
log logNT (2)(ω)

NT (2)(ω)

))−1

→ 0

for all ω ∈ Ω, which implies that (c) diverges to infinity. As a result, (c) → ∞ almost surely.

Putting these pieces together, we obtain that our indicator function is equal to 0 as T → ∞ for all
sample paths ω ∈ Ω. As a result, we obtain as T → ∞, for all realized sample paths ω ∈ Ω, our
simulated sample paths select arm 2 as the arm to sample an additional T/2 times, resulting in the
distribution provided in Equation 50.

We now show that the CDF of our simulated test statistic provides valid type I error control
using Lemma 7. We start with condition (i). Let ϕ =

√
T (ρ(HT )− θ∗) /2σ̂1 and ϕ(ω) =√

T
(
ρ(H

(i)
T )(ω)− θ∗

)
/2σ̂1(ω). Let c = Φ−1(α/2), c′ = Φ−1(1−α/2). Let F (·) and F̂−1(·)(ω)

denote the limiting CDF and inverse CDF of ϕ and ϕ(ω) as T → ∞ respectively. We show that
F (c) + 1− F (c′) ≤ α. We start with F (c), deriving an expression equivalent to F (c)− α/2.

F (c) = P(ϕ ≤ c) (55)

=
1

2
P
(
Z1 ≤ c|Z1 <

σ∗
2

σ∗
1

Z3

)
+

1

2
P

(
Z1 +

√
2Z2

3
≤ c|Z1 ≥ σ∗

2

σ∗
1

Z3

)
(56)

Note that P(Z1 ≤ c) = α/2 by definition. We subtract P(Z1 ≤ c) = α/2 to F (c) below:

F (c)− α/2 = F (c)− 1

2

(
P
(
Z1 ≤ c|Z1 <

σ∗
2

σ∗
1

Z3

)
+ P

(
Z1 ≤ c|Z1 ≥ σ∗

2

σ∗
1

Z3

))
(57)

=
1

2

(
P

(
Z1 +

√
2Z2

3
≤ c|Z1 ≥ σ∗

2

σ∗
1

Z3

)
− P

(
Z1 ≤ c|Z1 ≥ σ∗

2

σ∗
1

Z3

))
(58)

=
1

2
P

(
Z1 +

√
2Z2

3
≤ c ≤ Z1

∣∣∣∣ Z1 ≥ σ∗
2

σ∗
1

Z3

)
(59)

− 1

2
P

(
Z1 +

√
2Z2

3
≥ c ≥ Z1

∣∣∣∣ Z1 ≥ σ∗
2

σ∗
1

Z3

)
(60)

=
1

2

∫
x

P

(√
2Z2

3
≤ c ≤ 2Z1

3

∣∣∣∣ Z1 ≥ σ∗
2

σ∗
1

Z3, Z3 = x

)
df(x) (61)

− 1

2

∫
x

P

(√
2Z2

3
≥ c ≥ 2Z1

3

∣∣∣∣ Z1 ≥ σ∗
2

σ∗
1

Z3, Z3 = x

)
df(x) (62)

(63)

Note that line 58 follows from the expansion of F (c) provided in line 56, and line 62 adds an
additional conditioning statement to fix the value of Z3, a standard normal random variable, with an
additional integral over the standard normal distribution density df(x). Leveraging the fact that (i) the
truncated standard normal distribution with bounds [a, b] has CDF (Φ(x)− Φ(a)) / (Φ(b)− Φ(a))
evaluated at x and (ii) Zi’s are all independent, we obtain
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F (c)− α/2 =
1

2

∫
x

P

(√
2Z2

3
≤ c ≤ 2Z1

3

∣∣∣∣ Z1 ≥ σ∗
2

σ∗
1

Z3, Z3 = x

)
df(x) (64)

− 1

2

∫
x

P

(√
2Z2

3
≥ c ≥ 2Z1

3

∣∣∣∣ Z1 ≥ σ∗
2

σ∗
1

Z3, Z3 = x

)
df(x) (65)

