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ABSTRACT

Scoring ligands in a library based on their structural similarity to a known hit
compound is widely used in drug discovery following high-throughput screen-
ing. However, such “similarity search” relies on the assumption that structurally
similar compounds have similar activities, and will therefore only retrieve ligands
with hit-like affinity, requiring resource-intensive tweaking by medicinal chemists
to reach a more active lead compound. We propose a novel approach, One-Shot
Ligand Scoring (OSLS), that is much more capable of directly retrieving lead-like
compounds from a library using a novel one-shot learning technique. For this new
task, we design a Siamese-inspired neural architecture using two Transformer en-
coders without tied weights, a novel positional encoding-like mechanism, and a
final prediction head. OSLS is able to score ligands by activity against a target
without any target-specific knowledge beyond a single known activity value, a
cost-effective approach to ligand-based or phenotypic drug discovery. We show
that OSLS surpasses traditional similarity search as well as modern deep learn-
ing baselines on a simulated ligand retrieval task. Furthermore, we demonstrate
the applicability of our approach on various drug discovery tasks that also involve
ligand scoring, including drug repositioning, precision patient-level drug efficacy
prediction, and even molecular generative modeling.

1 INTRODUCTION

Contemporary drug discovery is a costly and time-consuming process requiring billions of dollars
per new approved drug. A significant portion of the total development cost is incurred in preclini-
cal stages, where medicinal chemists identify one or more “hit” compounds from high-throughput
screens that have activity against the target of interest and retrieve structural analogs to these hits
from large molecular catalogs for further exploration and development, and eventually produce a
lead compound after much optimization (de Souza Neto et al., 2020; Hughes et al., 2011). Cur-
rently, the concept of chemical similarity is critical to the retrieval of these structural analogs through
pairwise similarity scoring between the hit compound and each compound in a library. Commonly
used similarity metrics include the Tanimoto similarity computed between binary fingerprints of two
molecules (Bajusz et al., 2015), as well other more specialized metrics and molecular featurizations
(Cereto-Massagué et al., 2015; Nikolova & Jaworska, 2003; Maziarka et al., 2020; Jaeger et al.,
2018; Coupry & Pogány, 2022; Gandini et al., 2022).

Retrieving structural analogs from a chemical library with such similarity scoring tends to yield com-
pounds whose activity is similar to that of the initial hit, based on the concept that chemically similar
compounds have similar activity (Johnson & Maggiora, 1990). However, hit compounds from ex-
perimental screens typically have low activities, e.g. binding affinities of 1 − 10 µM, compared
to the typical 1 − 10 nM goal of preclinical drug development, a thousand-fold difference (Freire,
2015; Hughes et al., 2011). Thus, retrieving library compounds based purely on their similarity to
an early-stage hit compound is not an optimal strategy, as this is expected to yield compounds with
hit-like activity instead of the desired highly active compounds. Compound scoring via similarity
is common for other related problems in drug discovery, such as drug repositioning (Jarada et al.,
2020) and lead optimization Hughes et al. (2011), which also suffer from the problem of measuring
similarity to a weakly active compound.
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Here, we propose One-Shot Ligand Scoring (OSLS), an alternative to chemical similarity that pre-
dicts the activity of an experimentally uncharacterized query compound (e.g. a compound drawn
from a chemical library) to an unseen target based on a single context compound and its experimen-
tally known activity to that target (e.g. a hit from an experimental screen). Like standard chemical
similarity-based scoring, OSLS shares the advantage of needing no information about a target pro-
tein (Zheng et al., 2013; Vijayan et al., 2021)). However, OSLS is distinct from standard measures
of chemical similarity, because, by using a one-shot learning paradigm, it can assign the highest
scores to the most active compounds, instead of those most similar to a weakly active hit.

More particularly, we

• introduce the novel formulation of ligand scoring as a one-shot regression problem, and
argue for its utility over traditional similarity-based scoring

• design a novel architecture, OSLS, which addresses this problem by using a Siamese-
inspired neural architecture to extract target information from the known activity of a con-
text compound and use it to directly predict the activity of a query compound

• show that OSLS outperforms both similarity-based as well as modern deep learning scoring
techniques in settings relevant to compound retrieval and the related tasks of drug reposi-
tioning, patient-level drug efficacy prediction, and generative modeling.

2 RELATED WORK

In this work, we focus on cases where information about a targeted protein (e.g. amino acid sequence
or 3D structure) is not used for compound scoring — so-called “ligand-based” or “phenotypic” drug
discovery (Sharma et al., 2021; Swinney & Anthony, 2011; Zheng et al., 2013). In this setting, drug
discovery begins from one or a few existing compounds with some known activity, often obtained
from screening or known natural ligands. In this case, scoring of additional compounds is currently
done using either chemical similarity or N-shot learning approaches.

