

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MATCHING WITHOUT GROUP BARRIER FOR HETERO- GENEOUS TREATMENT EFFECT ESTIMATION

Anonymous authors

Paper under double-blind review

ABSTRACT

In heterogeneous treatment effect estimation from observational data, the fundamental challenge is that only the factual outcome under the received treatment is observable, while the potential outcomes under other treatments or no treatment can never be observed. As a simple and effective approach, matching aims to predict counterfactual outcomes of the target treatment by leveraging the nearest neighbors within the target group. However, due to limited observational data and the distribution shifts between groups, one cannot always find sufficiently close neighbors in the target group, resulting in inaccurate counterfactual prediction because of the manifold structure of data. To address this, we remove group barriers and propose a matching method that selects neighbors from all samples, not just the target group. This helps find closer neighbors and improves counterfactual prediction. Specifically, we analyze the effect estimation error in matching, which motivates us to propose a self optimal transport model for matching. Based on this, we employ an outcome propagation mechanism via the transport plan for counterfactual prediction, and exploit factual outcomes to learn a distance as the transport cost. The experiments are conducted on both binary and multiple treatment settings to evaluate our method.

1 INTRODUCTION

Estimating heterogeneous treatment effects from observational data has been widely applied in many semi-synthetic data applications (Hitsch et al., 2024), such as healthcare (Foster et al., 2011), economics (Heckman, 2000), and recommendation systems (Sato et al., 2020; Luo et al., 2024; Gao et al., 2024). Based on the framework of the Neyman-Rubin potential outcome model, the treatment effect can be estimated by comparing the potential outcomes of different treatments (Splawa-Neyman et al., 1990; Rubin, 2005). Nevertheless, we can only observe the factual outcome of the received treatment, while counterfactual outcomes under other treatments or no treatment can never be obtained.

To predict counterfactual outcomes, a variety of machine learning methods have been proposed (Johansson et al., 2016; Feuerriegel et al., 2024). Among them, matching has attracted significant attention because of its simplicity and interpretability (Stuart, 2010; Kallus, 2020). To predict the counterfactual outcome of a target treatment, classical matching identifies the nearest neighbors in the group receiving the target treatment, and then aggregates their factual outcomes for prediction (Kallus, 2020). The cornerstone underlying matching is the assumption that samples close in distance tend to have similar potential outcomes.

However, in practice, due to limited observational data and distribution discrepancies between groups caused by the confounding bias (Greenland et al., 1999; Shalit et al., 2017), there exist regions where samples under the target treatment are scarce or even absent, making it difficult to find sufficiently close samples within the target group. Consequently, the matched samples may suffer from large distances. Since data samples typically lie on an intrinsic manifold, where the Euclidean distance is meaningful only locally, large distances between matched samples may not capture true relationships. This inconsistency weakens counterfactual prediction. In other words, matching performs well only when samples are close enough.

To address the above challenge, we propose to remove the barriers between groups and design a matching method to find neighbors from all the samples regardless of their received treatments.

054 By doing this, closer samples with small distances can be matched, which is beneficial to capture
 055 relations between samples for counterfactual prediction. Specifically, we analyze the outcome esti-
 056 mation error of our matching method and provide an error bound in terms of the sample distances.
 057 Our theoretical result enjoys an explanation from the perspective of optimal transport, which studies
 058 how to move masses from a group of samples to another group with the minimal total transport cost
 059 (Villani et al., 2009; Peyré et al., 2019). Motivated by this explanation, we propose a self optimal
 060 transport model to select neighbors from all the samples for matching.

061 Nevertheless, for the matched samples not come from the target group, their potential outcomes un-
 062 der the target treatment are unknown, bringing a challenge to counterfactual prediction. To alleviate
 063 this, inspired by the information propagation mechanism used in semi-supervised learning (Zhu and
 064 Ghahramani, 2002), we construct a transition probability matrix based on the optimal transport plan,
 065 allowing us to employ a random walk algorithm (Xia et al., 2019) for counterfactual prediction.

066 To preserve the relations between factual outcomes in the transport cost of our model, we introduce
 067 factual outcomes to learn a distance as the transport cost within the optimal transport framework,
 068 in which the transport cost measured on covariates is consistent with the optimal transport plan of
 069 factual outcomes. To evaluate the performance of our method, we conduct experiments on both
 070 semi-synthetic data and simulation datasets, including both binary and multiple treatment settings.
 071 We name our method as **M**atching with**O**ut **G**roup **b****A**rrier (MOGA), and summarize the major
 072 contributions as follows.

- 073 • We propose a matching method to select neighbors from all the samples, which is formu-
 074 lated as a self optimal transport model, allowing closer samples to be matched for better
 075 capturing sample relationships.
- 076 • We propose a counterfactual prediction approach for estimating heterogeneous treatment
 077 effects, using an outcome propagation mechanism and the optimal transport plan modeled
 078 as a transition probability matrix.
- 079 • We propose a distance learning method that improves causal effect estimation by leveraging
 080 factual outcomes within the optimal transport framework.

083 2 BACKGROUNDS

085 In this section, we first present the notations used in the paper, and then provide the background
 086 of optimal transport and heterogeneous treatment effect estimation. The comprehensive review of
 087 related work on causal effect estimation and optimal transport is provided in the Appendix A.

088 Given a vector $\mathbf{q} \in \mathbb{R}^N$, q_i is the i -th entry. $\mathbf{1}$ represents a vector or matrix with all the entries
 089 being 1. The probability simplex Σ_N is defined as $\Sigma_N = \{\mathbf{q} \in (\mathbb{R}^+)^N \mid \sum_{i=1}^N q_i = 1\}$. For a
 090 matrix \mathbf{A} , \mathbf{A}^\top is the transpose of \mathbf{A} , and A_{ij} is the (i, j) -th entry. For the probability distribution
 091 $\mathbf{A} \in (\mathbb{R}^+)^{N \times N}$, the entropy is defined as $H(\mathbf{A}) = -\sum_{i=1}^N \sum_{j=1}^N A_{ij}(\log A_{ij} - 1)$.

094 2.1 OPTIMAL TRANSPORT

095 Given the sets of probability measures $P(\mathcal{U})$ and $P(\mathcal{V})$ on the spaces \mathcal{U} and \mathcal{V} , respectively, and
 096 a cost function $c : \mathcal{U} \times \mathcal{V} \rightarrow \mathbb{R}^+$. Let $\alpha \in P(\mathcal{U})$ and $\beta \in P(\mathcal{V})$ be two distributions with the
 097 samples $u \in \mathcal{U}$ and $v \in \mathcal{V}$. The Kantorovich problem of optimal transport aims to find the optimal
 098 probabilistic coupling $\gamma \in P(\mathcal{U} \times \mathcal{V})$ by solving the following problem

$$100 \quad \min_{\gamma} \int_{\mathcal{U} \times \mathcal{V}} c(u, v) d\gamma(u, v) \quad \text{s.t. } \gamma \in \Gamma(\alpha, \beta), \quad (1)$$

102 where $\Gamma(\alpha, \beta) \subset P(\mathcal{U} \times \mathcal{V})$ is the set of probabilistic couplings with marginal distributions α and
 103 β .

105 One of the advantages of optimal transport is that it can be performed without knowing the underly-
 106 ing distribution. Optimal transport can work even on discrete distributions represented by empirical
 107 samples. Specifically, for the discrete situation, given the observed samples $\{u_i\}_{i=1}^{n_a}$ and $\{v_i\}_{i=1}^{n_b}$
 108 with n_a and n_b being the numbers of samples, respectively, let $\delta(u_i)$ (resp., $\delta(v_i)$) be the Dirac

function at the location u_i (resp., $\delta(v_i)$). The vectors $\mathbf{a} \in \Sigma_{n_a}$ and $\mathbf{b} \in \Sigma_{n_b}$ are the probability simplexes, and the i -th entry a_i (resp., b_i) is the probability masses associated with the sample u_i (resp., v_i). Based on the above notations, the empirical distributions can be written as

$$\hat{\alpha} = \sum_{i=1}^{n_a} a_i \delta(u_i), \quad \hat{\beta} = \sum_{i=1}^{n_b} b_i \delta(v_i). \quad (2)$$

Let \mathbf{C} be the cost matrix with the entry $C_{ij} = c(u_i, v_j)$, and γ be the transport matrix belonging to the set

$$\Gamma(\hat{\alpha}, \hat{\beta}) = \{\gamma \in (\mathbb{R}^+)^{n_a \times n_b} \mid \gamma \mathbf{1}_{n_b} = \mathbf{a}, \gamma^\top \mathbf{1}_{n_a} = \mathbf{b}\}, \quad (3)$$

the discrete form of optimal transport reads

$$\min_{\gamma} \langle \mathbf{C}, \gamma \rangle \quad \text{s.t. } \gamma \in \Gamma(\hat{\alpha}, \hat{\beta}). \quad (4)$$

2.2 CAUSAL EFFECT ESTIMATION

Our analysis follows the Neyman-Rubin potential outcomes framework (Rubin, 1974; Splawa-Neyman et al., 1990). We denote t_i as the treatment received by the i -th sample, and t as a treatment value in the space $\mathcal{T} = \{0, 1, \dots, T\}$, where T is the number of the different treatment values, and 0 indicates the control group received no treatment. The samples are represented as $\{(\mathbf{x}_i, y_i, t_i)\}_{i=1}^n$, where n is the number of samples, $\mathbf{x}_i \in \mathbb{R}^d$ is the covariate vector with d being the number of covariates, $y_i \in \mathbb{R}$ is the observed factual outcome and $t_i \in \mathcal{T}$ is the received treatment. For the treatment group t , the samples are represented as $\{(\mathbf{x}_i^t, y_i^t)\}_{i=1}^{n_t}$ with n_t being the number of samples in the treatment group t . Further, we denote $Y_t(\mathbf{x}_i)$ as the potential outcome for the specific individual i given its covariates under the treatment t .

Our task is to estimate the heterogeneous treatment effect (HTE), which captures how the impact of a treatment differs based on individual characteristics. In this paper, we focus on the multiple treatment setting, thus the task is to estimate all HTEs under all possible treatments. Formally, for a given treatment t and t' , HTE is defined as:

$$\tau_{t,t';i} = \mathbb{E}[Y_t(\mathbf{x}_i) - Y_{t'}(\mathbf{x}_i) | \mathbf{x}_i] \quad (5)$$

$$= f_t(\mathbf{x}_i) - f_{t'}(\mathbf{x}_i), \quad (6)$$

where we denote nuisance function under treatment t as $f_t(\mathbf{x}_i) := \mathbb{E}[Y_t(\mathbf{x}_i) | \mathbf{x}_i]$. Following (Yan et al.; Scotina and Gutman, 2019; Schwab et al., 2018), we make the following assumptions to ensure the identification:

Assumption 1 (Stable Unit Treatment Value Assumption). The potential outcome of a unit is unaffected by the treatment status of other units, and there is no variation in the treatment levels.

Assumption 2 (Unconfoundedness). For the i -th sample, the received treatment t_i is independent of the potential outcomes $Y_t(\mathbf{x})$ conditioned on the covariates \mathbf{x}_i . Formally, $\forall t \in \{0, 1, \dots, T\}$, $Y_t(\mathbf{x}_i) \perp\!\!\!\perp t_i | \mathbf{x}_i$.

Assumption 3 (Overlap). For each sample, there is a non-zero probability of being assigned either treatment or control, conditional on the covariates \mathbf{x}_i . Formally, $\forall t \in \{0, 1, \dots, T\}$ and \mathbf{x}_i , we have $0 < P(t | \mathbf{x}_i) < 1$.

Assumption 4 (Lipschitz Continuity). Given the mapping function $\phi : \mathbb{R}^d \rightarrow \mathbb{R}^{d'}$ and the norm $\|\mathbf{x}_i - \mathbf{x}_j\|_\phi = \|\phi(\mathbf{x}_i) - \phi(\mathbf{x}_j)\|$. For any treatment $t \in \mathcal{T}$, the nuisance function $f_t(\cdot)$ is Lipschitz continuous with the constant $L_t > 0$, i.e., $|f_t(\mathbf{x}_i) - f_t(\mathbf{x}_j)| \leq L_t \|\mathbf{x}_i - \mathbf{x}_j\|_\phi$.

Assumptions 1, 2, and 3 are common and standard assumptions in causal inference (Rubin, 1974; Hill, 2011; Johansson et al., 2016), which guarantee the identification of HTE. [Here we adopt the classic assumptions under the standard identification framework](#). Additionally, we make an assumption in Assumption 4 on the function $f_t(\mathbf{x})$, which ensures that the function f_t does not change too rapidly and provides a bound on how much the potential outcome varies as \mathbf{x} changes. Intuitively, Assumption 4 means that two close samples usually have similar potential outcomes. This assumption is reasonable and easy to be satisfied in practice (Kallus, 2020).

162

3 METHODOLOGY

163

3.1 MATCHING WITHOUT GROUP BARRIER

164 Given a sample $\mathbf{x}^{t'}$ with $t' \neq t$, in order to predict its counterfactual outcome under the treatment
 165 t , classical matching finds the nearest neighbors from the treatment group $t \{(\mathbf{x}_i^t, y_i^t)\}_{i=1}^{n_t}$ based on
 166 a distance $d(\mathbf{x}^{t'}, \mathbf{x}_i^t)$, and then combine the factual outcomes of the neighbors to predict the counterfactual
 167 outcome \hat{y}^t . The assumption underlying matching is that if $d(\mathbf{x}^{t'}, \mathbf{x}_i^t)$ is small, then they
 168 have similar potential outcomes. However, this approach faces a challenge in practice that one can
 169 not always find sufficiently close neighbors in the treatment group t . This occurs when the number
 170 of observational samples is limited, or the groups t and t' suffer from a large distribution discrepancy
 171 because of the confounding bias. Although one can find a neighbor with a large distance, the
 172 manifold structure of data makes large distances unreliable to accurately characterize the structure
 173 of potential outcomes, resulting in inaccurate counterfactual prediction.
 174

175 To address this, we break the barriers between different groups and propose a matching method
 176 to find neighbors from all the samples regardless of their received treatments, so that smaller
 177 distances between matched samples are expected, improving the reliability of counterfactual prediction.
 178 Specifically, to predict the counterfactual outcome of the treatment t for the sample \mathbf{x}_i , we find nearest
 179 neighbors of \mathbf{x}_i from all the samples rather than the treatment group t , and then combine the
 180 potential outcomes of the matched neighbors for prediction. Without loss of generality, let W_{ij}
 181 be the matching degree between \mathbf{x}_i and \mathbf{x}_j , the counterfactual outcome can be estimated by the
 182 following
 183

$$\hat{Y}_t(\mathbf{x}_i) = \sum_{j=1}^n W_{ij} Y_t(\mathbf{x}_j), \quad (7)$$

184 where $\sum_{j=1}^n W_{ij} = 1$. Ideally, W_{ij} of the matched neighbors should be large, and W_{ij} of the non-
 185 matched samples should be small or close to 0. In addition, W_{ii} is expected to be zero since the
 186 outcome estimation of x_i relies on its neighbors rather than itself. The consistency analysis of the
 187 estimator is discussed in Appendix B. The outcome estimation error of the treatment t is analyzed
 188 by the following theorem with an upper error bound:
 189

190 **Theorem 1.** *Let $\epsilon_{Y_t} = \sum_{i=1}^n (f_t(\mathbf{x}_i) - \hat{Y}_t(\mathbf{x}_i))^2$ be the estimation error of the potential outcomes
 191 under the treatment t , if the assumption $\forall i, \text{Var}(y_i | \mathbf{x}_i, t_i) = \eta^2$ holds, then the error is upper
 192 bounded by the following:*

$$\epsilon_{Y_t} \leq 2L_t^2 \sum_{i=1}^n \sum_{j=1}^n W_{ij} \|\phi(\mathbf{x}_i) - \phi(\mathbf{x}_j)\|_2^2 + 2n\eta^2 \sum_{i=1}^n \sum_{j=1}^n W_{ij}^2. \quad (8)$$

193 The proof is in Appendix C. The homogeneity assumption of the variance is used in (Kuang et al.,
 194 2019; Kallus, 2020).

