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ABSTRACT

In heterogeneous treatment effect estimation from observational data, the funda-
mental challenge is that only the factual outcome under the received treatment is
observable, while the potential outcomes under other treatments or no treatment
can never be observed. As a simple and effective approach, matching aims to
predict counterfactual outcomes of the target treatment by leveraging the nearest
neighbors within the target group. However, due to limited observational data and
the distribution shifts between groups, one cannot always find sufficiently close
neighbors in the target group, resulting in inaccurate counterfactual prediction be-
cause of the manifold structure of data. To address this, we remove group barriers
and propose a matching method that selects neighbors from all samples, not just
the target group. This helps find closer neighbors and improves counterfactual
prediction. Specifically, we analyze the effect estimation error in matching, which
motivates us to propose a self optimal transport model for matching. Based on
this, we employ an outcome propagation mechanism via the transport plan for
counterfactual prediction, and exploit factual outcomes to learn a distance as the
transport cost. The experiments are conducted on both binary and multiple treat-
ment settings to evaluate our method.

1 INTRODUCTION

Estimating heterogeneous treatment effects from observational data has been widely applied in many
semi-synthetic data applications (Hitsch et al., 2024), such as healthcare (Foster et al., 2011), eco-
nomics (Heckman, 2000), and recommendation systems (Sato et al., 2020; Luo et al., 2024; Gao
et al., 2024). Based on the framework of the Neyman-Rubin potential outcome model, the treat-
ment effect can be estimated by comparing the potential outcomes of different treatments (Splawa-
Neyman et al., 1990; Rubin, 2005). Nevertheless, we can only observe the factual outcome of the
received treatment, while counterfactual outcomes under other treatments or no treatment can never
be obtained.

To predict counterfactual outcomes, a variety of machine learning methods have been proposed
(Johansson et al., 2016; Feuerriegel et al., 2024). Among them, matching has attracted significant
attention because of its simplicity and interpretability (Stuart, 2010; Kallus, 2020). To predict the
counterfactual outcome of a target treatment, classical matching identifies the nearest neighbors in
the group receiving the target treatment, and then aggregates their factual outcomes for prediction
(Kallus, 2020). The cornerstone underlying matching is the assumption that samples close in dis-
tance tend to have similar potential outcomes.

However, in practice, due to limited observational data and distribution discrepancies between
groups caused by the confounding bias (Greenland et al., 1999; Shalit et al., 2017), there exist
regions where samples under the target treatment are scarce or even absent, making it difficult to
find sufficiently close samples within the target group. Consequently, the matched samples may
suffer from large distances. Since data samples typically lie on an intrinsic manifold, where the
Euclidean distance is meaningful only locally, large distances between matched samples may not
capture true relationships. This inconsistency weakens counterfactual prediction. In other words,
matching performs well only when samples are close enough.

To address the above challenge, we propose to remove the barriers between groups and design a
matching method to find neighbors from all the samples regardless of their received treatments.
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By doing this, closer samples with small distances can be matched, which is beneficial to capture
relations between samples for counterfactual prediction. Specifically, we analyze the outcome esti-
mation error of our matching method and provide an error bound in terms of the sample distances.
Our theoretical result enjoys an explanation from the perspective of optimal transport, which studies
how to move masses from a group of samples to another group with the minimal total transport cost
(Villani et al., 2009; Peyré et al., 2019). Motivated by this explanation, we propose a self optimal
transport model to select neighbors from all the samples for matching.

Nevertheless, for the matched samples not come from the target group, their potential outcomes un-
der the target treatment are unknown, bringing a challenge to counterfactual prediction. To alleviate
this, inspired by the information propagation mechanism used in semi-supervised learning (Zhu and
Ghahramani, 2002), we construct a transition probability matrix based on the optimal transport plan,
allowing us to employ a random walk algorithm (Xia et al., 2019) for counterfactual prediction.

To preserve the relations between factual outcomes in the transport cost of our model, we introduce
factual outcomes to learn a distance as the transport cost within the optimal transport framework,
in which the transport cost measured on covariates is consistent with the optimal transport plan of
factual outcomes. To evaluate the performance of our method, we conduct experiments on both
semi-synthetic data and simulation datasets, including both binary and multiple treatment settings.
We name our method as Matching withOut Group bArrier (MOGA), and summarize the major
contributions as follows.

• We propose a matching method to select neighbors from all the samples, which is formu-
lated as a self optimal transport model, allowing closer samples to be matched for better
capturing sample relationships.

• We propose a counterfactual prediction approach for estimating heterogeneous treatment
effects, using an outcome propagation mechanism and the optimal transport plan modeled
as a transition probability matrix.

• We propose a distance learning method that improves causal effect estimation by leveraging
factual outcomes within the optimal transport framework.

2 BACKGROUNDS

In this section, we first present the notations used in the paper, and then provide the background
of optimal transport and heterogeneous treatment effect estimation. The comprehensive review of
related work on causal effect estimation and optimal transport is provided in the Appendix A.

Given a vector q ∈ RN , qi is the i-th entry. 1 represents a vector or matrix with all the entries
being 1. The probability simplex ΣN is defined as ΣN = {q ∈ (R+)N |

∑N
i=1 qi = 1}. For a

matrix A, A⊤ is the transpose of A, and Aij is the (i, j)-th entry. For the probability distribution
A ∈ (R+)N×N , the entropy is defined as H(A) = −

∑N
i=1

∑N
j=1 Aij(logAij − 1).

2.1 OPTIMAL TRANSPORT

Given the sets of probability measures P (U) and P (V) on the spaces U and V , respectively, and
a cost function c : U × V → R+. Let α ∈ P (U) and β ∈ P (V) be two distributions with the
samples u ∈ U and v ∈ V . The Kantorovich problem of optimal transport aims to find the optimal
probabilistic coupling γ ∈ P (U × V) by solving the following problem

min
γ

∫
U×V

c(u, v)dγ(u, v) s.t. γ ∈ Γ(α, β), (1)

where Γ(α, β) ⊂ P (U × V) is the set of probabilistic couplings with marginal distributions α and
β.

One of the advantages of optimal transport is that it can be performed without knowing the underly-
ing distribution. Optimal transport can work even on discrete distributions represented by empirical
samples. Specifically, for the discrete situation, given the observed samples {ui}na

i=1 and {vi}nb
i=1

with na and nb being the numbers of samples, respectively, let δ(ui) (resp., δ(vi)) be the Dirac
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function at the location ui (resp., δ(vi)). The vectors a ∈ Σna
and b ∈ Σnb

are the probability
simplexes, and the i-th entry ai (resp., bi) is the probability masses associated with the sample ui

(resp., vi). Based on the above notations, the empirical distributions can be written as

α̂ =

na∑
i=1

aiδ(ui), β̂ =

nb∑
i=1

biδ(vi). (2)

Let C be the cost matrix with the entry Cij = c(ui, vj), and γ be the transport matrix belonging to
the set

Γ(α̂, β̂) = {γ ∈ (R+)na×nb | γ1nb
= a ,γ⊤1na

= b}, (3)

the discrete form of optimal transport reads

min
γ

⟨C,γ⟩ s.t. γ ∈ Γ(α̂, β̂). (4)

2.2 CAUSAL EFFECT ESTIMATION

Our analysis follows the Neyman-Rubin potential outcomes framework (Rubin, 1974; Splawa-
Neyman et al., 1990). We denote ti as the treatment received by the i-th sample, and t as a treatment
value in the space T = {0, 1, . . . , T}, where T is the number of the different treatment values, and 0
indicates the control group received no treatment. The samples are represented as {(xi, yi, ti)}ni=1,
where n is the number of samples, xi ∈ Rd is the covariate vector with d being the number of
covariates, yi ∈ R is the observed factual outcome and ti ∈ T is the received treatment. For the
treatment group t, the samples are represented as {(xt

i, y
t
i)}

nt
i=1 with nt being the number of sam-

ples in the treatment group t. Further, we denote Yt(xi) as the potential outcome for the specific
individual i given its covariates under the treatment t.

Our task is to estimate the heterogeneous treatment effect (HTE), which captures how the impact
of a treatment differs based on individual characteristics. In this paper, we focus on the multiple
treatment setting, thus the task is to estimate all HTEs under all possible treatments. Formally, for a
given treatment t and t′, HTE is defined as:

τt,t′;i =E[Yt(xi)− Yt′(xi)|xi] (5)
=ft(xi)− ft′(xi), (6)

where we denote nuisance function under treatment t as ft(xi) := E[Yt(xi)|xi]. Following (Yan
et al.; Scotina and Gutman, 2019; Schwab et al., 2018), we make the following assumptions to ensure
the identification:

Assumption 1 (Stable Unit Treatment Value Assumption). The potential outcome of a unit is unaf-
fected by the treatment status of other units, and there is no variation in the treatment levels.

Assumption 2 (Unconfoundedness). For the i-the sample, the received treatment ti is independent
of the potential outcomes Yt(x) conditioned on the covariates xi. Formally, ∀t ∈ {0, 1, . . . , T},
Yt(xi)⊥⊥ ti|xi.

Assumption 3 (Overlap). For each sample, there is a non-zero probability of being assigned either
treatment or control, conditional on the covariates xi. Formally, ∀t ∈ {0, 1, . . . , T} and xi, we have
0 < P (t | xi) < 1.

Assumption 4 (Lipschitz Continuity). Given the mapping function ϕ : Rd → Rd′
and the norm

∥xi − xj∥ϕ = ∥ϕ(xi) − ϕ(xj)∥. For any treatment t ∈ T , the nuisance function ft(·) is Lipschitz
continuous with the constant Lt > 0, i.e., |ft(xi)− ft(xj)| ≤ Lt∥xi − xj∥ϕ.

