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Abstract

Numerous increasingly sophisticated active
learning methodologies have been introduced
in recent years, each one with its own advan-
tages. However, these methodologies have lim-
ited information available to them, as they rely
only on signals derived from labeled data and
model predictions. In this paper, we propose
a novel approach that integrates user feedback
signals into the active learning process, with
the objective of enhancing the efficacy of ex-
isting methods. Our study demonstrates the
consistent superiority of our approach, com-
pared to traditional active learning methods
when applied to diverse classification datasets
and settings. Moreover, by incorporating user
feedback via a contextual bandits algorithm,
our proposed method exhibits significant ad-
ditional improvements and robustness against
user and annotator noise. We hope that these
findings will encourage the adoption of strate-
gies that incorporate user feedback in active
learning, as well as broaden the inclusion of
additional signals in the active learning pro-
cess, thereby enabling maximization of limited
human labeling resources.'

1 Introduction

The cost of labeling data is one of the key factors
limiting the effectiveness of supervised learning
(SL) in real-world applications. Active learning
(AL) (Lewis and Catlett, 1994; Cohn et al., 1996;
Settles, 2012) strives to address this problem by ac-
tively selecting the most informative instances from
a source of unlabeled data for annotation, thereby
reducing the amount of human effort needed to
achieve a given level of model performance. AL
methods typically leverage inherent characteristics
of the data or the model (Ren et al., 2022; Liu
etal., 2022; Zhan et al., 2021, 2022) to identify data
points that are most likely to improve the model if
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Figure 1: Average classifier hit@3 across active learn-
ing cycles over nine datasets. Our proposed meth-
ods (blue and orange) significantly outperform various
classic active learning methods, including minimum-
margin (green), as well as automated learning with con-
textual bandits (red).

labeled. However, the gains from these techniques
are often marginal and inconsistent, varying sig-
nificantly from dataset to dataset, and even fail to
beat random sampling on some occasions (Haco-
hen et al., 2022).

While the classic AL approach relies on inherent
signals to select samples for human annotation,
another potential signal, often freely available in
real-world applications, is user feedback, such as
user clicks, star ratings, and purchase decisions.
We argue that integrating user feedback signals into
the active learning cycle is consistently beneficial.
If users disagree with model predictions, samples
can be prioritized for labeling; otherwise, they can
be added to the training set. While user feedback is
commonly used for automated learning techniques
such as contextual bandits (CB) (Bouneffouf et al.,
2020a), its deployment for active learning has not
yet been explored, to the best of our knowledge.

In this paper we introduce a novel technique, de-
noted Feedback-Assisted Active Learning (FAAL),
which leverages feedback from end-users to im-
prove the active learning process. In contrast to CB,
which solely relies on user feedback, we propose to



extend the classic AL cycle by incorporating user
feedback signals in addition to human annotation.
We demonstrate that adding user feedback leads to
significant improvements over both classic AL and
CB approaches.

We conducted experiments on multiple multi-
class text classification datasets. In addition to the
standard annotations, we simulated end-user feed-
back on the classification model predictions. As de-
picted in Figure 1, FAAL significantly outperforms
traditional AL techniques across a range of nine
datasets. FAAL is also highly effective when used
together with CB, referred to as FAAL-CB, out-
performing classical AL methods and automated
learning with a CB algorithm by a large margin.

Our approach also exhibits high noise resilience.
We evaluated FAAL and FAAL-CB under various
user and annotator noise rates, finding that FAAL
is robust to user noise, whereas FAAL-CB is robust
to both user and annotator noise.

Thus, our contribution in this paper is threefold:

* We introduce FAAL and FAAL-CB meth-
ods that incorporate user feedback, available
freely in various scenarios, as a signal to an
active learning query strategy, and as an auto-
matic augmentation of the training set through
a contextual bandits algorithm.

* We show that across nine classification
datasets, FAAL and FAAL-CB outperform
traditional active learning approaches, show-
ing average hit@3 improvements of 3.2% and
9.5% respectively.

* We performed an extensive analysis of the im-
pact of noise rates on both FAAL and FAAL-
CB, finding them robust and consistently su-
perior to classic AL methods.

2 Background

In this paper, we propose that user feedback be
incorporated into the active learning (AL) process
to improve model learning. This strategy can also
be applied in settings where the user feedback is al-
ready being leveraged to learn automatically with a
contextual bandits (CB) algorithm. In Section 2.1,
we provide a brief explanation about contextual
bandits. In Section 2.2, we characterize user feed-
back. We also describe its applicability as a signal
to AL and to automated learning through a CB
algorithm.