Chemical similarity. Chemical similarity is commonly used when compounds with a desired ac-
tivity are known, and involves computing the pairwise similarity between the known actives and
each compound to be scored. When using a highly active known compound, similarity acts as a
surrogate measure of activity (Johnson & Maggiora, 1990), although this approximation fails as
the known compound becomes less active. Computing similarity is commonly done with binary
fingerprints (e.g. circular fingerprints, Rogers & Hahn (2010)), although this approach will often
undesirably miss compounds with similar activity but different chemical scaffolds. For this reason,
many other chemical features have been suggested for representing molecules, including simple
molecular weight as well as more complex representations that capture information about molecular
topology and 3D shape/charge (Khan et al., 2016; Li et al., 2012; Kohlbacher et al., 2021; Kearnes
& Pande, 2016).

However, such approaches are, arguably, based more on chemical intuition than data, and choosing
which of hundreds of molecular descriptors to use adds another level of uncertainty. For this reason,
machine learning-based techniques have been proposed that derive chemical similarity in a data-
driven fashion and thus offer promise to improve quality of similarity measurement. In particular,
much work has been dedicated to learning molecular featurization in an unsupervised fashion, which
can later be used for downstream tasks such as similarity (Jaeger et al., 2018; Huang et al., 2021; Li
& Jiang, 2021; Morris et al., 2020). Due to their unsupervised nature, however, similarity measure-
ments between machine learning-derived embeddings are not necessarily meaningful for activity, as
structurally dissimilar molecules may have similar activities, and vice-versa. Because of this, more
direct N-shot learning approaches (Schimunek et al., 2021; Altae-Tran et al., 2017; Stanley et al.,
2021; Lee et al., 2022) have been proposed to leverage vast amounts of existing activity data toward
the scoring of new ligands against novel targets.

N-shot learning. N-shot learning techniques directly use existing compounds (the “context”, also
called the “support set”) to predict the activity of unknown compounds (the “query set”) without
relying on similarity as an imperfect surrogate of activity. The application of Siamese networks
to one-shot learning, a form of N-shot learning involving a single context example, was first intro-
duced in computer vision (Koch et al., 2015), and existing Siamese-based techniques, such as those
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that act on sentences (Mueller & Thyagarajan, 2016), may be applied to string-based molecular
representations. Schimunek et al. (2021) extend this technique to multiple context compounds for
few-shot learning, also a form of N-shot learning, using a Siamese network to encode both the query
and context molecules followed by a similarity function to perform classification. Altae-Tran et al.
(2017) introduce an LSTM-based architecture to iteratively update compound embeddings, which
are then used to make binary activity predictions. Li et al. (2019) classify two graphs, which may
be molecular graphs, as similar or dissimilar through a cross-graph attention mechanism. Finally,
Stanley et al. (2021) introduce a dataset for the few-shot classification task in drug discovery, and
run multiple baselines on the proposed set.

All these techniques, however, cannot predict how active a compound is, instead making only binary
predictions of activity at whatever threshold of true activity is chosen. This is especially relevant
when known actives are only of mild potency so the “active” threshold is low, e.g. hits following
a screen. In this case, binary methods cannot distinguish between mildly and highly active com-
pounds. Lee et al. (2022) propose to predict continuous binding affinity in a few-shot fashion using
attentive neural processes (ANPs), but their method requires multiple support examples and is not
applicable to our one-shot setting. Additionally, the support set is randomly drawn over the en-
tire activity range of known compounds, including highly active compounds, casting doubt on the
model’s utility in the case where one knows only a mildly active compound.

3 METHODOLOGY

We formulate the problem of compound scoring given a known active as a one-shot regression prob-
lem. We introduce OSLS, an architecture using two Siamese-like encoding networks with untied
weights, a positional encoding-like mechanism to represent activity values, and a feedforward pre-
diction head. The architecture is summarized in Figure 1.

Problem statement. We seek to score compounds via one-shot learning, meaning predicting, i.e.
scoring, the activity of a “query” compound against an unseen target given only a single “context”
compound and its activity against that target. Let m represent a molecule and πP (m) ∈ R its ex-
perimentally determined activity against a target P (e.g. binding affinity to a protein, or phenotypic
inhibitory concentration). Formally, we aim to predict the activity of a query molecule mq to P ,
πP (mq), given a context molecule mc and its activity against P , πP (mc). That is, we wish to learn
a function f(mq,mc, πP (mc)) ∈ R to approximate the true activity of the query molecule, πP (mq).

