
Delay-of-Gratification as a Multi-Agent Survival
Micro-benchmark for Long-Horizon LLMs: Social

Exposure, Personas, and Tool Use Budgets

Olga Manakina
Department of Cognitive Science

Carleton University, Ottawa, ON K1S 5B6
olgamanakina@cmail.carleton.ca

Igor Bogdanov
Systems & Computer Engineering

Carleton University, Ottawa, ON K1S 5B6
igorbogdanov@cmail.carleton.ca

Chung-Horng Lung
Systems & Computer Engineering

Carleton University, Ottawa, ON K1S 5B6
chlung@sce.carleton.ca

Abstract

Large language models (LLMs) are increasingly deployed as multi-turn agents that
must sustain goals, use tools, and adapt to other agents over extended interactions.
However, existing research lacks auditable, multi-turn, multi-factorial experiments
that quantify LLM behavior under explicit constraints, with time-resolved statistics
that reveal how behavior unfolds over long horizons. To address this gap, we
develop a multi-agent Micro-benchmark inspired by the Stanford marshmallow
experiment: ReAct agents operate minute-by-minute with a "raise a question" tool
under a per-step budget, while we factorially manipulate social context (broadcast
vs. isolated), personas (age, hedonic drive), and metacognitive policy (must vs.
may follow instructions). We analyze outcomes with Kaplan–Meier(KM) survival
curves and discrete-time hazard models over a long risk horizon. Across 19,200
agent trajectories in 64 cells (horizon T = 19), 99.9% of runs were valid. Behavior
shows a sharp early "eat" impulse (initial eat = 0.125), a total eat rate = 0.241, and
75.9% of agents persist to the end; the waiting profile is summarized by median
time-to-eat ≈ 14.8 and RMST ≈ 14.8. In a discrete-time hazard model, isolation
reduces per-minute risk relative to broadcast (OR = 0.78, 95% CI [0.73, 0.83],
p < .001), whereas a MUST-use self-questioning policy increases risk (OR = 1.42,
[1.35, 1.50], p < .001). Hedonic and age personas strongly modulate risk: vs.
crave, like (OR = 0.28), none (0.19), and neutral (0.03) reduce hazard; vs. adult,
child increases hazard (OR = 66.3) and senior is elevated (7.55) (all p < .001).
On average, agents ask ≈ 7.12 questions and hit the per-step budget in ≈ 6% of
minutes; question-asking declines faster under broadcast than isolation. Further
ablation experiments demonstrated that removing hedonic drive and/or persona age
systematically increases survival and completion, narrows the broadcast/isolated
gap, and leaves the MUST vs. MAY ordering intact (MUST is riskier); the combined
ablation (no hedonic + no persona age) yields the highest completion (approaching
1.0) and distinct tool-usage dynamics with higher initial questioning rates that
gradually decrease over time. These results establish delay-of-gratification as
a compact multi-turn interaction benchmark that captures social contagion and
tool-use dynamics in LLM agents, offering a reproducible testbed and statistics to
analyze long-horizon, multi-agent behavior.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Multi-Turn Interactions
in Large Language Models.



1 Introduction

Modern uses of large language models (LLMs) are inherently conversational and iterative, as
users and agents co-construct tasks over multiple turns, revise goals, and recover from mistakes.
Recent multi-turn evaluations show that single-turn prowess does not guarantee long-horizon
reliability: agentic setups reveal gaps in reasoning and decision-making Liu et al. [2023], tool use
and natural-language feedback help but interact idiosyncratically with training and instruction tuning
Wang et al. [2024b], and performance can drop substantially when moving from single- to multi-turn
interaction Laban et al. [2025]. These observations motivate auditable, constrained, multi-factorial
experiments that measure how agent behavior unfolds over time and in the presence of other agents.