2.1 Contextual Bandits

Contextual bandits (CB) are a subset of the rein-
forcement learning (RL) toolbox which do not keep
track of the system state during an episode. There-
fore, they are applicable to any decision-making
problem where single-turn decisions receive a re-
ward, rather than a full-information label. Such
problems are ubiquitous in digital systems receiv-
ing user feedback, as the user often gives feedback
on a small subset of the possible choices, such as
products to buy and movies to watch.

As with most RL algorithms, CB algorithms
aims to learn which actions lead to higher rewards.
This learning process requires a balance of explo-
ration to search for new global optima, and exploita-
tion to maximize reward on current interactions. A
simple example is the classic e-greedy algorithm,
which simply selects with probability 1 — e (ex-
ploitation) the action with the highest predicted
reward, and a random action with probability ¢
(exploration).

2.2 User Feedback Overview

User feedback is found in various applications,
manifesting in explicit forms like thumbs up/down
buttons and star ratings, as well as implicit forms
such as purchase decisions. It can be often classi-
fied into positive and negative, e.g., thumbs up and
thumbs down, or, as in our experiments, whether
or not a user clicks on one of the presented labels.
Since it is generated by ordinary users rather than
paid labelers, it is also often available in large vol-
umes, and costs substantially less than hiring expert
annotators.

Even though it may seem appealing, using user
feedback may be challenging and cannot necessar-
ily replace annotations. First, labels provide full
information; they indicate the most accurate an-
swer available, regardless of external factors. User
feedback provides only partial information; it may
convey only a qualitative assessment of a subset
of all possible answers. Therefore, the quality of
the model generating this subset may affect the
feedback. Poor models, for example, may not al-
ways provide a correct choice and therefore receive
mainly negative feedback, giving no indication of
which of the remaining options would have been
considered correct. Second, user feedback is typi-
cally noisier and less reliable than labels for various
reasons. User feedback may be based on factors
unrelated to model performance, such as misunder-
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Figure 2: Our proposed outline of the extended AL
cycle with FAAL/FAAL-CB. The inside of the box in-
cludes elements of the standard AL cycle. FAAL in-
cludes negative user feedback as input for the AL query
strategy. FAAL-CB uses user feedback to improve the
model by augmenting its training data.

standing the displayed information, and dissatis-
faction with the displayed content regardless of its
correctness. The user may also select an incorrect
label when ground truth is not displayed, and it
tends to select labels closer to the top of the list
(Joachims et al., 2017).

Although challenging, user feedback can en-
hance model training in a variety of ways. CB
algorithms may use it, for example, to augment the
training set with positive feedback. In addition, AL
query strategies may utilize negative feedback to
select data points on which the model was unable
to correctly predict an answer to the user request.

3 Method

In this section we introduce Feedback-Assisted Ac-
tive Learning (FAAL), a framework for utilizing
user feedback as inputs for an active learning (AL)
strategy. We also introduce FAAL-CB which in-
corporates contextual bandits (CB) algorithms as
well within the AL cycle. In Section 3.1, we out-
line their high-level flow, and discuss how they
differ from the classic AL approach. Then, in Sec-
tion 3.2, we describe our implementation of FAAL
and FAAL-CB given our specific multi-class clas-
sification task.

3.1 General Method

The cycle of FAAL/FAAL-CB augments the classic
AL cycle with the integration of user feedback, as
depicted in Figure 2. The model is initially trained
on a small seed dataset of labeled examples, and
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Figure 3: Illustration of a user interaction in our set-
tings. Given a user query (blue), if the user clicks on
one of the displayed labels (green), FAAL-CB utilizes
this positive feedback to enhance the training set using
a CB algorithm. Otherwise, if the user selects “None
of the Above” (negative feedback), both FAAL and
FAAL-CB prioritize the query at the annotation stage.

then deployed to begin receiving incoming queries
from users. Each query is assigned a response from
the model and then receives feedback from the user.
Figure 3 illustrates such interaction. These queries
form a new pool from which points for labeling
are selected according to an AL strategy, and then
annotated and appended to the training set.

FAAL utilizes user feedback to improve the
query AL strategy, for example, by prioritizing
the annotation of data points that received negative
feedback (see Section 2.2), so that query strate-
gies can be directed to samples in which the model
is most likely underperforming as the users dis-
agree with model predictions for these samples. In
FAAL-CB, a CB algorithm balances exploration
and exploitation in the displayed options for the
user, and leverages its feedback (rewards) to im-
prove the model.

3.2 Specific Method Implementation

Given a user request, we retrieve user feedback by
displaying the classifier’s top-ranked k labels to
the simulated user. While the number of shown la-
bels can be dynamically adjusted, we displayed
a fixed set of k£ labels (kK < total number of
classes) for simplicity. For exploration we im-
plemented an epsilon-greedy strategy in the last
position, i.e. we replaced the last displayed label
with a random one with probability a.. Selecting
“None of the above” is considered negative feed-
back (“unclicked”), while clicking one of the labels
is considered positive feedback (‘“clicked”). This



process is depicted in Figure 3.