Architecture. We employ two separate encoders, a context and a query encoder, that feed into
an activity prediction head. The context encoder, fc : (mc, πP (mc)) 7→ xc, learns to encode
information about the target into a real-valued vector xc using the context molecule and its known
activity against the target. The query encoder, fq : mq 7→ xq , learns to encode the query molecule
into a representation xq , that is useful for predicting its activity. As they are not designed to encode
the same information, fc and fq do not share weights, unlike previously proposed Siamese networks
(Mueller & Thyagarajan, 2016; Morris et al., 2020). The predictor network, g : xc⊕xq 7→ π̂P (mq),
where ⊕ denotes vector concatenation, uses these two encodings to predict the activity of the query
molecule, π̂P (mq) ∈ R.

We represent molecules as sequences of atom-level tokens of canonical SMILES strings (see Ta-
ble 3 for comparison across molecular representations). Both fc and fq are Transformer encoders
(Vaswani et al., 2017), which have shown recent success as a way to represent molecules Wang et al.
(2019); Li & Jiang (2021). Following Devlin et al. (2018), we also prepend a “classification token”
at the first position of each sequence, and take the hidden state of the Transformer at that position as
xc and xq after projection through a linear layer.

To encode scalar activity information with the Transformer, we propose a novel, learned linear
projection of the scalar that is summed with token embeddings before being fed to the multi-head
attention of the Transformer encoder. This projection has the same dimensionality as the embed-
dings, and is identical across each element of the input sequence. This simple approach to including
scalar activity information is similar to positional encoding, which can effectively pass contextual
information to the Transformer (Vaswani et al., 2017).
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Figure 1: Architecture overview. The context encoder
(left) receives the embedded SMILES tokens of the con-
text molecule summed with a sinusoidal positional en-
coding and a linear projection of its known activity value.
The query encoder (right), which has different weights,
receives the embedded SMILES tokens of the query
molecule summed with a positional encoding. A feed-
forward predictor network receives the concatenated out-
puts of each encoder and produces a final scalar activity
prediction of the query molecule.

Training. The training dataset, D,
consists of compounds and their affini-
ties to multiple protein targets, P . Let
MP represent all compound with activ-
ity data against a given target P ∈ P ,
then we define the training set as

D =
⋃
P∈P

{(m,πP (m)) |m ∈ MP }

where
⋃

represents repeated union op-
erations. The testing set is constructed
in a similar way to the training set, but
with a separate set of targets, a so-called
“target split” (Feng et al., 2018).

We train the model in an end-to-
end fashion with Mean Squared Er-
ror (MSE) loss between the pre-
dicted and true activity of mq , i.e.
MSE(πP (mq), π̂P (mq)). Each train-
ing batch consists of a set of query
molecules randomly selected without re-
placement from the entire training set.
For each query molecule mq , that is
an element of some MP , a context
molecule and its activity is randomly
selected from all molecules with data
against the same target, (mc, πP (mc)),
where mc ∈ MP . When selecting the context compound, an additional constraint is placed on
πP (mc) such that a ≤ πP (mc) < b, where a and b are the lower and upper bound, respectively, of
the manually set context activity range. By constraining πP (mc) but not πP (mq), OSLS can learn
to score compounds with a wide range of activities using only weakly active compounds as context.

4 EXPERIMENTS

We test OSLS and baseline techniques on four applicable drug discovery tasks: (1) ranking and
classification of compounds from BindingDB (Liu et al., 2007) with varying context compound
affinities that are typical of screening results. (2) predicting the activities of anti-cancer drugs against
a wide array of tumor cell lines (Barretina et al., 2012) using the activity of a single drug against
each cell line as context for activity prediction of other drugs. (3) simulating a drug repositioning
task using the natural ligand estradiol and a set of FDA-approved drugs (Selleck), and testing for the
retrieval of diverse compound scaffolds that are already known to bind the target of estradiol. (4)
use of OSLS as an objective function to guide molecular generative modeling using a single known
ligand. Finally, we measure the impact of various ablations on the OSLS architecture.

Additional results from the adaptation of OSLS to the few-shot setting, following the experimental
setup of Lee et al. (2022), are reported in Appendix A. Dataset and preprocessing details are reported
in Appendix B, and details on the implementation of OSLS are reported in Appendix C.

4.1 BASELINES

We test OSLS against the following baselines, whenever applicable to a given task. Details on the
training and implementation of baselines are given in Appendix D.

• OSLS-MLP. Similar architecture to OSLS except using Morgan fingerprints to represent
molecules connected to a multilayer perceptron (MLP) instead of a Transformer. Loosely
related to Koch et al. (2015), except we untie the two encoders and predict a continuous target.
The fingerprint of the context compound is multiplied with its known activity value to encode
context, a process inspired by POT-DMC (Godden et al., 2004).

4



Under review as a conference paper at ICLR 2023

• Tanimoto similarity. Molecular structure-based similarity measure based on vector similarity
between two binary fingerprints. In this paper, we use Morgan fingerprints (Rogers & Hahn,
2010) with a radius of 2. This measure of molecular similarity is commonly used in practice.