195 Based on Theorem 1 we discuss the difference between our matching method and the classical
 196 matching method from the perspective of outcome estimation error. To predict counterfactual out-
 197 come $Y_t(\mathbf{x}_i)$, no matter which treatment t is considered, our matching method is able to find neigh-
 198 bors from all the samples $\{\mathbf{x}_j\}_{j=1}^n$ regardless of their received treatment $\{t_j\}_{j=1}^n$. On the contrary,
 199 classical matching only considers the target group $\{\mathbf{x}_j : t_j = t\}$ as the candidates, which highly
 200 restricts the search space for matching. As a result, the neighbors in the other group are excluded,
 201 which suffers from larger distances between \mathbf{x}_i and the matched samples, resulting in a looser upper
 202 bound.

203 The upper bound in Theorem 1 enjoys a clear explanation from the perspective of optimal transport.
 204 The first term can be modeled as the total transport cost, and the second term can be modeled as
 205 the Frobenius norm of the transport matrix, motivating us to propose a regularized optimal transport
 206 model for learning the matching degree matrix. Specifically, we define the empirical distribution of
 207 all the samples as $\mu = \sum_{i=1}^n p_i \delta(\mathbf{x}_i)$, $p_i = \frac{1}{n}, \forall i = 1, \dots, n$, where the uniform probability mass
 208 p_i indicates that all the samples contribute equally to the estimation error. **The uniform masses also**
 209 **prevent large subgroups from dominating small subgroups, which ensures that internal subgroups**
 210 **maintain influence in the matching process.** By setting the probabilistic coupling as $\gamma_{ij} = \frac{1}{n} W_{ij}$, we

216 minimize the upper bound of the potential outcome estimation error in Theorem 1 by the following
 217 optimal transport problem
 218

$$\begin{aligned} 219 \quad & \min_{\gamma} \langle \mathbf{C}^\phi, \gamma \rangle + \lambda_f \Omega(\gamma) \\ 220 \quad & \text{s.t. } \gamma \in \Gamma(\mu, \mu), \quad \gamma_{ii} = 0, \forall i = 1, \dots, n, \end{aligned} \quad (9)$$

222 where \mathbf{C}^ϕ is the cost matrix with the (i, j) -th entry being $C_{ij}^\phi = \|\phi(\mathbf{x}_i) - \phi(\mathbf{x}_j)\|_2^2$, $\Omega(\gamma) = \frac{1}{2} \|\gamma\|_F^2$
 223 is the square of the Frobenius norm, and λ_f is the trade-off hyperparameter.
 224

225 Different from the classical optimal transport model involving two distributions discussed in Section
 226 2.1, Problem (9) is a self optimal transport model that considers transport from the set of samples
 227 to this set while excluding moving one sample to itself (Landa et al., 2021; Yan et al., 2024). As a
 228 result, for the sample \mathbf{x}_i , the neighbors found from all the samples are matched with a large weight
 229 W_{ij} , while the samples far away from \mathbf{x}_i are assigned with a weight W_{ij} close to 0.
 230

231 The following theorem further shows that by minimizing the upper bound in Theorem 1, the effect
 232 estimation error is also minimized

233 **Theorem 2.** *Let $\hat{Y}_t(\mathbf{x}_i)$ denote the predicted outcome for the i -th sample under the treatment t .
 234 The effect estimation error is measured by the pairwise precision in the estimation of heterogeneous
 235 effect (mPEHE) is defined as $\epsilon_{mPEHE} = \frac{2}{nT(T+1)} \sum_{0 \leq t' < t \leq T} \sum_{i=1}^n ((\hat{Y}_t(\mathbf{x}_i) - \hat{Y}_{t'}(\mathbf{x}_i)) - (f_t(\mathbf{x}_i) - f_{t'}(\mathbf{x}_i)))^2$ (Schwab et al., 2018; Guo et al., 2023). The effect estimation error is upper bounded by
 236 the outcome estimation error as follows*

$$\epsilon_{mPEHE} \leq \frac{4}{n(T+1)} \sum_{t=0}^T \epsilon_{Y_t}. \quad (10)$$

241 The proof is given in Appendix D. We observe that the bound of in Theorem 2 is upper bounded in
 242 Theorem 1.

243 Consequently, we establish a theoretical connection between our matching method and optimal
 244 transport. In practice, to remove the constraints $\gamma_{ii} = 0$, we follow (Yan et al., 2024) to con-
 245 struct a cost matrix $\tilde{\mathbf{C}}^\phi = \mathbf{C}^\phi + L\mathbf{I}_n$, where L is a sufficiently large value and $\mathbf{I}_n \in \mathbb{R}^{n \times n}$ is the
 246 identity matrix. By doing this, the diagonal entries $\tilde{\mathbf{C}}^\phi$ will induce γ_{ii} to close to 0, avoiding to
 247 tackle the constraints $\gamma_{ii} = 0$ explicitly. In addition, we borrow the entropic regularization term
 248 $H(\gamma)$ to minimize the negative entropy of γ , so that the Sinkhorn algorithm (Cuturi, 2013) can be
 249 applied to efficiently solve the optimal transport problem. Finally, we achieve the following optimal
 250 transport problem:
 251

$$\begin{aligned} 253 \quad & \min_{\gamma} \langle \tilde{\mathbf{C}}^\phi, \gamma \rangle + \lambda_f \Omega(\gamma) - \lambda_h H(\gamma) \\ 254 \quad & \text{s.t. } \gamma \in \Gamma(\mu, \mu), \end{aligned} \quad (11)$$

256 where λ_h is the hyperparameter.
 257

258 Based on our optimal transport model, we leverage the results of our model for counterfactual pre-
 259 diction in Section 3.2, and incorporate factual outcomes to learn a distance as the transport cost in
 260 Section 3.3.

261 3.2 COUNTERFACTUAL PREDICTION

263 Given the optimal transport plan γ obtained by solving Problem (11), we can find the matched sam-
 264 ples and predict the counterfactual outcome $\hat{Y}_t(\cdot)$ according to Eq. (7). **The optimal transport plan
 265 reflects the matching degrees used for counterfactual outcome estimation.** Optimal transport will
 266 adaptively assign larger values γ_{ij} between close sample pairs, and a pair far away from each other
 267 will receive a quite small γ_{ij} . For outliers that are far away from most samples, optimal transport
 268 will assign small weights to them. As a result, the estimated outcomes are basically determined by
 269 close samples with large weights, and the outliers will make a limited contribution in counterfac-
 270 tual outcome estimation. However, for the matched samples not come from the treatment group t ,

270 their potential outcomes under the treatment t are unknown. To tackle this, we consider an information
 271 propagation mechanism to iteratively update the counterfactual predictions by a random walk
 272 method (Xia et al., 2019).

273 Remind that $\gamma \in \Gamma(\mu, \mu)$ is a doubly stochastic matrix, meaning that $\sum_{j=1}^n \gamma_{ij} = \frac{1}{n}, \forall i = 1, \dots, n$.
 274 We can simply construct a transition probability matrix $\mathbf{W} \in (\mathbb{R}^+)^{n \times n}$ by setting $\mathbf{W} = n\gamma$. The
 275 (i, j) -th entry W_{ij} indicates the probability that the i -th sample moves to the j -th sample, where the
 276 probability is measured based on the transport cost between them compared with the costs between
 277 other pairs. Based on this, we develop a random walk algorithm to predict potential outcomes for
 278 all the treatments over all the samples.

279 Specifically, let $\mathbf{Y} \in \mathbb{R}^{n \times (T+1)}$ be the matrix including all the factual outcomes of all the samples,
 280 which is defined as

$$282 \quad 283 \quad Y_{it} = \begin{cases} y_i & \text{for } t_i = t, \\ 0 & \text{for } t_i \neq t, \end{cases} \quad (12)$$

284 and $\mathbf{M} \in \{0, 1\}^{n \times (T+1)}$ be the factual outcome mask matrix defined as

$$286 \quad 287 \quad M_{it} = \begin{cases} 1 & \text{for } t_i = t, \\ 0 & \text{for } t_i \neq t. \end{cases} \quad (13)$$

288 At the κ -th iteration, we use $\widehat{\mathbf{Y}}^\kappa \in \mathbb{R}^{n \times (T+1)}$ to denote the predicted potential outcome matrix
 289 including all the treatments and samples. We update the predicted potential outcome matrix by
 290 $\mathbf{S}\widehat{\mathbf{Y}}^\kappa$ where \mathbf{S} is the affinity matrix constructed as $\mathbf{S} = \rho\mathbf{W} + (1 - \rho)\mathbf{I}$, which introduces self-
 291 connections with the coefficient $\rho \in (0, 1)$, which balances exploration (via \mathbf{W}) and memory (via
 292 \mathbf{I}). After that, we replace the predicted entries \widehat{Y}_{it}^κ with the known corresponding factual outcome
 293 by Y_{it} . In summary, we iteratively update the predicted potential outcome matrix by the following
 294 random walk rule

$$296 \quad \widehat{\mathbf{Y}}^{\kappa+1} = \mathbf{S}\widehat{\mathbf{Y}}^\kappa \odot (\mathbf{1} - \mathbf{M}) + \mathbf{Y} \odot \mathbf{M} = \mathbf{S}\widehat{\mathbf{Y}}^\kappa \odot (\mathbf{1} - \mathbf{M}) + \mathbf{Y}, \quad (14)$$

297 and the initial potential outcome matrix is set as $\widehat{\mathbf{Y}}^0 = \mathbf{Y}$.

298 Eq. (14) contains a diffusion term $\mathbf{S}\widehat{\mathbf{Y}}^\kappa \odot (\mathbf{1} - \mathbf{M})$, which gradually propagates outcome information
 299 along the manifold to the unmasked part denoted by $\mathbf{1} - \mathbf{M}$, mimicking geodesic aggregation
 300 and ensuring a smooth geodesic estimation (Tenenbaum et al., 2000). By doing this, the manifold
 301 structure of data is leveraged to improve the causal effect estimation. Finally, the outcome information
 302 will gradually propagate to all the samples under all the treatments. The fixed observation term
 303 $\mathbf{Y} \odot \mathbf{M}$ remains unchanged across iterations.

305 3.3 DISTANCE LEARNING

306 Based on Theorem 1, the estimation error of heterogeneous treatment effects relies on the cost
 307 $c_\phi(\mathbf{x}_i, \mathbf{x}_j) = \|\phi(\mathbf{x}_i) - \phi(\mathbf{x}_j)\|_2^2$ which is determined by $\phi(\cdot)$. In this part, we discuss how to
 308 implement the function $\phi(\cdot)$.

309 The vanilla approach is the identity function $\phi(\mathbf{x}) = \mathbf{x}$, and the cost $c_{id}(\mathbf{x}_i, \mathbf{x}_j) = \|\mathbf{x}_i - \mathbf{x}_j\|_2^2$ is the
 310 squared Euclidean distance, which is commonly used in existing works of optimal transport (Courty
 311 et al., 2017).

312 The key to the success of matching is to find a sample with similar potential outcomes, which means
 313 that $c_\phi(\mathbf{x}_i, \mathbf{x}_j)$ can capture the difference between their potential outcomes. However, $c_{id}(\cdot, \cdot)$ does
 314 not take the outcome into consideration. To enhance the distance measurement for potential outcome
 315 prediction, we introduce the factual outcomes into distance learning. In addition, since the distance
 316 is adopted as the transport cost in our optimal transport model in Problem (9), we also apply the
 317 framework of optimal transport to learn a distance. Specifically, we consider sample transport within
 318 each treatment group, which involves the transport plans $\{\gamma_t\}_{t=0}^T$, with the constraint that $\gamma_t \in$
 319 $\Gamma(\mu_t, \mu_t)$, where the empirical distribution of one group μ_t is defined as $\mu_t = \sum_{i=1}^{n_t} p_i^t \delta(\mathbf{x}_i^t)$, $p_i^t =$
 320 $\frac{1}{n_t}, \forall i = 1, \dots, n_t$.

321 Based on the above discussions, we first exploit factual outcomes to learn an optimal transport
 322 plan for each group, and then enforce the learned distance on covariates to admit the same optimal

324 transport plans obtained from factual outcomes. Specifically, we learn the optimal transport plan
 325 based on factual outcomes by the following problem
 326

$$327 \tilde{\gamma}_t = \arg \min_{\gamma_t} \langle \mathbf{C}_t^Y, \gamma_t \rangle - \lambda_h H(\gamma_t) \\ 328 \text{s.t. } \gamma_t \in \Gamma(\mu_t, \mu_t), \quad (15)$$

330 where the cost matrix \mathbf{C}_t^Y measured by the factual outcomes of the treatment group t is constructed
 331 as $C_{t,ij}^Y = (y_i^t - y_j^t)^2$. Similar to the self optimal transport model in (Yan et al., 2024), we set
 332 $C_{t,ii}^Y = L$ as a sufficiently large value to avoid the trivial solution. After that, we learn the mapping
 333 function $\phi(\cdot)$ based on the optimal transport plan $\tilde{\gamma}_t$ by the following
 334

$$335 \min_{\phi} \sum_{t=0}^T \langle \mathbf{C}_t^\phi, \tilde{\gamma}_t \rangle, \quad (16)$$

338 where \mathbf{C}_t^ϕ is the cost matrix determined by the function $\phi(\cdot)$ on the covariates of the treatment
 339 group t . Intuitively, for the pair of i -th and j -th samples, if their potential outcomes are similar,
 340 a large mass transport $\tilde{\gamma}_{t,ij}$ will be induced, resulting in a small cost $C_{t,ij}^\phi$. Eq. (16) encourages
 341 \mathbf{C}_t^ϕ to approach \mathbf{C}_t^Y , which improves the consistency between $c_\phi(\mathbf{x}_i, \mathbf{x}_j)$ and $C_{t,ij}^\phi$. As a result,
 342 the outcome information is effectively captured in the learned cost $c_\phi(\cdot, \cdot)$. Moreover, the ordinal
 343 relation of the potential outcomes $\{y_i^t\}_{i=1}^{n_t}$ is well preserved in $\phi(\mathbf{x})$, which has been shown to
 344 compress the manifold on which $\phi(\mathbf{x})$ lie, leading to improved generalization ability (Zhang et al.,
 345 2024).