We incorporated user feedback into the AL
query strategy by first applying the AL selector
on the unclicked samples from the pool. The
FAAL approach is called “FAAL (random)” when
unclicked samples are randomly selected, and
“FAAL (kmeans)” when diverse centroids are se-
lected for labeling using K-means.

In FAAL-CB, we apply an epsilon-greedy ex-
ploration strategy in the last label displayed to the
user, and augment the training set with clicked data
weighted by their inverse propensities, similarly to
Joachims et al. (2017), such that clicked data gained
from exploration receives a higher weight of 1/a.
In order to ensure that the annotated data retains a
significant influence on model training regardless
of the clicked data volume, we re-weighted the an-
notated and clicked samples in the training set to
give each 50% of the total weight.”.

4 Experimental Setup

We evaluated our method on nine multi-class text
classification datasets, which are further described
in Section 4.1. For every dataset, we randomly sam-
pled 20% of the examples and set them aside as a
holdout test set. To simulate a scenario requiring
minimal effort from professional annotators, we
constructed the seed dataset to include only one ex-
ample per class without maintaining a development
set. From our evaluations, increasing the seed size
to two or three per class leads to similar results.

The learning process consisted of 10 cycles, each
containing 1000 randomly sampled user interac-
tions®. The active learning candidates pool con-
tained only user interactions from the last cycle
to keep feedback up to date. The labelling bud-
get per cycle was set to 50. Since we assume that
users are expecting a limited number of options,
we use k = 3. The exploration parameter was set
to a = 0.01.* In order to ensure the robustness of
the results, we repeated each experiment using ten
different random seeds.

In the absence of actual feedback from a pro-
duction system, we simulate it in a manner that
imitates a user behavior. For simulating ideal user
feedback, we assume that when the ground-truth

2For more details, see Algorithms 1, 2

3In cases where the datasets were too small, the examples
were split equally between the cycles.

*A higher o value would provide faster exploration and
potentially a steeper learning curve, but would reduce initial
system performance.

Dataset # Texts # Classes Imbalance
CLINC150 22500 150 0.
banking77 13083 77 0.02

NLU Intent 25607 68 0.327
LEDGAR 60000 100 0.3
DBPedia I3 240942 219 0.227
Commerciall 12409 226 0.63
Commercial2 8682 168 0.84
Commercial3 22177 232 0.492
Commercial4 12755 538 0.292

Table 1: Number of texts, classes and the imbalance
of the datasets. Imbalance is measured by the KL di-
vergence between the dataset’s distribution and the uni-
form distribution.

label is presented among the displayed & options,
users would click on it (positive feedback). Con-
versely, if the ground-truth label is not available,
users would choose “None of the above” (negative
feedback). To simulate a more realistic and noisy
user feedback, we introduce noise by corrupting a
fraction of interactions (n) by randomly choosing
a wrong option with respect to ground truth. It may
be a click on an incorrect answer or on “None of the
above”.> We set n to 20%, except for Sections 5.3
and 5.4. As opposed to the user, we assume that the
expert annotator is flawless, except for Section 5.4
where we examine the effect of annotation noise,
simulating it by randomly picking a wrong label
instead of the correct one.

For a classifier, we used a linear SVM model
taken from the “scikit-learn” library with its default
hyperparameters® which receives as inputs the em-
beddings of “mini-LM-L6-v2” from the “Sentence-
Transformers” library (Reimers and Gurevych,
2019). We used this classifier due to its effec-
tive performance in the absence of a validation
set, which is unavailable for our specific use case.
We refrained from experimenting with BERT due
to the well-known instability issues associated with
its fine-tuning process, as highlighted in its original
introduction (Devlin et al., 2018).”

>We also experimented with other types of user noise, e.g.,
clicking the most semantically similar to the ground truth, but
found the differences negligible.

6https ://scikit-learn.org/stable/modules/
generated/sklearn.svm.LinearSVC version 1.1.1

"We also experimented with Tunstall et al. (2022), which is
on par or better than state-of-the-art few-shot regimes on a vari-
ety of benchmarks, finding similar results (see Appendix A.3).
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4.1 Datasets

We experimented with nine multi-class text classi-
fication datasets, five public and four commercial.
They vary in topics, size, number of classes, and
distribution across classes, as described in Table 1.

banking77 (Casanueva et al., 2020) is composed
of online banking queries annotated to 77 intents.
NLU Evaluation Dataset (Liu et al., 2019) con-
tains 25,716 utterances simulating requests from a
home robot annotated for 68 intents spanning 18
domains. DBPedia Classes® contains a taxonomic,
hierarchical categories for 342,782 Wikipedia ar-
ticles in 3 levels of 9, 70, and 219 classes, respec-
tively. For our experiments, we used the last level.
Our four commercial multi-class intent detection
datasets, derived from chat bot classifiers, contain
hundreds of intents and varying imbalance rates,
thus allowing us to have a broader set of datasets.
To facilitate reproducibility, we report all results
also per dataset.

