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Abstract

Numerous increasingly sophisticated active001
learning methodologies have been introduced002
in recent years, each one with its own advan-003
tages. However, these methodologies have lim-004
ited information available to them, as they rely005
only on signals derived from labeled data and006
model predictions. In this paper, we propose007
a novel approach that integrates user feedback008
signals into the active learning process, with009
the objective of enhancing the efficacy of ex-010
isting methods. Our study demonstrates the011
consistent superiority of our approach, com-012
pared to traditional active learning methods013
when applied to diverse classification datasets014
and settings. Moreover, by incorporating user015
feedback via a contextual bandits algorithm,016
our proposed method exhibits significant ad-017
ditional improvements and robustness against018
user and annotator noise. We hope that these019
findings will encourage the adoption of strate-020
gies that incorporate user feedback in active021
learning, as well as broaden the inclusion of022
additional signals in the active learning pro-023
cess, thereby enabling maximization of limited024
human labeling resources.1025

1 Introduction026

The cost of labeling data is one of the key factors027

limiting the effectiveness of supervised learning028

(SL) in real-world applications. Active learning029

(AL) (Lewis and Catlett, 1994; Cohn et al., 1996;030

Settles, 2012) strives to address this problem by ac-031

tively selecting the most informative instances from032

a source of unlabeled data for annotation, thereby033

reducing the amount of human effort needed to034

achieve a given level of model performance. AL035

methods typically leverage inherent characteristics036

of the data or the model (Ren et al., 2022; Liu037

et al., 2022; Zhan et al., 2021, 2022) to identify data038

points that are most likely to improve the model if039

1To keep anonymity, our code will be released upon accep-
tance.

Figure 1: Average classifier hit@3 across active learn-
ing cycles over nine datasets. Our proposed meth-
ods (blue and orange) significantly outperform various
classic active learning methods, including minimum-
margin (green), as well as automated learning with con-
textual bandits (red).

labeled. However, the gains from these techniques 040

are often marginal and inconsistent, varying sig- 041

nificantly from dataset to dataset, and even fail to 042

beat random sampling on some occasions (Haco- 043

hen et al., 2022). 044

While the classic AL approach relies on inherent 045

signals to select samples for human annotation, 046

another potential signal, often freely available in 047

real-world applications, is user feedback, such as 048

user clicks, star ratings, and purchase decisions. 049

We argue that integrating user feedback signals into 050

the active learning cycle is consistently beneficial. 051

If users disagree with model predictions, samples 052

can be prioritized for labeling; otherwise, they can 053

be added to the training set. While user feedback is 054

commonly used for automated learning techniques 055

such as contextual bandits (CB) (Bouneffouf et al., 056

2020a), its deployment for active learning has not 057

yet been explored, to the best of our knowledge. 058

In this paper we introduce a novel technique, de- 059

noted Feedback-Assisted Active Learning (FAAL), 060

which leverages feedback from end-users to im- 061

prove the active learning process. In contrast to CB, 062

which solely relies on user feedback, we propose to 063
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extend the classic AL cycle by incorporating user064