Assumptions 1, 2, and 3 are common and standard assumptions in causal inference (Rubin, 1974;
Hill, 2011; Johansson et al., 2016), which guarantee the identification of HTE. Here we adopt the
classic assumptions under the standard identification framework. Additionally, we make an assump-
tion in Assumption 4 on the function ft(x), which ensures that the function ft does not change
too rapidly and provides a bound on how much the potential outcome varies as x changes. Intu-
itively, Assumption 4 means that two close samples usually have similar potential outcomes. This
assumption is reasonable and easy to be satisfied in practice (Kallus, 2020).
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3 METHODOLOGY

3.1 MATCHING WITHOUT GROUP BARRIER

Given a sample xt′ with t′ ̸= t, in order to predict its counterfactual outcome under the treatment
t, classical matching finds the nearest neighbors from the treatment group t {(xt

i, y
t
i)}

nt
i=1 based on

a distance d(xt′ ,xt
i), and then combine the factual outcomes of the neighbors to predict the coun-

terfactual outcome ŷt. The assumption underlying matching is that if d(xt′ ,xt
i) is small, then they

have similar potential outcomes. However, this approach faces a challenge in practice that one can-
not always find sufficiently close neighbors in the treatment group t. This occurs when the number
of observational samples is limited, or the groups t and t′ suffer from a large distribution discrep-
ancy because of the confounding bias. Although one can find a neighbor with a large distance, the
manifold structure of data makes large distances unreliable to accurately characterize the structure
of potential outcomes, resulting in inaccurate counterfactual prediction.

To address this, we break the barriers between different groups and propose a matching method
to find neighbors from all the samples regardless of their received treatments, so that smaller dis-
tances between matched samples are expected, improving the reliability of counterfactual prediction.
Specifically, to predict the counterfactual outcome of the treatment t for the sample xi, we find near-
est neighbors of xi from all the samples rather than the treatment group t, and then combine the
potential outcomes of the matched neighbors for prediction. Without loss of generality, let Wij

be the matching degree between xi and xj , the counterfactual outcome can be estimated by the
following

Ŷt(xi) =

n∑
j=1

WijYt(xj), (7)

where
∑n

j=1 Wij = 1. Ideally, Wij of the matched neighbors should large, and Wij of the non-
matched samples should be small or close to 0. In addition, Wii is expected to be zero since the
outcome estimation of xi relies on its neighbors rather than itself. The consistency analysis of the
estimator is discussed in Appendix B. The outcome estimation error of the treatment t is analyzed
by the following theorem with an upper error bound:

Theorem 1. Let ϵYt =
∑n

i=1(ft(xi) − Ŷt(xi))
2 be the estimation error of the potential outcomes

under the treatment t, if the assumption ∀i, V ar(yi|xi, ti) = η2 holds, then the error is upper
bounded by the following:

ϵYt ≤ 2L2
t

n∑
i=1

n∑
j=1

Wij∥ϕ(xi)− ϕ(xj)∥22 + 2nη2
n∑

i=1

n∑
j=1

W 2
ij . (8)

The proof is in Appendix C. The homogeneity assumption of the variance is used in (Kuang et al.,
2019; Kallus, 2020).

Based on Theorem 1 we discuss the difference between our matching method and the classical
matching method from the perspective of outcome estimation error. To predict counterfactual out-
come Yt(xi), no matter which treatment t is considered, our matching method is able to find neigh-
bors from all the samples {xj}nj=1 regardless of their received treatment {tj}nj=1. On the contrary,
classical matching only considers the target group {xj : tj = t} as the candidates, which highly
restricts the search space for matching. As a result, the neighbors in the other group are excluded,
which suffers from larger distances between xi and the matched samples, resulting in a looser upper
bound.

The upper bound in Theorem 1 enjoys a clear explanation from the perspective of optimal transport.
The first term can be modeled as the total transport cost, and the second term can be modeled as
the Frobenius norm of the transport matrix, motivating us to propose a regularized optimal transport
model for learning the matching degree matrix. Specifically, we define the empirical distribution of
all the samples as µ =

∑n
i=1 piδ(xi), pi =

1
n ,∀i = 1, . . . , n, where the uniform probability mass

pi indicates that all the samples contribute equally to the estimation error. The uniform masses also
prevent large subgroups from dominating small subgroups, which ensures that internal subgroups
maintain influence in the matching process. By setting the probabilistic coupling as γij = 1

nWij , we

4
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minimize the upper bound of the potential outcome estimation error in Theorem 1 by the following
optimal transport problem

min
γ

⟨Cϕ,γ⟩+ λfΩ(γ)

s.t. γ ∈ Γ(µ, µ), γii = 0,∀i = 1, . . . , n, (9)

where Cϕ is the cost matrix with the (i, j)-th entry being Cϕ
ij = ∥ϕ(xi)−ϕ(xj)∥22, Ω(γ) = 1

2∥γ∥
2
F

is the square of the Frobenius norm, and λf is the trade-off hyperparameter.

Different from the classical optimal transport model involving two distributions discussed in Section
2.1, Problem (9) is a self optimal transport model that considers transport from the set of samples
to this set while excluding moving one sample to itself (Landa et al., 2021; Yan et al., 2024). As a
result, for the sample xi, the neighbors found from all the samples are matched with a large weight
Wij , while the samples far away from xi are assigned with a weight Wij close to 0.

The following theorem further shows that by minimizing the upper bound in Theorem 1, the effect
estimation error is also minimized
Theorem 2. Let Ŷt(xi) denote the predicted outcome for the i-th sample under the treatment t.
The effect estimation error is measured by the pairwise precision in the estimation of heterogeneous
effect (mPEHE) is defined as ϵmPEHE = 2

nT (T+1)

∑
0≤t′<t≤T

∑n
i=1((Ŷt(xi)−Ŷt′(xi))−(ft(xi)−

ft′(xi)))
2 (Schwab et al., 2018; Guo et al., 2023). The effect estimation error is upper bounded by

the outcome estimation error as follows

ϵmPEHE ≤ 4

n(T + 1)

T∑
t=0

ϵYt . (10)

The proof is given in Appendix D. We observe that the bound of in Theorem 2 is upper bounded in
Theorem 1.

Consequently, we establish a theoretical connection between our matching method and optimal
transport. In practice, to remove the constraints γii = 0, we follow (Yan et al., 2024) to con-
struct a cost matrix C̃ϕ = Cϕ + LIn, where L is a sufficiently large value and In ∈ Rn×n is the
identity matrix. By doing this, the diagonal entries C̃ϕ will induce γii to close to 0, avoiding to
tackle the constraints γii = 0 explicitly. In addition, we borrow the entropic regularization term
H(γ) to minimize the negative entropy of γ, so that the Sinkhorn algorithm (Cuturi, 2013) can be
applied to efficiently solve the optimal transport problem. Finally, we achieve the following optimal
transport problem:

min
γ

⟨C̃ϕ,γ⟩+ λfΩ(γ)− λhH(γ)

s.t. γ ∈ Γ(µ, µ), (11)

where λh is the hyperparameter.

Based on our optimal transport model, we leverage the results of our model for counterfactual pre-
diction in Section 3.2, and incorporate factual outcomes to learn a distance as the transport cost in
Section 3.3.

3.2 COUNTERFACTUAL PREDICTION

Given the optimal transport plan γ obtained by solving Problem (11), we can find the matched sam-
ples and predict the counterfactual outcome Yt(·) according to Eq. (7). The optimal transport plan
reflects the matching degrees used for counterfactual outcome estimation. Optimal transport will
adaptively assign larger values γij between close sample pairs, and a pair far away from each other
will receive a quite small γij . For outliers that are far away from most samples, optimal transport
will assign small weights to them. As a result, the estimated outcomes are basically determined by
close samples with large weights, and the outliers will make a limited contribution in counterfac-
tual outcome estimation. However, for the matched samples not come from the treatment group t,
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their potential outcomes under the treatment t are unknown. To tackle this, we consider an informa-
tion propagation mechanism to iteratively update the counterfactual predictions by a random walk
method (Xia et al., 2019).

Remind that γ ∈ Γ(µ, µ) is a doubly stochastic matrix, meaning that
∑n

j=1 γij =
1
n ,∀i = 1, . . . , n.

We can simply construct a transition probability matrix W ∈ (R+)n×n by setting W = nγ. The
(i, j)-th entry Wij indicates the probability that the i-th sample moves to the j-th sample, where the
probability is measured based on the transport cost between them compared with the costs between
other pairs. Based on this, we develop a random walk algorithm to predict potential outcomes for
all the treatments over all the samples.

Specifically, let Y ∈ Rn×(T+1) be the matrix including all the factual outcomes of all the samples,
which is defined as

Yit =

{
yi for ti = t.
0 for ti ̸= t,

(12)

and M ∈ {0, 1}n×(T+1) be the factual outcome mask matrix defined as

Mit =

{
1 for ti = t,
0 for ti ̸= t.

(13)

At the κ-th iteration, we use Ŷκ ∈ Rn×(T+1) to denote the predicted potential outcome matrix
including all the treatments and samples. We update the predicted potential outcome matrix by
SŶκ where S is the affinity matrix constructed as S = ρW + (1 − ρ)I, which introduces self-
connections with the coefficient ρ ∈ (0, 1), which balances exploration (via W) and memory (via
I). After that, we replace the predicted entries Ŷ κ

it with the known corresponding factual outcome
by Yit. In summary, we iteratively update the predicted potential outcome matrix by the following
random walk rule

Ŷκ+1 = SŶκ ⊙ (1−M) +Y ⊙M = SŶκ ⊙ (1−M) +Y, (14)

and the initial potential outcome matrix is set as Ŷ0 = Y.

