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Abstract

Multivariate Hawkes Processes (MHPs) model complex temporal dynamics
among event sequences on multiple dimensions. Typically, strong parametric as-
sumptions are made about the excitation functions of MHP, motivating the need
for modeling flexible excitation patterns. Further, different excitation functions
across dimensions often have strong similarities. Motivated by reasons above,
we propose MHP based on dependent Dirichlet process (MHP-DDP), a hierar-
chical nonparametric Bayesian modeling approach for MHP. MHP-DDP flexibly
estimates the excitation function via a mixture of scaled Beta distributions, and
borrows strengths across dimensions by modeling such mixing distribution as a
mixture of a shared Dirichlet process (DP) and a group-specific idiosyncratic DP.
We develop two algorithms using Markov chain Monte Carlo (MCMC) and the
stochastic variational inference (SVI) algorithm. We also conduct simulations to
compare MHP-DDP to benchmark methods where total or no information is bor-
rowed. We show that MHP-DDP outperforms the benchmark methods in terms
of lower estimation error for both algorithms, with SVI being computationally
efficient than MCMC.

1 Introduction

Point processes (e.g., see Cox and Isham, 1980) are a widely used to model temporal event se-
quence data, i.e., data corresponding to the times of occurrence of a series of countable events.
In particular, multivariate Hawkes Processes (MHPs, e.g., see Hawkes, 1971 and Liniger, 2009)
have been widely used to model sequences of events that demonstrate self- and mutually-exciting
behaviors, i.e., patterns in which the likelihood of events increase after the occurrence of others.
Hawkes Processes have been widely applied in a wide range of fields, including seismology (Ogata,
1988), finance (Bacry et al., 2015), electronic health records (Choi et al., 2015; Sun et al., 2024) and
social media analysis (Rizoiu et al., 2017). MHPs can be characterized through their conditional
intensity functions, which describe the instantaneous rate of arrivals of new events. The excitation
function is an important module of the conditional intensity function, as it controls how past events
cause the conditional intensity function to change and decay. Excitation functions are often mod-
eled parametrically using exponential functions that assume monotonic excitation decay (Hawkes,
1971). However, the inter-event times in many real-world examples tend to have complex patterns,
motivating the need for flexible excitation functions (e.g., see Markwick, 2020 and Rodrı́guez et al.,
2017).

In this paper, we introduce a Bayesian nonparametric model for MHPs that builds on the ideas of
Donnet et al. (2020) and Markwick (2020) but addresses various practical questions that have so far
remained open. One challenge associated with the estimation of MHPs is that the number of param-
eters that need to be estimated grows quadratically with the number of dimensions. Hence, with a
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dataset of moderate size, modeling each dimension of the process independently can lead to ineffi-
ciencies. Motivated by the observation that often excitation functions looks similar across different
dimensions, we propose a hierarchical modeling approach based on mixtures of non-parametric mix-
tures. More specifically, we adapt the approach introduced in Müller et al. (2004), which models
each of the excitation functions as a mixture of an idiosyncratic component and a common compo-
nent shared by all excitation functions, and study some of the properties of such formulation.

A second challenge in implementing MHP models is computation. As is the case more generally,
Markov chain Monte Carlo (MCMC) algorithms are the most common approach to computation for
Bayesian models for Hawkes processes (e.g., see Rasmussen, 2013). However, MCMC algorithms
for Hawkes process models are often to be too slow even for moderate sample sizes because, except
for special cases such as the exponential excitation function, their complexity is quadratic in both
the number of observations and the number of dimensions. This challenge is amplified in the case of
nonparametric models. To address it, we expand on previous work on the use of stochastic gradient
methods for MHPs, and develop a scalable stochastic variational inference (SVI) algorithm that can
be used to fit our model. An important part of this development involves a carefully comparison of
the performace of SVI and MCMC methods, both in terms of accuracy and speed.

In summary we make two key contributions in this paper: (1) we propose a novel and flexible model
for linear MHPs in which the various excitation functions are assigned a joint nomparametric prior
that allows us to efficiently borrow information, (2) we develop MCMC and SVI algorithms for
estimation and prediction in the context of this nonparametric model, and thoroughly evaluate their
relative performance.