feedback signals in addition to human annotation.065

We demonstrate that adding user feedback leads to066

significant improvements over both classic AL and067

CB approaches.068

We conducted experiments on multiple multi-069

class text classification datasets. In addition to the070

standard annotations, we simulated end-user feed-071

back on the classification model predictions. As de-072

picted in Figure 1, FAAL significantly outperforms073

traditional AL techniques across a range of nine074

datasets. FAAL is also highly effective when used075

together with CB, referred to as FAAL-CB, out-076

performing classical AL methods and automated077

learning with a CB algorithm by a large margin.078

Our approach also exhibits high noise resilience.079

We evaluated FAAL and FAAL-CB under various080

user and annotator noise rates, finding that FAAL081

is robust to user noise, whereas FAAL-CB is robust082

to both user and annotator noise.083

Thus, our contribution in this paper is threefold:084

• We introduce FAAL and FAAL-CB meth-085

ods that incorporate user feedback, available086

freely in various scenarios, as a signal to an087

active learning query strategy, and as an auto-088

matic augmentation of the training set through089

a contextual bandits algorithm.090

• We show that across nine classification091

datasets, FAAL and FAAL-CB outperform092

traditional active learning approaches, show-093

ing average hit@3 improvements of 3.2% and094

9.5% respectively.095

• We performed an extensive analysis of the im-096

pact of noise rates on both FAAL and FAAL-097

CB, finding them robust and consistently su-098

perior to classic AL methods.099

2 Background100

In this paper, we propose that user feedback be101

incorporated into the active learning (AL) process102

to improve model learning. This strategy can also103

be applied in settings where the user feedback is al-104

ready being leveraged to learn automatically with a105

contextual bandits (CB) algorithm. In Section 2.1,106

we provide a brief explanation about contextual107

bandits. In Section 2.2, we characterize user feed-108

back. We also describe its applicability as a signal109

to AL and to automated learning through a CB110

algorithm.111

2.1 Contextual Bandits 112

Contextual bandits (CB) are a subset of the rein- 113

forcement learning (RL) toolbox which do not keep 114

track of the system state during an episode. There- 115

fore, they are applicable to any decision-making 116

problem where single-turn decisions receive a re- 117

ward, rather than a full-information label. Such 118

problems are ubiquitous in digital systems receiv- 119

ing user feedback, as the user often gives feedback 120

on a small subset of the possible choices, such as 121

products to buy and movies to watch. 122

As with most RL algorithms, CB algorithms 123

aims to learn which actions lead to higher rewards. 124

This learning process requires a balance of explo- 125

ration to search for new global optima, and exploita- 126

tion to maximize reward on current interactions. A 127

simple example is the classic ε-greedy algorithm, 128

which simply selects with probability 1 − ε (ex- 129

ploitation) the action with the highest predicted 130

reward, and a random action with probability ε 131

(exploration). 132

2.2 User Feedback Overview 133

User feedback is found in various applications, 134

manifesting in explicit forms like thumbs up/down 135

buttons and star ratings, as well as implicit forms 136

such as purchase decisions. It can be often classi- 137

fied into positive and negative, e.g., thumbs up and 138

thumbs down, or, as in our experiments, whether 139

or not a user clicks on one of the presented labels. 140

Since it is generated by ordinary users rather than 141

paid labelers, it is also often available in large vol- 142

umes, and costs substantially less than hiring expert 143

annotators. 144

Even though it may seem appealing, using user 145

feedback may be challenging and cannot necessar- 146

ily replace annotations. First, labels provide full 147

information; they indicate the most accurate an- 148

swer available, regardless of external factors. User 149

feedback provides only partial information; it may 150

convey only a qualitative assessment of a subset 151

of all possible answers. Therefore, the quality of 152

the model generating this subset may affect the 153

feedback. Poor models, for example, may not al- 154

ways provide a correct choice and therefore receive 155

mainly negative feedback, giving no indication of 156

which of the remaining options would have been 157

considered correct. Second, user feedback is typi- 158

cally noisier and less reliable than labels for various 159

reasons. User feedback may be based on factors 160

unrelated to model performance, such as misunder- 161
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Figure 2: Our proposed outline of the extended AL
cycle with FAAL/FAAL-CB. The inside of the box in-
cludes elements of the standard AL cycle. FAAL in-
cludes negative user feedback as input for the AL query
strategy. FAAL-CB uses user feedback to improve the
model by augmenting its training data.

standing the displayed information, and dissatis-162

faction with the displayed content regardless of its163

correctness. The user may also select an incorrect164

label when ground truth is not displayed, and it165

tends to select labels closer to the top of the list166

(Joachims et al., 2017).167

Although challenging, user feedback can en-168

hance model training in a variety of ways. CB169

algorithms may use it, for example, to augment the170

training set with positive feedback. In addition, AL171

query strategies may utilize negative feedback to172

select data points on which the model was unable173

to correctly predict an answer to the user request.174

3 Method175

In this section we introduce Feedback-Assisted Ac-176

tive Learning (FAAL), a framework for utilizing177

user feedback as inputs for an active learning (AL)178

strategy. We also introduce FAAL-CB which in-179

corporates contextual bandits (CB) algorithms as180

well within the AL cycle. In Section 3.1, we out-181

line their high-level flow, and discuss how they182

differ from the classic AL approach. Then, in Sec-183

tion 3.2, we describe our implementation of FAAL184

and FAAL-CB given our specific multi-class clas-185

sification task.186

3.1 General Method187

The cycle of FAAL/FAAL-CB augments the classic188

AL cycle with the integration of user feedback, as189

depicted in Figure 2. The model is initially trained190

on a small seed dataset of labeled examples, and191
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Figure 3: Illustration of a user interaction in our set-
tings. Given a user query (blue), if the user clicks on
one of the displayed labels (green), FAAL-CB utilizes
this positive feedback to enhance the training set using
a CB algorithm. Otherwise, if the user selects “None
of the Above” (negative feedback), both FAAL and
FAAL-CB prioritize the query at the annotation stage.

then deployed to begin receiving incoming queries 192

from users. Each query is assigned a response from 193

the model and then receives feedback from the user. 194

Figure 3 illustrates such interaction. These queries 195

form a new pool from which points for labeling 196

are selected according to an AL strategy, and then 197

annotated and appended to the training set. 198

FAAL utilizes user feedback to improve the 199

query AL strategy, for example, by prioritizing 200

the annotation of data points that received negative 201

feedback (see Section 2.2), so that query strate- 202

gies can be directed to samples in which the model 203

is most likely underperforming as the users dis- 204

agree with model predictions for these samples. In 205

FAAL-CB, a CB algorithm balances exploration 206

and exploitation in the displayed options for the 207

user, and leverages its feedback (rewards) to im- 208

prove the model. 209

3.2 Specific Method Implementation 210

Given a user request, we retrieve user feedback by 211

displaying the classifier’s top-ranked k labels to 212

the simulated user. While the number of shown la- 213

bels can be dynamically adjusted, we displayed 214

a fixed set of k labels (k � total number of 215

classes) for simplicity. For exploration we im- 216

plemented an epsilon-greedy strategy in the last 217

position, i.e. we replaced the last displayed label 218

with a random one with probability α. Selecting 219

“None of the above” is considered negative feed- 220

back (“unclicked”), while clicking one of the labels 221

is considered positive feedback (“clicked”). This 222
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process is depicted in Figure 3.223