5 Results

In this section, we evaluate the effect of user feed-
back on iterative learning of a classification model.
In Section 5.1, we explore the effect of adding user
feedback signal to the query strategy, comparing
FAAL to classic AL methods. In Section 5.2, we
also leverage the user feedback to apply a contex-
tual bandit (CB) algorithm comparing FAAL-CB
to CB and AL methods. In Section 5.3, we evaluate
the effect of user noise rate on user feedback-based
methods. Lastly, in Section 5.4, we examine the
cumulative effect of both user and annotation noise,
comparing FAAL and FAAL-CB to classic AL.

5.1 User Feedback in Classic AL

First, we explore the effect of integrating the user
click signal into the AL query strategy. Figure 4
shows the classifier’s hit ratio across the AL cycles
when randomly selecting examples to label from all
the cycle candidates (random), just the clicked data
(random clicked), or just the unclicked data (ran-
dom unclicked/FAAL (random)). We measure hit
ratio since we are primarily interested in whether
the right label was displayed to the user; however,
the classifier’s top-1 accuracy behaves similarly
(see Appendix A.4).

Labeling unclicked utterances achieved signif-
icantly better performance than labeling random

8https://huggingface.co/datasets/
DeveloperOats/DBPedia_Classes
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Figure 4: Incorporating user feedback in AL selec-

tion method makes a significant impact on performance.
Each subplot depicts the hit ratio of the classifier when
randomly sampling from all candidates (blue), the
unclicked data (orange), and the clicked data (green).

utterances from the whole pool or from the clicked
data across datasets (t-test pyqrue < 0.01). For ex-
ample, in the last cycle, labeling unclicked texts
improved the average performance across datasets
by 5.5% over sampling from all candidates, while
labeling clicked texts resulted in an average loss of
6.7%.

After establishing the effect of the user clicks sig-
nal on AL, we compared FAAL (random/kmeans)
to commonly used AL methods. Table 2 shows
the area under the curve (AUC) of the hit ratio
across the AL cycles for each dataset. We report
AUC as we are interested in the learning curve,
i.e., how well the classifier performed since it was
deployed and started receiving user requests. We
compared FAAL to two uncertainty-based meth-
ods: least confidence and minimum-margin. We
also incorporated diversity into each, similarly to
FAAL (kmeans), by first clustering the pool using
K-means and then selecting to label one example
from each cluster using the original uncertainty-
based method. Furthermore, we conducted a com-
parison between our method and two other popular
AL methods, namely Coreset (Sener and Savarese,
2017) and BADGE’ (Ash et al., 2020). The
model’s performance after training on the seed train

“BADGE was briefly adjusted to be compatible with the
SVM classifier we employ (see Appendix A.5)
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clinc bank NLU ledgar dbpedia coml com2 com3 com4 avg

Baseline 839 719 .627 529 583 388 408 404 462 551
Least confidence 922 873 829 718 35 590 706 589 563 725
+diversity 919 875 .839 723 739 604 703 595 565 729
Min margin 919 88 .844 733 738 .61 1 6 562 733
+diversity 917 877 844 726 J41 611 702 595 562 731
Coreset 895 853 783 .67 681 544 658 545 546 .686
BADGE 885 .849 827 . 704 591 676 582 545 708
FAAL (random) 927 888  .848 738 743 624 718 618 575 742
FAAL (kmeans) 931 901 .858 752 76 643 738 .632 589 .756
CB 93 851 .842 .685 J75 519 575 547 511 .693
FAAL-CB (random) .962 .928 .89 789 845 683 773 694  .603 .796
FAAL-CB (kmeans) .963 933 .894 795 854 690 782 703 .604 .802

Table 2: Integrating user feedback leads to notable improvement in performance. Area under the curve (AUC) of
the hit ratio across AL cycles for each dataset. “Baseline” represents performance after training on the train seed
only (one example per class). Second part compares FAAL (random/kmeans) vs classic AL methods. Last three
lines compare methods which incorporate CB based on user feedback. User noise level was set to 0.2.

set, is depicted as “Baseline” in Table 2.

Following Figure 4, we can see in Table 2 that
FAAL (random) achieves better AUC than the clas-
sic AL methods across all datasets, achieving an
average AUC of .742. Moreover, FAAL (kmeans),
which incorporates user feedback as well as di-
versity, achieves an AUC of .756, better than all
other methods except FAAL-CB (elaborated in Sec-
tion 5.2). We tried to combine FAAL with other
AL methods but found negligible differences. No-
tably, combining FAAL with uncertainty methods
provided only marginal gains (see Appendix A.1).
While Model prediction and user feedback are
highly correlated, we believe the latter was found
superior since it is extrinsic to the model.