2 Multivariate Hawkes Processes

Let N (1)(t), . . . , N (K)(t) be a collection of K point processes defined on the positive real line R+,
where N (k)(t) represents the number of events on dimension k to occur on the interval [0, t]. We
denote a generic set of observations from this process by X = {(ti, di) : i = 1, . . . , n}, where
ti ∈ R+ represents the timestamp at which the i-th event occurs and di ∈ {1, . . . ,K} represents
the dimension in which the event occurs. Then, X follows a multivariate Hawkes process (Hawkes,
1971; Liniger, 2009) if the conditional intensity function on dimension k has the following form:

λk(t) ≡ lim
h→0

E
[
N (k)(t+ h)−N (k)(t) | Ht

]
h

= µk +

K∑
k=1

∑
ti<t,di=k

αℓ,kϕ̃ℓ,k (t− ti) ,

where we µk > 0 is the background intensity for dimension k, αℓ,k > 0 be the parameter that
controls the strength by which past events from dimension ℓ influence the occurrence of new events
on dimension k, and ϕ̃ℓ,k(·) : R+ → R+ be the (normalized) excitation function that controls how
such influence decays over time. Note that we require that

∫∞
0
ϕ̃ℓ,k,(s)ds = 1, which ensures that

ϕ̃ℓ,k are identifiable. An alternative construction of the MHP is as a multivariate branching process
in which the first generation of events in dimension k (often called ‘ı̀mmigrants” in the literature)
arise from a homogeneous Poisson process with rate µk, and the points in subsequent generations are
generated from non-homogenous Poisson processes with rates given by the αℓ,ks and the interarrival
times are controlled by the ϕℓ,ks. In the sequel, we use the binary matrix B where

Bj,j =

{
1 j-th event is an immigrant
0 otherwise

, Bi,j =

{
1 j-th event is generated from i-th event
0 otherwise

to encode the latent branching structure associated with a realization of an MHP. The augmented
likelihood for the data is then given by

L(X,B | α,ϕ) =
K∑

k=1

K∑
ℓ=1

|Ok,ℓ| (logαk,ℓ)−
∑
i<j

di=k,dj=ℓ

Bi,j ϕ̃k,ℓ(tj − ti)


+

K∑
ℓ=1

|Iℓ| logµℓ −
K∑
ℓ=1

µℓT −
K∑

k=1

K∑
ℓ=1

αk,ℓ

∑
i:di=k

Φ̃k,ℓ(T − ti), (1)
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where |Iℓ| =
∑

di=ℓ I(Bii = 1) and |Ok,ℓ| =
∑

di=k,dj=ℓ,i<j I(Bij = 1) denote the number of
immigrants for dimension k and the number of offpring on dimension k who arise from points on
dimension ℓ.

3 Nonparametric Bayesian modeling of excitation functions for multivariate
Hawkes processes

First, we note that for all k, ℓ = 1, . . . ,K, ϕ̃k,ℓ can be interpreted as a probability distribution
function on R+, with corresponding cumulative distribution function Φ̃k,ℓ. Denote H as the space
of all density functions on R, MHP-DDP defines a prior on ϕ̃k,ℓ over H as a mixture of scaled Beta
distributions, with respect to a random measure Gk,ℓ(·):

ϕ̃k,ℓ(t) =

∫
R2

fBeta(t | a, b, T0)dGk,ℓ(a, b), (2)

where the kernel density function

fBeta(· | a, b, T0) :=
Γ(a+ b)

Γ(a)Γ(b)

(
t

T0

)a−1 (
1− t

T0

)b−1

T−1
0 , a > 0, b > 0, 0 < t < T0

is a scaled Beta density function with support on (0, T0), indexed by shape parameters a and b. The
Beta mixture allows the excitation function to have a flexible form, including multi-modal structures
and heavy tails.