=
1

2

∫
x

Φ

(
3c√
2

)(
1− Φ(3c/2)− Φ(σ∗

2x/σ
∗
1)

1− Φ(σ∗
2x/σ

∗
1)

)
(66)

−
(
1− Φ

(
3c√
2

))(
Φ (3c/2)− Φ(σ∗

2x/σ
∗
1)

1− Φ(σ2x/σ1)

)
df(x) (67)

=
1

2

∫
x

(
Φ(3c/2)

1− Φ(σ∗
2x/σ

∗
1)

)(
1− 2Φ

(
3c

2

)
+Φ

(
σ∗
2x

σ∗
1

))
df(x) (68)

Repeating the same steps, we obtain that (1− F (c′))− α/2 is equivalent to

(1− F (c′))− α/2 =

∫
x

1

2

Φ(3c′/2)

1− Φ(σ∗
2x/σ

∗
1)

(
2Φ

(
3c′

2

)
− Φ

(
σ∗
2x

σ∗
1

)
− 1

)
df(x). (69)

Combining these two expressions, we obtain F (c) + (1− F (c′))− α is equivalent to

1

2

∫
x

Φ(3c/2)Φ(3c′/2)

1− Φ(σ∗
2x/σ

∗
1)

(
(Φ(3c/2)− Φ(3c′/2)) (1 + Φ(σ∗

2x/σ
∗
1)) + 2

(
Φ(3c′/2)2 − Φ(3c/2)2

)
Φ(3c/2)Φ(3c′/2)

)
df(x)

(70)

Consider the numerator of the second term within the integral. Note that Φ(3c/2) ≤ Φ(3c′/2) by
definition of c = Φ−1(α/2) and c′ = Φ−1(1− α/2). From this simple observation, we obtain that
the first and second terms in the numerator are nonpositive and nonnegative, i.e.

(Φ(3c/2)− Φ(3c′/2)) ≤ 0, (71)

(1 + Φ(σ∗
2x/σ

∗
1)) + 2

(
Φ(3c′/2)2 − Φ(3c/2)2

)
≥ 0, (72)

which provides the desired result that

F (c) + (1− F (c′))− α = (73)
1

2

∫
x

Φ(3c/2)Φ(3c′/2)

1− Φ(σ∗
2x/σ

∗
1)

(74)
(Φ(3c/2)− Φ(3c′/2))︸ ︷︷ ︸

≥0

(1 + Φ(σ∗
2x/σ

∗
1)) + 2

(
Φ(3c′/2)2 − Φ(3c/2)2

)︸ ︷︷ ︸
≤0

Φ(3c/2)Φ(3c′/2)

 df(x) (75)

≤ 0. (76)

Now, note that by Equation 50, we know that the following holds:

lim
T→∞

sup
ω∈Ω

F̂−1(α/2)(ω) = Φ−1(α/2), lim
T→∞

inf
ω∈Ω

F̂−1(1− α/2)(ω) = Φ−1(1− α/2). (77)

Thus, as T → ∞, by the dominated convergence theorem (which applies for any α ∈ (0, 1)),

lim sup
T→∞

F

(
sup
ω∈Ω

F̂−1(α/2)(ω)

)
+

(
1− F

(
inf
ω∈Ω

F̂−1(1− α/2)(ω)

))
(78)

= F (c) + (1− F (c′)) ≤ α. (79)

This verifies condition (i). Condition (ii) is satisfied by the fact that the probability of ρ(HT ) taking
two specific values has probability 0 due to ρ(HT ) being a random variable dominated by the
Lebesgue measure. Therefore, by Lemma 7, we have type I error control.
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Proof for Example 2 We prove this result by first leveraging stability results for UCB presented by
Khamaru and Zhang [18]. For completeness, we provide this result below in Lemma 8
Lemma 8 (Theorem 3.1 of Khamaru and Zhang [18]). Denote ∆a = (maxa∈[K] µ

∗
a − µ∗

a), and
assume that the following conditions hold:

(i) 0 ≤ ∆a/
√
2 log T = o(1) for all a ∈ [K],

(ii) Pa is λa-subgaussian for all arms a ∈ [K], where |λa| ≤ B for some constant B.