5.2 FAAL with CB

In this section, we explore the effect of integrating
user feedback by applying contextual bandits (CB),
as described in Section 3.2.

We evaluated the effect of applying CB on the
user feedback with and without AL in the lower
part of Table 2. Most notably, FAAL-CB (ran-
dom/kmeans) which incorporates the user feedback
both in the AL query strategy and by applying
CB, significantly outperforms all other AL meth-
ods across all datasets. While the contributions
of AL (FAAL-CB vs CB) and CB (FAAL-CB vs
FAAL) are clear, the difference between FAAL-CB
(kmeans) and FAAL-CB (random) is more subtle,
although statistically significant. Secondly, we can
see that CB outperforms “Baseline” for all datasets.

Therefore, with or without a labelling budget, it is
beneficial to incorporate user feedback with CB. In
Section 5.3, we also show that this effect is robust
to higher levels of user noise.

In highly balanced datasets like CLINC150, ap-
plying only CB leads to performance that is com-
petitive to FAAL (random/kmeans). In contrast, in
imbalanced datasets such as the four commercial
datasets, adding clicked data tends to further shift
the distribution of the training set towards the ma-
jor classes, and so AL plays a critical role. Lastly,
FAAL-CB (random/kmeans) notably outperforms
CB even though the number of clicked utterances
(>5000) is much greater than the labeling budget
(500), which differs between the two methods.

5.3 User Noise

In previous sections we evaluated with a user noise
level of 20%, which was the highest level of feed-
back noise experimented by Gao et al. (2022a).
As explained in Section 2.2, user feedback may
be noisy and depends on various factors. Hence,
Figure 5 depicts the effect of user noise rate on dif-
ferent approaches integrating user feedback. Most
notably, “CB” is most influenced by the user noise
rate as it relies upon it heavily in its training set.
It is competitive with FAAL (kmeans) when user
feedback is flawless, and comes close to “Baseline”
when noise rates are high. However, in the absence
of a labeling budget, CB is always beneficial.

In contrast, FAAL (kmeans), which incorporates
feedback only in its query strategy, is quite robust to
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Figure 5: Hit@3 AUC of different methods as a func-
tion of user noise level averaged across datasets. “Base-
line” and “Classic AL’ are depicted in dashed horizon-
tal lines as they are not affected by the user. Higher
levels of user noise negatively impact feedback-based
approaches, and yet FAAL (kmeans) and FAAL-CB
(kmeans) surpass classic AL and “CB” outperforms
“Baseline” even when user noise is high.

user noise as its performance is hardly affected. As
described in Section 4, user noise flips part of the
correct model responses from clicked to unclicked,
and incorrect responses from unclicked to clicked.
Consequently, some less useful data points, where
the model already performs well, are wastefully
tagged in FAAL. However, even with high noise
levels, the unaffected feedback still provide a valu-
able signal.

Finally, FAAL-CB (kmeans), which integrates
user feedback both within the AL query strategy
and by applying CB, is affected by user noise, but
still outperforms other approaches even when the
amount of noise is over 40%. As mentioned in
Section 4, when applying a CB algorithm, we mod-
erate the user noise effect by balancing between
the weight of the clicked and the annotated data.

5.4 Annotation Noise

Following Section 5.3, we experimented with dif-
ferent noise levels in the annotation. Figure 6
presents noise heatmaps between FAAL (kmeans)
and FAAL-CB (kmeans) compared with the best
performing classic AL method (minimum-margin)
in Table 2. Note that the evaluated datasets may
contain noise in the annotation, so the random noise
we apply may aggregate over this noise.
FAAL-CB (kmeans) shows high resiliency to
both user and annotation noise as it surpasses clas-

sic AL even when the noise rates are as high as 40%
and 20%, respectively. We associate the robustness
to noise of FAAL-CB (kmeans) to its training: As
noted in Section 4, FAAL-CB (random/kmeans)
provides 50% weight to both annotated and clicked
data during the training process, therefore ensuring
that annotated data, which is assumed to be less
noisy, remains significant even when outnumbered
by clicked data. As a consequence, the clicked and
annotated data balance each other, enabling FAAL-
CB (kmeans) to outperform classic AL, when both
user and annotation noises are relatively high.

On the other hand, FAAL (kmeans), which was
previously shown to be robust to user noise, is sig-
nificantly affected by annotation noise, even more
than minimum-margin, which is superior to FAAL
(kmeans) when annotation noise is 10% or higher.
We believe this result is a mirror image of the supe-
riority of FAAL (kmeans) over minimum-margin
when annotations were flawless, as shown in Ta-
ble 2), i.e., FAAL (kmeans) labels more informa-
tive texts, thus their impact is greater regardless of
whether they are correctly or incorrectly labeled.