We let Gk,ℓ(·) be the mixing distribution for the two shape parameters that corresponds to ϕ̃k,ℓ,
which is a distribution on R2. Denote M(R2) as the space of all probability distributions on R2, we
define a prior on Gk,ℓ over M(R2) using the following hierarchical model, following Müller et al.
(2004):

Gk,ℓ(·) = εH0(·) + (1− ε)Hk,ℓ(·), k, ℓ = 1, . . . ,K,

H0,Hk,ℓ ∼ DP(αDP,Gamma (ca, da)×Gamma (cb, db)) k, ℓ = 1, . . . ,K,

ε ∼ Beta(1, 1).
(3)

Under the hierarchical prior, Gk,ℓ can be expressed as a mixture of two random measures: the
common component H0 that is shared across all dimension pairs and the idiosyncratic component
Hk,ℓ that characterizes the dimension-pair specific behaviors of ϕ̃k,ℓ. We let ε ∈ [0, 1] be the
weighting factor that controls how much prior information on the characteristics of the distributions
is borrowed across all dimension pairs, and assume it follows a uniform prior between 0 and 1.
Finally, we let H0 and all Hk,ℓ, k, ℓ = 1, . . . ,K be independent random measures drawn from
the Dirichlet process prior with concentration parameter αDP and base measure Gamma (ca, da)×
Gamma (cb, db), where ca, da, cb, db are fixed hyperparameters that correspond to the two shape
parameters of the Beta distribution. We note that there are two extreme cases of special interest: If
ε = 1, all dimension pairs share the same triggering kernel, and when ε = 0, Gk,ℓ, k, ℓ = 1, . . . ,K
are independently drawn from the same DP prior and share information only through the common
hyperparameters in the base measure. Finally, we showed that the prior on the dependent Dirichlet
mixture of scaled Beta kernels in (2) and (3) satisfies the Kulback-Leibler property model. The
theorem and its proof is outlined in Appendix A.

For implementation, we consider a finite number truncation approximation on the number of mix-
tures (Ishwaran and James, 2002) for the DP mixture considered in (2). Further, we assign Gamma
priors to the Hawkes process parameters:

µℓ | aℓ, bℓ
i.i.d∼ Gamma (aℓ, bℓ) ,

αk,ℓ | ek,ℓ, fk,ℓ
i.i.d∼ Gamma (ek,ℓ, fk,ℓ) , k, ℓ = 1, . . . ,K.

For the computational implementation of the model, we developed a Markov chain Monte Carlo
(MCMC) method and a stochastic gradient variational inference (SVI) algorithm, which updates the
variational parameters based on minibatches of the dataset.
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4 Key Results

The data is generated from a multivariate Hawkes process withK = 2 dimensions and the following

parameter settings: α =

[
0.6 0.15
0.3 0.6

]
,µ =

[
0.05
0.1

]
, T = 15000. For the triggering kernels, we

consider a scenario where the Beta mixture component is generated from a mixture of two Beta
kernels:

ϕ̃k,ℓ(t) = εtrue exp(−t) + (1− εtrue) exp(−λj,kt),

where
[
λ11 λ12

λ21 λ22

]
=

[
2 0.8
0.8 2

]
. Additionally, εtrue = {0, 0.5, 1} represents the true degree of in-

formation borrowing across dimensions. We fit the model using two methods: a Metropolis-within-
Gibbs exact full-batch sampler based on Markov chain Monte Carlo (MCMC) and a stochastic
gradient variational inference (SVI) algorithm based on minibatches. We also compare our method
with random ε (‘RANDOM’), to two benchmark versions of both MCMC and SVI where there is
no information borrowing (‘IDIO’) or the triggering kernels are identical (‘COMMON’). Addition-
ally, we also consider a frequentist benchmark method based on piecewise basis kernels using the
EM algorithm (EM-BK, see Zhou et al., 2013). We evaluate both the point and uncertainty estima-
tion accuracy for the triggering kernels, using a set of performance metrics. We use the root mean
integrated sqaured error (RMISE) as a metric for point estimation accuracy:

RMISE(ϕ) =
1

K2

K∑
k=1

K∑
ℓ=1

√∫ +∞

0

(
ϕtrue
k,ℓ (x)− ϕ̂k,ℓ(x)

)2

dx

Figure 1 shows the results and their specific scenarios. It can be shown that our methods have the
lowest estimation error for both methods under most scenarios (except for MCMC when ε = 1,
where the difference is very small). For the computation costs, SVI took only less than hour to
converge while the MCMC algorithm takes over a day, further suggesting that the usage of scalable
stochastic variational algorithm methods dramatically increases computationally efficiency.