Then, NT (a)

(1/
√
N∗+

√
∆2

a/2 log T )−2
→p 1, where N∗ is defined as the unique solution to the following:

∑
a∈[K]

1(√
T/N∗ +

√
T∆2

a/2 log T
)2 = 1. (80)

We show that under our simulation procedure, for all possible experiment sample paths ω ∈ Ω, the
number of samples NT (1)(ω) converges in probability to a smaller limiting value than under the true
vector of means µ∗, resulting in larger upper (and smaller lower) quantiles using Lemma 5.

By Corollary 1, there exists a T (ω) for all ω ∈ Ω such that µ̂a(ω) ≥ µ∗
a for all a ̸= 1. Let

∆̂a(ω) = max{θ∗,maxa′∈[K]\{1} µ̂T (a
′)(ω)+ ϵa(ω)}−1[a ̸= 1] (µ̂T (a

′) + ϵa(ω))−1[a = 1]θ∗,
and let ∆a denote the ground truth equivalent with respect to true mean vector µ∗. By Lemma 8, we
obtain that the number of arm pulls NT (1)(ω) under simulations of ρ(H(i)

T ) satisfies the following
limit:

NT (1)(ω)(
1/
√
N∗(ω) +

√
∆̂2

a(ω)/2 log T

)−2 →p 1,
∑

a∈[K]

1(√
T/N∗(ω) +

√
T ∆̂2

a/2 log T

)2 = 1.

(81)
Because lim infT→∞ µ̂a(ω) ≥ µ∗

a for all a ̸= 1 and ω ∈ Ω,

lim supT→∞

(
1/
√

N∗(ω)+
√

∆̂2
a(ω)/2 log T

)−2(
1/

√
N∗+

√
∆2

a/2 log T
)−2 ≤ 1 for all ω ∈ Ω, where N∗ is as defined in

Lemma 8. As a result, for each ω ∈ Ω, (i) NT (1)(ω)(
1/
√

N∗(ω)+
√

∆̂2
a(ω)/2 log T

)−2 →p 1, and (ii)

lim supω∈Ω,T→∞ NT (1)(ω)/
(
1/
√
N∗ +

√
∆2

a/2 log T
)−2

≤ 1. This implies that for each

simulation under ω, the distribution of ρ(H(i)
T )(ω) is asymptotically normal and centered at µ∗

1, but
has larger limiting variance than ρ(H

(i)
T ). By the same argument (i.e. for all ω ∈ Ω, larger 1− α/2

quantiles, smaller α/2 quantiles for ρ(H(i)
T )(ω)) as case (ii) in Example 1, we preserve type I error.

Proof for Example 3 Example 3 proceeds similarly Example 2. First, we show that under this
design, the test statistic ρ(HT ) is asymptotically normal. Second, we show that simulated distribu-
tion of ρ(H(i)

T )(ω) has wider quantiles as a result of (i) lower limiting sampling rates and (ii) an
asymptotically normal distribution for all ω ∈ Ω.

First, let a∗ = argmaxa∈[K] µ
∗
a, where a∗ is assumed to be unique by definition. For all arms a ̸= a∗,

note that NT (a)
Tγ/K →p 1, and for a = a∗, NT (a)

T (1−γ)+Tγ/K →p 1. This follows from the fact that we
assume suboptimal arms are selected at a smaller rate than c/T for some constant c at each timestep,
resulting in

lim sup
T→∞

NT (a)

T
≤ lim

T→∞

γT/K + c log(T )

T
→p γ/K ∀ a ̸= a∗. (82)

Likewise, an equivalent lower bound for the leftmost expression above is obtained by ignoring all
samples of arm a that are not obtained through forced exploration with probability γ. We obtain
the expression for a = a∗ by noting that

∑
a∈[K]