Hypotheses: Inspired by a classic Stanford study on delayed gratification [Mischel and Ebbesen,
1972] and by recent LLM studies replicating marshmallow-like scenarios [Coletta et al., 2024] and
other cognitive tasks[Lampinen et al., 2024, Strachan et al., 2024], we test five hypotheses in a
controlled Micro-benchmark with a minimal action space. H1 Social visibility: when agents can
observe peers, the hazard of committing to the immediate option increases relative to isolation. H2
Internal state: personas reflecting stronger hedonic drive and child age elevate hazard, whereas
neutral drive and adult age reduce it. H3 Metacognition: a mandatory self-questioning step (MUST)
changes hazard relative to optional use (MAY); we assess whether such scaffolding stabilizes
behavior. H4 Temporal structure: the per-minute hazard is non-constant across the horizon (i.e.,
behavior displays systematic time dependence), without pre-specifying its shape. H5 Prompt
crafting pre-registered expectation: more prescriptive prompt scaffolding and instruction complexity,
including enforced metacognitive steps, should improve adherence (lower hazard) compared to a
minimalist design.

Brief results: Across a 19-minute horizon with 19,200 trajectories, we find strong time dependence
(H4) and that social visibility raises risk (H1); isolation lowers per-minute hazard vs. broadcast (OR
≈ 0.78). Personas strongly stratify outcomes (H2); a MUST policy increases hazard (OR ≈ 1.42),
indicating metacognitive enforcement can backfire (H3). Contrary to H5, heavier prompt scaffolding
does not uniformly help and can degrade reliability in this setting. Our ablation experiments show
three key effects of removing persona components (hedonic drive and/or age): (1) systematically
improved survival and completion rates, (2) reduced differences between broadcast and isolated
conditions, while preserving the higher risk of mandatory tool use, and (3) in the case of complete
ablation (no hedonic or age), near-perfect completion rates and distinctive tool-usage patterns marked
by increased early questioning that gradually diminishes over time. These results clarify where
multi-turn agents fail and how social context and scaffolding shape behavior over time.

2 Related work

Classic Cognitive Tasks, LLMs and Multi-Turn Interactions. Our study contributes to a re-
cent body of work that adapts classic cognitive tasks to investigate LLM capabilities. Models
show human-like content effects in reasoning [Lampinen et al., 2024]; near-human performance on
Theory-of-Mind tasks can degrade under prompt variations [Strachan et al., 2024, Kosinski, 2024];
and judgment, decision-making, and memory studies report framing/probability biases and capacity
limits [Binz and Schulz, 2023, Wang et al., 2024a, Zhang et al., 2024, Gong and Zhang, 2024].
These studies are largely single-prompt or short-horizon; we instead target multi-turn interaction by
importing delayed gratification into a controlled, minute-by-minute, multi-agent setting.

Human delay of gratification and intertemporal choice. The Stanford marshmallow experiments
and subsequent studies on delay of gratification show that attention and cognitive strategies modulate
waiting, inspiring the "hot/cool" model of self-control [Mischel and Ebbesen, 1972, Metcalfe and
Mischel, 1999]. Long-term links to outcomes are moderated by environmental reliability and
socioeconomic context [Kidd et al., 2013, Watts et al., 2018], with neural work implicating adult
self-control circuitry [Casey et al., 2011]. A recent study explored marshmallow-like scenarios in
the context of LLMs [Coletta et al., 2024], although it did not include temporal/social analyses. In
behavioral economics, intertemporal choice formalizes conflicts between immediate and delayed
rewards via hyperbolic discounting and time-inconsistent preferences (where immediate rewards are
disproportionately valued over future ones, formalized in the β-δ model), commitment, and naïve vs.
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sophisticated agents [Ainslie, 1992, Laibson, 1997, O’Donoghue and Rabin, 1999]; classic procedures
quantify delay preferences [Mazur, 1987]. We adapt these insights to an LLM survival-analysis frame
over discrete minutes.

Scaffolding, multi-agent interaction, evaluation, and personas. Our framework builds on several
key developments in LLM interaction design and evaluation. Reasoning architectures such as ReAct,
Self-Ask, and Reflexion scaffold stepwise deliberation and tool use [Yao et al., 2023a, Press et al.,
2022, Yao et al., 2023b, Shinn et al., 2023]. Multi-agent coordination and social simulation, e.g.,
debate, role-based systems, and long-horizon agent societies—provide structure for interaction and
influence [Du et al., 2023, Li et al., 2023, Wu et al., 2024, Park et al., 2023]. Our analysis uses
time-to-event tools, KM and discrete-time logistic hazard models, to quantify factor effects on waiting
[Kaplan and Meier, 1958b, Singer and Willett, 1993, Allison, 1982]. Finally, persona prompting
distinguishes role-play from personalization [Tseng et al., 2024]; although personas may not improve
objective task performance and can bias behavior [Zheng et al., 2024], we employ them as controlled
manipulations while acknowledging the limitations of LLMs as human surrogates [Gao et al., 2025].