346 To further introduce $\phi(\cdot)$ and $\{\gamma_t\}_{t=0}^T$ into a unified problem, we propose the following self op-
 347 timal transport model, which considers the transport cost on both covariates and factual outcomes
 348 collaboratively, and learn the transport cost and plans jointly
 349

$$350 \min_{\{\gamma_t\}, \phi} \sum_{t=0}^T \langle \mathbf{C}_t^\phi, \gamma_t \rangle + \lambda_y \langle \mathbf{C}_t^Y, \gamma_t \rangle - \lambda_h H(\gamma_t) \\ 351 \text{s.t. } \gamma_t \in \Gamma(\mu_t, \mu_t), \quad t = 0, \dots, T, \quad (17)$$

354 where λ_y is the trade-off hyperparameter. We initialize the optimal transport plans γ_t based on the
 355 solution to Problem (15), and then solve Problem (17) to refine γ_t shared by the cost of covariates
 356 and factual outcomes. As a result, the coupled transport cost \mathbf{C}_t^ϕ measured on covariates can be
 357 supervised by the factual outcomes.

358 Now we discuss how to solve Problem (17) to obtain the optimal transport plans $\{\gamma_t\}_{t=0}^T$ and the
 359 mapping function $\phi(\cdot)$ involved in the transport cost. Problem (17) contains multiple blocks of
 360 parameters. We adopt the alternate method to solve the problem, during which we optimize one
 361 block of parameters with the other blocks fixed.

362 Specifically, given the fixed mapping function $\phi(\cdot)$ and the corresponding cost matrix \mathbf{C}_t^ϕ , and the
 363 cost matrix \mathbf{C}_t^Y , the optimal transport problem within each group can be separated and solved indi-
 364 vidually. For the treatment group t , the subproblem with respect to γ_t can be formulated as follows
 365

$$366 \min_{\gamma_t} \langle \mathbf{C}_t^\phi, \gamma_t \rangle + \lambda_y \langle \mathbf{C}_t^Y, \gamma_t \rangle - \lambda_h H(\gamma_t) \\ 367 \text{s.t. } \gamma_t \in \Gamma(\mu_t, \mu_t), \quad (18)$$

369 which is a standard self optimal transport problem with the cost matrix $\mathbf{C}_t^\phi + \lambda_y \mathbf{C}_t^Y$ and can be
 370 solved by the Sinkhorn algorithm (Cuturi, 2013).

371 Given the fixed transport plans $\{\gamma_t\}_{t=0}^T$, we optimize the mapping function $\phi(\cdot)$ to obtained the
 372 coupled cost function. Here, we implement $\phi(\cdot)$ as a projection operation $\phi(\mathbf{x}) = \mathbf{P}^\top \mathbf{x}$ with $\mathbf{P} \in$
 373 $\mathbb{R}^{d \times d'}$ being the parameters to be optimized, so that the transport cost $C_{t,ij}^\phi$ can be obtained as
 374

$$375 C_{t,ij}^\phi = c_\phi(\mathbf{x}_i, \mathbf{x}_j) = \|\mathbf{P}^\top \mathbf{x}_i - \mathbf{P}^\top \mathbf{x}_j\|_2^2. \quad (19)$$

377 As a result, the transport cost is directly guided by the factual outcomes, ensuring that the learned
 378 distance reflects meaningful relations of samples in the sense that close samples with small learned

378 distance have similar outcomes. In addition, the transport cost is calculated in the supervised sub-
 379 space, which can alleviate the issue of high-dimensional data.
 380

381 To avoid the trivial solution and induce orthogonal projected features, we make \mathbf{P} to follow the
 382 constraint $\mathbf{P} \in \mathcal{M} = \{\mathbf{P} \in \mathbb{R}^{d \times d'} \mid \mathbf{P}^\top \mathbf{P} = \mathbf{I}\}$. Based on this, the subproblem with respect to \mathbf{P} is
 383 given as follows

$$384 \quad \min_{\mathbf{P}} \sum_{t=0}^T \langle \mathbf{C}_t^{\mathbf{P}}, \boldsymbol{\gamma}_t \rangle \quad \text{s.t. } \mathbf{P} \in \mathcal{M}. \quad (20)$$

385 The following proposition provides the closed-form solution to this problem.
 386

387 **Proposition 3.** *Let $\mathbf{X}_t \in \mathbb{R}^{n_t \times d}$ be the matrix including all the samples in the treatment group t .
 388 Problem 20 is equivalent to the following problem*

$$389 \quad \min_{\mathbf{P}} \text{tr} \left(\mathbf{P}^\top \left(\sum_{t=0}^T \boldsymbol{\Theta}_t \right) \mathbf{P} \right) \quad \text{s.t. } \mathbf{P}^\top \mathbf{P} = \mathbf{I}, \quad (21)$$

390 where the matrix $\boldsymbol{\Theta}_t$ is constructed as
 391

$$392 \quad \boldsymbol{\Theta}_t = 2(\mathbf{X}_t)^\top \text{diag}(\boldsymbol{\gamma}_t \mathbf{1} - \boldsymbol{\gamma}_t) \mathbf{X}_t. \quad (22)$$

393 The closed-form solution to this problem is obtained by the eigenvectors associated with the d'
 394 smallest eigenvalues of the matrix $\sum_{t=0}^T \boldsymbol{\Theta}_t$.
 395

396 The proof is given in Appendix F.
 397

398 The pseudo-code of our algorithm is given in Appendix G.
 399

4 EXPERIMENTS

400 In this section, we first describe the experimental settings including the compared methods and eval-
 401 uation metrics. After that, we present experimental results and discussion on semi-synthetic and
 402 simulation datasets. More experiments can be found in the appendix, including matching visualiza-
 403 tion results, ablation studies, and sensitivity analysis. All the experiments can be run on a single
 404 24GB GPU of NVIDIA GeForce RTX 4090.
 405

4.1 EXPERIMENTAL SETTINGS

406 **Compared Methods** We compare the performance of MOGA with the following methods: **k-**
 407 **NN**(Crump et al., 2008) finds k nearest neighbors from the target group and then predicts the poten-
 408 tial outcome based on the factual outcomes of the neighbors. **OLS/LR-2** applies linear regression
 409 with separate regression models for each treatment group. **BART** (Chipman et al., 2010; Hill, 2011)
 410 provides a posterior distribution of the treatment effects, allowing for uncertainty quantification in
 411 causal inference tasks. **TARNet** (Shalit et al., 2017) learns latent representations of covariates to
 412 reduce the distribution discrepancy between the treated and control groups. **CFR** (Shalit et al.,
 413 2017) minimizes the distribution discrepancy between treated and control groups in the latent
 414 representation space via the Integral Probability Metric, which is implemented by the Wasserstein
 415 distance. We defined regularized all treatments to have the same activation distribution in the topmost
 416 shared layer, extending CFR to multiple treatment settings. **GANITE** (Yoon et al., 2018) estimates
 417 individual treatment effects using a generative model based on Generative Adversarial Networks.
 418 **PSM** (Rosenbaum and Rubin, 1983) estimates the treatment effect by matching individuals in the
 419 treated and control groups based on the propensity score, which is predicted by logistic regression.
 420 **PM** (Schwab et al., 2018) enhances the matching method by learning a neural network to estimate
 421 propensity scores within mini-batches. **CP** (Harada and Kashima, 2021) constructs a graph based
 422 on similarities between samples, and then applies a graph-based semi-supervised learning method
 423 for causal inference. **GOM** (Kallus, 2020) unifies and extends matching, covariate balancing, and
 424 doubly-robust estimation by minimizing a bias-variance trade-off under a general function norm.
 425 **KOM** (Kallus, 2020) instantiates GOM with an RKHS norm to achieve robust causal estimates.
 426 **CEM** (Iacus et al., 2012) (Coarsened Exact Matching) enhances causal inference by strategically
 427 reducing the precision of covariates through data coarsening, followed by exact matching. **MitNet**
 428 (Guo et al., 2023) proposes to use mutual information to characterize confounding bias in heteroge-
 429 neous treatment effect estimation.
 430

432
433
434
435

Table 1: Result on Semi-synthetic data in terms of mean and standard deviation. A lower metric indicates better performance. We highlight the best results in bold and underline the second-best results.

436

Dataset	News-2				News-4				News-8				TCGA	
	metric	$\sqrt{\epsilon_{PEHE}}$	ϵ_{ATE}	\sqrt{AMSE}	$\sqrt{\epsilon_{mPEHE}}$	$\hat{\epsilon}_{mATE}$	\sqrt{AMSE}	$\sqrt{\epsilon_{mPEHE}}$	$\hat{\epsilon}_{mATE}$	\sqrt{AMSE}	$\sqrt{\epsilon_{mPEHE}}$	$\hat{\epsilon}_{mATE}$	\sqrt{AMSE}	
k-NN	9.418±2.446	1.546±1.472	6.972±1.861	10.081±1.973	2.638±1.308	8.471±1.824	11.469±1.349	3.976±0.976	11.124±1.698	11.410±0.082	3.049±0.130	8.351±0.080		
OLS/LR-2	7.751±0.500	1.531±1.479	6.961±1.850	9.720±2.194	3.233±2.004	8.672±1.699	10.454±1.460	3.906±1.166	11.974±2.136	13.019±0.034	8.183±0.029	11.007±0.038		
BARCT	9.14±2.371	1.528±1.479	6.983±1.860	9.347±2.000	2.617±1.276	8.058±1.773	10.453±1.383	5.172±1.597	10.853±1.177	13.620±0.041	2.812±0.082	7.834±0.096		
TARNet	0.234±2.357	1.528±1.173	6.993±1.863	9.456±2.278	3.189±1.273	8.149±1.793	14.420±2.297	5.273±1.192	12.952±1.573	13.595±0.113	2.810±0.079	7.134±0.102		
CFR	9.291±2.376	1.578±1.446	6.961±1.865	9.746±2.186	3.386±1.770	8.194±1.928	14.517±2.293	9.372±1.896	9.980±1.536	13.358±0.054	6.917±0.057	11.147±0.087		
GANITE	10.019±2.651	3.190±3.119	9.074±2.692	9.907±2.305	3.570±1.997	8.633±2.132	10.428±2.405	3.842±1.048	9.195±1.384	13.792±0.039	8.147±0.068	13.266±0.042		
PSM	14.957±3.579	4.020±3.263	10.736±2.595	15.371±2.970	3.628±1.919	12.331±2.808	17.175±2.143	3.844±1.011	15.616±2.441	16.055±1.451	7.416±1.728	11.780±1.021		
GOM	6.451±2.155	1.532±1.479	4.561±1.524	7.739±1.792	2.618±1.269	7.028±1.692	12.857±2.062	4.582±1.569	11.671±1.755	10.545±0.032	2.708±0.069	7.687±0.037		
KOM	6.451±2.155	1.532±1.479	4.562±1.524	7.739±1.792	2.618±1.269	7.028±1.692	12.074±1.389	3.951±0.969	11.429±1.714	10.836±0.045	2.763±0.095	7.894±0.044		
CEM	9.472±2.444	1.5071±1.4589	6.961±1.842	10.412±2.021	2.626±1.294	8.664±1.858	12.857±2.062	4.582±1.569	11.669±1.754	11.326±0.048	2.768±0.099	8.2603±0.0463		
PM	9.340±2.376	1.613±1.466	6.971±1.854	10.098±2.694	3.736±2.185	8.562±2.638	10.514±1.332	3.915±1.050	10.590±1.688	13.472±0.266	7.032±0.206	11.095±0.065		
CD	10.324±2.346	4.020±3.200	7.520±2.302	9.005±2.000	3.308±1.942	7.315±2.000	13.880±2.427	4.144±1.848	11.740±1.123	13.511±0.120	9.210±0.092			
MitNet	2.382±2.589	2.923±2.374	5.220±1.824	8.005±2.280	2.950±1.811	7.986±2.632	10.828±1.385	3.494±0.929	11.744±2.194	10.715±0.086	3.628±0.182	9.315±0.058		
MOGA	5.081±1.693	0.449±0.3437	3.591±1.197	5.960±1.180	1.155±0.706	4.420±0.935	8.904±1.214	2.386±0.725	7.819±1.212	10.597±0.037	2.785±0.075	7.751±0.041		

444

445

Table 2: Result on synthetic data in terms of mean and standard deviation. A lower metric indicates better performance. We highlight the best results in bold and underline the second-best results.