We incorporated user feedback into the AL224

query strategy by first applying the AL selector225

on the unclicked samples from the pool. The226

FAAL approach is called “FAAL (random)” when227

unclicked samples are randomly selected, and228

“FAAL (kmeans)” when diverse centroids are se-229

lected for labeling using K-means.230

In FAAL-CB, we apply an epsilon-greedy ex-231

ploration strategy in the last label displayed to the232

user, and augment the training set with clicked data233

weighted by their inverse propensities, similarly to234

Joachims et al. (2017), such that clicked data gained235

from exploration receives a higher weight of 1/α.236

In order to ensure that the annotated data retains a237

significant influence on model training regardless238

of the clicked data volume, we re-weighted the an-239

notated and clicked samples in the training set to240

give each 50% of the total weight.2.241

4 Experimental Setup242

We evaluated our method on nine multi-class text243

classification datasets, which are further described244

in Section 4.1. For every dataset, we randomly sam-245

pled 20% of the examples and set them aside as a246

holdout test set. To simulate a scenario requiring247

minimal effort from professional annotators, we248

constructed the seed dataset to include only one ex-249

ample per class without maintaining a development250

set. From our evaluations, increasing the seed size251

to two or three per class leads to similar results.252

The learning process consisted of 10 cycles, each253

containing 1000 randomly sampled user interac-254

tions3. The active learning candidates pool con-255

tained only user interactions from the last cycle256

to keep feedback up to date. The labelling bud-257

get per cycle was set to 50. Since we assume that258

users are expecting a limited number of options,259

we use k = 3. The exploration parameter was set260

to α = 0.01.4 In order to ensure the robustness of261

the results, we repeated each experiment using ten262

different random seeds.263

In the absence of actual feedback from a pro-264

duction system, we simulate it in a manner that265

imitates a user behavior. For simulating ideal user266

feedback, we assume that when the ground-truth267

2For more details, see Algorithms 1, 2
3In cases where the datasets were too small, the examples

were split equally between the cycles.
4A higher α value would provide faster exploration and

potentially a steeper learning curve, but would reduce initial
system performance.

Dataset # Texts # Classes Imbalance

CLINC150 22500 150 0.
banking77 13083 77 0.02
NLU Intent 25607 68 0.327
LEDGAR 60000 100 0.3
DBPedia l3 240942 219 0.227
Commercial1 12409 226 0.63
Commercial2 8682 168 0.84
Commercial3 22177 232 0.492
Commercial4 12755 538 0.292

Table 1: Number of texts, classes and the imbalance
of the datasets. Imbalance is measured by the KL di-
vergence between the dataset’s distribution and the uni-
form distribution.

label is presented among the displayed k options, 268

users would click on it (positive feedback). Con- 269

versely, if the ground-truth label is not available, 270

users would choose “None of the above” (negative 271

feedback). To simulate a more realistic and noisy 272

user feedback, we introduce noise by corrupting a 273

fraction of interactions (n) by randomly choosing 274

a wrong option with respect to ground truth. It may 275

be a click on an incorrect answer or on “None of the 276

above”.5 We set n to 20%, except for Sections 5.3 277

and 5.4. As opposed to the user, we assume that the 278

expert annotator is flawless, except for Section 5.4 279

where we examine the effect of annotation noise, 280

simulating it by randomly picking a wrong label 281

instead of the correct one. 282

For a classifier, we used a linear SVM model 283

taken from the “scikit-learn” library with its default 284

hyperparameters6 which receives as inputs the em- 285

beddings of “mini-LM-L6-v2” from the “Sentence- 286

Transformers” library (Reimers and Gurevych, 287

2019). We used this classifier due to its effec- 288

tive performance in the absence of a validation 289

set, which is unavailable for our specific use case. 290

We refrained from experimenting with BERT due 291

to the well-known instability issues associated with 292

its fine-tuning process, as highlighted in its original 293

introduction (Devlin et al., 2018).7 294

5We also experimented with other types of user noise, e.g.,
clicking the most semantically similar to the ground truth, but
found the differences negligible.

6https://scikit-learn.org/stable/modules/
generated/sklearn.svm.LinearSVC version 1.1.1

7We also experimented with Tunstall et al. (2022), which is
on par or better than state-of-the-art few-shot regimes on a vari-
ety of benchmarks, finding similar results (see Appendix A.3).
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4.1 Datasets295