2.1 Contributions

We reframe the classic marshmallow test as a discrete-time, long-horizon survival task to evaluate
decision-making in LLM agents. Our primary contribution is a controlled multi-agent experimental
framework, formalized as a finite-horizon MDP (isolated) and POMDP (broadcast), paired with
rigorous survival-based evaluation methods. We implement a factorial design manipulating agents’
social context (isolated vs. broadcast peer exposure), internal personas (hedonic drive, age), and
metacognitive scaffolding (mandatory vs. optional internal tool use, subject to a per-step question
cap). Using Kaplan–Meier curves and discrete-time logistic hazard models with cluster-robust
standard errors, we show that peer visibility significantly increases agents’ risk-taking (higher hazard
of early consumption). Internal persona prompts strongly influence temporal decision dynamics,
with child-like and craving personas elevating early-eating hazards. Counterintuitively, a mandatory
metacognitive intervention (forced tool use) increased the hazard of giving into temptation. Our
findings highlight the critical role of multi-turn, socially contextualized evaluation environments for
understanding intricate agent behaviors over extended decision horizons.

3 Experiment Setting

Environment and Episode Modeling. We evaluate LLM agents in a finite-horizon, multi-
turn environment formalized as a Partially Observable Markov Decision Process (POMDP) Fig-
ure 5a [Kaelbling et al., 1998], characterized by horizon H = risk_horizon + 1. At each step
t ∈ {0, . . . , risk_horizon}, the environment state St evolves based on the agent’s action At. The
agent receives an observation Ot, composed of the current step index and, in broadcast condi-
tions, recent peer actions (others_responsest). After optional internal deliberation via the
raise_a_question tool (limited by a per-step budget), the agent emits a constrained action
At ∈ {I wait, I eat the marshmallow}. The environment returns a reward Rt+1, increments the
step t → t+ 1, and provides the next observation Ot+1. Agents reaching the end of the risk horizon
without eating move to the threshold step (threshold_step = risk_horizon+1), receiving the delayed
payoff. Formally, the interaction loop at each step is:

Ot = [Time(t), 1broadcast · others_responsest],

At = πθ

(
Ot, {raise_a_question(Ot, i)}kt

i=1

)
, 0 ≤ kt ≤ cap,

Rt+1, St+1, Ot+1 = E(St, At),

bt(St) = P (St | O0:t, A0:t−1),

where the tool is internal and does not alter St, and in isolated conditions (1broadcast = 0), observations
Ot fully determine the underlying state St, reducing the environment to a finite-horizon Markov
Decision Process (MDP) Figure 5a [Puterman, 1994]).

The agents operate within a ReAct loop [Yao et al., 2023a] (Thought + Tool → PAUSE → Observation
→ Thought + Answer) with a dedicated validation tool, raise_a_question, which is gated by a
per-step budget. The environment is designed to be turn-based and synchronous: at each minute,
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(a) Episode Modeling as POMDP. (b) Episode Modeling as MDP.

Figure 1: Interaction loops for (a) the partially observable Markov decision process (POMDP,
broadcast condition) and (b) the fully observable Markov decision process (MDP, isolated condition).
In (a), the agent observes time and peer responses, introducing partial observability. In (b), the agent
observes only time and its own history, rendering the environment fully observable. At each step,
the agent internally uses a capped raise_a_question tool, then chooses an action at ∈ {wait, eat}.
The environment provides a reward, updates the state, and advances to the next observation.

all active agents observe, decide, and act. When an agent chooses to eat, they are eliminated from
subsequent minutes, while waiting maintains the agent’s participation but keeps them at risk.