446

Dataset	$m = [0.1, 0.2, 0.3, 0.4, 0.5]$				$m = [0.1, 0.3, 0.5, 0.7, 0.9]$				$m = [0.1, 0.4, 0.7, 1.0, 1.3]$				$m = [0.1, 0.5, 0.9, 1.3, 1.7]$	
	metric	$\sqrt{\epsilon_{PEHE}}$	ϵ_{ATE}	\sqrt{AMSE}	$\sqrt{\epsilon_{mPEHE}}$	$\hat{\epsilon}_{mATE}$	\sqrt{AMSE}	$\sqrt{\epsilon_{mPEHE}}$	$\hat{\epsilon}_{mATE}$	\sqrt{AMSE}	$\sqrt{\epsilon_{mPEHE}}$	$\hat{\epsilon}_{mATE}$	\sqrt{AMSE}	
k-NN	1.592±0.065	0.204±0.088	1.222±0.037	1.627±0.060	0.253±0.069	1.238±0.035	1.665±0.055	0.328±0.109	1.259±0.034	1.653±0.071	0.327±0.117	1.258±0.051		
OLS/LR-2	1.423±0.065	0.218±0.135	1.222±0.030	1.458±0.062	0.233±0.156	1.304±0.038	1.650±0.066	0.254±0.066	1.361±0.036	1.653±0.053	0.235±0.106	1.346±0.052		
BARCT	1.404±0.066	0.218±0.132	1.170±0.030	1.458±0.063	0.233±0.157	1.304±0.039	1.650±0.067	0.254±0.067	1.361±0.037	1.653±0.052	0.235±0.106	1.346±0.052		
TARNet	1.606±0.079	1.134±0.077	1.319±0.055	1.609±0.065	0.144±0.069	1.310±0.046	1.586±0.064	0.148±0.045	1.290±0.039	1.595±0.067	0.164±0.057	1.273±0.036		
CFR	1.398±0.032	0.084±0.037	1.192±0.019	1.431±0.030	0.100±0.055	1.207±0.018	1.460±0.036	0.090±0.038	1.206±0.021	1.476±0.034	0.105±0.043	1.207±0.024		
GANITE	1.449±0.037	0.206±0.165	1.307±0.024	1.475±0.026	0.211±0.151	1.309±0.019	1.503±0.038	0.215±0.141	1.305±0.033	1.520±0.055	0.188±0.161	1.315±0.022		
PSM	2.164±0.152	0.578±0.232	1.658±0.101	2.150±0.110	0.403±0.088	1.657±0.093	2.165±0.177	0.435±0.243	1.662±0.109	2.224±0.186	0.459±0.161	1.688±0.120		
GOM	1.629±0.044	0.094±0.046	1.225±0.026	1.648±0.039	0.084±0.032	1.238±0.022	1.673±0.055	0.106±0.030	1.243±0.032	1.695±0.045	0.109±0.039	1.249±0.028		
KOM	1.629±0.044	0.099±0.046	1.225±0.026	1.648±0.039	0.086±0.034	1.238±0.021	1.672±0.055	0.104±0.027	1.243±0.032	1.695±0.045	0.109±0.039	1.249±0.028		
CEM	1.499±0.104	0.342±0.121	1.333±0.034	1.552±0.063	0.433±0.121	1.387±0.039	1.570±0.140	0.612±0.158	1.383±0.046	1.505±0.258	0.638±0.269	1.403±0.056		
PM	1.751±0.185	0.404±0.210	1.422±0.125	1.777±0.106	0.405±0.090	1.431±0.084	1.830±0.192	0.449±0.135	1.422±0.117	1.763±0.107	0.325±0.094	1.385±0.053		
CP	1.394±0.024	0.053±0.022	1.191±0.019	1.426±0.028	0.049±0.014	1.205±0.017	1.457±0.034	0.053±0.016	1.206±0.021	1.471±0.032	0.055±0.022	1.205±0.023		
MitNet	1.329±0.024	0.142±0.020	1.070±0.015	1.356±0.025	0.138±0.018	1.089±0.018	1.378±0.022	0.138±0.015	1.088±0.013	1.388±0.034	0.146±0.024	1.087±0.025		
MOGA	1.316±0.024	0.046±0.018	1.063±0.015	1.345±0.024	0.045±0.013	1.081±0.017	1.368±0.022	0.043±0.019	1.082±0.013	1.376±0.031	0.064±0.024	1.080±0.023		

456

457

Evaluation Metrics Following (Guo et al., 2023), we adopt multiple metrics to evaluate the performance of the conducted methods, including Precision in Estimation of Heterogeneous Effect (PEHE), Average Treatment Effect (ATE), and Average Mean Squared Error (AMSE). In particular, for the setting of multiple treatments, we consider the pair-wise version of ATE and PEHE denoted as mPEHE and mATE, respectively. The computational details of the metrics are presented in Appendix H.

463

4.2 RESULTS ON SEMI-SYNTHETIC AND SIMULATION DATA

464

In this section, we present the experimental results on both semi-synthetic and simulated datasets. More details about the dataset settings can be found in the Appendix I.

468

Semi-synthetic data. As shown in Table 1, in both binary treatments (News-2) and multiple treatments (News-4/8, TCGA), MOGA achieves promising performance and reliable results across different treatment scenarios. Specifically, compared to traditional matching methods such as PSM and kNN, MOGA achieves a significant improvement. This suggests that our approach effectively leverages information from all nodes, leading to more accurate predictions of potential outcomes. In comparison to match-based methods like PM, MOGA shows superior performance. This is because MOGA simultaneously accounts for relations between neighbors and distance learning based on factual outcomes, which further enhances the quality of matching. In comparison to CP, which also employs a semi-supervised graph learning algorithm, MOGA demonstrates better performance. This can be attributed to the incorporation of outcome information during the distance learning in MOGA. Compared to other methods such as CFR and MitNet, MOGA also achieves highly competitive performance, which benefits from the usage of the underlying manifold structure of data and information from all groups to find close neighbors.

481

482

Simulation data. The results are shown in Table 2. To verify the robustness of different strengths of confounding bias, we progressively increase the mean differences between the groups to simulate different intensities of confounding bias. Overall, MOGA consistently outperforms other methods in terms of $\sqrt{\epsilon_{PEHE}}$, ϵ_{ATE} and \sqrt{AMSE} with different levels of confounding biases, demonstrating superior effectiveness and stability. With the increase of strengths of confounding biases,

486 all methods perform worse, which is reasonable since confounding factors affect the performance
 487 of bias reduction and outcome prediction. Nevertheless, MOGA still achieves competitive performance
 488 compared with the others, which demonstrates the robustness of our method. **Additionally,**
 489 *m* **controls the distribution means, and the more spread out m is, the less the group distributions
 490 **overlap and the worse all methods perform. Our method can expand the matching pool by consid-**
 491 **ering all groups rather than only the target group as candidate samples. As a result, our method still**
 492 **remains competitive with different values of m, which demonstrates the robustness of our method.****

493 More experimental results can be found in Appendixes J, K, and L, including visualization results,
 494 effects of distance functions and hyperparameters.

496 5 CONCLUSION

498 In this paper, we propose a matching method without group barriers for estimating heterogeneous
 499 treatment effects. Different from existing matching that finds neighbors from only the target group,
 500 our method considers neighbors from all the samples, so that closer samples can be matched to
 501 enhance counterfactual prediction. We analyze the estimation error of our matching method and
 502 propose a self optimal transport model based on our analysis. We further leverage the transport
 503 plan to design an outcome propagation method for counterfactual prediction, and incorporate fac-
 504 tual outcomes to learn a distance as the transport cost. We conduct experiments on both binary
 505 and multiple treatment settings, and the experimental results demonstrate the effectiveness of our
 506 proposed method.

508 REFERENCES

510 Günter J Hitsch, Sanjog Misra, and Walter W Zhang. Heterogeneous treatment effects and optimal
 511 targeting policy evaluation. *Quantitative Marketing and Economics*, 22(2):115–168, 2024.

512 Jared C Foster, Jeremy MG Taylor, and Stephen J Ruberg. Subgroup identification from randomized
 513 clinical trial data. *Statistics in medicine*, 30(24):2867–2880, 2011.

515 James J Heckman. Causal parameters and policy analysis in economics: A twentieth century retro-
 516 spective. *The Quarterly Journal of Economics*, 115(1):45–97, 2000.

517 Masahiro Sato, Sho Takemori, Janmajay Singh, and Tomoko Ohkuma. Unbiased learning for the
 518 causal effect of recommendation. In *Proceedings of the 14th ACM conference on recommender*
 519 *systems*, pages 378–387, 2020.

521 Hui Shi Luo, Fuzhen Zhuang, Ruobing Xie, Hengshu Zhu, Deqing Wang, Zhulin An, and Yongjun
 522 Xu. A survey on causal inference for recommendation. *The Innovation*, 2024.

523 Chen Gao, Yu Zheng, Wenjie Wang, Fuli Feng, Xiangnan He, and Yong Li. Causal inference
 524 in recommender systems: A survey and future directions. *ACM Transactions on Information*
 525 *Systems*, 42(4):1–32, 2024.

527 Jerzy Splawa-Neyman, Dorota M Dabrowska, and Terrence P Speed. On the application of proba-
 528 bility theory to agricultural experiments. essay on principles. section 9. *Statistical Science*, pages
 529 465–472, 1990.

530 Donald B Rubin. Causal inference using potential outcomes: Design, modeling, decisions. *Journal*
 531 *of the American Statistical Association*, 100(469):322–331, 2005.

533 Fredrik Johansson, Uri Shalit, and David Sontag. Learning representations for counterfactual infer-
 534 ence. In *International conference on machine learning*, pages 3020–3029. PMLR, 2016.

535 Stefan Feuerriegel, Dennis Frauen, Valentyn Melnychuk, Jonas Schweisthal, Konstantin Hess, Ali-
 536 cia Curth, Stefan Bauer, Niki Kilbertus, Isaac S Kohane, and Mihaela van der Schaar. Causal
 537 machine learning for predicting treatment outcomes. *Nature Medicine*, 30(4):958–968, 2024.

539 Elizabeth A Stuart. Matching methods for causal inference: A review and a look forward. *Statistical*
 540 *science: a review journal of the Institute of Mathematical Statistics*, 25(1):1, 2010.

540 Nathan Kallus. Generalized optimal matching methods for causal inference. *Journal of Machine*
 541 *Learning Research*, 21(62):1–54, 2020.

542

543 Sander Greenland, Judea Pearl, and James M Robins. Confounding and collapsibility in causal
 544 inference. *Statistical science*, 14(1):29–46, 1999.

545 Uri Shalit, Fredrik D Johansson, and David Sontag. Estimating individual treatment effect: gener-
 546 alization bounds and algorithms. In *International conference on machine learning*, pages 3076–
 547 3085. PMLR, 2017.

548

549 Cédric Villani et al. *Optimal transport: old and new*, volume 338. Springer, 2009.

550

551 Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data
 552 science. *Foundations and Trends® in Machine Learning*, 11(5-6):355–607, 2019.

553

554 Xiaojin Zhu and Zoubin Ghahramani. Towards semi-supervised classification with markov random
 555 fields. *Technical Report CMU-CALD-02–106, Carnegie Melton University*, 2002.

556

557 Feng Xia, Jiaying Liu, Hansong Nie, Yonghao Fu, Liangtian Wan, and Xiangjie Kong. Random
 558 walks: A review of algorithms and applications. *IEEE Transactions on Emerging Topics in Com-
 559 putational Intelligence*, 4(2):95–107, 2019.

560

561 Donald B Rubin. Estimating causal effects of treatments in randomized and nonrandomized studies.
 562 *Journal of educational Psychology*, 66(5):688, 1974.

563

564 Yuguang Yan, Hao Zhou, Zeqin Yang, Weilin Chen, Ruichu Cai, and Zhifeng Hao. Reducing
 565 balancing error for causal inference via optimal transport. In *Forty-first International Conference
 566 on Machine Learning*.

567

568 Anthony D Scotina and Roee Gutman. Matching algorithms for causal inference with multiple
 569 treatments. *Statistics in medicine*, 38(17):3139–3167, 2019.

570

571 Patrick Schwab, Lorenz Linhardt, and Walter Karlen. Perfect match: A simple method for
 572 learning representations for counterfactual inference with neural networks. *arXiv preprint
 573 arXiv:1810.00656*, 2018.

574

575 Jennifer L Hill. Bayesian nonparametric modeling for causal inference. *Journal of Computational
 576 and Graphical Statistics*, 20(1):217–240, 2011.

577

578 Kun Kuang, Peng Cui, Bo Li, Meng Jiang, Yashen Wang, Fei Wu, and Shiqiang Yang. Treatment
 579 effect estimation via differentiated confounder balancing and regression. *ACM Transactions on
 580 Knowledge Discovery from Data (TKDD)*, 14(1):1–25, 2019.

581

582 Boris Landa, Ronald R Coifman, and Yuval Kluger. Doubly stochastic normalization of the gaussian
 583 kernel is robust to heteroskedastic noise. *SIAM journal on mathematics of data science*, 3(1):388–
 584 413, 2021.

585

586 Yuguang Yan, Zhihao Xu, Canlin Yang, Jie Zhang, Ruichu Cai, and Michael Kwok-Po Ng. An
 587 optimal transport view for subspace clustering and spectral clustering. In *Proceedings of the
 588 AAAI Conference on Artificial Intelligence*, volume 38, pages 16281–16289, 2024.

589

590 Xingzhuo Guo, Yuchen Zhang, Jianmin Wang, and Mingsheng Long. Estimating heterogeneous
 591 treatment effects: Mutual information bounds and learning algorithms. In *International Confer-
 592 ence on Machine Learning*, pages 12108–12121. PMLR, 2023.

593

594 Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. *Advances in neural
 595 information processing systems*, 26, 2013.

596

597 Joshua B Tenenbaum, Vin de Silva, and John C Langford. A global geometric framework for
 598 nonlinear dimensionality reduction. *science*, 290(5500):2319–2323, 2000.

599

600 Nicolas Courty, Rémi Flamary, Devis Tuia, and Alain Rakotomamonjy. Optimal transport for do-
 601 main adaptation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 39(9):1853–
 602 1865, 2017.

594 Shihao Zhang, Kenji Kawaguchi, and Angela Yao. Deep regression representation learning with
595 topology. In *International Conference on Machine Learning (ICML)*, 2024.

596

597 Richard K Crump, V Joseph Hotz, Guido W Imbens, and Oscar A Mitnik. Nonparametric tests for
598 treatment effect heterogeneity. *The Review of Economics and Statistics*, 90(3):389–405, 2008.

599

600 Hugh A Chipman, Edward I George, and Robert E McCulloch. Bart: Bayesian additive regression
601 trees. 2010.

602

603 Jinsung Yoon, James Jordon, and Mihaela Van Der Schaar. Ganite: Estimation of individualized
604 treatment effects using generative adversarial nets. In *International conference on learning rep-*
605 *resentations*, 2018.

606

607 Paul R Rosenbaum and Donald B Rubin. The central role of the propensity score in observational
608 studies for causal effects. *Biometrika*, 70(1):41–55, 1983.

609

610 Shonosuke Harada and Hisashi Kashima. Counterfactual propagation for semi-supervised individual
611 treatment effect estimation. In *Machine Learning and Knowledge Discovery in Databases: Eu-*
612 *ropean Conference, ECML PKDD 2020, Ghent, Belgium, September 14–18, 2020, Proceedings,*
613 *Part I*, pages 542–558. Springer, 2021.

614

615 Stefano M Iacus, Gary King, and Giuseppe Porro. Causal inference without balance checking:
616 Coarsened exact matching. *Political analysis*, 20(1):1–24, 2012.

617

618 Jens Hainmueller. Entropy balancing for causal effects: A multivariate reweighting method to pro-
619 duce balanced samples in observational studies. *Political analysis*, 20(1):25–46, 2012.

620

621 Kun Kuang, Peng Cui, Bo Li, Meng Jiang, and Shiqiang Yang. Estimating treatment effect in
622 the wild via differentiated confounder balancing. In *Proceedings of the 23rd ACM SIGKDD*
623 *international conference on knowledge discovery and data mining*, pages 265–274, 2017.

624

625 Insung Kong, Yuha Park, Joonhyuk Jung, Kwonsang Lee, and Yongdai Kim. Covariate balancing
626 using the integral probability metric for causal inference. In *International Conference on Machine*
627 *Learning*, pages 17430–17461. PMLR, 2023.

628

629 Claudia Shi, David Blei, and Victor Veitch. Adapting neural networks for the estimation of treatment
630 effects. *Advances in neural information processing systems*, 32, 2019.

631

632 Fredrik D Johansson, Uri Shalit, Nathan Kallus, and David Sontag. Generalization bounds and rep-
633 resentation learning for estimation of potential outcomes and causal effects. *Journal of Machine*
634 *Learning Research*, 23(166):1–50, 2022.