• MaLSTM. Siamese neural network to embed molecular SMILES sequences using an LSTM
network followed by a vector similarity measure (Mueller & Thyagarajan, 2016).

• Graph Matching Network. Classifies if two graphs are similar by jointly reasoning using a
cross-graph attention mechanism (Li et al., 2019).

• MetaDTA. Applies attentive neural processes to the few-shot regression of continuous binding
affinity values (Lee et al., 2022).

• OpenEye Rapid Overlay of Chemical Structures (ROCS). Computes overlap between 3D
molecular representations, using both pure 3D shape (“ShapeTanimoto”) and 3D shape com-
bined with charge information (“TanimotoCombo”) (Kearnes & Pande, 2016).

4.2 COMPOUND RANKING AND CLASSIFICATION

(a) (b)

Random ranking Random classification

Typical hit affinity

Figure 2: Comparison of compound ranking and classification techniques at varying context
compound affinities. (a) mean Kendall’s tau correlation across 40 test targets between real and
predicted affinity among all compounds with data available against each target. Context compounds
are taken at random from the set of compounds with activity data against each target with an affinity
in the range specified on the x-axis. Marked is the most common range of hit affinities following
a HTS campaign (Freire, 2015; Hughes et al., 2011). (b) mean ROC-AUC of classification ability
across 40 test targets with the context compound affinity range on the x-axis, with true positives
being defined as compounds with < 10 nM affinity against their target, and true negatives otherwise.

We compare OSLS with baselines on scoring compounds from a library, while varying the affinity
of a context compound that is analogous to a hit from a high-throughput screen. We use a set of 40
unseen test targets from BindingDB, and aim to score all compounds that have experimental activity
data against each target. For each query compound, a context compound is taken at random from all
compounds against the same target within the defined affinity range (specified on the x-axis). For
all methods, we train a separate model for each context affinity range. After scoring, we measure
performance in ranking and classification, both common tasks in drug discovery.

Figure 2 left reports the mean rank correlation across all targets between true compound bind-
ing affinity and the score produced by each method. For the two similarity-based methods, Tan-
imoto similarity and MaLSTM, scoring was done to the context compound, i.e. the highest scored
molecules are those most similar to the context compound. As expected, the ability of these tech-
niques to rank compounds by their true affinity value declines rapidly as the context compound
becomes less potent, reaching random ranking around the micromolar range (103-104 nM), which is
the typical top affinity obtained from a high-throughput screening campaign (Freire, 2015; Hughes
et al., 2011). In contrast, the performance of OSLS and OSLS-MLP is relatively strong, and strongest
for OSLS, throughout all context compound affinity ranges.

We also use the scores produced by each method in a classification task, where query molecules are
considered positives if the affinity to their respective target is < 10 nM, and negatives otherwise, to
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reflect the typical desired affinity of lead optimization projects (Hughes et al., 2011). Figure 2 right
shows the mean binary classification ability for each method across all test targets, as measured by
ROC-AUC. In addition to the previous baselines, we also include Graph Matching Network (GMN),
which is only applicable to the binary classification task. We trained and tested two different GMN
models, one with a positive and the other a negative context compound, so the reported performance
is identical across all affinity ranges that were included in each model’s training set, as we used the
same range for testing (< 10 and ≥ 10 nM for the positive and negative context model, respectively).
As shown, the performance of most methods drop as the context compound becomes less potent,
although OSLS mostly retains performance even as the context compound is no longer drawn from
the active range. Additionally, OSLS shows the highest ROC-AUC compared to baselines across
most context affinity ranges, especially the low nM ranges.

Besides OSLS and OSLS-MLP, no other baseline can take advantage of continuous activity values,
seemingly limiting their performance. Specifically, OSLS outperforms all baseline methods across
most context affinity ranges, especially at the most common and applicable low micromolar range.

4.3 SCORING ANTI-CANCER COMPOUNDS

Figure 3: Scoring drugs from the Cancer Cell Line
Encyclopedia. The x-axis shows the mean Pearson’s
r correlation coefficient between real and predicted
drug activity, as measured by normalized IC50 values,
across a wide array of cancer cell lines. The y-axis
shows the single context compound used for predic-
tion, where its activity against each cell line informs
the scoring of all other compounds against that line.
Compounds are ordered by the correlation coefficient
from OSLS, to show which compounds are most in-
formative when supplied as context.

Chemotherapy involves the targeting of
specific tumors with specialized drugs. Tu-
mors are often profiled by genetic sequenc-
ing and the subsequent identification of
cancer-causing mutations (Malone et al.,
2020), but it is often not clear which
drug will be active against a given muta-
tion (Kalamara et al., 2018; Tsimberidou,
2015). One alternative approach to tumor
profiling, that is already undertaken clin-
ically, involves screening a small set of
drugs against a patient-derived tumor cul-
ture, yielding continuous activity values for
each drug (Letai, 2017; Wong et al., 2021).