Eq. (14) contains a diffusion term SŶκ ⊙ (1−M), which gradually propagates outcome informa-
tion along the manifold to the unmasked part denoted by 1 −M, mimicking geodesic aggregation
and ensuring a smooth geodesic estimation (Tenenbaum et al., 2000). By doing this, the manifold
structure of data is leveraged to improve the causal effect estimation. Finally, the outcome informa-
tion will gradually propagate to all the samples under all the treatments. The fixed observation term
Y ⊙M remains unchanged across iterations.

3.3 DISTANCE LEARNING

Based on Theorem 1, the estimation error of heterogeneous treatment effects relies on the cost
cϕ(xi,xj) = ∥ϕ(xi) − ϕ(xj)∥22 which is determined by ϕ(·). In this part, we discuss how to
implement the function ϕ(·).
The vanilla approach is the identity function ϕ(x) = x, and the cost cid(xi,xj) = ∥xi−xj∥22 is the
squared Euclidean distance, which is commonly used in existing works of optimal transport (Courty
et al., 2017).

The key to the success of matching is to find a sample with similar potential outcomes, which means
that cϕ(xi,xj) can capture the difference between their potential outcomes. However, cid(·, ·) does
not take the outcome into consideration. To enhance the distance measurement for potential outcome
prediction, we introduce the factual outcomes into distance learning. In addition, since the distance
is adopted as the transport cost in our optimal transport model in Problem (9), we also apply the
framework of optimal transport to learn a distance. Specifically, we consider sample transport within
each treatment group, which involves the transport plans {γt}Tt=0, with the constraint that γt ∈
Γ(µt, µt), where the empirical distribution of one group µt is defined as µt =

∑nt

i=1 p
t
iδ(x

t
i), p

t
i =

1
nt
,∀i = 1, . . . , nt.

Based on the above discussions, we first exploit factual outcomes to learn an optimal transport
plan for each group, and then enforce the learned distance on covariates to admit the same optimal

6
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transport plans obtained from factual outcomes. Specifically, we learn the optimal transport plan
based on factual outcomes by the following problem

γ̃t = argmin
γt

⟨CY
t ,γt⟩ − λhH(γt)

s.t. γt ∈ Γ(µt, µt), (15)

where the cost matrix CY
t measured by the factual outcomes of the treatment group t is constructed

as CY
t,ij = (yti − ytj)

2. Similar to the self optimal transport model in (Yan et al., 2024), we set
CY

t,ii = L as a sufficiently large value to avoid the trivial solution. After that, we learn the mapping
function ϕ(·) based on the optimal transport plan γ̃t by the following

min
ϕ

T∑
t=0

⟨Cϕ
t , γ̃t⟩, (16)

where Cϕ
t is the cost matrix determined by the function ϕ(·) on the covariates of the treatment

group t. Intuitively, for the pair of i-th and j-th samples, if their potential outcomes are similar,
a large mass transport γ̃t,ij will be induced, resulting in a small cost Cϕ

t,ij . Eq. (16) encourages
Cϕ

t to approach CY
t , which improves the consistency between cϕ(xi,xj) and CY

t,ij . As a result,
the outcome information is effectively captured in the learned cost cϕ(·, ·). Moreover, the ordinal
relation of the potential outcomes {yti}

nt
i=1 is well preserved in ϕ(x), which has been shown to

compress the manifold on which ϕ(x) lie, leading to improved generalization ability (Zhang et al.,
2024).

To further introduce ϕ(·) and {γt}Tt=0 into a unified problem, we propose the following self op-
timal transport model, which considers the transport cost on both covariates and factual outcomes
collaboratively, and learn the transport cost and plans jointly

min
{γt},ϕ

T∑
t=0

⟨Cϕ
t ,γt⟩+ λy⟨CY

t ,γt⟩ − λhH(γt)

s.t. γt ∈ Γ(µt, µt), t = 0, . . . , T, (17)

where λy is the trade-off hyperparameter. We initialize the optimal transport plans γt based on the
solution to Problem (15), and then solve Problem (17) to refine γt shared by the cost of covariates
and factual outcomes. As a result, the coupled transport cost Cϕ

t measured on covariates can be
supervised by the factual outcomes.

Now we discuss how to solve Problem (17) to obtain the optimal transport plans {γt}Tt=0 and the
mapping function ϕ(·) involved in the transport cost. Problem (17) contains multiple blocks of
parameters. We adopt the alternate method to solve the problem, during which we optimize one
block of parameters with the other blocks fixed.

Specifically, given the fixed mapping function ϕ(·) and the corresponding cost matrix Cϕ
t , and the

cost matrix CY
t , the optimal transport problem within each group can be separated and solved indi-

vidually. For the treatment group t, the subproblem with respect to γt can be formulated as follows

min
γt

⟨Cϕ
t ,γt⟩+ λy⟨CY

t ,γt⟩ − λhH(γt)

s.t. γt ∈ Γ(µt, µt), (18)

which is a standard self optimal transport problem with the cost matrix Cϕ
t + λyC

Y
t and can be

solved by the Sinkhorn algorithm (Cuturi, 2013).

Given the fixed transport plans {γt}Tt=0, we optimize the mapping function ϕ(·) to obtained the
coupled cost function. Here, we implement ϕ(·) as a projection operation ϕ(x) = P⊤x with P ∈
Rd×d′

being the parameters to be optimized, so that the transport cost Cϕ
t,ij can be obtained as

Cϕ
t,ij = cϕ(xi,xj) = ∥P⊤xi −P⊤xj∥22. (19)

As a result, the transport cost is directly guided by the factual outcomes, ensuring that the learned
distance reflects meaningful relations of samples in the sense that close samples with small learned
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distance have similar outcomes. In addition, the transport cost is calculated in the supervised sub-
space, which can alleviate the issue of high-dimensional data.

To avoid the trivial solution and induce orthogonal projected features, we make P to follow the
constraint P ∈ M = {P ∈ Rd×d′ | P⊤P = I}. Based on this, the subproblem with respect to P is
given as follows

min
P

T∑
t=0

⟨CP
t ,γt⟩ s.t. P ∈ M. (20)

The following proposition provides the closed-form solution to this problem.
Proposition 3. Let Xt ∈ Rnt×d be the matrix including all the samples in the treatment group t.
Problem 20 is equivalent to the following problem

min
P

tr

(
P⊤(

T∑
t=0

Θt)P

)
s.t. P⊤P = I, (21)

where the matrix Θt is constructed as
Θt = 2(Xt)

⊤diag(γt1− γt)Xt. (22)
The closed-form solution to this problem is obtained by the eigenvectors associated with the d′

smallest eigenvalues of the matrix
∑T

t=0 Θt.

The proof is given in Appendix F.

The pseudo-code of our algorithm is given in Appendix G.

4 EXPERIMENTS

In this section, we first describe the experimental settings including the compared methods and eval-
uation metrics. After that, we present experimental results and discussion on semi-synthetic and
simulation datasets. More experiments can be found in the appendix, including matching visualiza-
tion results, ablation studies, and sensitivity analysis. All the experiments can be run on a single
24GB GPU of NVIDIA GeForce RTX 4090.

4.1 EXPERIMENTAL SETTINGS

Compared Methods We compare the performance of MOGA with the following methods: k-
NN(Crump et al., 2008) finds k nearest neighbors from the target group and then predicts the poten-
tial outcome based on the factual outcomes of the neighbors. OLS/LR-2 applies linear regression
with separate regression models for each treatment group. BART (Chipman et al., 2010; Hill, 2011)
provides a posterior distribution of the treatment effects, allowing for uncertainty quantification in
causal inference tasks. TARNet (Shalit et al., 2017) learns latent representations of covariates to
reduce the distribution discrepancy between the treated and control groups. CFR (Shalit et al.,
2017) minimizes the distribution discrepancy between treated and control groups in the latent rep-
resentation space via the Integral Probability Metric, which is implemented by the Wasserstein dis-
tance. We defined regularized all treatments to have the same activation distribution in the topmost
shared layer, extending CFR to multiple treatment settings. GANITE (Yoon et al., 2018) estimates
individual treatment effects using a generative model based on Generative Adversarial Networks.
PSM (Rosenbaum and Rubin, 1983) estimates the treatment effect by matching individuals in the
treated and control groups based on the propensity score, which is predicted by logistic regression.
PM (Schwab et al., 2018) enhances the matching method by learning a neural network to estimate
propensity scores within mini-batches. CP (Harada and Kashima, 2021) constructs a graph based
on similarities between samples, and then applies a graph-based semi-supervised learning method
for causal inference. GOM (Kallus, 2020) unifies and extends matching, covariate balancing, and
doubly-robust estimation by minimizing a bias–variance trade-off under a general function norm.
KOM (Kallus, 2020) instantiates GOM with an RKHS norm to achieve robust causal estimates.
CEM (Iacus et al., 2012) (Coarsened Exact Matching) enhances causal inference by strategically
reducing the precision of covariates through data coarsening, followed by exact matching. MitNet
(Guo et al., 2023) proposes to use mutual information to characterize confounding bias in heteroge-
neous treatment effect estimation.
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Table 1: Result on Semi-synthetic data in terms of mean and standard deviation. A lower metric
indicates better performance. We highlight the best results in bold and underline the second-best
results.