635

636 Xin Du, Lei Sun, Wouter Duivesteijn, Alexander Nikolaei, and Mykola Pechenizkiy. Adversarial
637 balancing-based representation learning for causal effect inference with observational data. *Data*
638 *Mining and Knowledge Discovery*, 35(4):1713–1738, 2021.

639

640 Liuyi Yao, Sheng Li, Yaliang Li, Mengdi Huai, Jing Gao, and Aidong Zhang. Representation
641 learning for treatment effect estimation from observational data. *Advances in neural information*
642 *processing systems*, 31, 2018.

643

644 Nathan Kallus, Aahlad Manas Puli, and Uri Shalit. Removing hidden confounding by experimental
645 grounding. *Advances in neural information processing systems*, 31, 2018.

646

647 Haotian Wang, Wenjing Yang, Longqi Yang, Anpeng Wu, Liyang Xu, Jing Ren, Fei Wu, and Kun
648 Kuang. Estimating individualized causal effect with confounded instruments. In *Proceedings*
649 *of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pages 1857–
650 1867, 2022.

651

652 Sheng Li and Yun Fu. Matching on balanced nonlinear representations for treatment effects estima-
653 tion. *Advances in Neural Information Processing Systems*, 30, 2017.

654

655 Yale Chang and Jennifer Dy. Informative subspace learning for counterfactual inference. In *Pro-*
656 *ceedings of the AAAI Conference on Artificial Intelligence*, volume 31, 2017.

648 Zhixuan Chu, Stephen L Rathbun, and Sheng Li. Matching in selective and balanced representation
 649 space for treatment effects estimation. In *Proceedings of the 29th ACM International Conference*
 650 *on Information & Knowledge Management*, pages 205–214, 2020.

651

652 Donald B Rubin. Matching to remove bias in observational studies. *Biometrics*, pages 159–183,
 653 1973.

654 Gaspard Monge. Mémoire sur la théorie des déblais et des remblais. *Mem. Math. Phys. Acad. Royale*
 655 *Sci.*, pages 666–704, 1781.

656

657 Leonid Kantorovitch. On the translocation of masses. *Management science*, 5(1):1–4, 1958.

658 Leonid V Kantorovich. On the translocation of masses. *Journal of mathematical sciences*, 133(4):
 659 1381–1382, 2006.

660

661 Ievgen Redko, Amaury Habrard, and Marc Sebban. Theoretical analysis of domain adaptation with
 662 optimal transport. In *European Conference on Machine Learning and Principles and Practice of*
 663 *Knowledge Discovery in Databases*, pages 737–753, 2017.

664 Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
 665 In *International Conference on Machine Learning*, pages 214–223, 2017.

666

667 Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schölkopf. Wasserstein auto-
 668 encoders. In *International Conference on Learning Representations*, 2018.

669

670 Gabriel Peyré, Marco Cuturi, and Justin Solomon. Gromov-wasserstein averaging of kernel and
 671 distance matrices. In *International Conference on Machine Learning*, pages 2664–2672, 2016.

672

673 Vayer Titouan, Nicolas Courty, Romain Tavenard, and Rémi Flamary. Optimal transport for struc-
 674 tured data with application on graphs. In *International Conference on Machine Learning*, pages
 6275–6284. PMLR, 2019.

675

676 Hongteng Xu, Dixin Luo, Hongyuan Zha, and Lawrence Carin Duke. Gromov-wasserstein learning
 677 for graph matching and node embedding. In *International conference on machine learning*, pages
 6932–6941. PMLR, 2019.

678

679 Florian Gunsilius and Yuliang Xu. Matching for causal effects via multimarginal unbalanced optimal
 680 transport. *arXiv preprint arXiv:2112.04398*, 2021.

681

682 Hao Wang, Jiajun Fan, Zhichao Chen, Haoxuan Li, Weiming Liu, Tianqiao Liu, Quanyu Dai, Yichao
 683 Wang, Zhenhua Dong, and Ruiming Tang. Optimal transport for treatment effect estimation.
 684 *Advances in Neural Information Processing Systems*, 36, 2024.

685

686 Eric Dunipace. Optimal transport weights for causal inference. *arXiv preprint arXiv:2109.01991*,
 2021.

687

688 Qian Li, Zhichao Wang, Shaowu Liu, Gang Li, and Guandong Xu. Causal optimal transport for
 689 treatment effect estimation. *IEEE transactions on neural networks and learning systems*, 34(8):
 4083–4095, 2021.

690

691 John N Weinstein, Eric A Collisson, Gordon B Mills, Kenna R Shaw, Brad A Ozenberger, Kyle
 692 Ellrott, Ilya Shmulevich, Chris Sander, and Joshua M Stuart. The cancer genome atlas pan-cancer
 693 analysis project. *Nature genetics*, 45(10):1113–1120, 2013.

694

695 Patrick Schwab, Lorenz Linhardt, Stefan Bauer, Joachim M Buhmann, and Walter Karlen. Learning
 696 counterfactual representations for estimating individual dose-response curves. In *Proceedings of*
 697 *the AAAI Conference on Artificial Intelligence*, volume 34, pages 5612–5619, 2020.

698

699 Tobias Hatt and Stefan Feuerriegel. Estimating average treatment effects via orthogonal regulariza-
 700 tion. In *Proceedings of the 30th ACM International Conference on Information & Knowledge*
 701 *Management*, pages 680–689, 2021.

702

703 Robert J LaLonde. Evaluating the econometric evaluations of training programs with experimental
 704 data. *The American economic review*, pages 604–620, 1986.

702 Sören R Künzel, Jasjeet S Sekhon, Peter J Bickel, and Bin Yu. Metalearners for estimating heterogeneous
703 treatment effects using machine learning. *Proceedings of the national academy of sciences*,
704 116(10):4156–4165, 2019.

705 Xinkun Nie and Stefan Wager. Quasi-oracle estimation of heterogeneous treatment effects.
706 *Biometrika*, 108(2):299–319, 2021.

708 Kosuke Imai and Marc Ratkovic. Covariate balancing propensity score. *Journal of the Royal Statistical
709 Society Series B: Statistical Methodology*, 76(1):243–263, 2014.

710 Harsh Parikh, Cynthia Rudin, and Alexander Volfovsky. Malts: Matching after learning to stretch.
711 *Journal of Machine Learning Research*, 23(240):1–42, 2022.

713 Johannes Gasteiger, Marten Lienen, and Stephan Günnemann. Scalable optimal transport in high
714 dimensions for graph distances, embedding alignment, and more. In *International Conference on
715 Machine Learning*, pages 5616–5627. PMLR, 2021.

716 Khai Nguyen, Dang Nguyen, Tung Pham, Nhat Ho, et al. Improving mini-batch optimal transport
717 via partial transportation. In *International conference on machine learning*, pages 16656–16690.
718 PMLR, 2022.

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A RELATED WORKS
757758 A.1 CAUSAL EFFECT ESTIMATION
759

760 In the last decades, various methods based on machine learning have been proposed for causal
761 effect estimation. Most of the existing methods do not consider unobserved confounders and can be
762 categorized into three classes: reweighting, representation learning, and matching. The reweighting
763 approach aims to construct pseudo-balanced groups by reweighting samples. Rosenbaum and Rubin
764 (1983) estimate the propensity scores for samples and take the inverse of the propensity scores as the
765 weights. To avoid estimating propensity scores, some methods learn sample weights to minimize the
766 distribution shift between groups, in which the shift is measured by some predefined metric, such as
767 the difference of moment (Hainmueller, 2012; Kuang et al., 2017) or the Integral Probability Metric
768 (IPM) (Kong et al., 2023). The representation learning approach is devoted to learning balanced
769 representations to reduce the distribution shift between groups (Johansson et al., 2016; Shi et al.,
770 2019; Johansson et al., 2022). Shalit et al. (2017) trains a neural network to learn representations
771 for minimizing the IPM between treated and control groups. Guo et al. (2023) instead leverages
772 the mutual information to capture the distribution shift between groups in the setting of multiple
773 treatments. Nevertheless, during the learning of balanced representations, some information highly
774 related to potential outcomes could be lost, suffering from the over-balancing issue (Du et al., 2021;
775 Yao et al., 2018).

776 There are also some studies considering unobserved confounding (Kallus et al., 2018; Wang et al.,
777 2022), which poses difficulties for all the causal inference methods relying on standard assumptions.
778 In this study, we still consider the standard assumption, including the unconfoundedness assumption.
779 If the unconfoundedness assumption is violated, additional assumptions are required in existing
780 studies, such as the presence of instrumental variables (Wang et al., 2022), or auxiliary random
781 controlled trial data (Kallus et al., 2018).

782 Matching assumes that two samples with similar covariates usually have similar potential outcomes,
783 Based on this, to predict the counterfactual outcome of a treatment, classical matching finds the
784 nearest neighbors in the target treatment group and predict counterfactual outcomes based on the
785 matched neighbors (Li and Fu, 2017; Chang and Dy, 2017; Chu et al., 2020). The similarity between
786 two samples is usually measured by the distance of covariates (Rubin, 1973) or the difference of
787 propensity scores estimated by logistic regression (Rosenbaum and Rubin, 1983). Schwab et al.
788 (2018) improve the matching approach based on propensity scores by learning a neural network,
789 and propose a matching method within mini-batches. Kallus (2020) models matching as a problem
790 of sample weight learning, and analyze the estimation error under the framework of worst-case
791 analysis.

792 Different from these matching methods that find matched samples in the target treatment group,
793 we propose a novel matching method to find nearest neighbors from all the samples, so that more
794 samples are involved to improve the data efficiency, and closer neighbors can be found to boost
795 counterfactual prediction. We further model our method as a self optimal transport model, whose
796 transport cost is supervised by factual outcomes and the solution is leveraged for counterfactual
797 outcome prediction.

798 A.2 OPTIMAL TRANSPORT
799

800 Optimal transport, which is original proposed in (Monge, 1781) and then extended by Kantorovich
801 in (Kantorovitch, 1958; Kantorovich, 2006), seeks the best plan to move one probability distribution
802 into another distribution by minimizing the transport cost (Villani et al., 2009; Peyré et al., 2019).
803 Recently, optimal transport has been widely applied in machine learning and data mining, including
804 domain adaptation (Courty et al., 2017; Redko et al., 2017), generative model (Arjovsky et al., 2017;
805 Tolstikhin et al., 2018), structured data analysis (Peyré et al., 2016; Titouan et al., 2019; Xu et al.,
806 2019), etc. Optimal transport is also introduced into causal inference, focusing on confounding
807 bias reduction between treated and control groups (Gunsilius and Xu, 2021; Wang et al., 2024;
808 Dunipace, 2021). These methods usually learn weights or representations for samples to minimize
809 the discrepancy measured by the theory of optimal transport (Li et al., 2021; Yan et al.). Different
810 from them, we model our matching method as a self optimal transport model, which is able to find
811 matched samples from all the groups rather than only the target group.

810 **B CONSISTENCY**
 811

812 **Theorem 4.** *Under equation 7, assumption 4 and mild regularity conditions (Kong et al., 2023) (i.e.,
 813 $n \rightarrow \infty$, $\sum_{j=1}^n \mathbb{E}[W_{ij}^2] = 0$), while $n \rightarrow \infty$, the outcome estimation error $|f_t(x_i) - \hat{Y}_t(x_i)| \rightarrow 0$.*
 814

815 *Proof.* We analyze the outcome estimation error as follows
 816

$$\begin{aligned}
 817 \quad |f_t(x_i) - \hat{Y}_t(x_i)| &= |f_t(x_i) - \sum_{j=1}^n W_{ij} Y_t(x_j)| \\
 818 \quad &= |f_t(x_i) - \sum_{j=1}^n W_{ij} (f_t(x_j) + \xi_j)| \\
 819 \quad &= \left| \sum_{j=1}^n W_{ij} (f_t(x_i) - f_t(x_j)) - \sum_{j=1}^n W_{ij} \xi_j \right| \\
 820 \quad &\leq \sum_{j=1}^n W_{ij} |f_t(x_i) - f_t(x_j)| + \left| \sum_{j=1}^n W_{ij} \xi_j \right| \\
 821 \quad &\leq L \sum_{j=1}^n W_{ij} \|\phi(x_i) - \phi(x_j)\| + \left| \sum_{j=1}^n W_{ij} \xi_j \right|. \tag{23}
 \end{aligned}$$

822 Since the weights W_{ij} are obtained via self optimal transport learning, where a larger $\|\phi(\mathbf{x}_i) - \phi(\mathbf{x}_j)\|$ corresponds to a smaller W_{ij} , it follows that for sufficiently large n , the product $W_{ij} \|\phi(\mathbf{x}_i) - \phi(\mathbf{x}_j)\|$ approaches zero (Kong et al., 2023). We next show that as $n \rightarrow \infty$, the sum $\sum_{j=1}^n W_{ij} \xi_j$ converges to zero under the regularity condition (Kong et al., 2023), i.e., $n \rightarrow \infty$, $\sum_{j=1}^n \mathbb{E}[W_{ij}^2] = 0$. We first show that as $n \rightarrow \infty$, its mean is 0:
 823

$$\mathbb{E}\left[\sum_{j=1}^n W_{ij} \xi_j\right] = \sum_{j=1}^n \mathbb{E}[W_{ij}] \mathbb{E}[\xi_j] = \sum_{j=1}^n \mathbb{E}[W_{ij}] \times 0 = 0, \tag{24}$$

824 where the first equality is based on $W_{ij} \perp\!\!\!\perp \xi_j$, and also its variance is zero:
 825

$$\begin{aligned}
 826 \quad \text{Var}\left[\sum_{j=1}^n W_{ij} \xi_j\right] &= \sum_{j=1}^n \text{Var}[W_{ij} \xi_j] + \sum_{k \neq j} \text{Cov}(W_{ij} \xi_j, W_{ik} \xi_k) \\
 827 \quad &= \sum_{j=1}^n \text{Var}[W_{ij} \xi_j] + \sum_{k \neq j} (\mathbb{E}[W_{ij} \xi_j W_{ik} \xi_k] - \mathbb{E}[W_{ij} \xi_j] \mathbb{E}[W_{ik} \xi_k]) \\
 828 \quad &= \sum_{j=1}^n \text{Var}[W_{ij} \xi_j] + 0 - 0 \\
 829 \quad &= \sum_{j=1}^n \mathbb{E}[W_{ij}^2] \text{Var}[\xi_j] \\
 830 \quad &= \sigma^2 \sum_{j=1}^n \mathbb{E}[W_{ij}^2] \\
 831 \quad &= 0, \tag{25}
 \end{aligned}$$

832 where the third equality is based on zero mean of ξ_j and $\{W_{ij}, W_{ik}\} \perp\!\!\!\perp \xi_j$ and $\xi_j \perp\!\!\!\perp \xi_k$, and in fifth
 833 equality we set $\sigma^2 = \text{Var}[\xi_j]$, and the last equality holds due to the regularity condition. Eq. 24 and
 834 Eq. 25 together imply $n \rightarrow \infty$, $\sum_{j=1}^n W_{ij} \xi_j \rightarrow 0$, which finishes the proof.
 835