We experimented with nine multi-class text classi-296

fication datasets, five public and four commercial.297

They vary in topics, size, number of classes, and298

distribution across classes, as described in Table 1.299

banking77 (Casanueva et al., 2020) is composed300

of online banking queries annotated to 77 intents.301

NLU Evaluation Dataset (Liu et al., 2019) con-302

tains 25,716 utterances simulating requests from a303

home robot annotated for 68 intents spanning 18304

domains. DBPedia Classes8 contains a taxonomic,305

hierarchical categories for 342,782 Wikipedia ar-306

ticles in 3 levels of 9, 70, and 219 classes, respec-307

tively. For our experiments, we used the last level.308

Our four commercial multi-class intent detection309

datasets, derived from chat bot classifiers, contain310

hundreds of intents and varying imbalance rates,311

thus allowing us to have a broader set of datasets.312

To facilitate reproducibility, we report all results313

also per dataset.314

5 Results315

In this section, we evaluate the effect of user feed-316

back on iterative learning of a classification model.317

In Section 5.1, we explore the effect of adding user318

feedback signal to the query strategy, comparing319

FAAL to classic AL methods. In Section 5.2, we320

also leverage the user feedback to apply a contex-321

tual bandit (CB) algorithm comparing FAAL-CB322

to CB and AL methods. In Section 5.3, we evaluate323

the effect of user noise rate on user feedback-based324

methods. Lastly, in Section 5.4, we examine the325

cumulative effect of both user and annotation noise,326

comparing FAAL and FAAL-CB to classic AL.327

5.1 User Feedback in Classic AL328

First, we explore the effect of integrating the user329

click signal into the AL query strategy. Figure 4330

shows the classifier’s hit ratio across the AL cycles331

when randomly selecting examples to label from all332

the cycle candidates (random), just the clicked data333

(random clicked), or just the unclicked data (ran-334

dom unclicked/FAAL (random)). We measure hit335

ratio since we are primarily interested in whether336

the right label was displayed to the user; however,337

the classifier’s top-1 accuracy behaves similarly338

(see Appendix A.4).339

Labeling unclicked utterances achieved signif-340

icantly better performance than labeling random341

8https://huggingface.co/datasets/
DeveloperOats/DBPedia_Classes

Figure 4: Incorporating user feedback in AL selec-
tion method makes a significant impact on performance.
Each subplot depicts the hit ratio of the classifier when
randomly sampling from all candidates (blue), the
unclicked data (orange), and the clicked data (green).

utterances from the whole pool or from the clicked 342

data across datasets (t-test pvalue < 0.01). For ex- 343

ample, in the last cycle, labeling unclicked texts 344

improved the average performance across datasets 345

by 5.5% over sampling from all candidates, while 346

labeling clicked texts resulted in an average loss of 347

6.7%. 348

After establishing the effect of the user clicks sig- 349

nal on AL, we compared FAAL (random/kmeans) 350

to commonly used AL methods. Table 2 shows 351

the area under the curve (AUC) of the hit ratio 352

across the AL cycles for each dataset. We report 353

AUC as we are interested in the learning curve, 354

i.e., how well the classifier performed since it was 355

deployed and started receiving user requests. We 356

compared FAAL to two uncertainty-based meth- 357

ods: least confidence and minimum-margin. We 358

also incorporated diversity into each, similarly to 359

FAAL (kmeans), by first clustering the pool using 360

K-means and then selecting to label one example 361

from each cluster using the original uncertainty- 362

based method. Furthermore, we conducted a com- 363

parison between our method and two other popular 364

AL methods, namely Coreset (Sener and Savarese, 365

2017) and BADGE9 (Ash et al., 2020). The 366

model’s performance after training on the seed train 367

9BADGE was briefly adjusted to be compatible with the
SVM classifier we employ (see Appendix A.5)
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clinc bank NLU ledgar dbpedia com1 com2 com3 com4 avg
Baseline .839 .719 .627 .529 .583 .388 .408 .404 .462 .551
Least confidence .922 .873 .829 .718 .735 .590 .706 .589 .563 .725
+diversity .919 .875 .839 .723 .739 .604 .703 .595 .565 .729

Min margin .919 .88 .844 .733 .738 .61 .71 .6 .562 .733
+diversity .917 .877 .844 .726 .741 .611 .702 .595 .562 .731

Coreset .895 .853 .783 .67 .681 .544 .658 .545 .546 .686
BADGE .885 .849 .827 .71 .704 .591 .676 .582 .545 .708
FAAL (random) .927 .888 .848 .738 .743 .624 .718 .618 .575 .742
FAAL (kmeans) .931 .901 .858 .752 .76 .643 .738 .632 .589 .756
CB .93 .851 .842 .685 .775 .519 .575 .547 .511 .693
FAAL-CB (random) .962 .928 .89 .789 .845 .683 .773 .694 .603 .796
FAAL-CB (kmeans) .963 .933 .894 .795 .854 .690 .782 .703 .604 .802

Table 2: Integrating user feedback leads to notable improvement in performance. Area under the curve (AUC) of
the hit ratio across AL cycles for each dataset. “Baseline” represents performance after training on the train seed
only (one example per class). Second part compares FAAL (random/kmeans) vs classic AL methods. Last three
lines compare methods which incorporate CB based on user feedback. User noise level was set to 0.2.