6 Related Work

Active learning (AL) (Lewis and Catlett, 1994;
Cohn et al., 1996; Settles, 2012) methods are usu-
ally classified as data-driven, model-driven, or
hybrid (Ren et al., 2022; Liu et al., 2022; Zhan
et al., 2021, 2022). Data-driven approaches uti-
lize the structure of the data manifold to select
representative or diverse samples. For example,
Core-Set (Sener and Savarese, 2017) minimizes the
distance to the furthest unlabeled sample. Model-
driven methods rely on model predictions and
uncertainty to select samples (Lewis and Catlett,
1994). Hybrid methods combine both approaches,
e.g. BADGE (Ash et al., 2019) selects diverse sam-
ples holding the highest uncertainty by clustering
over gradients, and CAL (Margatina et al., 2021)
finds similar samples in the model feature space
whose predictive likelihoods differ. Although many
methods have been presented in recent years, no
AL method achieves state-of-the-art results across
datasets and tasks (Liu et al., 2022; Zhan et al.,
2021, 2022), especially in a low-budget setting
where they often perform worse than random selec-
tion (Hacohen et al., 2022).

The topic of AL with partial labels is relatively
unexplored. Hu et al. (2018) focus on utilizing
partial labels provided by an oracle in response
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Figure 6: Hit@3 AUC difference between FAAL/FAAL-CB (kmeans) and Classic AL (minimum-margin). FAAL-
CB outperforms Classic AL even in the extreme scenario of 40% and 20% user and annotation noise, respectively.
On the other hand, FAAL (kmeans) is very sensitive to annotation noise, even more than classic AL.

to binary questions, assuming a hierarchical label
structure. In contrast, we incorporate noisy partial
labels into AL without assuming the label structure.

There is a large body of literature surrounding
contextual bandits (CB) (Bietti et al., 2021; Bounef-
fouf et al., 2020a) and their application to learning-
to-rank problems (Hu et al., 2019; Ai et al., 2018;
Wang et al., 2019, 2016; Agarwal et al., 2019). One
of the common approaches is Inverse-Propensity
Weighting (Horvitz and Thompson, 1952; Strehl
et al., 2010) with epsilon-greedy exploration (An-
drew, 1999). Feedback signals from end-users have
been used for automated training techniques with
CB. Gao et al. (2022b) use binary feedback and
a modification of the REINFORCE algorithm to
help train an extractive question answering model.
They also investigate the effect of noise in the user
feedback signal. Suhr and Artzi (2022) explore
the impact of multiple streams of user feedback
of different kinds, and Zhang et al. (2019) exam-
ine combining supervised and bandit feedback data
for warm-starting CB models. Other authors in-
vestigate the CB learning in a setting with missing
or corrupted feedback (Bouneffouf et al., 2020b;
Bouneffouf, 2021), but do not use the lack of feed-
back itself as a signal. Additionally, the technique
of reinforcement learning from human feedback
(Christiano et al., 2017; Solaiman et al., 2019) has
recently exploded in popularity. Unlike our work,
this technique uses the feedback as labels for a
separate reward model.

7 Conclusions and Future Work

The majority of existing AL literature focuses on
the advancement of intricate algorithms, aiming to

maximize performance with limited data. In con-
trast, this paper introduces a novel approach that
emphasizes the identification of additional informa-
tive signals to enhance active learning which yield
highly effective results. Furthermore, the paper
provides insight into the potential of this research
area and lays the foundation for further exploration
of incorporating user feedback into active learning
and feedback-assisted methodologies.

Future research opportunities include exploring
different ways to incorporate user feedback into
other AL strategies such as BADGE (Ash et al.,
2019) and CAL (Margatina et al., 2021). Addition-
ally, other tasks may benefit from the incorporation
of user feedback, for example in tasks like summa-
rization, user feedback can be expressed in the form
of star ratings in order to direct annotation efforts
more effectively. FAAL can be applied to other
input types, such as images and audio. One may
also explore the possibility of generating pseudo
user feedback with a large language model or com-
bine LLMs with user feedback to employ FAAL in
a semi-supervised setting. Moreover, a user study
can also facilitate more accurate assessments of
user noise and biases. Furthermore, instead of pre-
senting a fixed number of top results to the user,
future work may explore mechanisms for dynami-
cally determining the number of options to display.
This approach can optimize the user experience
by providing only relevant results and minimizing
unnecessary interactions. While our study utilized
a unified model for AL and CB, an intriguing av-
enue for future research is to investigate their syn-
chronization, as well as separating them into two
different models.