Dataset News-2 News-4 News-8 TCGA

metric
√
ϵPEHE ϵATE

√
AMSE

√
ϵ̂mPEHE ϵ̂mATE

√
AMSE

√
ϵ̂mPEHE ϵ̂mATE

√
AMSE

√
ϵ̂mPEHE ϵ̂mATE

√
AMSE

k-NN 9.418± 2.446 1.546± 1.472 6.972± 1.861 10.081± 1.973 2.638± 1.308 8.471± 1.824 11.469± 1.349 3.976± 0.976 11.124± 1.698 11.410 ± 0.082 3.049± 0.130 8.351± 0.080
OLS/LR-2 7.751± 0.040 1.531± 1.479 6.961± 1.850 9.720± 2.194 3.233 ± 2.004 8.658± 2.169 10.454± 1.408 3.906 ± 1.166 11.974± 2.136 13.669 ± 0.034 8.183 ± 0.029 11.007 ± 0.038
BART 9.214± 2.371 1.528± 1.479 6.898± 1.840 9.341± 1.888 2.617± 1.276 8.058± 1.773 11.365± 1.783 5.172± 1.597 10.853± 2.177 10.628 ± 0.031 2.812± 0.082 7.839± 0.0396
TARNet 9.283± 2.357 1.614± 1.383 6.950± 1.863 9.956± 2.375 3.383± 1.772 8.189± 1.927 14.520± 2.287 9.375± 1.892 9.983± 1.533 13.595± 0.113 6.951± 0.071 11.251± 0.102
CFR 9.291± 2.376 1.578± 1.446 6.961± 1.865 9.746± 2.186 3.386± 1.770 8.194± 1.928 14.517± 2.293 9.372± 1.896 9.980± 1.536 13.358± 0.054 6.917± 0.057 11.147± 0.087
GANITE 10.019± 2.651 3.190± 3.119 9.074± 2.692 9.907± 2.305 3.570± 1.997 8.633± 2.132 10.428± 1.405 3.842± 1.048 9.195± 1.384 13.792± 0.039 8.147± 0.068 13.266± 0.042
PSM 14.957± 3.579 4.020± 3.263 10.736± 2.595 15.371± 2.970 3.628± 1.919 12.331± 2.808 17.175± 2.143 3.844± 1.011 15.616± 2.441 16.055± 1.451 7.416± 1.728 11.780± 1.021
GOM 6.451±2.155 1.532±1.479 4.561±1.524 7.739±1.792 2.618±1.2697 7.028±1.692 12.857±2.065 4.582±1.569 11.671±1.755 10.545±0.032 2.708±0.069 7.687±0.037
KOM 6.451±2.155 1.532±1.479 4.562±1.524 7.740±1.792 2.618±1.269 7.028±1.692 12.074±1.389 3.951±0.969 11.429±1.714 10.836±0.045 2.763±0.095 7.894±0.044
CEM 9.472±2.444 1.5071±1.4589 6.961±1.842 10.412±2.021 2.626±1.294 8.664±1.854 12.857±2.065 4.582±1.569 11.669±1.754 11.326±0.048 2.768±0.096 8.2603±0.0463
PM 9.340± 2.376 1.631± 1.468 6.971± 1.854 10.098± 2.696 3.736± 2.713 8.968± 2.638 10.514± 1.332 3.915± 0.929 10.590± 1.688 13.472± 0.266 7.032± 0.206 11.095± 0.365
CP 10.310 ± 2.716 4.005 ± 3.200 7.734 ± 2.282 9.910± 2.291 3.598± 1.942 7.315± 1.873 13.889± 2.745 8.610± 2.427 10.134± 1.918 11.380± 0.123 3.511± 0.211 9.204± 0.092
MitNet 7.382± 2.580 2.923± 2.374 5.220± 1.824 8.003± 2.260 2.950± 1.811 7.986± 2.632 9.282± 1.385 3.494± 0.929 11.744± 2.194 10.715± 0.086 3.628± 0.182 9.315± 0.058
MOGA 5.081± 1.693 0.449± 0.3437 3.591± 1.197 5.960± 1.180 1.155± 0.706 4.420± 0.935 8.904± 1.214 2.386± 0.725 7.819± 1.212 10.597± 0.037 2.785± 0.075 7.751± 0.041

Table 2: Result on synthetic data in terms of mean and standard deviation. A lower metric indicates
better performance. We highlight the best results in bold and underline the second-best results.

Dataset m = [0.1, 0.2, 0.3, 0.4, 0.5] m = [0.1, 0.3, 0.5, 0.7, 0.9] m = [0.1, 0.4, 0.7, 1.0, 1.3] m = [0.1, 0.5, 0.9, 1.3, 1.7]

metric
√
ϵPEHE ϵATE

√
AMSE

√
ϵ̂mPEHE ϵ̂mATE

√
AMSE

√
ϵ̂mPEHE ϵ̂mATE

√
AMSE

√
ϵ̂mPEHE ϵ̂mATE

√
AMSE

k-NN 1.592 ± 0.062 0.204 ± 0.088 1.222 ± 0.037 1.627 ± 0.060 0.253 ± 0.069 1.238 ± 0.035 1.663 ± 0.056 0.328 ± 0.107 1.259 ± 0.034 1.653 ± 0.071 0.327 ± 0.117 1.258 ± 0.051
OLS/LR-2 1.423 ± 0.036 0.218 ± 0.134 1.323 ± 0.034 1.458 ± 0.062 0.233 ± 0.156 1.338 ± 0.048 1.510 ± 0.104 0.254 ± 0.266 1.361 ± 0.092 1.508 ± 0.053 0.235 ± 0.191 1.349 ± 0.052
BART 1.432 ± 0.046 0.191 ± 0.092 1.170 ± 0.030 1.486 ± 0.048 0.232 ± 0.088 1.199 ± 0.030 1.510 ± 0.104 0.254 ± 0.266 1.361 ± 0.092 1.540 ± 0.066 0.324 ± 0.142 1.211 ± 0.042
TARNet 1.606 ± 0.079 0.134 ± 0.077 1.319 ± 0.055 1.609 ± 0.065 0.144 ± 0.060 1.310 ± 0.046 1.586 ± 0.064 0.148 ± 0.045 1.280 ± 0.039 1.595 ± 0.067 0.164 ± 0.057 1.273 ± 0.036
CFR 1.398 ± 0.032 0.084 ± 0.037 1.192 ± 0.019 1.431 ± 0.030 0.100 ± 0.055 1.207 ± 0.018 1.460 ± 0.036 0.090 ± 0.038 1.206 ± 0.021 1.476 ± 0.034 0.105 ± 0.043 1.207 ± 0.024
GANITE 1.449 ± 0.037 0.206 ± 0.165 1.307 ± 0.024 1.475 ± 0.026 0.211 ± 0.151 1.309 ± 0.019 1.503 ± 0.038 0.215 ± 0.141 1.305 ± 0.033 1.520 ± 0.055 0.188 ± 0.161 1.315 ± 0.022
PSM 2.164 ± 0.152 0.578 ± 0.232 1.658 ± 0.101 2.150 ± 0.110 0.403 ± 0.088 1.657 ± 0.093 2.165 ± 0.177 0.435 ± 0.243 1.662 ± 0.109 2.224 ± 0.186 0.459 ± 0.161 1.688 ± 0.120
GOM 1.629 ± 0.046 0.096 ± 0.048 1.225 ± 0.026 1.648 ± 0.040 0.084 ± 0.032 1.238 ± 0.022 1.673 ± 0.056 0.106 ± 0.030 1.243 ± 0.031 1.695 ± 0.045 0.098 ± 0.038 1.248 ± 0.028
KOM 1.629 ± 0.046 0.099 ± 0.046 1.225 ± 0.026 1.648 ± 0.039 0.086 ± 0.034 1.238 ± 0.021 1.672 ± 0.056 0.104 ± 0.027 1.243 ± 0.032 1.695 ± 0.045 0.100 ± 0.039 1.249 ± 0.028
CEM 1.499 ± 0.104 0.342 ± 0.121 1.333 ± 0.034 1.552 ± 0.063 0.433 ± 0.121 1.387 ± 0.039 1.570 ± 0.140 0.612 ± 0.158 1.383 ± 0.046 1.505 ± 0.258 0.638 ± 0.269 1.403 ± 0.056
PM 1.751 ± 0.185 0.404 ± 0.210 1.422 ± 0.125 1.777 ± 0.106 0.405 ± 0.090 1.431 ± 0.084 1.830 ± 0.192 0.449 ± 0.135 1.422 ± 0.117 1.763 ± 0.107 0.325 ± 0.094 1.385 ± 0.053
CP 1.394 ± 0.032 0.053 ± 0.022 1.191 ± 0.019 1.426 ± 0.028 0.049 ± 0.014 1.205 ± 0.017 1.457 ± 0.034 0.053 ± 0.016 1.206 ± 0.021 1.471 ± 0.032 0.055 ± 0.022 1.205 ± 0.023
MitNet 1.329 ± 0.024 0.142 ± 0.020 1.070 ± 0.015 1.356 ± 0.025 0.138 ± 0.018 1.089 ± 0.018 1.378 ± 0.022 0.138 ± 0.015 1.088 ± 0.013 1.388 ± 0.034 0.146 ± 0.024 1.087 ± 0.025
MOGA 1.316 ± 0.024 0.046 ± 0.018 1.063 ± 0.015 1.345 ± 0.024 0.045 ± 0.013 1.081 ± 0.017 1.368 ± 0.022 0.043 ± 0.019 1.082 ± 0.013 1.376 ± 0.031 0.064 ± 0.024 1.080 ± 0.023

Evaluation Metrics Following (Guo et al., 2023), we adopt multiple metrics to evaluate the per-
formance of the conducted methods, including Precision in Estimation of Heterogeneous Effect
(PEHE), Average Treatment Effect (ATE), and Average Mean Squared Error (AMSE). In partic-
ular, for the setting of multiple treatments, we consider the pair-wise version of ATE and PEHE
denoted as mPEHE and mATE, respectively. The computational details of the metrics are presented
in Appendix H.