Most cancers involve very specific muta-
tions, but high-throughput screening (HTS)
against any one mutation is often not eco-
nomically or biologically feasible (Letai,
2017). One-shot learning techniques, how-
ever, can potentially extrapolate small sets
of clinically obtained drug data to much
larger HTS-scale libraries, expanding both
clinical therapeutic options and making vi-
able the evaluation of many preclinical drug
candidates against highly specific tumors.

Towards this end, we evaluated the perfor-
mance of OSLS and OSLS-MLP in scoring
anti-tumor drugs against tumor cell lines from the Cancer Cell Line Encyclopedia (CCLE, Barretina
et al. (2012)). Figure 3 reports the mean correlation across all cell lines (x-axis) between the real and
predicted IC50 values of drugs with activity data against each line. We repeated the scoring using
different context drugs (y-axis), which were supplied to both methods along with their respective
activity values against each cell line. For each context drug, the reported correlation coefficient is
computed using activity values normalized to have a mean of 0 (for both real and predicted values) to
account for baseline differences in drug activity and capture only tumor-specific activity differences.

As shown, OSLS displays some level of predictive power across all but one context drug. OSLS-
MLP, however, has less or no predictive power for most context drugs. Models were trained on
BindingDB data only, and not the CCLE, suggesting that the observed predictive power of OSLS
would transfer to other compounds beyond those tested here, including other clinical drug options
or even preclinical candidates. Additionally, models were trained on binding affinity values, which,
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while presumably related to the present IC50 values, indicates the potential for transfer learning
across different activity types mediated by an underlying binding mechanism.

We only compared with one baseline on this task as many of our previously used baselines are not
applicable. For instance, similarity-based methods will yield identical similarity values between
the tested drugs regardless of the experimentally determined activity value, meaning they will have
no predictive power. Binary classification methods are also not applicable, because defining any
binary cutoff among the relatively smoothly distributed activity values is not necessarily meaningful,
and binary outputs would also not produce meaningful correlations to the continuous ground truth.
Therefore, only one-shot activity prediction methods were applicable to this task, and OSLS shows
far superior performance to OSLS-MLP, which makes close to random predictions. Our results
suggest that OSLS may be able to complement or replace existing tumor profiling techniques, and
significantly reduce the costs associated with scoring a large compound library against specific tumor
profiles, offering both clinical and preclinical utility.

4.4 SCORING FOR DRUG REPOSITIONING

Drug repositioning is the application of existing drugs to new indications, promising to avoid expen-
sive drug development and approval while still offering needed new treatments (Pushpakom et al.,
2019). Many computational techniques have been proposed for predicting the activity of existing
drugs against novel targets, including chemical similarity-based techniques (Jarada et al., 2020). We
simulated a drug repositioning task to the estrogen receptor (using models trained on BindingDB,
where the estrogen receptor was excluded from the training set) by scoring all FDA-approved drugs
by predicted activity using estradiol as the context compound, a natural ligand to the estrogen recep-
tor. We chose the estrogen receptor, which has many existing drugs, to compare the ability of each
technique to rank these drugs, which we knew beforehand, highly in comparison to all others.

Table 1: Drug repositioning to the estrogen receptor. Each technique was used to rank all 2,617
FDA-approved drugs using estradiol (a natural ligand to the estrogen receptor) as the context com-
pound. The corresponding ranking (out of 2,617) of each drug which is known to bind the estrogen
receptor (taken from Wishart et al. (2006)) is shown (lower is better).

Tanimoto ROCS ROCS
Drug OSLS similarity (TanimotoCombo) (ShapeCombo) MaLSTM OSLS-MLP
Estrone 113 6 4 3 5 223
Raloxifene 10 531 519 1281 1898 35
Fulvestrant 25 12 18 1191 95 54
Tamoxifen 214 1434 1527 1562 2493 198
Bazedoxifene 1023 353 684 1380 1162 239
Toremifene 887 1562 1527 1568 2576 562
Ospemifene 1077 2283 941 1469 2277 1498

Table 1 reports the rankings produced by each technique of all estrogen-binding drugs (taken from
Wishart et al. (2006)) among 2,617 total FDA-approved drugs (obtained from Selleck). The steroidal
drugs estrone and fulvestrant are ranked highly by all methods, as they are structurally similar to
estradiol, which is also a steroid. For the other non-steroidal drugs, which are structurally very differ-
ent from estradiol, most similarity-based methods fail, while the novel one-shot scoring techniques
(OSLS and OSLS-MLP) rank these drugs relatively highly. These results suggest that one-shot learn-
ing methods are more capable of “scaffold hopping,” which is the ability to identify compounds that
are structurally distinct from a known compound but have similar activity.