set, is depicted as “Baseline” in Table 2.368

Following Figure 4, we can see in Table 2 that369

FAAL (random) achieves better AUC than the clas-370

sic AL methods across all datasets, achieving an371

average AUC of .742. Moreover, FAAL (kmeans),372

which incorporates user feedback as well as di-373

versity, achieves an AUC of .756, better than all374

other methods except FAAL-CB (elaborated in Sec-375

tion 5.2). We tried to combine FAAL with other376

AL methods but found negligible differences. No-377

tably, combining FAAL with uncertainty methods378

provided only marginal gains (see Appendix A.1).379

While Model prediction and user feedback are380

highly correlated, we believe the latter was found381

superior since it is extrinsic to the model.382

5.2 FAAL with CB383

In this section, we explore the effect of integrating384

user feedback by applying contextual bandits (CB),385

as described in Section 3.2.386

We evaluated the effect of applying CB on the387

user feedback with and without AL in the lower388

part of Table 2. Most notably, FAAL-CB (ran-389

dom/kmeans) which incorporates the user feedback390

both in the AL query strategy and by applying391

CB, significantly outperforms all other AL meth-392

ods across all datasets. While the contributions393

of AL (FAAL-CB vs CB) and CB (FAAL-CB vs394

FAAL) are clear, the difference between FAAL-CB395

(kmeans) and FAAL-CB (random) is more subtle,396

although statistically significant. Secondly, we can397

see that CB outperforms “Baseline” for all datasets.398

Therefore, with or without a labelling budget, it is 399

beneficial to incorporate user feedback with CB. In 400

Section 5.3, we also show that this effect is robust 401

to higher levels of user noise. 402

In highly balanced datasets like CLINC150, ap- 403

plying only CB leads to performance that is com- 404

petitive to FAAL (random/kmeans). In contrast, in 405

imbalanced datasets such as the four commercial 406

datasets, adding clicked data tends to further shift 407

the distribution of the training set towards the ma- 408

jor classes, and so AL plays a critical role. Lastly, 409

FAAL-CB (random/kmeans) notably outperforms 410

CB even though the number of clicked utterances 411

(>5000) is much greater than the labeling budget 412

(500), which differs between the two methods. 413

5.3 User Noise 414

In previous sections we evaluated with a user noise 415

level of 20%, which was the highest level of feed- 416

back noise experimented by Gao et al. (2022a). 417

As explained in Section 2.2, user feedback may 418

be noisy and depends on various factors. Hence, 419

Figure 5 depicts the effect of user noise rate on dif- 420

ferent approaches integrating user feedback. Most 421

notably, “CB” is most influenced by the user noise 422

rate as it relies upon it heavily in its training set. 423

It is competitive with FAAL (kmeans) when user 424

feedback is flawless, and comes close to “Baseline” 425

when noise rates are high. However, in the absence 426

of a labeling budget, CB is always beneficial. 427

In contrast, FAAL (kmeans), which incorporates 428

feedback only in its query strategy, is quite robust to 429
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Figure 5: Hit@3 AUC of different methods as a func-
tion of user noise level averaged across datasets. “Base-
line” and “Classic AL” are depicted in dashed horizon-
tal lines as they are not affected by the user. Higher
levels of user noise negatively impact feedback-based
approaches, and yet FAAL (kmeans) and FAAL-CB
(kmeans) surpass classic AL and “CB” outperforms
“Baseline” even when user noise is high.