We implement a factorial design that manipulates agents’ social context (isolated vs. broadcast),
internal personas (hedonic drive and age), and metacognitive scaffolding (mandatory vs. optional
tool use). We assess these factors via KM curves [Kaplan and Meier, 1958a] and discrete-time hazard
models [Allison, 1982].

Time Horizon & Rewards: The scenario maps 20 minutes of delay gratification to T discrete
steps (default T = 20, with Step 0 serving as initialization). As LLMs do not have an inherent
concept of time, the time is modeled in natural language: at each step, the agent is reminded that Xth
minutes has passed. The environment implements a reward structure where agents receive +1.0 for
outputting "I eat the marshmallow" at any minute t, followed by elimination. Agents who persist
until the final minute receive a terminal reward of +2.0, representing successful delayed gratification.
For implementation purposes, the final step employs a final-resolution prompt. While ReAct agents
may return {Answer: "I won"} in the logs, this is normalized to "waited_full" during analysis while
preserving raw traces.

Social Context & Personas: We manipulate the observability of peers through two distinct condi-
tions: Isolated: Agents have access only to their own historical actions and outcomes; Broadcast:
Observations include structured summaries of peers’ last actions history per step and other responses.
This design enables the study of social influence pathways, such as cascading effects when peers opt
for early consumption. Each agent is parameterized by persona prompts that incorporate reflection
knowledge, such as age and hedonic drive. The age persona can be child, adult, senior, none, while
the hedonic drive can be categorized as crave, like, neutral, none. These instructions remain private
to the agent and are explicitly referenced in its Thought traces (e.g., "I am a 75 years old and I crave
sweets.").

Tool Use & Metacognition: Agents employ raise a question tool for self-querying under a per-step
budget constraint. We vary two key aspects: tool policy: agents either MUST use the tool or MAY
use it optionally; budget visibility: the per-step cap can be either visible or hidden from agents.
Budget-related metrics are logged at each step to facilitate downstream analyses.

Action Space Integrity & Validation: The environment implements strict validation of terminal
answer formats at each minute. Only the exact strings "I eat the marshmallow" or "I wait" are
accepted as valid responses. Steps containing any other response are marked with a validation error
in the trajectory. Agents who choose to eat are recorded along with their termination metadata.

Implementation & Reproducibility: The framework maintains a clear separation between abstrac-
tions and scenario plugins, providing a single-entry run and evaluation harness for parameter sweeps.
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Each experimental run captures a complete agent trajectories which includes: a full ReAct traces
(Thought, Tool calls, Observations, Answers); budget accounting episode summaries consolidating
per-agent outcomes, timing, and rewards; enhanced analytics covering per-step social exposure
in broadcast mode, tool usage patterns, and data-quality signals. Downstream processing scripts
generate analysis-ready CSVs and publication-grade reports featuring KM curves, hazard plots, and
model results.

4 Methods and Procedure

Experimental Factors. We implement a factorial design that crosses several core dimensions, with
independent randomization per experimental cell and replicated trials: social context: isolated vs.
broadcast; hedonic drive: crave vs. like vs. neutral; age persona: child vs. adult vs. senior; tool-use
policy: MUST vs. MAY. Optional toggles in the run plan include budget visibility (visible vs. hidden).
The default total time is set to max_steps = 20 (minutes), with a fixed answer format and final
reward of +2.0.

Agents & Reasoning Loop. All agents are LLM-driven using Gemini 2.5 Flash-Lite (same model
across all cells and trials). The ReAct agent executes the following loop for each minute t in 0..T :

Algorithm 1 Agent Reasoning Loop per Minute

1: Environment: Observation: Timestamp and History of Responses (Own or All)
2: Thought: reflect given persona & current observation
3: Tool (optional or required): raise_a_question (≤ per-step budget)
4: PAUSE
5: Observation: tool return, plus environment update (incl. peers if broadcast)
6: Thought: integrate tool feedback & social signals
7: Answer: exactly "I eat the marshmallow" or "I wait"

Budget enforcement ensures that exceeding the per-step cap forces the response and prevents further
tool calls within that minute.