MCMC SVI
RANDOM IDIO COMMON RANDOM IDIO COMMON

ε = 0
0.060
(0.01)

0.063
(0.009)

0.254
(0.001)

0.159
(0.029)

0.170
(0.018)

0.289
(0.01)

ε = 0.5
0.055

(0.013)
0.061

(0.007)
0.130

(0.002)
0.152

(0.017)
0.160

(0.022)
0.162

(0.038)

ε = 1
0.027

(0.004)
0.061

(0.009)
0.023

(0.004)
0.087

(0.060)
0.105

(0.012)
0.097

(0.064)
Table 1: RMISE as point estimation metric for all methods under true information-borrowing ratios.
The values in the grid cells are averaged over 10 independently datasets, and the standard deviation
is shown in the brackets. The numbers in bold refers to the best-performing method among ‘RAN-
DOM’, ‘IDIO’ and ‘COMMON’ for both MCMC and SVI methods.

5 Conclusion

In this work, we developed a novel Multivariate Hawkes processes model for complex temporal
event data. Especially, we flexibly modeled the decaying patterns of the triggering kernels using a
Dependent Dirichlet process mixture of Beta distributions. Our model shows favorable results in
both point and uncertainty prediction methods compared to benchmark models, and could serve as a
basis for forecasting and decision making. We developed MCMC and SVI methods for computation,
with SVI being computationally efficient and scalable to large datasets.
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A Kullback-Leibler property of the DDP mixture prior

We first prove the Kullback-Leibler property for a generic Dirichlet process mixture of Beta kernels
model in Theorem 1, and then extend to our model setting in Corollary A.1.
Theorem 1. Let H0 be the set of all continuous densities on [0, 1]. If f0(x) ∈ H0, Π is the prior
induced by the Beta likelihood mixture kernel and DP(αDP,Gamma (ca, da)×Gamma (cb, db)) on
H0, Then f0 ∈ KL(Π), i.e. there exists ε > 0 such that Π({g : KL(f0, g)}) < ε.

Proof. We show the KL property of f0 by proving Conditions A1-A3 from Theorem 1 in Wu and
Ghosal (2008) holds. Since we don’t have ϕ in our case, Condition A2 is automatically satisfied.
The remaining proof is similar to Theorem 11 in (Wu and Ghosal, 2008), except that the mixing
distribution is drawn from a Dirichlet process, and that the two location parameters are also being
mixed. For ∀f0 ∈ H0 and ∀ε > 0, there exists a finite Beta mixture function fPε

with H mixtures
where

fPε
(x) =

H∑
k=1

f0

(
k−1
H−1

)
∑H

k=1 f0

(
k−1
H−1

)fBeta(x | k,H − k) =

∫
fBeta(x | a, b)dPε, (4)

and

Pε =

H∑
k=1

ωkδa,b(a
0
k, b

0
k), ω0

k =
f0

(
k−1
H−1

)
∑H

k=1 f0

(
k−1
H−1

) , a0k = k, b0k = H − k, (5)

such that ∫ 1

0

f0(x) log
f0(x)

fPε(x)
dx < ε.

Thus Condition A1 holds. We then show Condition A3 also holds. First, we define Cω ⊂
SH−1, Ch

ab ⊂ R2, h = 1, . . . ,H as sets such that

Cω =

{
(ω1, . . . , ωH) : ωh > ω0

he
− ε

4 ,

H∑
h=1

ωh = 1

}
,

Ch
ab =

{
(ah, bh) : ah < a0h, bh < b0h,

(a0h − ah) (log xM + ψ(ah + bh)− ψ(ah)) + (b0h − bh) (log(1− xM ) + ψ(bh + ah)− ψ(bh)) <
ε

4

}
,

(6)
where

xM = max

{
d, 1− d,

a0h − ah
a0h − ah + b0h − bh

}
.