836 \square

864 C PROOF OF THEOREM 1
865866 **Theorem 1** Let $\epsilon_{Y_t} = \sum_{i=1}^n \mathbb{E}(f_t(\mathbf{x}_i) - \hat{Y}_t(\mathbf{x}_i))^2$ be the estimation error of the potential outcomes
867 under the treatment t , if the assumption $\forall i, \text{Var}(y_i|\mathbf{x}_i, t_i) = \eta^2$ holds, then the error is upper
868 bounded by the following:
869

870
$$\epsilon_{Y_t} \leq 2L_t^2 \sum_{i=1}^n \sum_{j=1}^n W_{ij} \|\phi(\mathbf{x}_i) - \phi(\mathbf{x}_j)\|_2^2 + 2n\eta^2 \sum_{i=1}^n \sum_{j=1}^n W_{ij}^2. \quad (26)$$

871
872

873 *Proof.* Based on the assumptions in Section 2.2 and the condition $\sum_{j=1}^n W_{ij} = 1$, the upper bound
874 is derived as follows:
875

876
$$\begin{aligned} \mathbb{E}(f_t(\mathbf{x}_i) - \hat{Y}_t(\mathbf{x}_i))^2 &= \mathbb{E}(f_t(\mathbf{x}_i) - \sum_{j=1}^n W_{ij}(f_t(\mathbf{x}_j) + \xi_j))^2 \\ 877 &= \mathbb{E}(\sum_{j=1}^n W_{ij}(f_t(\mathbf{x}_i) - f_t(\mathbf{x}_j)) + \sum_{j=1}^n W_{ij}\xi_j)^2 \\ 878 &\leq 2(\sum_{j=1}^n W_{ij}(f_t(\mathbf{x}_i) - f_t(\mathbf{x}_j)))^2 + 2\mathbb{E}(\sum_{j=1}^n W_{ij}\xi_j)^2, \end{aligned} \quad (27)$$

879
880
881
882
883
884

885 where the inequality holds because of the condition that $(a+b)^2 \leq 2a^2 + 2b^2$. In the following, we
886 analyze the two terms $(\sum_{j=1}^n W_{ij}(f_t(\mathbf{x}_i) - f_t(\mathbf{x}_j)))^2$ and $2\mathbb{E}(\sum_{j=1}^n W_{ij}\xi_j)^2$, respectively.
887888 For the first term in (27), we have
889

890
$$\begin{aligned} 2(\sum_{j=1}^n W_{ij}(f_t(\mathbf{x}_i) - f_t(\mathbf{x}_j)))^2 &= 2(\sum_{j=1}^n \sqrt{W_{ij}} \sqrt{W_{ij}}(f_t(\mathbf{x}_i) - f_t(\mathbf{x}_j)))^2 \\ 891 &\leq 2(\sum_{j=1}^n W_{ij})(\sum_{j=1}^n W_{ij}(f_t(\mathbf{x}_i) - f_t(\mathbf{x}_j))^2) \\ 892 &= 2 \sum_{j=1}^n W_{ij}(f_t(\mathbf{x}_i) - f_t(\mathbf{x}_j))^2 \\ 893 &\leq 2L_t^2 \sum_{j=1}^n W_{ij} \|\phi(\mathbf{x}_i) - \phi(\mathbf{x}_j)\|_2^2, \end{aligned} \quad (28)$$

894
895
896
897
898
899

900 where the first inequality holds according to the Cauchy–Schwarz inequality, the second inequality
901 holds because of the Lipschitz continuity of the function $f_t(\cdot)$.
902903 For the second term in (27), we have
904

905
$$\begin{aligned} 2\mathbb{E}(\sum_{j=1}^n W_{ij}\xi_j)^2 &\leq 2(\sum_{j=1}^n W_{ij}^2) \mathbb{E}(\sum_{j=1}^n \xi_j^2) \\ 906 &= 2n\eta^2 \sum_{j=1}^n W_{ij}^2, \end{aligned} \quad (29)$$

907
908
909

910 where according to the Cauchy–Schwarz inequality, then can simply rewrite $\mathbb{E}(\sum_{j=1}^n \xi_j^2)$ as $2(n - 1)\eta^2$.
911
912913 Based on the conclusions above, we can derive:
914

915
$$(f_t(\mathbf{x}_i) - \hat{Y}_t(\mathbf{x}_i))^2 \leq 2L_t^2 \sum_{j=1}^n W_{ij} \|\phi(\mathbf{x}_i) - \phi(\mathbf{x}_j)\|_2^2 + 2n\eta^2 \sum_{j=1}^n W_{ij}^2, \quad (30)$$

916
917

918 and Theorem 1 can be obtained by considering all the samples. \square

918 D PROOF OF THEOREM 2
919

920 **Theorem 2** Let $\hat{Y}_t(\mathbf{x}_i)$ denote the predicted outcome for the i -th sample under the treatment t . The
921 effect estimation error is measured by the pairwise precision in estimation of heterogeneous effect
922 ($mPEHE$) is defined as $\epsilon_{mPEHE} = \frac{2}{nT(T+1)} \sum_{0 \leq t' < t \leq T} \sum_{i=1}^n ((\hat{Y}_t(\mathbf{x}_i) - \hat{Y}_{t'}(\mathbf{x}_i)) - (f_t(\mathbf{x}_i) - f_{t'}(\mathbf{x}_i)))^2$ (Schwab et al., 2018; Guo et al., 2023). The effect estimation error is upper bounded by
923 the outcome estimation error as follows
924

$$926 \quad 927 \quad 928 \quad \epsilon_{mPEHE} \leq \frac{4}{n(T+1)} \sum_{t=0}^T \epsilon_{Y_t}. \quad (31)$$

930 *Proof.*
931

$$932 \quad \epsilon_{mPEHE} = \frac{2}{nT(T+1)} \sum_{0 \leq t' < t \leq T} \sum_{i=1}^n ((\hat{Y}_t(\mathbf{x}_i) - \hat{Y}_{t'}(\mathbf{x}_i)) - (f_t(\mathbf{x}_i) - f_{t'}(\mathbf{x}_i)))^2$$

$$933 \quad = \frac{2}{nT(T+1)} \sum_{0 \leq t' < t \leq T} \sum_{i=1}^n \left[((\hat{Y}_t(\mathbf{x}_i) - f_t(\mathbf{x}_i)) + (f_{t'}(\mathbf{x}_i) - \hat{Y}_{t'}(\mathbf{x}_i)))^2 \right]$$

$$934 \quad \leq \frac{4}{nT(T+1)} \sum_{0 \leq t' < t \leq T} \sum_{i=1}^n \left[((\hat{Y}_t(\mathbf{x}_i) - f_t(\mathbf{x}_i))^2 + (\hat{Y}_{t'}(\mathbf{x}_i) - f_{t'}(\mathbf{x}_i))^2) \right]$$

$$935 \quad = \frac{4}{n(T+1)} \sum_{t=0}^T \sum_{i=1}^n ((\hat{Y}_t(\mathbf{x}_i) - f_t(\mathbf{x}_i))^2).$$

$$936 \quad = \frac{4}{n(T+1)} \sum_{t=0}^T \epsilon_{Y_t}. \quad \square$$

947 E THEOREMS REGARDING AMSE AND ATE
948

949 **Theorem 5.** Let $AMSE = \frac{1}{n(T+1)} \sum_{t=0}^T \sum_{i=1}^n ((\hat{Y}_t(\mathbf{x}_i) - f_t(\mathbf{x}_i))^2)$ be the average mean squared
950 error of the potential outcomes. It is upper bounded by the following
951

$$952 \quad 953 \quad 954 \quad 955 \quad AMSE \leq \frac{2}{n(T+1)} \sum_{t=0}^T \sum_{i=1}^n (L_t^2 \sum_{j=1}^n W_{ij} \|\phi(\mathbf{x}_i) - \phi(\mathbf{x}_j)\|_2^2 + n\eta^2 \sum_{j=1}^n W_{ij}^2). \quad (32)$$

956 *Proof.*
957

$$958 \quad 959 \quad 960 \quad 961 \quad AMSE = \frac{1}{n(T+1)} \sum_{t=0}^T \sum_{i=1}^n ((\hat{Y}_t(\mathbf{x}_i) - f_t(\mathbf{x}_i))^2) = \frac{1}{n(T+1)} \sum_{t=0}^T \epsilon_{Y_t}, \quad (33)$$

962 By combining Theorem 1, it follows directly that:
963

$$964 \quad 965 \quad 966 \quad 967 \quad AMSE \leq \frac{2}{n(T+1)} \sum_{t=0}^T \sum_{i=1}^n (L_t^2 \sum_{j=1}^n W_{ij} \|\phi(\mathbf{x}_i) - \phi(\mathbf{x}_j)\|_2^2 + n\eta^2 \sum_{j=1}^n W_{ij}^2). \quad \square$$

968 **Theorem 6.** Let $\epsilon_{mATE} = \frac{2}{T(T+1)} \sum_{0 \leq t' < t \leq T} \left| \frac{1}{n} \sum_{i=1}^n (\hat{Y}_t(\mathbf{x}_i) - \hat{Y}_{t'}(\mathbf{x}_i)) - \frac{1}{n} \sum_{i=1}^n (f_t(\mathbf{x}_i) - f_{t'}(\mathbf{x}_i)) \right|$ be the error of the average treatment effect. It is upper bounded by the following
969

$$970 \quad 971 \quad \epsilon_{mATE} \leq \frac{2}{n(T+1)} \sum_{t=0}^T \sum_{i=1}^n (L \sum_{j=1}^n W_{ij} |\phi(\mathbf{x}_j) - \phi(\mathbf{x}_i)| + n\eta \sum_{j=1}^n |W_{ij}|). \quad (34)$$

972 *Proof.*

$$\begin{aligned}
974 \quad \epsilon_{mATE} &= \frac{2}{T(T+1)} \sum_{0 \leq t' < t \leq T} \left| \frac{1}{n} \sum_{i=1}^n (\hat{Y}_t(\mathbf{x}_i) - \hat{Y}_{t'}(\mathbf{x}_i)) - \frac{1}{n} \sum_{i=1}^n (f_t(\mathbf{x}_i) - f_{t'}(\mathbf{x}_i)) \right| \\
975 \\
976 \quad &= \frac{2}{T(T+1)} \sum_{0 \leq t' < t \leq T} \left| \frac{1}{n} \sum_{i=1}^n ((\hat{Y}_t(\mathbf{x}_i) - \hat{Y}_{t'}(\mathbf{x}_i)) - (f_t(\mathbf{x}_i) - f_{t'}(\mathbf{x}_i))) \right| \\
977 \\
978 \quad &\leq \frac{2}{nT(T+1)} \sum_{0 \leq t' < t \leq T} \sum_{i=1}^n (|\hat{Y}_t(\mathbf{x}_i) - f_t(\mathbf{x}_i)| + |\hat{Y}_{t'}(\mathbf{x}_i) - f_{t'}(\mathbf{x}_i)|) \\
979 \\
980 \quad &= \frac{2}{n(T+1)} \sum_{t=0}^T \sum_{i=1}^n |\hat{Y}_t(\mathbf{x}_i) - f_t(\mathbf{x}_i)| \\
981 \\
982 \quad &= \frac{2}{n(T+1)} \sum_{t=0}^T \sum_{i=1}^n \left| \sum_{j=1}^n W_{ij} (f_t(\mathbf{x}_j) + \xi_j) - \sum_{j=1}^n W_{ij} f_t(\mathbf{x}_i) \right| \\
983 \\
984 \quad &= \frac{2}{n(T+1)} \sum_{t=0}^T \sum_{i=1}^n \left| \sum_{j=1}^n W_{ij} (f_t(\mathbf{x}_j) - f_t(\mathbf{x}_i) + \xi_j) \right| \\
985 \\
986 \quad &\leq \frac{2}{n(T+1)} \sum_{t=0}^T \sum_{i=1}^n \left(\sum_{j=1}^n W_{ij} |f_t(\mathbf{x}_j) - f_t(\mathbf{x}_i)| + \left| \sum_{j=1}^n W_{ij} \xi_j \right| \right) \\
987 \\
988 \quad &\leq \frac{2}{n(T+1)} \sum_{t=0}^T \sum_{i=1}^n \left(L \sum_{j=1}^n W_{ij} |\phi(\mathbf{x}_j) - \phi(\mathbf{x}_i)| + n\eta \sum_{j=1}^n |W_{ij}| \right). \quad \square
\end{aligned}$$

F PROOF OF PROPOSITION 3

Proposition 3 Let $\mathbf{X}_t \in \mathbb{R}^{n_t \times d}$ be the matrix including all the samples in the treatment group t . Problem 20 is equivalent to the following problem

$$\min_{\mathbf{P}} \text{tr} \left(\mathbf{P}^\top \left(\sum_{t=0}^T \Theta_t \right) \mathbf{P} \right) \quad \text{s.t. } \mathbf{P}^\top \mathbf{P} = \mathbf{I}, \quad (35)$$

where the matrix Θ_t is constructed as

$$\Theta_t = 2(\mathbf{X}_t)^\top \text{diag}(\gamma_t \mathbf{1} - \gamma_t) \mathbf{X}_t. \quad (36)$$

The closed-form solution to this problem is obtained by the eigenvectors associated with the d' smallest eigenvalues of the matrix $\sum_{t=0}^T \Theta_t$.