Procedure: The experimental procedure consists of three phases: (1) Initialization (Step 0): Agents
receive the starting prompt and are expected to make their first decisions; (2) Main loop (Minutes
1..T): At each minute, the environment processes last actions, issues rewards for eaters, updates
observations (including social stats), and requests next actions from active agents. (3) Final minute:
The environment issues a final-resolution prompt; remaining agents commit to waiting and receive
+2.0. Any internal {Answer: "I won"} is registered as "waited full".

Data & Logging: For each agent × step interaction, we log: decision & reward (action, reward,
termination flags); tool usage; validation(format compliance and error counts); social exposure(peers
waiting, peers eliminated, eats per step, waits per step); run metadata (model settings, temperature,
seed, scenario parameters). The pipeline compiles agent outcomes, step-level trajectories, cell
aggregates, and cell summaries.

4.1 Metrics and Statistical Analysis

We model time-to-give-in as a discrete-time survival process. The event is the first minute an agent
outputs "I eat the marshmallow"; agents who never eat by the horizon T are right-censored at T and
coded as "waited_full." Invalid steps (format violations) are tracked and excluded per pre-specified
rules.

Restricted mean survival time (RMST). As a scale-interpretable summary, we report RMST
[Irwin, 1949, Royston and Parmar, 2013] up to τ minutes, i.e., the area under the survival curve
truncated at τ . In our minute-level design,

R̂MST(τ) =

τ−1∑
m=0

Ŝ(m), Ŝ(0) = 1,
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where Ŝ(m) is the KM survival estimate at the start of minute m+1. We compute condition-wise
RMST (and differences where noted) with 95% CIs from a nonparametric bootstrap (clustered by
trial).

Kaplan-Meier (KM) Survival Curves. We employ KM survival curves [Kaplan and Meier, 1958b]
to estimate and visualize the survival function. In this context, "survival" refers to an agent continuing
to wait for the larger reward. The analysis plots the probability of an agent not having "eaten the
marshmallow" at each discrete minute of the experiment. Survival probabilities are calculated at
each step, KM plots are generated for each experimental factor (e.g., communication mode, hedonic
drive). To represent uncertainty in the estimates, 95% confidence intervals are calculated using the
Greenwood formula [Kaplan and Meier, 1958b, Greenwood, 1926, Klein and Moeschberger, 2003].

Discrete-Time Hazard Models: To quantify the effect of experimental factors on agent decisions, we
use a discrete-time hazard model. This analysis estimates the effect of each factor on the probability
of an agent "eating the marshmallow" at a specific time t, given they have survived (i.e., waited) until
that point. This conditional probability is the hazard rate.

The analysis is implemented using a logistic regression model, a form of Generalized Linear Model
(GLM), on the agent-step level data. Let hi(t) be the hazard for agent i at time t. The model is
specified as:

logit(hi(t)) = log

(
hi(t)

1− hi(t)

)
= αt +XT

i β (1)

where αt represents a set of time dummies that capture how the baseline probability of eating changes
over time; Xi is a vector of covariates representing the experimental conditions for agent i (e.g.,
communication mode is textitbroadcast, the hedonic drive level is crave, the persona age is child,
etc.); β is the vector of coefficients that quantify the effect of each factor on the log-odds of eating.
For instance, a positive coefficient for broadcast would imply that being in the broadcast condition
increases the hazard of eating compared to the isolated condition.

Social-Influence and Tool-Use Dynamics: While the hazard model focuses on the effects of time-
invariant experimental conditions, we also analyze the dynamics of social influence and tool use
through detailed visualizations illustrating the average number of peers observed eating or waiting at
each step, providing insight into the social signals agents receive; and average number of "questions
asked" (tool uses) by agents at each step, indicating metacognitive activity. This descriptive analysis
of how social signals and metacognitive actions unfold over time complements the inferential hazard
model.

5 Results

Sample and Data Quality. We ran 19,200 agent trajectories across 64 experimental cells (6 agents
per cell, with a time horizon of T = 19). The data quality was high, with 99.9% of trajectories being
valid and only 0.1% invalid. The aggregate behavior of agents shows a strong impulse to eat in the
first minute, followed by a long tail of waiting. Key metrics include an initial eat rate ≈ 0.125, a
total eat rate ≈ 0.241, and a winners rate ≈ 0.759. The median time-to-eat was ≈ 14.8 minutes, with
a Restricted Mean Survival Time (RMST) of ≈ 14.8. Table 1 represents the dataset overview and
Figure 2a visualizes this multi-turn profile.