NT (a)
T = 1 by definition. Given that the number

of arm pulls converge to a constant (dependent on sample path) in probability, Lemma 5 states that√
NT (1)ρ(HT )/σ̂1 →d N(0, 1). With positive bias term ϵa added to all other means, if ϵa → 0 as
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T → ∞, then the best arm does not change, and therefore the limiting distribution for ρ(H(i)
T ) and

the limiting distribution for observed test statistic ρ(HT ) are identical, and therefore we preserve type
I error. If limT→∞ ϵa > 0, then note that the only change in distribution may be that arm 1 goes from
the best arm under µ∗ to a suboptimal arm under estimated nuisances µ̂ = [θ∗, µ̂2, ..., µ̂K ]. If this
change does occur, then the simulated distribution ρ(H

(i)
T ) has larger 1− α/2 quantiles and smaller

α/2 quantiles as T,B → ∞ due to (i) a centered normal distribution where (ii) standard deviations
scale with the number of arm pulls. By the same argument as case (ii) in Example 1, we preserve
type I error.

D.3 Proof of Lemma 2

Before showing the proof of this approach, we first note a minor clarification that will be added to the
main body in Remark 7. We assume the change in Remark 7 in our proof.

Remark 7. Lemma 2 assumes that Ĉ(α) is not the empty set almost surely - we will make this explicit
in the next possible edit by modifying Ĉ(α) to always include the empirical mean estimate µ̂T (1).

The proof of Lemma 2 follows directly from Lemma 1. We prove this result using proof by
contradiction, showing that the upper and lower bounds of our confidence set must converge to θ∗

almost surely. To begin, we start with the lower bound L̂(α) = min{θ : θ ∈ Ĉ(α)}.

To contradict L̂(α) →a.s. θ
∗, we assume that there exists a sample path ω ∈ Ω (where P(Ω) = 1)

and ϵ > 0, such that limT→∞ |L̂(α)(ω) − θ∗| > ϵ. However, by Lemma 1, for all ω ∈ Ω, there
exists a T (ω) such that for L̂(α)(ω) ̸= θ∗, F̂ (ρ(HT )(ω)) ∈ {0, 1} for all T > T (ω), meaning that
L̂(α)(ω) ̸∈ Ĉ(α) by definition in Algorithm 2. This results in a contradiction, demonstrating that
ˆL(α) →a.s. θ

∗. We repeat this proof for Û(α) = max{θ : θ ∈ Ĉ(α)} to obtain analogous results,
proving that Ĉ(α) →a.s. {θ∗}. Because θ̂ ∈ Ĉ(α) and Ĉ(α) →a.s. {θ∗}, we obtain θ̂ →a.s. θ

∗.

E Limitations and Broader Impacts

Limitations The key limitation of this approach is that (i) there exists minimal unifying theory on
what/which designs this approach provides valid type I error and (ii) its relatively high computational
expense compared with standard inference approaches. As shown in Appendix D, for each example
in Theorem 1, we verify the examples on a case-by-case basis. It would be of great interest to have a
unifying condition on designs and arm instances under which this approach provides valid inference.
Furthermore, our approach, while maintaining a reasonable level of computational tractability relative
to the grid-scanning approach discussed in Section 3, is far more expensive than methods such as a
Wald confidence interval. Thus, our approach is best suited for settings where experiment horizons
are moderate and one wishes to conduct inference on treatments/arms not specifically targeted by
the design. Our approach provides the largest gains for target parameters not targeted by the design
(e.g. arms with relatively low means), and should be used in settings where inference on all options
offered throughout the experiment is desired/necessary.

Broader Impacts Our work contributes to the literature on inference post adaptive experimentation,
and is among the few works (to the best of our knowledge) that aims to use a computational approach
to conduct inference in this setting. Much like how bootstrap approaches generally tend to outperform
asymptotic or finite-sample inference based on Gaussian approximations or concentration inequali-
ties, our empirical results suggest our simulation-based approach may improve power and reduce
confidence interval widths for many classical settings. Furthermore, our work relaxes conditions
such as conditional positivity, while maintaining asymptotic control of type I error. We note that
our guarantees on error rates is asymptotic, and therefore caution practitioners who hope to use our
approach when sample sizes are overly small.
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