4.5 GUIDING MOLECULAR GENERATION

Many generative models have been proposed to design novel compounds against a given target (e.g.
Jin et al. (2018); Luo et al. (2021); Jin et al. (2020); Xie et al. (2021); Zhou et al. (2019); Zang
& Wang (2020); Eckmann et al. (2022)). All generative models employ an objective function to
score suggested ligands, which, when attempting to generate binders against a target, is typically
docking software (Spiegel & Durrant, 2020; Eckmann et al., 2022) that requires target information.
When the target is unknown, in the case of phenotypic or ligand-based drug discovery, some or all
of these existing methods are not applicable. To the best of our knowledge, in the common case of
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Figure 4: Molecular generation using OSLS as an objective function. (a) mean (solid line), mini-
mum, and maximum predicted binding affinity of 256 variational autoencoder-generated molecules
optimized with OSLS as an objective function (lower is better). The known affinity of estradiol, the
natural ligand being used as a context compound, is also shown. The x-axis shows the number of
gradient descent steps in the optimization process. (b) distribution of AutoDock-GPU scores among
all valid generated compounds (lower is better), with the docked score of estradiol also shown.

de novo drug design based on one or a small number of hits from phenotypic screening (Swinney &
Anthony, 2011), existing generative models cannot be applied, and is what we seek to address.

After training on BindingDB, we applied OSLS as an objective function in a variational autoen-
coder (VAE, Kingma & Welling (2013))-based generative model, using a single known compound
(estradiol, a natural ligand) and its measured affinity to the estrogen receptor (a well-studied and
disease-relevant target, which was excluded from the training set) as context, and seek to generate
new molecules with higher affinity to the target than estradiol. We slightly adapt OSLS to allow
end-to-end differentiation and combine it with a trained VAE, similarly to previously proposed gen-
erative models (Luo et al., 2021; Jin et al., 2018; Zang & Wang, 2020; Eckmann et al., 2022), and
then backpropagate the output affinity prediction to the latent space to generate new molecules with
higher predicted affinity (for more details about the training and method, see Appendix E).

Figure 4 left shows the mean, minimum, and maximum affinity prediction from OSLS among 256
molecules over 1,000 epochs of backpropagation. As shown, OSLS successfully guides generation
towards compounds with higher predicted affinity, with some even surpassing that of estradiol. To
further validate the generated compounds, Figure 4 right shows the distribution of generated com-
pound affinities predicted by AutoDock-GPU to the estrogen receptor (PDB ID 1ERR, details in
Appendix E) (Santos-Martins et al., 2021), a docking program that uses full target information. En-
couragingly, many generated compounds surpass the docking-predicted affinity of estradiol. Note
that docking, including AutoDock-GPU, is generally a poor predictor of actual affinity (Pantsar &
Poso, 2018), so is not necessarily more accurate than the predictions of OSLS itself. We included the
Tanimoto similarity baseline, which consists of a simple differentiable surrogate model of Tanimoto
similarity to estradiol, to approximate the typical similarity search-guided molecular generation of
medicinal chemists (see Appendix E for further details). As no other baseline was readily differen-
tiable, we did not include any beyond Tanimoto similarity.

Table 2: Comparison of generated molecules. Quality metrics
(see Appendix E) of generated compounds with higher docked affin-
ity than estradiol. We report the best docked affinity as Kd in
nanomoles/liter, the number of Butina clusters, and the diversity and
novelty scores as described in Jin et al. (2020).

Method Best (nM) (↓) # clusters (↑) Diversity (↑) Novelty (↑)
REINVENT 0.98 57 0.866 0.98
MARS 17.3 4 0.893 1.00
LIMO 0.31 57 0.874 1.00
Tanimoto 4.5 23 0.862 0.81
OSLS 2.4 42 0.862 1.00

Table 2 reports further met-
rics of generated molecules,
and compares with other
generative models that
employ target informa-
tion (Xie et al., 2021;
Olivecrona et al., 2017;
Eckmann et al., 2022). Out
of 256 molecules generated
by each method, only
molecules with a docked
affinity better than that of
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estradiol were included in metric calculations (full details on the metrics used are available in Ap-
pendix E). While molecules generated by OSLS are surpassed in most metrics by generative models
that harness target information, they are still of relatively high docked affinity. It is encouraging that
such compounds were generated using only a single context compound, suggesting that OSLS may
be used successfully for lead optimization in phenotypic drug discovery. In contrast to the Tanimoto
similarity baseline, OSLS generates a high structural diversity of molecules with desirable affinity,
which is of high utility for drug discovery.