4.2 RESULTS ON SEMI-SYNTHETIC AND SIMULATION DATA

In this section, we present the experimental results on both semi-synthetic and simulated datasets.
More details about the dataset settings can be found in the Appendix I.

Semi-synthetic data. As shown in Table 1, in both binary treatments (News-2) and multiple treat-
ments (News-4/8, TCGA), MOGA achieves promising performance and reliable results across dif-
ferent treatment scenarios. Specifically, compared to traditional matching methods such as PSM
and kNN, MOGA achieves a significant improvement. This suggests that our approach effectively
leverages information from all nodes, leading to more accurate predictions of potential outcomes.
In comparison to match-based methods like PM, MOGA shows superior performance. This is be-
cause MOGA simultaneously accounts for relations between neighbors and distance learning based
on factual outcomes, which further enhances the quality of matching. In comparison to CP, which
also employs a semi-supervised graph learning algorithm, MOGA demonstrates better performance.
This can be attributed to the incorporation of outcome information during the distance learning in
MOGA. Compared to other methods such as CFR and MitNet, MOGA also achieves highly com-
petitive performance, which benefits from the usage of the underlying manifold structure of data and
information from all groups to find close neighbors.

Simulation data. The results are shown in Table 2. To verify the robustness of different strengths
of confounding bias, we progressively increase the mean differences between the groups to simulate
different intensities of confounding bias. Overall, MOGA consistently outperforms other methods
in terms of

√
ϵPEHE , ϵATE and

√
AMSE with different levels of confounding biases, demon-

strating superior effectiveness and stability. With the increase of strengths of confounding biases,
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all methods perform worse, which is reasonable since confounding factors affect the performance
of bias reduction and outcome prediction. Nevertheless, MOGA still achieves competitive perfor-
mance compared with the others, which demonstrates the robustness of our method. Additionally,
m controls the distribution means, and the more spread out m is, the less the group distributions
overlap and the worse all methods perform. Our method can expand the matching pool by consid-
ering all groups rather than only the target group as candidate samples. As a result, our method still
remains competitive with different values of m, which demonstrates the robustness of our method.

More experimental results can be found in Appendixes J, K, and L, including visualization results,
effects of distance functions and hyperparameters.

5 CONCLUSION

In this paper, we propose a matching method without group barriers for estimating heterogeneous
treatment effects. Different from existing matching that finds neighbors from only the target group,
our method considers neighbors from all the samples, so that closer samples can be matched to
enhance counterfactual prediction. We analyze the estimation error of our matching method and
propose a self optimal transport model based on our analysis. We further leverage the transport
plan to design an outcome propagation method for counterfactual prediction, and incorporate fac-
tual outcomes to learn a distance as the transport cost. We conduct experiments on both binary
and multiple treatment settings, and the experimental results demonstrate the effectiveness of our
proposed method.
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A RELATED WORKS

A.1 CAUSAL EFFECT ESTIMATION

In the last decades, various methods based on machine learning have been proposed for causal
effect estimation. Most of the existing methods do not consider unobserved confounders and can be
categorized into three classes: reweighting, representation learning, and matching. The reweighting
approach aims to construct pseudo-balanced groups by reweighting samples. Rosenbaum and Rubin
(1983) estimate the propensity scores for samples and take the inverse of the propensity scores as the
weights. To avoid estimating propensity scores, some methods learn sample weights to minimize the
distribution shift between groups, in which the shift is measured by some predefined metric, such as
the difference of moment (Hainmueller, 2012; Kuang et al., 2017) or the Integral Probability Metric
(IPM) (Kong et al., 2023). The representation learning approach is devoted to learning balanced
representations to reduce the distribution shift between groups (Johansson et al., 2016; Shi et al.,
2019; Johansson et al., 2022). Shalit et al. (2017) trains a neural network to learn representations
for minimizing the IPM between treated and control groups. Guo et al. (2023) instead leverages
the mutual information to capture the distribution shift between groups in the setting of multiple
treatments. Nevertheless, during the learning of balanced representations, some information highly
related to potential outcomes could be lost, suffering from the over-balancing issue (Du et al., 2021;
Yao et al., 2018).

There are also some studies considering unobserved confounding (Kallus et al., 2018; Wang et al.,
2022), which poses difficulties for all the causal inference methods relying on standard assumptions.
In this study, we still consider the standard assumption, including the unconfoundedness assumption.
If the unconfoundedness assumption is violated, additional assumptions are required in existing
studies, such as the presence of instrumental variables (Wang et al., 2022), or auxiliary random
controlled trial data (Kallus et al., 2018).

Matching assumes that two samples with similar covariates usually have similar potential outcomes,
Based on this, to predict the counterfactual outcome of a treatment, classical matching finds the
nearest neighbors in the target treatment group and predict counterfactual outcomes based on the
matched neighbors (Li and Fu, 2017; Chang and Dy, 2017; Chu et al., 2020). The similarity between
two samples is usually measured by the distance of covariates (Rubin, 1973) or the difference of
propensity scores estimated by logistic regression (Rosenbaum and Rubin, 1983). Schwab et al.
(2018) improve the matching approach based on propensity scores by learning a neural network,
and propose a matching method within mini-batches. Kallus (2020) models matching as a problem
of sample weight learning, and analyze the estimation error under the framework of worst-case
analysis.

Different from these matching methods that find matched samples in the target treatment group,
we propose a novel matching method to find nearest neighbors from all the samples, so that more
samples are involved to improve the data efficiency, and closer neighbors can be found to boost
counterfactual prediction. We further model our method as a self optimal transport model, whose
transport cost is supervised by factual outcomes and the solution is leveraged for counterfactual
outcome prediction.

A.2 OPTIMAL TRANSPORT

Optimal transport, which is original proposed in (Monge, 1781) and then extended by Kantorovich
in (Kantorovitch, 1958; Kantorovich, 2006), seeks the best plan to move one probability distribution
into another distribution by minimizing the transport cost (Villani et al., 2009; Peyré et al., 2019).
Recently, optimal transport has been widely applied in machine learning and data mining, including
domain adaptation (Courty et al., 2017; Redko et al., 2017), generative model (Arjovsky et al., 2017;
Tolstikhin et al., 2018), structured data analysis (Peyré et al., 2016; Titouan et al., 2019; Xu et al.,
2019), etc. Optimal transport is also introduced into causal inference, focusing on confounding
bias reduction between treated and control groups (Gunsilius and Xu, 2021; Wang et al., 2024;
Dunipace, 2021). These methods usually learn weights or representations for samples to minimize
the discrepancy measured by the theory of optimal transport (Li et al., 2021; Yan et al.). Different
from them, we model our matching method as a self optimal transport model, which is able to find
matched samples from all the groups rather than only the target group.
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B CONSISTENCY

Theorem 4. Under equation 7, assumption 4 and mild regularity conditions (Kong et al., 2023) (i.e.,
n → ∞,

∑n
j=1 E[W 2

ij ] = 0), while n → ∞, the outcome estimation error |ft(xi)− Ŷt(xi)| → 0.

Proof. We analyze the outcome estimation error as follows

|ft(xi)− Ŷt(xi)| = |ft(xi)−
n∑

j=1

WijYt(xj)|

= |ft(xi)−
n∑

j=1

Wij(ft(xj) + ξj)|

= |
n∑

j=1

Wij(ft(xi)− ft(xj))−
n∑

j=1

Wijξj |

≤
n∑

j=1

Wij |ft(xi)− ft(xj)|+ |
n∑

j=1

Wijξj |

≤ L

n∑
j=1

Wij∥ϕ(xi)− ϕ(xj)∥+ |
n∑

j=1

Wijξj |. (23)

Since the weights Wij are obtained via self optimal transport learning, where a larger ||ϕ(xi) −
ϕ(xj)|| corresponds to a smaller Wij , it follows that for sufficiently large n, the product
Wij ||ϕ(xi) − ϕ(xj)|| approaches zero (Kong et al., 2023). We next show that as n → ∞, the
sum

∑n
j=1 Wijξj converges to zero under the regularity condition (Kong et al., 2023), i.e., n → ∞,∑n

j=1 E[W 2
ij ] = 0. We first show that as n → ∞, its mean is 0:

E[
n∑

j=1

Wijξj ] =

n∑
j=1

E[Wij ]E[ξj ] =
n∑

j=1

E[Wij ]× 0 = 0, (24)

where the first equality is based on Wij⊥⊥ ξj , and also its variance is zero:

V ar[

n∑
j=1

Wijξj ] =

n∑
j=1

V ar[Wijξj ] +
∑
k ̸=j

Cov(Wijξj ,Wikξk)

=

n∑
j=1

V ar[Wijξj ] +
∑
k ̸=j

(E[WijξjWikξk]− E[Wijξj ]E[Wikξk)])

=

n∑
j=1

V ar[Wijξj ] + 0− 0

=

n∑
j=1

E[W 2
ij ]V ar[ξj ]

= σ2
n∑

j=1

E[W 2
ij ]

= 0, (25)

where the third equality is based on zero mean of ξj and {Wij ,Wik}⊥⊥ ξj and ξj⊥⊥ ξk, and in fifth
equality we set σ2 = V ar[ξj ], and the last equality holds due to the regularity condition. Eq. 24 and
Eq. 25 together imply n → ∞,

∑n
j=1 Wijξj → 0, which finishes the proof.
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C PROOF OF THEOREM 1

Theorem 1 Let ϵYt
=
∑n

i=1 E(ft(xi)− Ŷt(xi))
2 be the estimation error of the potential outcomes

under the treatment t, if the assumption ∀i, V ar(yi|xi, ti) = η2 holds, then the error is upper
bounded by the following:

ϵYt
≤ 2L2

t

n∑
i=1

n∑
j=1

Wij∥ϕ(xi)− ϕ(xj)∥22 + 2nη2
n∑

i=1

n∑
j=1

W 2
ij . (26)

Proof. Based on the assumptions in Section 2.2 and the condition
∑n

j=1 Wij = 1, the upper bound
is derived as follows:

E(ft(xi)− Ŷt(xi))
2 = E(ft(xi)−

n∑
j=1

Wij(ft(xj) + ξj))
2

= E(
n∑

j=1

Wij(ft(xi)− ft(xj)) +

n∑
j=1

Wijξj)
2

≤ 2(

n∑
j=1

Wij(ft(xi)− ft(xj)))
2 + 2E(

n∑
j=1

Wijξj)
2, (27)

where the inequality holds because of the condition that (a+ b)2 ≤ 2a2 +2b2. In the following, we
analyze the two terms (

∑n
j=1 Wij(ft(xi)− ft(xj)))

2 and 2E(
∑n

j=1 Wijξj)
2, respectively.