5.1 Main Effects

Social context shifts risk. In a discrete-time hazard model, the isolated condition reduces the per-
minute hazard of eating relative to the broadcast condition (β = −0.248, Odds Ratio (OR) ≈ 0.78,
95% CI [0.73–0.83], p < 0.001), demonstrating that the visibility of peers elevates temptation.
Figure 2b quantifies this effect alongside other experimental factors.

Internal drives and Age personas. Survival probabilities stratify strongly by agent characteristics.
Relative to the "crave" hedonic drive, the "like" (OR ≈ 0.28), "none" (OR ≈ 0.19), and "neutral" (OR
≈ 0.03) conditions all show a significantly lower hazard of eating (all p < 0.001). Similarly, relative
to the "adult" persona, the "child" persona shows a much higher hazard (OR ≈ 66.3, p < 0.001), and
the "senior" persona is also elevated (OR ≈ 7.55). Figure 3 displays these survival trajectories.
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Table 1: Dataset overview: counts, survival metrics, and quality.
Data Summary Survival Metrics (Overall) Data Quality

Agents per Cell 6 Initial Eat Rate 0.125 Data Quality Rate 99.9%
Total Agent Trajectories 19,200 Total Eat Rate 0.241 Invalid Outcome Rate 0.1%
Total Cells 64 Winners Rate 0.759 Valid Trajectories 19,185
Total Trials 3,200 Median TTE 14.8 steps Invalid Trajectories 15
Risk Horizon 19 RMST (steps) 14.8

Total Winners 14,566

(a) Overall Event Distribution
(b) Forest Plot. Error bars represent 95% confidence
intervals.

Figure 2: (a) Overall Event Distribution. The plot shows the probability of an agent eating the
marshmallow for the first time at each step, aggregated across all conditions; (b) Forest Plot of OR
from the discrete-time hazard model. Values less than 1 indicate a reduction in the hazard of eating,
while values greater than 1 indicate an increase.

Metacognition (tool policy). A mandatory ("MUST-use") tool policy increases the hazard of eating
compared to an optional policy (OR ≈ 1.42, 95% CI [1.35–1.50], p < 0.001). We interpret this as
front-loaded deliberation that does not always offset the temptation at the first decision minute. This
effect is visible in the forest plot in Figure 2b.

5.2 Interaction Dynamics

Reasoning dynamics under social exposure. Peer visibility also changes how agents reason over
time. Question-asking, a proxy for deliberation, declines faster in the "broadcast" condition than
in the "isolated" condition. Figure 4 shows the mean number of questions used per step with 95%
confidence intervals.

(a) Survival curves by hedonic drive. (b) Survival curves by persona age.

Figure 3: KM survival curves by agent characteristics, shown with social context. The y-axis
represents the proportion of agents still waiting.

7



5.3 Ablations

We conducted targeted ablations to identify the source of multi-turn failures. First, we set hedonic
to none; second, we removed the persona age (set to none); third, we removed both simultaneously.
Each ablation was crossed with social context (broadcast vs. isolated) and tool policy (MUST vs.
MAY).

Figure 4: Social Influence on Tool Usage (Broadcast vs. Isolated). The plot shows the mean number
of questions asked per step.

High-level results. Removing hedonic drive increases survival throughout the horizon in both social
contexts; removing persona age yields a further upward shift; removing both produces the highest
survival with near-flat curves after the early minutes and visibly narrows the broadcast/isolated gap.
Across the full dataset, isolated has a slightly higher completion rate than broadcast (winners 0.7633
vs. 0.7540), a longer median time-to-eat (15.22 vs. 14.41), and a higher RMST (14.95 vs. 14.65),
consistent with ablation trends.

Across all ablations, MUST remains worse than MAY: averaging over conditions, MAY improves
completion by ≈ 3.5 percentage points (winners 0.7761 vs. 0.7411), lowers total eat rate (0.2232
vs. 0.2580) and initial eat (0.1141 vs. 0.1363), and yields higher median TTE (15.03 vs. 14.59) and
RMST (15.11 vs. 14.49).