Proof. First of all, we implement $\phi(\cdot)$ as a projection operation $\phi(\mathbf{x}) = \mathbf{P}^\top \mathbf{x}$ with $\mathbf{P} \in \mathbb{R}^{d \times d'}$ are the parameters to be optimized. Beside, we set $C_{t;ij}^\mathbf{P}$ denotes $\|\mathbf{P}^\top \mathbf{x}_i - \mathbf{P}^\top \mathbf{x}_j\|_2^2$. After that, the transport cost between \mathbf{x}_i and \mathbf{x}_j can be rewritten as:

$$\begin{aligned}
1014 \quad \langle \mathbf{C}_t^\mathbf{P}, \gamma_t \rangle &= \sum_{i=1}^{n_t} \sum_{j=1}^{n_t} C_{t;ij}^\mathbf{P} \gamma_{t;ij} \\
1015 \\
1016 \quad &= \sum_{i=1}^{n_t} \sum_{j=1}^{n_t} \|\mathbf{P}^\top \mathbf{x}_i - \mathbf{P}^\top \mathbf{x}_j\|_2^2 \gamma_{t;ij} \\
1017 \\
1018 \quad &= 2 \sum_{i=1}^{n_t} (\|\mathbf{P}^\top \mathbf{x}_i\|_2^2) - 2 \sum_{i=1}^{n_t} \sum_{j=1}^{n_t} (\langle \mathbf{P}^\top \mathbf{x}_i, \mathbf{P}^\top \mathbf{x}_j \rangle) \gamma_{t;ij} \\
1019 \\
1020 \quad &= 2 \langle (\mathbf{X}_t \mathbf{P})(\mathbf{X}_t \mathbf{P})^\top, \text{diag}(\gamma_t) \rangle - 2 \langle (\mathbf{X}_t \mathbf{P})(\mathbf{X}_t \mathbf{P})^\top, \gamma_t \rangle \\
1021 \\
1022 \quad &= 2 \text{tr}(\mathbf{P}^\top \mathbf{X}_t^\top (\text{diag}(\gamma_t) - \gamma_t) \mathbf{X}_t \mathbf{P}) \\
1023 \\
1024 \quad &= \text{tr}(\mathbf{P}^\top \Theta_t \mathbf{P}). \quad (37)
\end{aligned}$$

1026 Based on this, the objective function of Problem (20) can be written as
 1027

$$1028 \sum_{t=0}^T \langle \mathbf{C}_t^{\mathbf{P}}, \boldsymbol{\gamma}_t \rangle = \sum_{t=0}^T \text{tr} (\mathbf{P}^{\top} \boldsymbol{\Theta}_t \mathbf{P}) = \text{tr} \left(\mathbf{P}^{\top} \left(\sum_{t=0}^T \boldsymbol{\Theta}_t \right) \mathbf{P} \right). \quad (38)$$

1031 The solution to minimize this objective is the eigenvectors associated with the d' smallest eigenvalues
 1032 of the matrix $\sum_{t=0}^T \boldsymbol{\Theta}_t$. \square
 1033

1034 G PSEUDO-CODE OF MATCHING WITHOUT GROUP BARRIER (MOGA).

1035 Algorithm 1 presents the pseudo-code of our method MOGA.

1039 Algorithm 1 Matching without Group Barrier (MOGA)

1040 **Input:** Data samples $\{(\mathbf{x}_i, y_i, t_i)\}_{i=1}^n$.
 1041 1: Initialize $\boldsymbol{\gamma}_t$ by solving Problem (15).
 1042 2: **loop**
 1043 3: Update \mathbf{P} according to Proposition 3.
 1044 4: Update $\boldsymbol{\gamma}_t$ by solving Problem (18).
 1045 5: **end loop**
 1046 6: Construct the cost matrix \mathbf{C}^{ϕ} based on Eq. (19).
 1047 7: Obtain matching matrix $\boldsymbol{\gamma}$ by solving Problem (11).
 1048 8: **loop**
 1049 9: Update outcome matrix based on Eq. (14).
 1050 10: **end loop**

1051 For Algorithm 1, let n and n_t be the numbers of all the samples and the samples in the treatment
 1052 group t , d and d' be the numbers of the features before and after projection. For distance learning,
 1053 the complexity of Step 3 is $O(n_t^2 d + n_t d^2 + d^3)$, the complexity of Step 4 is $O(n_t^2 d')$. For optimal
 1054 transport matching, the complexity of Steps 6 and 7 is $O(ndd' + n^2 d')$. For counterfactual prediction,
 1055 the complexity of Step 9 is $O(n^2 T)$, where T is the number of different treatment values.
 1056

1057 The overall space complexity of the Algorithm 1 is dominated by the storage of the $N \times N$ trans-
 1058 sition probability matrix \mathbf{W} , which involves two steps: optimal transport and label propagation.
 1059 First, during the calculation of optimal transport, the primary memory requirement is for simulta-
 1060 neously storing the input data X and the probability matrix \mathbf{W} , whose complexities are $O(Nd)$
 1061 and $O(N^2)$, respectively, where d is the feature dimension. Second, the total space required during
 1062 label propagation accommodates the largest input matrix $\mathbf{W} \in \mathbb{R}^{N \times N}$ along with the label matrix
 1063 $\mathbf{Y} \in \{0, 1\}^{N \times T}$, whose complexities are $O(N^2)$ and $O(NT)$, respectively, where $T \ll N$. In
 1064 summary, the algorithm's dominant space complexity is $O(N^2 + Nd)$.

1065 H EVALUATION METRICS

1066 To evaluate the performance of the conducted methods, we follow (Schwab et al., 2018) to adopt the
 1067 following metrics

$$1071 \epsilon_{mPEHE} = \frac{2}{nT(T+1)} \sum_{0 \leq t' < t \leq T} \sum_{i=1}^n ((\hat{Y}_t(\mathbf{x}_i) - \hat{Y}_{t'}(\mathbf{x}_i)) - (f_t(\mathbf{x}_i) - f_{t'}(\mathbf{x}_i)))^2, \quad (39)$$

$$1074 \epsilon_{mATE} = \frac{2}{T(T+1)} \sum_{0 \leq t' < t \leq T} \left| \frac{1}{n} \sum_{i=1}^n (\hat{Y}_t(\mathbf{x}_i) - \hat{Y}_{t'}(\mathbf{x}_i)) - \frac{1}{n} \sum_{i=1}^n (f_t(\mathbf{x}_i) - f_{t'}(\mathbf{x}_i)) \right|. \quad (40)$$

1076 Besides, we also add a metric:

$$1078 \text{AMSE} = \frac{1}{n(T+1)} \sum_{t=0}^T \sum_{i=1}^n (\hat{Y}_t(\mathbf{x}_i) - f_t(\mathbf{x}_i))^2. \quad (41)$$

1080 I DATASET SETTING

1081
 1082 **News** The News dataset is first proposed as a benchmark for counterfactual inference by Johansson
 1083 et al. (2016) and is used in the multiple treatment setting in Schwab et al. (2018). The News dataset
 1084 simulates counterfactual inference by modeling news articles as topic distributions $z(\mathbf{x})$, derived
 1085 from a topic model trained on the NY Times corpus. Multiple centroids are randomly chosen in
 1086 the topic space, where one centroid represents the control group while the other centroids represent
 1087 treated groups viewing devices (treatments). Each centroid z_j is associated with a Gaussian outcome
 1088 distribution: $m_j \sim \mathcal{N}(0.45, 0.15)$, $\sigma_j \sim \mathcal{N}(0.1, 0.05)$, from which ideal potential outcomes are
 1089 sampled as $\tilde{y}_j \sim \mathcal{N}(m_j, \sigma_j) + \epsilon$, where $\epsilon \sim \mathcal{N}(0, 0.15)$. The unscaled potential outcomes are
 1090 computed as $\bar{y}_j = \tilde{y}_j \cdot [D(z(\mathbf{x}), z_j) + D(z(\mathbf{x}), z_c)]$, where $D(\cdot, \cdot)$ is the Euclidean distance, and z_c
 1091 represents the control centroid. The treatment assignment follows $t|x \sim \text{Bernoulli}(\text{softmax}(\nu \bar{y}_j))$,
 1092 with ν controlling the strength of assignment bias ($\nu = 0$ implies no bias). The true observed
 1093 outcomes are scaled by a constant $D = 50$: $y_j = D \cdot \bar{y}_j$. The dataset can simulate $k = 2, 4, 8$
 1094 treatments with $\nu = 10$, enabling flexible modeling of counterfactual inference scenarios.
 1095

1096 **TCGA** The Cancer Genome Atlas (TCGA) project collects gene expression data from 9,659 in-
 1097 dividuals with various types of cancer, incorporating 20,531 covariates Weinstein et al. (2013). The
 1098 dataset includes three clinical treatment options: medication, chemotherapy, and surgery. To esti-
 1099 mate the risk of cancer recurrence following any of these treatments, a synthetic outcome function,
 1100 the dose-response curve, was applied using real-world gene expression data. The modeling of out-
 1101 comes follows the method described by Schwab et al. (2020), where the treatment assignment bias
 1102 coefficient is set to $\nu = 10$. Furthermore, to evaluate the robustness of the model, we artificially in-
 1103 troduce Gaussian noise to the outcome variable to simulate random perturbations in the experiment.
 1104 Specifically, for given sample i , the observed outcome $y_i = y_{i,t_i} + \xi_i$ where $\xi_i \sim \mathcal{N}(0, \sigma^2)$ and we
 1105 set $\sigma = 5$.
 1106

1107 **Simulation data** Following (Yao et al., 2018; Hatt and Feuerriegel, 2021), we generate synthetic
 1108 data for four treated group and one control groups by sampling features \mathbf{x} from Gaussian mixture
 1109 distribution $\mathbf{x} \sim w_1 \cdot \mathcal{N}(\mathbf{m}, \Sigma) + w_2 \cdot \mathcal{N}(2\mathbf{m}, \Sigma)$, where $\mathbf{m} = [m, \dots, m] \in \mathbb{R}^d$ and $\Sigma =$
 1110 $0.5 \cdot (\Sigma_{\text{rand}} \cdot \Sigma_{\text{rand}}^\top)$, with $\Sigma_{\text{rand}} \sim \mathcal{U}((0, \text{bound})^{d \times d})$. The outcomes y are modeled as $y = \sin(\mathbf{w}_1^\top \mathbf{x}) \cdot$
 1111 $\exp(\cos(\mathbf{w}_2^\top (\mathbf{x} \odot \mathbf{x}))) + \xi$, where $\mathbf{w}_1, \mathbf{w}_2 \sim \mathcal{U}((0, 1)^{d \times k})$ are random weight metrices, k represents
 1112 the total number of treatments and control groups, and $\xi \sim \mathcal{N}(0, 0.5)$ represents noise. We vary
 1113 the value of \mathbf{m} across different groups to explore the performance of the conducted methods under
 1114 different data conditions.
 1115

1116 J MATCHING VISUALIZATION

1117 We conduct an experiment on simulation data to visualize the matching results of our method.
 1118 The data consist of three treated groups and one control group, each of which includes with 20
 1119 samples with 25 features. Similar to simulation data generation in Section I, we generate syn-
 1120 synthetic data as follows. Let $\mathbf{x} \sim w_1 \cdot \mathcal{N}(\mathbf{m}, 0.5\Sigma_{\text{rand}}\Sigma_{\text{rand}}^\top) + w_2 \cdot \mathcal{N}(2\mathbf{m}, 0.5\Sigma_{\text{rand}}\Sigma_{\text{rand}}^\top)$ where
 1121 $\mathbf{m} = [1.5, 1.75, 1.0, 0.75]^\top$ and $\Sigma_{\text{rand}} \sim \mathcal{U}((0, [1.2, 3.4, 2.6, 0.8]^\top)^{d \times d})$. We learn the projection
 1122 matrix \mathbf{P} to map data into a 2D space, and show the matching results in Figure 1. We find the nearest
 1123 neighbors for the objective samples, the dotted lines represent matched samples, and the color depth
 1124 of matched samples represents the matching degree. We observe that samples in different groups
 1125 are matched, and closer neighbors have darker colors, which means that they contribute more to the
 1126 prediction.
 1127

1128 K MORE RESULTS

1129 K.1 DIFFERENT DISTANCE LEARNING

1130 Besides the distance learned in Section 3.3, we also calculate the distance between \mathbf{x}_i and \mathbf{x}_j using
 1131 the following methods: For the squared Euclidean distance, we have $c_\phi(\mathbf{x}_i, \mathbf{x}_j) = \|\mathbf{x}_i - \mathbf{x}_j\|_2^2$. For
 1132 the Cosine distance, we measure the distance without considering the scale of covariates, which is
 1133 given as $c_\phi(\mathbf{x}_i, \mathbf{x}_j) = \|\frac{\mathbf{x}_i}{\|\mathbf{x}_i\|_2} - \frac{\mathbf{x}_j}{\|\mathbf{x}_j\|_2}\|_2^2 = 2 - 2 \frac{\mathbf{x}_i \cdot \mathbf{x}_j}{\|\mathbf{x}_i\|_2 \|\mathbf{x}_j\|_2}$. We take the TCGA dataset as an

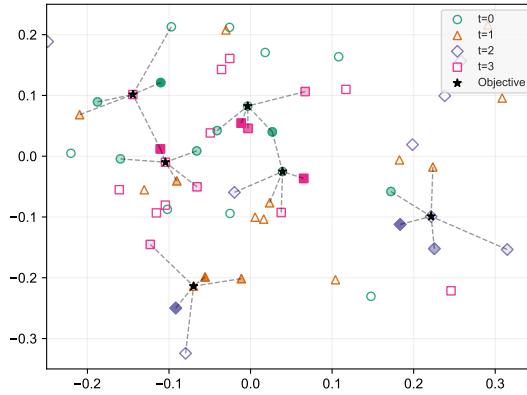


Figure 1: Visualization results of our matching method MOGA. Hollow points in different colors and shapes represent different groups, while solid black stars denote the objective nodes. The figure displays the five matched samples with the top matching degrees, with darker colors indicating higher matching degrees.

example to compare different distances used in our method, and report the results in Table 3. We observe that MOGA take the outcome into consideration through optimal transport, thus achieving the best performance.

Table 3: Results of different distances on TCGA dataset.

	$\sqrt{\epsilon_{PEHE}}$	ϵ_{ATE}	\sqrt{AMSE}
Euclidean	12.5989 ± 0.0263	6.0822 ± 0.0419	9.7808 ± 0.0203
Cosine distance	11.1576 ± 0.0452	4.1404 ± 0.0892	8.3178 ± 0.0416
MOGA	10.5965 ± 0.0263	2.7850 ± 0.0752	7.7511 ± 0.0407

K.2 COMPARISON WITH TRADITIONAL MATCHING

We also consider a variant of our matching method, which leverages the distance learned in Section 3.3 but selecting neighbors within the target group only. We take the News-4 dataset as an example and report the results in Table 4. We observe that MOGA performs better which demonstrates the advantage of our matching method considering all the samples regardless of their received treatments.

Table 4: Results of different matching methods on the News-4 dataset.

	$\sqrt{\epsilon_{PEHE}}$	ϵ_{ATE}	\sqrt{AMSE}
matching only within the target group	8.0039 ± 2.2043	2.9041 ± 1.7250	8.0388 ± 2.5587
MOGA	5.9601 ± 1.1798	1.1551 ± 0.7063	4.4197 ± 0.9348

K.3 PERFORMANCE OF REAL-WORLD DATASET

To compare the performance in the Real-world dataset, we report the results of ϵ_{ATE} on the Lalonde dataset(LaLonde, 1986) in Table 5. The LaLonde dataset consists of experimental and observational

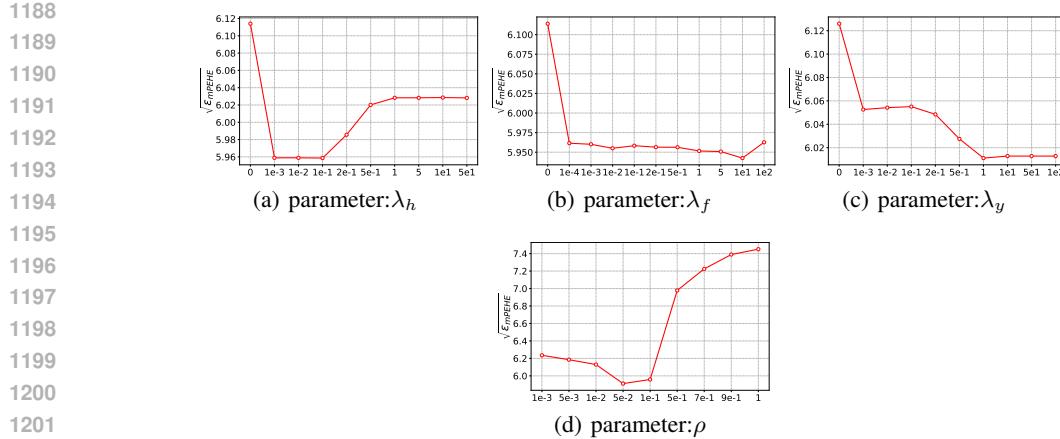


Figure 2: Results of varying values of hyperparameters on News-4 dataset.