For the first term in (27), we have

2(

n∑
j=1

Wij(ft(xi)− ft(xj)))
2 = 2(

n∑
j=1

√
Wij

√
Wij(ft(xi)− ft(xj)))

2

≤ 2(

n∑
j=1

Wij)(

n∑
j=1

Wij(ft(xi)− ft(xj))
2)

= 2

n∑
j=1

Wij(ft(xi)− ft(xj))
2

≤ 2L2
t

n∑
j=1

Wij∥ϕ(xi)− ϕ(xj)∥22, (28)

where the first inequality holds according to the Cauchy–Schwarz inequality, the second inequality
holds because of the Lipschitz continuity of the function ft(·).
For the second term in (27), we have

2E(
n∑

j=1

Wijξj)
2 ≤ 2(

n∑
j=1

W 2
ij)E(

n∑
j=1

ξ2j )

= 2nη2
n∑

j=1

W 2
ij , (29)

where according to the Cauchy–Schwarz inequality, then can simply rewrite E(
∑n

j=1 ξ
2
j ) as 2(n −

1)η2.

Based on the conclusions above, we can derive:

(ft(xi)− Ŷt(xi))
2 ≤ 2L2

t

n∑
j=1

Wij∥ϕ(xi)− ϕ(xj)∥22 + 2nη2
n∑

j=1

W 2
ij , (30)

and Theorem 1 can be obtained by considering all the samples.
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D PROOF OF THEOREM 2

Theorem 2 Let Ŷt(xi) denote the predicted outcome for the i-th sample under the treatment t. The
effect estimation error is measured by the pairwise precision in estimation of heterogeneous effect
(mPEHE) is defined as ϵmPEHE = 2

nT (T+1)

∑
0≤t′<t≤T

∑n
i=1((Ŷt(xi) − Ŷt′(xi)) − (ft(xi) −

ft′(xi)))
2 (Schwab et al., 2018; Guo et al., 2023). The effect estimation error is upper bounded by

the outcome estimation error as follows

ϵmPEHE ≤ 4

n(T + 1)

T∑
t=0

ϵYt
. (31)

Proof.

ϵmPEHE =
2

nT (T + 1)

∑
0≤t′<t≤T

n∑
i=1

(
(Ŷt(xi)− Ŷt′(xi))− (ft(xi)− ft′(xi))

)2
=

2

nT (T + 1)

∑
0≤t′<t≤T

n∑
i=1

[(
(Ŷt(xi)− ft(xi)) + (ft′(xi)− Ŷt′(xi))

)2]

≤ 4

nT (T + 1)

∑
0≤t′<t≤T

n∑
i=1

[(
(Ŷt(xi)− ft(xi))

2 + (Ŷt′(xi)− ft′(xi))
2
)]

=
4

n(T + 1)

T∑
t=0

n∑
i=1

[
(Ŷt(xi)− ft(xi))

2
]
.

=
4

n(T + 1)

T∑
t=0

ϵYt .

E THEOREMS REGARDING AMSE AND ATE

Theorem 5. Let AMSE = 1
n(T+1)

∑T
t=0

∑n
i=1(Ŷt(xi) − ft(xi))

2 be the average mean squared
error of the potential outcomes. It is upper bounded by the following

AMSE ≤ 2

n(T + 1)

T∑
t=0

n∑
i=1

(L2
t

n∑
j=1

Wij∥ϕ(xi)− ϕ(xj)∥22 + nη2
n∑

j=1

W 2
ij). (32)

Proof.

AMSE =
1

n(T + 1)

T∑
t=0

n∑
i=1

(Ŷt(xi)− ft(xi))
2 =

1

n(T + 1)

T∑
t=0

ϵYt
, (33)

By combining Theorem 1, it follows directly that:

AMSE ≤ 2

n(T + 1)

T∑
t=0

n∑
i=1

(L2
t

n∑
j=1

Wij∥ϕ(xi)− ϕ(xj)∥22 + nη2
n∑

j=1

W 2
ij).

Theorem 6. Let ϵmATE = 2
T (T+1)

∑
0≤t′<t≤T | 1n

∑n
i=1(Ŷt(xi) − Ŷt′(xi)) − 1

n

∑n
i=1(ft(xi) −

ft′(xi))| be the error of the average treatment effect. It is upper bounded by the following

ϵmATE ≤ 2

n(T + 1)

T∑
t=0

n∑
i=1

(L

n∑
j=1

Wij |ϕ(xj)− ϕ(xi)|+ nη

n∑
j=1

|Wij |). (34)
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Proof.

ϵmATE =
2

T (T + 1)

∑
0≤t′<t≤T

| 1
n

n∑
i=1

(Ŷt(xi)− Ŷt′(xi))−
1

n

n∑
i=1

(ft(xi)− ft′(xi))|

=
2

T (T + 1)

∑
0≤t′<t≤T

| 1
n

n∑
i=1

((Ŷt(xi)− Ŷt′(xi))− (ft(xi)− ft′(xi))|

≤ 2

nT (T + 1)

∑
0≤t′<t≤T

n∑
i=1

(|Ŷt(xi)− ft(xi)|+ |Ŷt′(xi)− ft′(xi)|)

=
2

n(T + 1)

T∑
t=0

n∑
i=1

|Ŷt(xi)− ft(xi)|

=
2

n(T + 1)

T∑
t=0

n∑
i=1

|
n∑

j=1

Wij(ft(xj) + ξj)−
n∑

j=1

Wijft(xi)|

=
2

n(T + 1)

T∑
t=0

n∑
i=1

|
n∑

j=1

Wij(ft(xj)− ft(xi) + ξj)|

≤ 2

n(T + 1)

T∑
t=0

n∑
i=1

(

n∑
j=1

Wij |ft(xj)− ft(xi)|+ |
n∑

j=1

Wijξj |)

≤ 2

n(T + 1)

T∑
t=0

n∑
i=1

(L

n∑
j=1

Wij |ϕ(xj)− ϕ(xi)|+ nη

n∑
j=1

|Wij |).

F PROOF OF PROPOSITION 3

Proposition 3 Let Xt ∈ Rnt×d be the matrix including all the samples in the treatment group t.
Problem 20 is equivalent to the following problem

min
P

tr

(
P⊤(

T∑
t=0

Θt)P

)
s.t. P⊤P = I, (35)

where the matrix Θt is constructed as
Θt = 2(Xt)

⊤diag(γt1− γt)Xt. (36)
The closed-form solution to this problem is obtained by the eigenvectors associated with the d′

smallest eigenvalues of the matrix
∑T

t=0 Θt.

Proof. First of all, we implement ϕ(·) as a projection operation ϕ(x) = P⊤x with P ∈ Rd×d′
are

the parameters to be optimized. Beside, we set CP
t;ij denotes ∥P⊤xi − P⊤xj∥22. After that, the

transport cost between xi and xj can be rewritten as:

⟨CP
t ,γt⟩ =

nt∑
i=1

nt∑
j=1

CP
t;ijγt;ij

=

nt∑
i=1

nt∑
j=1

∥P⊤xi −P⊤xj∥22γt;ij

= 2

nt∑
i=1

(∥P⊤xi∥22)− 2

nt∑
i=1

nt∑
j=1

(⟨P⊤xi,P
⊤xj⟩)γt;ij

= 2⟨(XtP)(XtP)⊤, diag(γ1)⟩ − 2⟨(XtP)(XtP)⊤,γt⟩
= 2 tr(P⊤X⊤

t (diag(γ1)− γ)XtP)

= tr(P⊤ΘtP). (37)
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Based on this, the objective function of Problem (20) can be written as

T∑
t=0

⟨CP
t ,γt⟩ =

T∑
t=0

tr
(
P⊤ΘtP

)
= tr

(
P⊤(

T∑
t=0

Θt)P

)
. (38)

The solution to minimize this objective is the eigenvectors associated with the d′ smallest eigenval-
ues of the matrix

∑T
t=0 Θt.

G PSEUDO-CODE OF MATCHING WITHOUT GROUP BARRIER (MOGA).

Algorithm 1 presents the pseudo-code of our method MOGA.

Algorithm 1 Matching without Group Barrier (MOGA)
.
Input: Data samples {(xi, yi, ti)}ni=1.
1: Initialize γt by solving Problem (15).
2: loop
3: Update P according to Proposition 3.
4: Update γt by solving Problem (18).
5: end loop
6: Construct the cost matrix Cϕ based on Eq. (19).
7: Obtain matching matrix γ by solving Problem (11).
8: loop
9: Update outcome matrix based on Eq. (14).