user noise as its performance is hardly affected. As430

described in Section 4, user noise flips part of the431

correct model responses from clicked to unclicked,432

and incorrect responses from unclicked to clicked.433

Consequently, some less useful data points, where434

the model already performs well, are wastefully435

tagged in FAAL. However, even with high noise436

levels, the unaffected feedback still provide a valu-437

able signal.438

Finally, FAAL-CB (kmeans), which integrates439

user feedback both within the AL query strategy440

and by applying CB, is affected by user noise, but441

still outperforms other approaches even when the442

amount of noise is over 40%. As mentioned in443

Section 4, when applying a CB algorithm, we mod-444

erate the user noise effect by balancing between445

the weight of the clicked and the annotated data.446

5.4 Annotation Noise447

Following Section 5.3, we experimented with dif-448

ferent noise levels in the annotation. Figure 6449

presents noise heatmaps between FAAL (kmeans)450

and FAAL-CB (kmeans) compared with the best451

performing classic AL method (minimum-margin)452

in Table 2. Note that the evaluated datasets may453

contain noise in the annotation, so the random noise454

we apply may aggregate over this noise.455

FAAL-CB (kmeans) shows high resiliency to456

both user and annotation noise as it surpasses clas-457

sic AL even when the noise rates are as high as 40% 458

and 20%, respectively. We associate the robustness 459

to noise of FAAL-CB (kmeans) to its training: As 460

noted in Section 4, FAAL-CB (random/kmeans) 461

provides 50% weight to both annotated and clicked 462

data during the training process, therefore ensuring 463

that annotated data, which is assumed to be less 464

noisy, remains significant even when outnumbered 465

by clicked data. As a consequence, the clicked and 466

annotated data balance each other, enabling FAAL- 467

CB (kmeans) to outperform classic AL, when both 468

user and annotation noises are relatively high. 469

On the other hand, FAAL (kmeans), which was 470

previously shown to be robust to user noise, is sig- 471

nificantly affected by annotation noise, even more 472

than minimum-margin, which is superior to FAAL 473

(kmeans) when annotation noise is 10% or higher. 474

We believe this result is a mirror image of the supe- 475

riority of FAAL (kmeans) over minimum-margin 476

when annotations were flawless, as shown in Ta- 477

ble 2), i.e., FAAL (kmeans) labels more informa- 478

tive texts, thus their impact is greater regardless of 479

whether they are correctly or incorrectly labeled. 480

6 Related Work 481

Active learning (AL) (Lewis and Catlett, 1994; 482

Cohn et al., 1996; Settles, 2012) methods are usu- 483

ally classified as data-driven, model-driven, or 484

hybrid (Ren et al., 2022; Liu et al., 2022; Zhan 485

et al., 2021, 2022). Data-driven approaches uti- 486

lize the structure of the data manifold to select 487

representative or diverse samples. For example, 488

Core-Set (Sener and Savarese, 2017) minimizes the 489

distance to the furthest unlabeled sample. Model- 490

driven methods rely on model predictions and 491

uncertainty to select samples (Lewis and Catlett, 492

1994). Hybrid methods combine both approaches, 493

e.g. BADGE (Ash et al., 2019) selects diverse sam- 494

ples holding the highest uncertainty by clustering 495

over gradients, and CAL (Margatina et al., 2021) 496

finds similar samples in the model feature space 497

whose predictive likelihoods differ. Although many 498

methods have been presented in recent years, no 499

AL method achieves state-of-the-art results across 500

datasets and tasks (Liu et al., 2022; Zhan et al., 501

2021, 2022), especially in a low-budget setting 502

where they often perform worse than random selec- 503

tion (Hacohen et al., 2022). 504

The topic of AL with partial labels is relatively 505

unexplored. Hu et al. (2018) focus on utilizing 506

partial labels provided by an oracle in response 507
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Figure 6: Hit@3 AUC difference between FAAL/FAAL-CB (kmeans) and Classic AL (minimum-margin). FAAL-
CB outperforms Classic AL even in the extreme scenario of 40% and 20% user and annotation noise, respectively.
On the other hand, FAAL (kmeans) is very sensitive to annotation noise, even more than classic AL.

to binary questions, assuming a hierarchical label508

structure. In contrast, we incorporate noisy partial509

labels into AL without assuming the label structure.510

There is a large body of literature surrounding511

contextual bandits (CB) (Bietti et al., 2021; Bounef-512

fouf et al., 2020a) and their application to learning-513

to-rank problems (Hu et al., 2019; Ai et al., 2018;514

Wang et al., 2019, 2016; Agarwal et al., 2019). One515

of the common approaches is Inverse-Propensity516

Weighting (Horvitz and Thompson, 1952; Strehl517

et al., 2010) with epsilon-greedy exploration (An-518

drew, 1999). Feedback signals from end-users have519

been used for automated training techniques with520

CB. Gao et al. (2022b) use binary feedback and521

a modification of the REINFORCE algorithm to522

help train an extractive question answering model.523

They also investigate the effect of noise in the user524

feedback signal. Suhr and Artzi (2022) explore525

the impact of multiple streams of user feedback526

of different kinds, and Zhang et al. (2019) exam-527

ine combining supervised and bandit feedback data528

for warm-starting CB models. Other authors in-529

vestigate the CB learning in a setting with missing530

or corrupted feedback (Bouneffouf et al., 2020b;531

Bouneffouf, 2021), but do not use the lack of feed-532

back itself as a signal. Additionally, the technique533

of reinforcement learning from human feedback534

(Christiano et al., 2017; Solaiman et al., 2019) has535

recently exploded in popularity. Unlike our work,536

this technique uses the feedback as labels for a537

separate reward model.538

7 Conclusions and Future Work539

The majority of existing AL literature focuses on540

the advancement of intricate algorithms, aiming to541

maximize performance with limited data. In con- 542

trast, this paper introduces a novel approach that 543

emphasizes the identification of additional informa- 544

tive signals to enhance active learning which yield 545

highly effective results. Furthermore, the paper 546

provides insight into the potential of this research 547

area and lays the foundation for further exploration 548

of incorporating user feedback into active learning 549

and feedback-assisted methodologies. 550

Future research opportunities include exploring 551

different ways to incorporate user feedback into 552

other AL strategies such as BADGE (Ash et al., 553

2019) and CAL (Margatina et al., 2021). Addition- 554

ally, other tasks may benefit from the incorporation 555

of user feedback, for example in tasks like summa- 556

rization, user feedback can be expressed in the form 557

of star ratings in order to direct annotation efforts 558

more effectively. FAAL can be applied to other 559

input types, such as images and audio. One may 560

also explore the possibility of generating pseudo 561

user feedback with a large language model or com- 562

bine LLMs with user feedback to employ FAAL in 563

a semi-supervised setting. Moreover, a user study 564

can also facilitate more accurate assessments of 565

user noise and biases. Furthermore, instead of pre- 566

senting a fixed number of top results to the user, 567

future work may explore mechanisms for dynami- 568

cally determining the number of options to display. 569

This approach can optimize the user experience 570

by providing only relevant results and minimizing 571

unnecessary interactions. While our study utilized 572

a unified model for AL and CB, an intriguing av- 573

enue for future research is to investigate their syn- 574

chronization, as well as separating them into two 575

different models. 576
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Limitations577

One limitation of our method is its reliance on col-578

lecting and utilizing user feedback, which may not579

always be possible in certain scenarios. This could580

be due to privacy concerns that restrict the storage581

of such data or the reluctance of users to provide582

explicit feedback, which tends to be biased towards583

negative responses rather than positive ones. In our584

proposed implementation, which relies on implicit585

feedback, we encounter the challenge of dealing586

with noise caused by biases towards the initial la-587

bels presented to the user, preferences for shown588

results over those not displayed, or even attraction589

towards intriguing labels that capture attention in590

addition to misunderstanding of the meaning of the591

label. To address this, our evaluation encompassed592

a broad range of user feedback. Another limitation593

to consider is that we only evaluated the method594

in one type of user feedback setting, and different595

types may have different effects on performance.596
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A Appendix759