4.6 ABLATION STUDY

Table 3: Ablations. Blank entries represent no variation from the
base model (top).

Molecule Context Projection Kendall’s
representation provided type tau ROC-AUC
SMILES Continuous Linear 0.3198 0.7128
SELFIES 0.2901 0.6820
SPE 0.2255 0.6524

Binary 0.2107 0.6881
No context 0.3024 0.6842

Non-linear 0.3177 0.7087

We report performance
metrics of model variations
in Table 3. We measure the
average Kendall’s tau and
ROC-AUC (for the binary
identification of < 10 nM
compounds) across 40 un-
seen targets in BindingDB,
using < 1 nM context
compounds. We tested
SMILES, SELFIES (Krenn
et al., 2020b), and SMILES
Pair Encoding (SPE; Li & Fourches (2021)), which are string-based molecular representations.
“Continuous” means that a continuous activity value was provided as context, “Binary” that the
activity was thresholded at 10nM to either 1 or 0, and “No context” that no context was provided at
all. “Linear” and “Non-linear” (cubic) projections were also tested to encode scalar activity values.

5 DISCUSSION AND CONCLUSIONS

We present OSLS, a one-shot learning model for ligand scoring utilizing a Siamese-inspired neural
architecture with two Transformer encoders without tied weights, a novel positional encoding-like
mechanism, and a final prediction head. After training on BindingDB, a large dataset of drug-target
affinity data, we show that OSLS surpasses both traditional and recent baselines on a variety of
relevant tasks involving one-shot ligand scoring on unseen targets. Promisingly, OSLS is able to
correctly score compounds that are of higher activity that the provided context compound, which is
shown to be valuable in compound retrieval, drug repositioning, and generative tasks.

In contrast to previous work, we utilize continuous, rather than binary, activity values, which seems
to be beneficial even for binary classification tasks (Figure 2, Table 3). Continuous values are also
useful for ligand scoring following screening, where hits are active but of mild potency, in which
case binary methods cannot distinguish between mildly and highly active compounds. Finally, con-
tinuous values are highly applicable to some clinical and preclinical challenges, such as those in
cancer therapy, where how active a compound is can be highly relevant (Section 4.3).

Our work also differs from previous work in that we focus on one-shot, rather than few-shot, pre-
diction. The number of hit compounds obtained from a high-throughput screen (HTS) increases
with time and resources (Attene-Ramos et al., 2014), so being able to terminate screening after only
one identified hit (which would be used as the context compound for OSLS) would greatly reduce
costs. HTS is also usually followed by lower-throughput confirmatory assays, which in practice can
result in as a few as one active compound with a measured affinity (Zhu et al., 2013), meaning our
approach is of much broader applicability.

OSLS may also be applied to phenotypic drug discovery, where the target is unknown and hits are
determined by observing a cellular response. Even if there are multiple hits resulting from such a
screen, many will not mediate a response through the desired cellular mechanism of action, and so
scoring additional compounds based on these hits is not useful (Vincent et al., 2020). As typically
only one or a very small number of hits induce a response through the desired mechanism of action,
scoring of further active compounds using only a single hit (presumably, the hit with the desired
mechanism of action) gives maximum flexibility for and applicability to phenotypic drug discovery.
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6 REPRODUCIBILITY STATEMENT

Anonymized source code for the base OSLS model is provided in the supplementary materials,
as well as helper functions to load pretrained models and perform inference using raw SMILES
strings. Scripts are also provided to preprocess data from BindingDB and prepare it for training.
Descriptions of preprocessing steps undertaken for each dataset are provided in Appendix B. Im-
plementation details for OSLS are provided in Appendix C, and descriptions of how each baseline
was implemented are provided in Appendix D. Finally, implementation and baseline details for the
generative modeling experiments are provided in Appendix E.
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Table 4: Comparison of few-shot learning methods for continuous binding affinity prediction.
Results for all methods besides OSLS taken from Lee et al. (2022). While code was not made
available, we attempted to as closely match the reported experimental setting as possible. r2m is
reported for both a context set size of 10 and 20 ligands, and is defined as r2 · (1 −

√
r2 − r20),

where r2 and r20 are Pearson’s correlation coefficient with and without intercept, respectively (Lee
et al., 2022).

Method r2m (10 ligands) r2m (20 ligands)
DeepDTA 0.299 0.360
MolTrans 0.363 0.410
MetaDTA(I) 0.468 0.383
MetaDTA(T) 0.374 0.433
OSLS 0.523 0.543

A FEW-SHOT LEARNING RESULTS

Although we focus on one-shot learning, few-shot learning is a related problem that is important in
the literature and finds applications in some forms of drug discovery. Few-shot learning involves
predicting the binding affinities of query ligands to a target not seen in training, using multiple
known support ligands and their affinities to the same target. We seek to reproduce the few-shot
binding affinity regression task previously described in the literature as closely as possible, using
data from a test split of BindingDB targets with more 20 compounds each, a support set randomly
drawn over the entire binding affinity range for a given target, and aim to predict the binding affinity
of randomly chosen query ligands from the same target (Lee et al., 2022).