10: end loop

For Algorithm 1, let n and nt be the numbers of all the samples and the samples in the treatment
group t, d and d′ be the numbers of the features before and after projection. For distance learning,
the complexity of Step 3 is O(n2

td+ ntd
2 + d3), the complexity of Step 4 is O(n2

td
′). For optimal

transport matching, the complexity of Steps 6 and 7 is O(ndd′+n2d′). For counterfactual prediction,
the complexity of Step 9 is O(n2T ), where T is the number of different treatment values.

The overall space complexity of the Algorithm 1 is dominated by the storage of the N × N tran-
sition probability matrix W, which involves two steps: optimal transport and label propagation.
First, during the calculation of optimal transport, the primary memory requirement is for simulta-
neously storing the input data X and the probability matrix W, whose complexities are O(Nd)
and O(N2), respectively, where d is the feature dimension. Second, the total space required during
label propagation accommodates the largest input matrix W ∈ RN×N along with the label matrix
Y ∈ {0, 1}N×T , whose complexities are O(N2) and O(NT ), respectively, where T ≪ N . In
summary, the algorithm’s dominant space complexity is O(N2 +Nd).

H EVALUATION METRICS

To evaluate the performance of the conducted methods, we follow (Schwab et al., 2018) to adopt the
following metrics

ϵmPEHE =
2

nT (T + 1)

∑
0≤t′<t≤T

n∑
i=1

((Ŷt(xi)− Ŷt′(xi))− (ft(xi)− ft′(xi)))
2, (39)

ϵmATE =
2

T (T + 1)

∑
0≤t′<t≤T

| 1
n

n∑
i=1

(Ŷt(xi)− Ŷt′(xi))−
1

n

n∑
i=1

(ft(xi)− ft′(xi))|. (40)

Besides, we also add a metric:

AMSE =
1

n(T + 1)

T∑
t=0

n∑
i=1

(Ŷt(xi)− ft(xi))
2. (41)
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I DATASET SETTING

News The News dataset is first proposed as a benchmark for counterfactual inference by Johansson
et al. (2016) and is used in the multiple treatment setting in Schwab et al. (2018). The News dataset
simulates counterfactual inference by modeling news articles as topic distributions z(x), derived
from a topic model trained on the NY Times corpus. Multiple centroids are randomly chosen in
the topic space, where one centroid represents the control group while the other centroids represent
treated groups viewing devices (treatments). Each centroid zj is associated with a Gaussian outcome
distribution: mj ∼ N (0.45, 0.15), σj ∼ N (0.1, 0.05), from which ideal potential outcomes are
sampled as ỹj ∼ N (mj , σj) + ϵ, where ϵ ∼ N (0, 0.15). The unscaled potential outcomes are
computed as ȳj = ỹj · [D(z(x), zj) +D(z(x), zc)], where D(·, ·) is the Euclidean distance, and zc
represents the control centroid. The treatment assignment follows t|x ∼ Bernoulli(softmax(νȳj)),
with ν controlling the strength of assignment bias (ν = 0 implies no bias). The true observed
outcomes are scaled by a constant D = 50: yj = D · ȳj . The dataset can simulate k = 2, 4, 8
treatments with ν = 10, enabling flexible modeling of counterfactual inference scenarios.

TCGA The Cancer Genome Atlas (TCGA) project collects gene expression data from 9,659 in-
dividuals with various types of cancer, incorporating 20,531 covariates Weinstein et al. (2013). The
dataset includes three clinical treatment options: medication, chemotherapy, and surgery. To esti-
mate the risk of cancer recurrence following any of these treatments, a synthetic outcome function,
the dose-response curve, was applied using real-world gene expression data. The modeling of out-
comes follows the method described by Schwab et al. (2020), where the treatment assignment bias
coefficient is set to ν = 10. Furthermore, to evaluate the robustness of the model, we artificially in-
troduce Gaussian noise to the outcome variable to simulate random perturbations in the experiment.
Specifically, for given sample i, the observed outcome yi = yi,ti + ξi where ξi ∼ N (0, σ2) and we
set σ = 5.

Simulation data Following (Yao et al., 2018; Hatt and Feuerriegel, 2021), we generate synthetic
data for four treated group and one control groups by sampling features x from Gaussian mixture
distribution x ∼ w1 · N (m,Σ) + w2 · N (2m,Σ), where m = [m, . . . ,m] ∈ Rd and Σ =
0.5 ·(Σrand ·Σ⊤

rand), with Σrand ∼ U((0, bound)d×d). The outcomes y are modeled as y = sin(w⊤
1 x) ·

exp(cos(w⊤
2 (x⊙x)))+ξ, where w1,w2 ∼ U((0, 1)d×k) are random weight metrices, k represents

the total number of treatments and control groups, and ξ ∼ N (0, 0.5) represents noise. We vary
the value of m across different groups to explore the performance of the conducted methods under
different data conditions.

J MATCHING VISUALIZATION

We conduct an experiment on simulation data to visualize the matching results of our method.
The data consist of three treated groups and one control group, each of which includes with 20
samples with 25 features. Similar to simulation data generation in Section I, we generate syn-
thetic data as follows. Let x ∼ w1 · N (m, 0.5ΣrandΣ

⊤
rand) + w2 · N (2m, 0.5ΣrandΣ

⊤
rand) where

m = [1.5, 1.75, 1.0, 0.75]⊤ and Σrand ∼ U((0, [1.2, 3.4, 2.6, 0.8]⊤)d×d). We learn the projection
matrix P to map data into a 2D space, and show the matching results in Figure 1. We find the nearest
neighbors for the objective samples, the dotted lines represent matched samples, and the color depth
of matched samples represents the matching degree. We observe that samples in different groups
are matched, and closer neighbors have darker colors, which means that they contribute more to the
prediction.

K MORE RESULTS

K.1 DIFFERENT DISTANCE LEARNING

Besides the distance learned in Section 3.3, we also calculate the distance between xi and xj using
the following methods: For the squared Euclidean distance, we have cϕ(xi,xj) = ∥xi − xj∥22. For
the Cosine distance, we measure the distance without considering the scale of covariates, which is
given as cϕ(xi,xj) = ∥ xi

∥xi∥2
− xi

∥xi∥2
∥22 = 2 − 2

xi·xj

∥xi∥2∥xj∥2
. We take the TCGA dataset as an
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Figure 1: Visualization results of our matching method MOGA. Hollow points in different colors
and shapes represent different groups, while solid black stars denote the objective nodes. The figure
displays the five matched samples with the top matching degrees, with darker colors indicating
higher matching degrees.

example to compare different distances used in our method, and report the results in Table 3. We
observe that MOGA take the outcome into consideration through optimal transport, thus achieving
the best performance.

Table 3: Results of different distances on TCGA dataset.
√
ϵPEHE ϵATE

√
AMSE

Euclidean 12.5989± 0.0263 6.0822± 0.0419 9.7808± 0.0203
Cosine distance 11.1576± 0.0452 4.1404± 0.0892 8.3178± 0.0416
MOGA 10.5965± 0.0263 2.7850± 0.0752 7.7511± 0.0407

K.2 COMPARISON WITH TRADITIONAL MATCHING

We also consider a variant of our matching method, which leverages the distance learned in Section
3.3 but selecting neighbors within the target group only. We take the News-4 dataset as an example
and report the results in Table 4. We observe that MOGA performs better which demonstrates the
advantage of our matching method considering all the samples regardless of their received treat-
ments.

Table 4: Results of different matching methods on the News-4 dataset.

√
ϵPEHE ϵATE

√
AMSE

matching only within the target group 8.0039 ± 2.2043 2.9041 ± 1.7250 8.0388 ± 2.5587
MOGA 5.9601 ± 1.1798 1.1551 ± 0.7063 4.4197 ± 0.9348

K.3 PERFORMANCE OF REAL-WORLD DATASET

To compare the performance in the Real-world dataset, we report the results of ϵATE on the Lalonde
dataset(LaLonde, 1986) in Table 5. The LaLonde dataset consists of experimental and observational

22
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Figure 2: Results of varying values of hyperparameters on News-4 dataset.

Table 5: MAE results on Lalonde dataset (mean ± standard deviation). Lower is better.

Method MAE of Lalonde

MitNet 393.9513 ± 87.6213
CFR 495.3089 ± 59.5542
PSM 728.7922 ± 500.1740
kNN 275.2712 ± 148.3843
GOM 434.4803 ± 231.6803
KOM 438.3496 ± 255.4207
CEM 796.7605 ± 610.0612
MOGA 246.1526 ± 86.9842

components. The experimental part comes from the National Supported Work (NSW) randomized
controlled trial, while the control group is replaced by observational data from the Panel Study of
Income Dynamics (PSID) dataset. The treatment indicates participation in a job training program,
and the outcome is earnings in 1978. The dataset is widely used for benchmarking causal inference
methods. We observe that our proposed method still achieves promising results.

K.4 MORE BASELINES

We also compare with more baselines on the News data. S-learner is a single unified model trained
with the treatment indicator as an input feature to directly estimate potential outcomes under differ-
ent treatments and their difference. T-learner uses two separate models trained for the treated and
control groups, and the individual treatment effect is obtained by taking the difference between their
predictions. X-learner (Künzel et al., 2019) estimates ITE via cross-fitting of imputed treatment ef-
fects and propensity score–based weighting, making it especially effective under treatment–control
imbalance. R-learner (Nie and Wager, 2021) formulates ITE estimation through orthogonalized
residual regression by removing the effects of covariates on both the outcome and treatment, yielding
robustness to confounding. DragonNet (Shi et al., 2019) leverages propensity scores and targeted
regularization to improve outcome prediction and stabilize treatment effect estimation. CE-RCFR
(Wang et al., 2022) enhances ITE estimation through relaxed optimal transport alignment and con-
sensus aggregation, simultaneously mitigating mini-batch noise and gradient conflicts. CBPS (Imai
and Ratkovic, 2014) estimates propensity scores while directly optimizing covariate balance be-
tween treatment groups, improving causal effect estimation. MALTS (Parikh et al., 2022) is a
matching method that leverages a learnable distance metric to optimize feature-space similarity and
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Table 6: Results on News dataset (mean ± standard deviation) on more baselines. Lower is better.