A.1 Uncertainty vs. Click Signal760

Incorporating user feedback signals into761

uncertainty-based methods led to a relatively minor762

improvement, although stable across datasets, as763

shown in Figure 7. The hit ratio AUC of FAAL764

(margin) was 0.744 while classic minimum-margin765

achieved 0.733. We believe this is due to the766

correlation between model uncertainty and user767

feedback, i.e., examples for which the model is768

uncertain are more likely to be unclicked by the769

user. According to our empirical analysis, 34%770

of the examples selected by minimum-margin771

were not clicked, compared to only 18% when the772

examples were selected by K-means.773

However, we claim that negative user feedback774

is a stronger signal for active learning. It is not775

dependent on the model or train set, like signals776

such as a low prediction confidence. These sig-777

nals suffer in the presence of model miscalibration,778

data that is poorly represented in the train set and779

outliers. Moreover, incorporating diversity in the780

user feedback signal improves performance sub-781

stantially, which is not the case in uncertainty (see782

Table 2).783

A.2 User Error Effect784

Table 3 provides further details per dataset on the785

user feedback noise ratios we conducted. Clearly,786

the most significant relative decrease in perfor-787

mance was in the commercial datasets: between788

32% and 35% in CB and between 33% and 18%789

in FAAL-CB (kmeans), comparing 0% and 50%790

user noise. In FAAL (kmeans), the differences791

were smaller, though the trends remained the same.792

We believe the two important factors here are the793

number of classes and the imbalance ratio, which794

affects the chances of misrepresenting a class given795

the noise.796

A.3 SVM vs SetFit797

To verify that our results can be reproduced on798

other classifier, we reproduced Table 2 with re-799

cently published SetFit method (Tunstall et al.,800

2022) that was developed for efficient few-shot801

learning and is on par or better than state of the art802

few-shot regimes on a variety of benchmarks, find-803

ing similar results, although it was not compared to804

recently published Yehudai et al. (2023). To train805

the SetFit classifier, we adopted the default settings806

Algorithm 1 FAAL/FAAL-CB learning Process
Input: seed labeled data S, cycle size CS, number
of cycles C, exploration chance α, labeling budget
per cycle B
Output: model M

1: Dtrain ← S
2: M ← Train(Dtrain)
3: Launch M
4: for c = 1, 2, . . . , C do
5: Dc ← CollectUserFeedback()
6: Sc ← Select(Dc, B)
7: Dnew ← Annotate(Sc)
8: Dtrain ← Dtrain ∪Dnew

9: if DoContextualBandits then
10: Dclick ← {(q, f, ips) ∈ Dc|f 6= N}
11: M ← Train(Dtrain, Dclick, ips)
12: else
13: M ← Train(Dtrain)
14: end if
15: end for
16: return M

Algorithm 2 Collect User Feedback
Input: cycle sizeCS, exploration chance α, model
M
Output: User Feedback Data D

1: D ← ∅
2: i = 0
3: while i < CS do
4: q ← CollectNewUserQuery()
5: p←M(q)
6: s, ips← Shown(p, α)
7: f ← UserFeedback(q, s)
8: D ← D ∪ {(q, f, ips)}
9: i← i+ 1

10: end while
11: return D
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Figure 7: Uncertainty signal combined with click signal. Hit ratios across cycles for each dataset when selecting
to label according to minimum-margin (orange), selecting randomly from the un-clicked data (blue), or selecting
by minimum-margin from the un-clicked data (green). Adding user feedback signal on top of uncertainty-based
methods leads to a minor although stable improvement in performance.

from their official git repository10.807

As you can see in Table 4, FAAL (kmeans) sur-808

passes classic AL methods across all datasets, and809

FAAL-CB (kmeans) outperforms all methods sig-810

nificantly.811

A.4 AUC of Accuracy812

The main goal in our settings is to get the cor-813

rect label displayed to the user, therefore we focus814

throughout the paper on the hit ratio metric, rather815

than accuracy (top-1). However, as most active816

learning papers reports accuracy performance, we817

report it for completeness.818

FAAL-CB (kmeans) significantly outperforms819

all other methods, such as that shown in Table 2.820

On average, FAAL (kmeans) provides the highest821

10https://github.com/huggingface/setfit

accuracy, although the performance gap in accu- 822

racy is smaller than in hit ratio. We believe this is 823

due to the fact that in FAAL we label the text that 824

has not been clicked, thus directly maximizing the 825

hit ratio. This is not surprising as in FAAL we la- 826

bel according to whether the true label was among 827

the top predictions. However, labeling texts that 828

the model underperformed on also improves accu- 829

racy, as FAAL (kmeans) still achieves the highest 830

accuracy of all classic AL methods. 831

A.5 Implementing BADGE with Linear SVM 832

Since Ash et al. (2020) experimented with pseudo- 833

gradients induced by softmax activations with re- 834

spect to cross-entropy loss, and to the best of our 835

knowledge there is no research on the efficiency 836

of the method with other losses, we’ve decided to 837

stick to their setup and code base. That is, during 838
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Noise clinc bank NLU ledgar dbpedia com1 com2 com3 com4 avg
FAAL 0.0 .942 .909 .855 .756 .763 .65 .746 .642 .594 .772