Limitations

One limitation of our method is its reliance on col-
lecting and utilizing user feedback, which may not
always be possible in certain scenarios. This could
be due to privacy concerns that restrict the storage
of such data or the reluctance of users to provide
explicit feedback, which tends to be biased towards
negative responses rather than positive ones. In our
proposed implementation, which relies on implicit
feedback, we encounter the challenge of dealing
with noise caused by biases towards the initial la-
bels presented to the user, preferences for shown
results over those not displayed, or even attraction
towards intriguing labels that capture attention in
addition to misunderstanding of the meaning of the
label. To address this, our evaluation encompassed
a broad range of user feedback. Another limitation
to consider is that we only evaluated the method
in one type of user feedback setting, and different
types may have different effects on performance.
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A Appendix

A.1 Uncertainty vs. Click Signal

Incorporating user feedback signals into
uncertainty-based methods led to a relatively minor
improvement, although stable across datasets, as
shown in Figure 7. The hit ratio AUC of FAAL
(margin) was 0.744 while classic minimum-margin
achieved 0.733. We believe this is due to the
correlation between model uncertainty and user
feedback, i.e., examples for which the model is
uncertain are more likely to be unclicked by the
user. According to our empirical analysis, 34%
of the examples selected by minimum-margin
were not clicked, compared to only 18% when the
examples were selected by K-means.

However, we claim that negative user feedback
is a stronger signal for active learning. It is not
dependent on the model or train set, like signals
such as a low prediction confidence. These sig-
nals suffer in the presence of model miscalibration,
data that is poorly represented in the train set and
outliers. Moreover, incorporating diversity in the
user feedback signal improves performance sub-
stantially, which is not the case in uncertainty (see
Table 2).

A.2 User Error Effect

Table 3 provides further details per dataset on the
user feedback noise ratios we conducted. Clearly,
the most significant relative decrease in perfor-
mance was in the commercial datasets: between
32% and 35% in CB and between 33% and 18%
in FAAL-CB (kmeans), comparing 0% and 50%
user noise. In FAAL (kmeans), the differences
were smaller, though the trends remained the same.
We believe the two important factors here are the
number of classes and the imbalance ratio, which
affects the chances of misrepresenting a class given
the noise.

A.3 SVM vs SetFit

To verify that our results can be reproduced on
other classifier, we reproduced Table 2 with re-
cently published SetFit method (Tunstall et al.,
2022) that was developed for efficient few-shot
learning and is on par or better than state of the art
few-shot regimes on a variety of benchmarks, find-
ing similar results, although it was not compared to
recently published Yehudai et al. (2023). To train
the SetFit classifier, we adopted the default settings
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Algorithm 1 FAAL/FAAL-CB learning Process
Input: seed labeled data S, cycle size C'S, number
of cycles C, exploration chance «, labeling budget
per cycle B
Output: model M

1: Dirgin < S

2: M + Train(Dirain)

3: Launch M

4: forc=1,2,...,Cdo

5: D, + CollectU ser Feedback()

6: Se < Select(D., B)

7: Dyewy < Annotate(S.)

8: Dirain <= Dirain U Dnew

9: if DoContextualBandits then

10: D jjcr, < {(Q7 f7 ipS) € Dc|f 7é N}
11: M + Train(Dyrain, Detick, ipS)
12: else

13: M «+ Train(Dirain)

14: end if

15: end for

16: return M

Algorithm 2 Collect User Feedback
Input: cycle size C'S, exploration chance «, model
M
Output: User Feedback Data D
D+
1=0
while i < C'S do
q < CollectNewU serQuery()
p <+ M(q)
s,ips < Shown(p, a)
f + UserFeedback(q, s)
D« DU{(q, f,ips)}
1 i+1
end while
: return D
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Figure 7: Uncertainty signal combined with click signal. Hit ratios across cycles for each dataset when selecting
to label according to minimum-margin (orange), selecting randomly from the un-clicked data (blue), or selecting
by minimum-margin from the un-clicked data (green). Adding user feedback signal on top of uncertainty-based
methods leads to a minor although stable improvement in performance.

from their official git repository!°.

As you can see in Table 4, FAAL (kmeans) sur-
passes classic AL methods across all datasets, and
FAAL-CB (kmeans) outperforms all methods sig-
nificantly.

A4 AUC of Accuracy

The main goal in our settings is to get the cor-
rect label displayed to the user, therefore we focus
throughout the paper on the hit ratio metric, rather
than accuracy (top-1). However, as most active
learning papers reports accuracy performance, we
report it for completeness.

FAAL-CB (kmeans) significantly outperforms
all other methods, such as that shown in Table 2.
On average, FAAL (kmeans) provides the highest

10https ://github.com/huggingface/setfit

accuracy, although the performance gap in accu-
racy is smaller than in hit ratio. We believe this is
due to the fact that in FAAL we label the text that
has not been clicked, thus directly maximizing the
hit ratio. This is not surprising as in FAAL we la-
bel according to whether the true label was among
the top predictions. However, labeling texts that
the model underperformed on also improves accu-
racy, as FAAL (kmeans) still achieves the highest
accuracy of all classic AL methods.