Table 5: MAE results on Lalonde dataset (mean \pm standard deviation). Lower is better.

Method	MAE of Lalonde
MitNet	393.9513 ± 87.6213
CFR	495.3089 ± 59.5542
PSM	728.7922 ± 500.1740
kNN	275.2712 ± 148.3843
GOM	434.4803 ± 231.6803
KOM	438.3496 ± 255.4207
CEM	796.7605 ± 610.0612
MOGA	246.1526 ± 86.9842

components. The experimental part comes from the National Supported Work (NSW) randomized controlled trial, while the control group is replaced by observational data from the Panel Study of Income Dynamics (PSID) dataset. The treatment indicates participation in a job training program, and the outcome is earnings in 1978. The dataset is widely used for benchmarking causal inference methods. We observe that our proposed method still achieves promising results.

K.4 MORE BASELINES

We also compare with more baselines on the News data. **S-learner** is a single unified model trained with the treatment indicator as an input feature to directly estimate potential outcomes under different treatments and their difference. **T-learner** uses two separate models trained for the treated and control groups, and the individual treatment effect is obtained by taking the difference between their predictions. **X-learner** (Künzel et al., 2019) estimates ITE via cross-fitting of imputed treatment effects and propensity score-based weighting, making it especially effective under treatment-control imbalance. **R-learner** (Nie and Wager, 2021) formulates ITE estimation through orthogonalized residual regression by removing the effects of covariates on both the outcome and treatment, yielding robustness to confounding. **DragonNet** (Shi et al., 2019) leverages propensity scores and targeted regularization to improve outcome prediction and stabilize treatment effect estimation. **CE-RCFR** (Wang et al., 2022) enhances ITE estimation through relaxed optimal transport alignment and consensus aggregation, simultaneously mitigating mini-batch noise and gradient conflicts. **CBPS** (Imai and Ratkovic, 2014) estimates propensity scores while directly optimizing covariate balance between treatment groups, improving causal effect estimation. **MALTS** (Parikh et al., 2022) is a matching method that leverages a learnable distance metric to optimize feature-space similarity and

1242

1243

Table 6: Results on News dataset (mean \pm standard deviation) on more baselines. Lower is better.

1244

1245

Dataset	News-2				News-4				News-8			
	Metric	$\sqrt{\hat{\epsilon}_{PEHE}}$	$\hat{\epsilon}_{ATE}$	\sqrt{AMSE}	$\sqrt{\hat{\epsilon}_{mPEHE}}$	$\hat{\epsilon}_{mATE}$	\sqrt{AMSE}	$\sqrt{\hat{\epsilon}_{mPEHE}}$	$\hat{\epsilon}_{mATE}$	\sqrt{AMSE}	$\sqrt{\hat{\epsilon}_{mPEHE}}$	$\hat{\epsilon}_{mATE}$
DragonNet	9.408 \pm 2.324	1.990 \pm 1.567	6.969 \pm 1.838	10.359 \pm 4.153	3.787 \pm 3.960	8.015 \pm 2.611	16.904 \pm 5.637	8.503 \pm 7.913	18.367 \pm 6.896			
CE-RCFR	9.316 \pm 2.397	1.613 \pm 1.561	6.972 \pm 1.836	9.458 \pm 1.828	2.791 \pm 1.179	8.017 \pm 1.736	10.545 \pm 1.429	4.057 \pm 1.172	10.506 \pm 1.855			
R-learner	9.336 \pm 2.367	1.710 \pm 1.521	6.902 \pm 2.276	9.646 \pm 2.048	3.118 \pm 1.654	8.479 \pm 2.212	10.470 \pm 1.282	3.867 \pm 0.908	11.035 \pm 1.743			
S-learner	8.646 \pm 2.374	1.533 \pm 1.468	6.386 \pm 1.743	8.993 \pm 1.846	2.591 \pm 1.282	7.845 \pm 1.747	10.320 \pm 1.313	3.900 \pm 0.951	10.577 \pm 1.670			
T-learner	8.381 \pm 2.246	1.581 \pm 1.512	6.258 \pm 1.723	8.800 \pm 1.846	2.658 \pm 1.273	7.774 \pm 1.747	10.284 \pm 1.297	3.914 \pm 0.927	10.582 \pm 1.645			
X-learner	8.577 \pm 2.270	1.574 \pm 1.510	6.329 \pm 1.732	8.825 \pm 1.842	2.661 \pm 1.275	7.789 \pm 1.748	10.250 \pm 1.293	3.922 \pm 0.925	10.570 \pm 1.643			
CBPS	10.646 \pm 2.847	2.872 \pm 2.439	7.528 \pm 2.013	13.214 \pm 2.679	2.891 \pm 1.763	10.929 \pm 2.679	15.817 \pm 1.987	3.437 \pm 0.974	14.845 \pm 2.385			
MALTS	10.692 \pm 2.663	1.553 \pm 1.486	7.911 \pm 2.025	10.382 \pm 1.996	2.658 \pm 1.273	8.713 \pm 1.833	13.123 \pm 1.890	3.278 \pm 1.439	10.224 \pm 2.435			
MOGA	5.081 \pm 1.693	0.449 \pm 0.344	3.591 \pm 1.197	5.960 \pm 1.180	1.155 \pm 0.706	4.420 \pm 0.935	8.904 \pm 1.214	2.386 \pm 0.725	7.819 \pm 1.212			

1252

1253

1254

Table 7: Comparison between two-stage and MOGA on News Dataset (mean \pm standard deviation). Lower is better.

1255

1256

Dataset	News-2				News-4				News-8			
	Metric	$\sqrt{\hat{\epsilon}_{mPEHE}}$	$\hat{\epsilon}_{mATE}$	\sqrt{AMSE}	$\sqrt{\hat{\epsilon}_{mPEHE}}$	$\hat{\epsilon}_{mATE}$	\sqrt{AMSE}	$\sqrt{\hat{\epsilon}_{mPEHE}}$	$\hat{\epsilon}_{mATE}$	\sqrt{AMSE}	$\sqrt{\hat{\epsilon}_{mPEHE}}$	$\hat{\epsilon}_{mATE}$
Two-stage	5.218 \pm 1.079	0.741 \pm 0.627	3.999 \pm 0.758	6.126 \pm 1.087	1.360 \pm 0.747	5.968 \pm 0.791	9.095 \pm 0.841	2.788 \pm 0.487	8.257 \pm 0.687			
MOGA	5.081 \pm 1.693	0.449 \pm 0.344	3.591 \pm 1.197	5.960 \pm 1.180	1.155 \pm 0.706	4.420 \pm 0.935	8.904 \pm 1.214	2.386 \pm 0.725	7.819 \pm 1.212			

1261

1262

accurately estimate ITE. The results are listed in Table 6. We observe that our method achieves promising performance

1263

1264

K.5 TWO-STAGE METHOD ON DISTANCE LEARNING

1265

1266

In this experiment, we modify the distance learning method in Section 3.3 to a two-stage approach. In the first stage, only the optimal transport matrices γ_t are calculated. In the second stage, with γ_t fixed, the matrices Θ_t are computed and then used to derive the mapping function parameterized by the matrix \mathbf{P} . Table 7 shows the results of the two-stage strategy and the original joint learning method. We observe that our proposed joint learning strategy achieves better performance compared with the two-stage strategy.

1274

1275

1276

K.6 PERFORMANCE OF DIFFERENT NUMBERS OF TREATMENTS

1277

1278

We provide the performance and running time results under different numbers of treatment T in Table 8. Our method maintains competitive performance as the value of T increases. Although the running time grows, our method still has a modest running time. If T is extremely large, we can accelerate the distance learning stage by considering a subset of samples, and accelerate optimal transport by some fast algorithms (Gasteiger et al., 2021; Nguyen et al., 2022).

1284

1285

L SENSITIVITY ANALYSIS

1286

1287

We take News-4 as an example to evaluate the effects of the hyper-parameters in our model. Figure 2 shows the results in terms of mPEHE with varying values of the hyperparameters λ_h , λ_f , λ_y , and ρ . From Figure 2(a), the performance decreases with a large λ_h , since a large λ_h will induce a uniform transport plan γ , which cannot reflect different matching degrees based on the distances between samples. Figure 2(c) shows that a large λ_y is helpful to achieve a better performance, which demonstrates the advantage of incorporating factual outcomes for distance learning. From Figures 2(b) and 2(d), we observe that our method performs stably in a wide range of values of λ_f and ρ .

1294

1295

We also conduct ablation studies by setting the value of λ_h , λ_f or λ_y as 0. The results are also shown in Figure 2. We observe that the performance with $\lambda_h = 0$ and $\lambda_f = 0$ is worse compared with non-zero values, which verifies the effects of the entropic and Frobenius regularizations in Problem

1296

1297 Table 8: Results under different T Settings (mean \pm standard deviation). Lower is better.

1298

Setting	T=5			T=10			T=15					
	$\sqrt{\epsilon_{mPEHE}}$	$\hat{\epsilon}_{mATE}$	\sqrt{AMSE}	Time (s)	$\sqrt{\epsilon_{mPEHE}}$	$\hat{\epsilon}_{mATE}$	\sqrt{AMSE}	Time (s)	$\sqrt{\epsilon_{mPEHE}}$	$\hat{\epsilon}_{mATE}$	\sqrt{AMSE}	Time (s)
MitNet	1.3106 \pm 0.0407	0.1529 \pm 0.0282	1.1663 \pm 0.0269	2471.059	1.4309 \pm 0.0161	0.1225 \pm 0.0153	1.1824 \pm 0.0084	4578.611	1.5034 \pm 0.0152	0.1161 \pm 0.0057	1.1800 \pm 0.0095	20736.247
CFR	1.9540 \pm 0.6629	0.5958 \pm 0.3482	2.2412 \pm 0.5553	988.176	2.0670 \pm 0.4820	0.5175 \pm 0.1409	1.8434 \pm 0.4592	3104.937	2.1712 \pm 0.4561	0.5038 \pm 0.1842	1.6091 \pm 0.3099	7517.339
PSM	2.0540 \pm 0.6343	0.5240 \pm 0.3235	2.1666 \pm 0.5646	3.0140	1.9215 \pm 0.2988	0.4967 \pm 0.1202	1.7141 \pm 0.3023	3050.820	1.9362 \pm 0.2902	0.4868 \pm 0.1203	1.6352 \pm 0.2913	42.915
kNN	1.4964 \pm 0.0680	0.2546 \pm 0.0658	1.1388 \pm 0.0471	0.025	1.2552 \pm 0.0557	1.2028 \pm 0.0343	14.950	1.6769 \pm 0.0283	0.2451 \pm 0.0334	1.2092 \pm 0.0160	42.981	
GOM	1.3903 \pm 0.0539	0.4269 \pm 0.0957	1.2028 \pm 0.0395	1.266	1.4842 \pm 0.0353	0.3070 \pm 0.0677	1.2105 \pm 0.0250	2.793	1.5404 \pm 0.0175	0.2472 \pm 0.0245	1.2001 \pm 0.0106	6.410
KOM	1.6314 \pm 0.0591	0.3546 \pm 0.0687	1.3185 \pm 0.0393	1.328	1.5474 \pm 0.0181	0.1424 \pm 0.0367	1.2460 \pm 0.0141	2.912	1.5718 \pm 0.0164	0.0831 \pm 0.0110	1.2196 \pm 0.0103	2.964
MOGA	1.2962 \pm 0.0444	0.4606 \pm 0.0696	1.1687 \pm 0.0287	19.477	1.0885 \pm 0.0415	0.3320 \pm 0.0498	1.1802 \pm 0.0112	202.245	1.0356 \pm 0.0535	0.3009 \pm 0.0435	1.1757 \pm 0.0092	300.579

1303

1304

1305

1306

Table 9: Computation Time Comparison (in milliseconds).

1307

Method	Calculation Time (ms)
k-NN	26.61
OLS/LR-2	1528.69
BART	1806.28
TARNet	2094.19
CFR	2415.28
GANITE	20477.37
PSM	146.81
PM	5565.81
CP	1619.49
MitNet	29507.23
MOGA	4028.86

1318

1319

1320

11. $\lambda_y > 0$ achieves better performance compared with that of $\lambda_y = 0$, which demonstrates the effectiveness of introducing factual outcomes for distance learning.

1321

1322

1323

1324

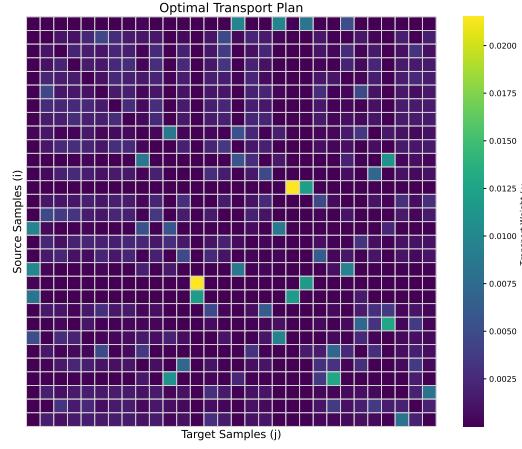
1325

M VISUALIZATION OF OPTIMAL TRANSPORT PLAN

1326

1327 Figure 3 is the visualization of the optimal transport plan γ in Eq. 11. Similar to simulation data
1328 generation in Section I, we generate data of $\mathbf{m} = [0.1, 0.2, 0.3]$ and $\Sigma_{\text{rand}} \sim \mathcal{U}((0, [1, 1.5, 2]^\top)^{d \times d})$.
1329 We observe that γ is meaningful and far away from a uniform coupling.

1330



1345

1346

1347

Figure 3: Visualization of the optimal transport plan. Lighter colors indicate larger weights, while darker colors represent weights closer to zero.

1348

1349

1350 **N RUNNING TIME RESULTS**
13511352 We also provide the running times of representative methods in Table 9. We observe that the calcu-
1353 lation time of our method is comparable to other methods.
1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403