Dataset News-2 News-4 News-8

Metric
√
ϵ̂PEHE ϵ̂ATE

√
AMSE

√
ϵ̂mPEHE ϵ̂mATE

√
AMSE

√
ϵ̂mPEHE ϵ̂mATE

√
AMSE

DragonNet 9.408 ± 2.324 1.990 ± 1.567 6.969 ± 1.838 10.359 ± 4.153 3.787 ± 3.960 8.015 ± 2.611 16.904 ± 5.637 8.503 ± 7.913 18.367 ± 6.896
CE-RCFR 9.316 ± 2.397 1.613 ± 1.561 6.972 ± 1.836 9.458 ± 1.828 2.791 ± 1.179 8.017 ± 1.736 10.545 ± 1.429 4.057 ± 1.172 10.506 ± 1.855
R-learner 9.336 ± 2.367 1.710 ± 1.521 6.902 ± 2.276 9.646 ± 2.048 3.118 ± 1.654 8.479 ± 2.212 10.470 ± 1.282 3.867 ± 0.908 11.035 ± 1.743
S-learner 8.646 ± 2.374 1.533 ± 1.468 6.386 ± 1.743 8.993 ± 1.846 2.591 ± 1.282 7.845 ± 1.747 10.320 ± 1.313 3.900 ± 0.951 10.577 ± 1.670
T-learner 8.381 ± 2.246 1.581 ± 1.512 6.258 ± 1.723 8.800 ± 1.846 2.658 ± 1.273 7.774 ± 1.747 10.284 ± 1.297 3.914 ± 0.927 10.582 ± 1.645
X-learner 8.577 ± 2.270 1.574 ± 1.510 6.329 ± 1.732 8.825 ± 1.842 2.661 ± 1.275 7.789 ± 1.748 10.250 ± 1.293 3.922 ± 0.925 10.570 ± 1.643
CBPS 10.646 ± 2.847 2.872 ± 2.439 7.528 ± 2.013 13.214 ± 2.679 2.891 ± 1.763 10.929 ± 2.679 15.817 ± 1.987 3.437 ± 0.974 14.845 ± 2.385
MALTS 10.692 ± 2.663 1.553 ± 1.486 7.911 ± 2.025 10.382 ± 1.996 2.658 ± 1.273 8.713 ± 1.833 13.123 ± 1.890 3.278 ± 1.439 10.224 ± 2.435
MOGA 5.081 ± 1.693 0.449 ± 0.344 3.591 ± 1.197 5.960 ± 1.180 1.155 ± 0.706 4.420 ± 0.935 8.904 ± 1.214 2.386 ± 0.725 7.819 ± 1.212

Table 7: Comparison between two-stage and MOGA on News Dataset (mean ± standard deviation).
Lower is better.

Dataset News-2 News-4 News-8

Metric
√
ϵ̂mPEHE ϵ̂mATE

√
AMSE

√
ϵ̂mPEHE ϵ̂mATE

√
AMSE

√
ϵ̂mPEHE ϵ̂mATE

√
AMSE

Two-stage 5.218 ± 1.079 0.741 ± 0.627 3.999 ± 0.758 6.126 ± 1.087 1.360 ± 0.747 5.968 ± 0.791 9.095 ± 0.841 2.788 ± 0.487 8.257 ± 0.687
MOGA 5.081 ± 1.693 0.449 ± 0.344 3.591 ± 1.197 5.960 ± 1.180 1.155 ± 0.706 4.420 ± 0.935 8.904 ± 1.214 2.386 ± 0.725 7.819 ± 1.212

accurately estimate ITE. The results are listed in Table 6. We observe that our method achieves
promising performance

K.5 TWO-STAGE METHOD ON DISTANCE LEARNING

In this experiment, we modify the distance learning method in Section 3.3 to a two-stage approach.
In the first stage, only the optimal transport matrices γt are calculated. In the second stage, with
γt fixed, the matrices Θt are computed and then used to derive the mapping function parameterized
by the matrix P. Table 7 shows the results of the two-stage strategy and the original joint learning
method. We observe that our proposed joint learning strategy achieves better performance compared
with the two-stage strategy.

K.6 PERFORMANCE OF DIFFERENT NUMBERS OF TREATMENTS

We provide the performance and running time results under different numbers of treatment T in
Table 8. Our method maintains competitive performance as the value of T increases. Although the
running time grows, our method still has a modest running time. If T is extremely large, we can
accelerate the distance learning stage by considering a subset of samples, and accelerate optimal
transport by some fast algorithms (Gasteiger et al., 2021; Nguyen et al., 2022).

L SENSITIVITY ANALYSIS

We take News-4 as an example to evaluate the effects of the hyper-parameters in our model. Figure
2 shows the results in terms of mPEHE with varying values of the hyperparameters λh, λf , λy ,
and ρ. From Figure 2(a), the performance decreases with a large λh, since a large λh will induce
a uniform transport plan γ, which cannot reflect different matching degrees based on the distances
between samples. Figure 2(c) shows that a large λy is helpful to achieve a better performance, which
demonstrates the advantage of incorporating factual outcomes for distance learning. From Figures
2(b) and 2(d), we observe that our method performs stably in a wide range of values of λf and ρ.

We also conduct ablation studies by setting the value of λh, λf or λy as 0. The results are also shown
in Figure 2. We observe that the performance with λh = 0 and λf = 0 is worse compared with
non-zero values, which verifies the effects of the entropic and Frobenius regularizations in Problem
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Table 8: Results under different T Settings (mean ± standard deviation). Lower is better.
Setting T=5 T=10 T=15

Metric
√
ϵ̂mPEHE ϵ̂mATE

√
AMSE Time (s)

√
ϵ̂mPEHE ϵ̂mATE

√
AMSE Time (s)

√
ϵ̂mPEHE ϵ̂mATE

√
AMSE Time (s)

MitNet 1.3106 ± 0.0407 0.1529 ± 0.0282 1.1663 ± 0.0269 2471.059 1.4304 ± 0.0161 0.1225 ± 0.0153 1.1824 ± 0.0084 4578.611 1.5034 ± 0.0152 0.1161 ± 0.0057 1.1800 ± 0.0095 20736.247
CFR 1.9540 ± 0.6629 0.5958 ± 0.3287 2.2412 ± 0.5553 988.176 2.0670 ± 0.6659 0.5175 ± 0.1409 1.8434 ± 0.4563 3104.937 2.1712 ± 0.4561 0.3838 ± 0.1842 1.6091 ± 0.3099 7517.339
PSM 2.0315 ± 0.2683 1.0457 ± 0.3283 1.8500 ± 0.1106 3.240 1.9235 ± 0.2388 0.9493 ± 0.3087 1.7141 ± 0.0523 1.149 1.9329 ± 0.2002 1.0369 ± 0.2332 1.6883 ± 0.0473 21.015
kNN 1.4964 ± 0.0680 0.2546 ± 0.0658 1.1388 ± 0.0471 6.025 1.6412 ± 0.0515 0.2552 ± 0.0557 1.2603 ± 0.0343 14.950 1.6769 ± 0.0283 0.2451 ± 0.0334 1.2692 ± 0.0160 42.981
GOM 1.3903 ± 0.0539 0.4269 ± 0.0957 1.2028 ± 0.0395 1.266 1.4842 ± 0.0353 0.3070 ± 0.0677 1.2105 ± 0.0250 2.793 1.5404 ± 0.0175 0.2472 ± 0.0245 1.2001 ± 0.0106 6.410
KOM 1.6314 ± 0.0591 0.3546 ± 0.0687 1.3185 ± 0.0393 1.328 1.5474 ± 0.0181 0.1424 ± 0.0367 1.2460 ± 0.0141 2.912 1.5718 ± 0.0164 0.0831 ± 0.0110 1.2196 ± 0.0103 2.964
MOGA 1.2962 ± 0.0444 0.4606 ± 0.0696 1.1687 ± 0.0287 19.477 1.0885 ± 0.0415 0.3320 ± 0.0498 1.1802 ± 0.0112 202.245 1.0356 ± 0.0535 0.3009 ± 0.0435 1.1757 ± 0.0092 300.579

Table 9: Computation Time Comparison (in milliseconds).

Method Calculation Time (ms)

k-NN 26.61
OLS/LR-2 1528.69
BART 1806.28
TARNet 2094.19
CFR 2415.28
GANITE 20477.37
PSM 146.81
PM 5565.81
CP 1619.49
MitNet 29507.23
MOGA 4028.86

11. λy > 0 achieves better performance compared with that of λy = 0, which demonstrates the
effectiveness of introducing factual outcomes for distance learning.

M VISUALIZATION OF OPTIMAL TRANSPORT PLAN

Figure 3 is the visualization of the optimal transport plan γ in Eq. 11. Similar to simulation data
generation in Section I, we generate data of m = [0.1, 0.2, 0.3] and Σrand ∼ U((0, [1, 1.5, 2]⊤)d×d).
We observe that γ is meaningful and far away from a uniform coupling.
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Figure 3: Visualization of the optimal transport plan. Lighter colors indicate larger weights, while
darker colors represent weights closer to zero.
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N RUNNING TIME RESULTS

We also provide the running times of representative methods in Table 9. We observe that the calcu-
lation time of our method is comparable to other methods.
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