A.5 Implementing BADGE with Linear SVM

Since Ash et al. (2020) experimented with pseudo-
gradients induced by softmax activations with re-
spect to cross-entropy loss, and to the best of our
knowledge there is no research on the efficiency
of the method with other losses, we’ve decided to
stick to their setup and code base. That is, during
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Noise | clinc bank NLU ledgar dbpedia coml com2 com3 com4 avg
FAAL 0.0 942 909 855 .756 763 .65 46 .642 594 772
0.2 931 901 858 .752 .76 643 738 .632 589  .766
0.4 922 889 853 .745 749 631 726 623 579 756
0.5 911 883 .848 .737 741 626 712 .62 S71 749
CB 0.0 958 901 .88 753 .837 615 661 643 .6 72
0.2 93 851 842 685 75 519 575 547 511 702
0.4 899 793 789  .636 7 46 488 471 462 639
0.5 871 757 743 601 6717 406 433 442 398 595
FAAL-CB | 0.0 974 946 905 818 .885 736 822 756 .694 846
0.2 963 933 894 795 .854 .69 782 703 604 812
0.4 948 91 876 764 799 .647 728 636 547 773
0.5 927 888 859 742 174 587 .68 606 466 738

Table 3: Area under the curve (AUC) of the hit ratio for all 10 cycles for each dataset using SVM classifier. Lines
1-4 shows FAAL (kmeans) with different user noise levels with no CB. Lines 5-7 shows the AUC when applying
only contextual bandits with no AL in different noise levels and lines 8-11 shows results for FAAL-CB (kmeans)
with contextual bandits for different user noise levels

clinc bank NLU ledgar dbpedia coml com2 com3 com4 avg

Baseline 847 645  .647 .569 794 364 371 .36 37 556
Least confidence 948 868  .864 .808 95 547 636 579 537 767

+diversity 949 871 872 811 948 564 649 585 537 773
Min margin 95 868 .874 813 951 564 643 589 538 773

+diversity 947 872 873 812 948 575 644 589 541 775
Coreset 952 867 .864 .805 951 53 632 575 538 766
BADGE 946 868  .875 811 948 573 649 588 536 .774
FAAL (random) 95 877 875 .81 95 585 .66  .604 551 781
FAAL (kmeans) 953 885 .88 819 952 606 .669 .622 562 .79
CB 942 828 819 137 - 456 454 494 445 -
FAAL-CB (random) 96 891 .864 - - 595 632 627 555 -
FAAL-CB (kmeans) .961 .895 .867 - - .611 .65 .636  .565 -

Table 4: Table 2 but with SetFit classifier instead of SVM. Clearly, FAAL (kmeans) outperforms all other methods
across datasets. Some of the runs with CB did not complete due to resources limitation.

the query process we compute pseudo-gradients
as if we were using softmax after the linear layer
together with the cross-entropy loss.

A.6 Complementary Results Per Dataset
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Figure 8: Figure 1 split by dataset. Notably, FAAL-CB (kmeans) and FAAL (kmeans) outperforms classic active
learning approach and automated learning with contextual bandits across datasets.
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Figure 11: Right side of Figure 6 by dataset, i.e. hit@3 AUC difference between FAAL-CB (kmeans) and Classic
AL (minimum-margin) by dataset.
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clinc bank NLU ledgar dbpedia coml com2 com3 com4 avg

Baseline 659 52 418 362 388 261 294 257 315 .386
Least confidence 767 697 624 546 531 415 512 392 392 542
+diversity 778 716 656 565 54 431 52 402 394 556
Min margin 779 722 67 576 543 437 527 408 380 561
+diversity 785 724 677 577 549 443 53 404 392 565
Coreset 723 677 555 493 474 380 493 365 385 .506
BADGE 731 687 659 566 513 427 505 395 375 .54
FAAL (random) 768 708 .65 557 53 44 53 411 396 554
FAAL (kmeans) 779 733 665 574 545 456 546 423 405 .57
CB 832 732 718 563 628 382 449 386 353 .56
FAAL-CB (random) 877 818 .761  .638 687 499 603 492 417 .643

FAAL-CB (kmeans) .878 .821 .767 .646 697 501 .602 499 411 .647
Table 5: Duplicate of Table 2 but with accuracy instead of hit@k. While FAAL-CB still outperforms other methods,

the effect of incorporating user feedback in the AL acquisition function has a weaker effect on the accuracy. This
is not surprising as in FAAL we label according to whether the true label was among the top predictions.
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