Finally, we let Cab = ⊕H
h=1Ch

ab, ω := (ω1, . . . , ωH) ∈ SH−1,a := (a1, . . . , aH) ∈ RH , b :=
(b1, . . . , bH) ∈ RH and let W ⊂ H be the set of finite mixture distributions induced by Cω and Cab:

W :=

{
P ∈ W | P =

H∑
k=1

ωkδa,b (ak, bk) ,ω ∈ Cω, (ah, bh) ∈ Ch
ab

}
.

We note that for the chosen ω0,a0, b0, for any ω ∈ Cω , we have∑H
j=1 ω

0
hfBeta

(
x | a0h, b0h

)∑H
j=1 ωhfBeta (x | a0h, b0h)

< e
ε
4 , ∀x ∈ (d, 1− d). (7)

We then note that

(a0h − ah) log x+ (b0h − bh) log(1− x) ≤ (a0h − ah) log xM + (b0h − bh) log(1− xM ), ∀x ∈ (d, 1− d).
(8)
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Thus for any (ah, bh) ∈ Ch
ab, consider the Cauchy remainder form of the first-order expansion for

l(x, a0h, b
0
h) := log fBeta (x; a

0
h, b

0
h) at (ah, bh), we have

l(x; a0h, b
0
h) = l(x; ah, bh) +∇l(x; ah, bh)T

[
a0h − ah
b0h − bh

]
+
θ2

2

[
a0h − ah b0h − bh

]
∇2l(x; a∗h, b

∗
h)

[
a0h − ah
b0h − bh

]
< l(x; ah, bh)

+ (a0h − ah) (log x+ ψ(ah + bh)− ψ(ah)) + (b0h − bh) (log(1− x) + ψ(bh + ah)− ψ(bh))

< l(x; ah, bh) + (a0h − ah) log xM + (b0h − bh) log(1− xM )

< l(x; ah, bh) +
ε

4
, ∀x ∈ (d, 1− d).

(9)
Note that the chain of inequalities are based on equations (6) and (8), and the fact that

∇2l(x; a, b) ≺ 0, a > 0, b > 0.

Finally, note that (9) is equivalent to
fBeta

(
x | a0h, b0h

)
fBeta (x | ah, bh)

< e
ε
4 , ∀x ∈ (d, 1− d), (10)

and if for h = 1, . . . ,H , (ah, bh) ∈ Ch
ab, for any (ω1, . . . , ωH) ∈ Cω , we have∑H

j=1 ωhfBeta
(
x | a0h, b0h

)∑H
j=1 ωhfBeta (x | ah, bh)

< e
ε
4 , ∀x ∈ (d, 1− d).

Combining equations (7) and (10), we have, for any ω ∈ Cω, (ah, bh) ∈ Ch
ab, h = 1, . . . ,H , we have∑H

j=1 ω
0
hfBeta

(
x | a0h, b0h

)∑H
j=1 ωhfBeta (x | ah, bh)

=

∑H
j=1 ω

0
hfBeta

(
x | a0h, b0h

)∑H
j=1 ωhfBeta (x | a0h, b0h)

·
∑H

j=1 ωhfBeta
(
x | a0h, b0h

)∑H
j=1 ωhfBeta (x | ah, bh)

= e
ε
2 ,

Thus ∫ 1−d

d

f0(x) log
fPε

(x)

fP (x)
dx <

∫ 1−d

d

f0(x)dx · ε
2
<
ε

2
. (11)

We then consider the scenario where x ∈ (0, d]
⋃
[1 − d, 1). We want to show that the likelihood

ratio
fBeta (x|a0

h,b
0
h)

fBeta (x|ah,bh)
has a uniform finite upper bound over all x ∈ (0, d]

⋃
[1 − d, 1) and (ah, bh) ∈

Ch
ab, h = 1, . . . ,H , i.e.

sup
x∈(0,d]