0.2 .931 .901 .858 .752 .76 .643 .738 .632 .589 .766
0.4 .922 .889 .853 .745 .749 .631 .726 .623 .579 .756
0.5 .911 .883 .848 .737 .741 .626 .712 .62 .571 .749

CB 0.0 .958 .901 .88 .753 .837 .615 .661 .643 .6 .772
0.2 .93 .851 .842 .685 .775 .519 .575 .547 .511 .702
0.4 .899 .793 .789 .636 .7 .46 .488 .471 .462 .639
0.5 .871 .757 .743 .601 .677 .406 .433 .442 .398 .595

FAAL-CB 0.0 .974 .946 .905 .818 .885 .736 .822 .756 .694 .846
0.2 .963 .933 .894 .795 .854 .69 .782 .703 .604 .812
0.4 .948 .91 .876 .764 .799 .647 .728 .636 .547 .773
0.5 .927 .888 .859 .742 .774 .587 .68 .606 .466 .738

Table 3: Area under the curve (AUC) of the hit ratio for all 10 cycles for each dataset using SVM classifier. Lines
1-4 shows FAAL (kmeans) with different user noise levels with no CB. Lines 5-7 shows the AUC when applying
only contextual bandits with no AL in different noise levels and lines 8-11 shows results for FAAL-CB (kmeans)
with contextual bandits for different user noise levels

clinc bank NLU ledgar dbpedia com1 com2 com3 com4 avg
Baseline .847 .645 .647 .569 .794 .364 .371 .36 .37 .556
Least confidence .948 .868 .864 .808 .95 .547 .636 .579 .537 .767
+diversity .949 .871 .872 .811 .948 .564 .649 .585 .537 .773

Min margin .95 .868 .874 .813 .951 .564 .643 .589 .538 .773
+diversity .947 .872 .873 .812 .948 .575 .644 .589 .541 .775

Coreset .952 .867 .864 .805 .951 .53 .632 .575 .538 .766
BADGE .946 .868 .875 .811 .948 .573 .649 .588 .536 .774
FAAL (random) .95 .877 .875 .81 .95 .585 .66 .604 .551 .781
FAAL (kmeans) .953 .885 .88 .819 .952 .606 .669 .622 .562 .79
CB .942 .828 .819 .737 – .456 .454 .494 .445 –
FAAL-CB (random) .96 .891 .864 – – .595 .632 .627 .555 –
FAAL-CB (kmeans) .961 .895 .867 – – .611 .65 .636 .565 –

Table 4: Table 2 but with SetFit classifier instead of SVM. Clearly, FAAL (kmeans) outperforms all other methods
across datasets. Some of the runs with CB did not complete due to resources limitation.

the query process we compute pseudo-gradients839

as if we were using softmax after the linear layer840

together with the cross-entropy loss.841

A.6 Complementary Results Per Dataset842
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Figure 8: Figure 1 split by dataset. Notably, FAAL-CB (kmeans) and FAAL (kmeans) outperforms classic active
learning approach and automated learning with contextual bandits across datasets.
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Figure 9: Figure 5 split by dataset. Similar to the original graph, FAAL-CB (kmeans) outperforms the other
approaches up to a high user noise rate, although the user noise rate effect is substantially higher in the imbalanced
datasets for both FAAL-CB and CB, which are highly correlated.
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Figure 10: Left side of Figure 6 by dataset, i.e. hit@3 AUC difference between FAAL (kmeans) and Classic AL
(minimum-margin) by dataset.
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Figure 11: Right side of Figure 6 by dataset, i.e. hit@3 AUC difference between FAAL-CB (kmeans) and Classic
AL (minimum-margin) by dataset.
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clinc bank NLU ledgar dbpedia com1 com2 com3 com4 avg
Baseline .659 .52 .418 .362 .388 .261 .294 .257 .315 .386
Least confidence .767 .697 .624 .546 .531 .415 .512 .392 .392 .542
+diversity .778 .716 .656 .565 .54 .431 .52 .402 .394 .556

Min margin .779 .722 .67 .576 .543 .437 .527 .408 .389 .561
+diversity .785 .724 .677 .577 .549 .443 .53 .404 .392 .565

Coreset .723 .677 .555 .493 .474 .389 .493 .365 .385 .506
BADGE .731 .687 .659 .566 .513 .427 .505 .395 .375 .54
FAAL (random) .768 .708 .65 .557 .53 .44 .53 .411 .396 .554
FAAL (kmeans) .779 .733 .665 .574 .545 .456 .546 .423 .405 .57
CB .832 .732 .718 .563 .628 .382 .449 .386 .353 .56
FAAL-CB (random) .877 .818 .761 .638 .687 .499 .603 .492 .417 .643
FAAL-CB (kmeans) .878 .821 .767 .646 .697 .501 .602 .499 .411 .647

Table 5: Duplicate of Table 2 but with accuracy instead of hit@k. While FAAL-CB still outperforms other methods,
the effect of incorporating user feedback in the AL acquisition function has a weaker effect on the accuracy. This
is not surprising as in FAAL we label according to whether the true label was among the top predictions.
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