Completion rates rise monotonically from Full Factors → Hedonic None → Policy Role Persona
None → Both, approaching 1.0 under the combined ablation in both social contexts Figure 5

Tool-use dynamics also change: on average, agents ask ≈7.12 questions and hit the per-step budget
in ≈6% of minutes; under ablations, the early questioning rate is higher and its decay profile differs,
with broadcast showing higher early usage and a visible mid-horizon cross-over.

(a) Ablation Completion Rates (b) Ablation Curves vs Fully Parametrized

Figure 5: Ablation Completion Rates: Broadcast vs. Isolated and Survival Curses for all Ablation
Conditions
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6 Discussion

Our results reveal four key insights for multi-turn LLM interactions. First, the consistent pattern
of early temptation followed by low-hazard persistence validates this framework as a stress test
for long-horizon reliability. Second, social context emerges as a critical factor: broadcast visibility
increases the give-in hazard (OR ≈ 0.78 for isolated) and accelerates the decline in self-questioning,
highlighting how peer observation reshapes both decisions and reasoning processes. Third, persona-
based internal states (hedonic drive, age) systematically affect survival, offering controlled probes
of long-horizon stability. Fourth, the use of mandatory tools surprisingly increases the hazard (OR
≈ 1.42), suggesting that front-loaded deliberation may focus attention on temptation at critical
decision points.

Limitations. We introduced a novel marshmallow-inspired, multi-agent Micro-benchmark that
turns delayed gratification into a tractable, auditable test of multi-turn reliability in LLM agents and
we hope this framework will serve the community as a compact testbed for studying self-control,
social spillovers, and tool-use policies in multi-turn, multi-agent LLM systems. However, we
acknowledge that our experiment has several limitations. First, our experiments use a single base
model (Gemini 2.5 Flash-Lite) and a fixed decoding setup; we did not sweep temperatures or other
sampling parameters, so cross-model/decoder generalization remains unknown. Second, the task
is a single micro-environment with a strictly binary action space (“I eat the marshmallow” vs. “I
wait”) and a fixed reward scheme, which simplifies real deployments. Third, social context was
varied only between the extremes of isolated and broadcast; richer network structures or partial
observability were not explored. Next, question-budget visibility was held hidden in the reported
runs (no variation), so we cannot isolate awareness effects. Finally, our discrete-time hazard model
includes time dummies and condition indicators, but omits time-varying peer-exposure and tool-use
covariates (analyzed descriptively), which limits causal claims about social cascades.

Implications and Future Work. These findings have implications for interactive systems that
require sustained adherence, including carefully managing social exposure when cascading failures
are possible, preferring optional over mandatory tool policies, and monitoring step-level metrics
to detect early impulses. Our controlled setup (strict action space, scripted personas)provides a
reproducible testbed for studying multi-turn reliability. In future work, we will explore other models,
reward structures, and ways to generalize our approach to open-ended tasks.

7 Conclusion

We presented a marshmallow-inspired, long-horizon micro-benchmark that evaluates multi-turn
LLM agents under controlled social contexts, personas, and tool-policy manipulations. Formalized
as an MDP (isolated) and a POMDP (broadcast), the environment yields auditable, time-resolved
traces that we analyze using Kaplan–Meier survival and discrete-time hazard models. Empirically,
broadcast peer visibility increases early-eat hazard, mandatory self-questioning raises risk, and
persona factors (hedonic drive, age) strongly modulate waiting behavior. Together, these results
demonstrate that social exposure and metacognitive scaffolding significantly influence temporal
decisions in LLM agents. In relation to our hypotheses, the evidence indicates that social visibility
elevates risk while isolation reduces it (H1), internal state manipulations systematically shift hazard
(H2), mandatory metacognition increases rather than lowers risk (H3), the decision process has
clear time dependence with an early spike and long tail (H4), and, contrary to expectation, more
prescriptive prompt scaffolding does not improve adherence and can degrade reliability (H5). Future
work will test broader model families, randomized social schedules for causal leverage, and additional
tasks that stress tool budgets and coordination beyond delay of gratification.
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