⋃
[1−d,1)

fBeta
(
x | a0h, b0h

)
fBeta (x | ah, bh)

=
Be(ah, bh)

Be(a0h, b
0
h)

sup
x∈(0,d]

⋃
[1−d,1)

xa
0
h−ah(1− x)b

0
h−bh

=
Be(ah, bh)

Be(a0h, b
0
h)
da

0
h+b0h−ah−bh ≤ Be(ah, bh)

Be(a0h, b
0
h)
,

which follows from the fact that ah < a0h, bh < b0h. Thus we have

sup
a,b∈Cab
ω∈Cω

sup
x∈(0,d]

⋃
[1−d,1)

∑H
j=1 ω

0
hfBeta

(
x | a0h, b0h

)∑H
j=1 ωhfBeta (x | ah, bh)

≤ e−
ε
4 sup
a,b∈Cab

Be (ah, bh)

Be (a0h, b
0
h)

≤ sup
a,b∈Cab

Be (ah, bh)

Be (a0h, b
0
h)

:=M < +∞.

Thus we have∫ d

0

f0(x) log
fPε

(x)

fP (x)
dx+

∫ 1

1−d

f0(x) log
fPε

(x)

fP (x)
dx < M (F0(d) + 1− F0(1− d)) .

Thus, we can choose d small enough such that M (F0(d) + 1− F0(1− d)) < ε
2 , such that∫ 1

0

f0(x) log
fPε

(x)

fP (x)
dx =

∫ d

0

f0(x) log
fPε

(x)

fP (x)
dx+

∫ 1

1−d

f0(x) log
fPε

(x)

fP (x)
dx+

∫ 1−d

d

f0(x)

<
ε

2
+
ε

4
+
ε

4
= ε.

Finally, as Cω, Cab are nonempty and open sets, we have Π(W) > 0, thus f0 ∈ KL(Π).
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Corollary A.1. Consider K continuous densities on [0, 1], i.e. let f10 , . . . , f
K
0 ∈ H0. Consider the

following joint prior Π∗ : ⊕H
h=1H0 → R for (f1, . . . , fK) such that

fk = δg0 + (1− δ)gk, k = 1, . . . ,K,

gk(x) =

∫
fBeta(x | a, b)dP (a, b), k = 0, 1, . . . ,K,

P ∼ DP(αDP,Gamma(ca, da)×Gamma(cb, db)),

δ ∼ Dirichlet(1, 1),

(12)

we have,

Π∗ ({f1, . . . , fK : KL(fk0 , f
k) < ε, k = 1, . . . ,K}

)
> 0.

Proof. Let f00 (x) :=
1
K

∑K
k=1 f

k
0 (x). For ε > 0, we let

G0 = {g0 ∈ H0 : KL(f00 , g
0) <

ε

2
}, Gk = {gk ∈ H0 : KL(fk0 , g

k) <
ε

2
}.

Note that from Theorem 1.1 we have Πgk

(
gk ∈ Gk

)
> 0, k = 0, 1, . . . ,K. Let M :=

max1≤j,k≤M supg0∈G0
KL(f0ij , g0) < +∞, we have, based on the convexity of KL divergence:

KL(fk0 , δg
0 + (1− δ)gk) ≤ δKL(fk0 , g

0) + (1− δ)KL(fk0 , g
k) < δM + (1− δ)

ε

2
< ε,

for all ∀δ < ε
2M−ε , gk ∈ Gk, k = 0, 1, . . . ,K. Thus

Π∗ ({f1, . . . , fK : KL
(
fk0 , f

k
)
< ε, k = 1, . . . ,K

})
=Π∗ ({g0, g1, . . . , gK , δ : KL

(
fk0 , δg

0 + (1− δ)gk
)
< ε, k = 1, . . . ,K

})
>Π∗

({
g0, g1, . . . , gK , δ : gk ∈ Gk, k = 0, 1, . . . ,K, δ <

ε

2M − ε

})
=

∏
0≤k≤K

Πgk(gk ∈ Gk)Πδ(δ <
ε

2M − ε
) > 0.
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