To make OSLS compatible with few-shot learning, we encode each context compound and its affinity
using the context encoder, and then apply an additional “context attention” encoder over all encoded
context vectors that we average to produce a final context vector. This “context attention” module
is a Transformer encoder with 8 attention heads, 4 layers, and a final linear layer that takes each
context vector as a single element of the input sequence. We do not apply positional encoding, as
the ordering of each ligand in the sequence is not relevant. As shown in Table 4, OSLS produces
binding affinity predictions that are significantly more correlated to the true affinity than baseline
methods, for both a context set of size 10 and 20.

B DATASET DETAILS

For training, we use BindingDB (Liu et al., 2007), a dataset of 2.6 million drug-target binding
affinities, for its high data quality and broad coverage across many protein targets. We exclude very
small or very large molecules, defined as less than 10 atoms or more than 70. We record affinities
in nanomolar units from the Kd column if available, and if not, Ki. If neither value is available,
we discard the molecule. When affinity is expressed as an upper or lower bound, we take the bound
itself as the known affinity. Then, we exclude all protein targets, and the compounds therein, if there
are less than 10 compounds with data against that target or if there are no compounds in any one
of the binding affinity ranges shown in Figure 2. Finally, we perform a target split, where we set
aside 40 targets for testing only, and train on the remaining targets, with target being defined by
protein sequence. We transform all binding affinity values using the base-10 logarithm, as binding
affinity often spans several orders of magnitude. All experimental settings involve compounds only
in the set-aside testing set of targets. While the train/test split is otherwise random, we make sure to
include the estrogen receptor in the test split, as Section 4.4 and 4.5 use the estrogen receptor in the
contained experiments.

The models trained on BindingDB were also tested on a number of different datasets. The Cancer
Cell Line Encyclopedia (Barretina et al., 2012) consists of interaction data of 24 drugs against a
wide array of 479 patient-derived cancer cell lines. For the results reported in Section 4.3, we use
the dataset reported in Table S11 of Barretina et al. (2012), and extract IC50 measurements for
each drug measured against each cell line. We exclude compounds with less than 10 or more than
70 atoms, and cell lines with less than 2 drugs with measured activity. For the results reported in
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Section 4.4, we use the Selleck dataset of FDA-approved drugs (Selleck). For drugs that are reported
with a salt compound, we remove the salt from the SMILES string. We also exclude molecules based
on the same size constraints as above.

C IMPLEMENTATION DETAILS

Hyperparameter tuning. We tuned hyperpameters of OSLS once for the task described in
Section 4.2 using a < 1 nM context compound, and used the same hyperparameters for all other
context affinity ranges and subsequent tasks. We measured model performance by Kendall’s tau
after 215 training steps. The following hyperparameters were entered into a grid search, and the
observed best value for each hyperparameter is bolded: learning rate={1e-4, 5e-4,
1e-5, 5e-5, 1e-6 5e-6}, batch size={512, 1024, 2048}, d model={256,
512}, n heads={8, 12, 16}, n layers={4, 6}

Training. We used an Adam optimizer with a base learning rate of 10−5 and 128 steps for learning
rate warmup, and then cosine annealed the learning rate to 0 over 215 steps. We applied dropout
(p = 0.1) over the scalar affinity projection, the token embeddings for both encoders, and at each
layer in the predictor network. All models were trained on a server using a single NVIDIA GTX
3080 GPU.

D BASELINE DETAILS

OSLS-MLP. We implemented and trained a simpler but OSLS-like architecture to show the added
benefit of the more complex, Transformer-based OSLS model. This simpler model is loosely simi-
lar to Koch et al. (2015), except we untie the two encoders so that the context and query molecule
may be encoded differently (which, like OSLS, we call the context and query encoders), and per-
form regression instead of classification. In particular, the context must include a molecule rep-
resentation as well as activity information, but not the query, so using the same network to en-
code both would be non-optimal. To represent molecules, we use Morgan fingerprints with 1024
bits and a radius of 2, and both encoders as well as the predictor (the so-called “distance layer”
in Koch et al. (2015)) are feed-forward ReLU-activated networks with linear output. The dis-
tance layer consists of only a single linear layer, similarly to the previously proposed Siamese
network by Koch et al. (2015). For the context molecule, we multiply the binary fingerprint
vector of the compound with its activity value (the base-10 log of Kd or Ki), so that each non-
zero element of the vector takes on the activity value. This is inspired by POT-DMC (Godden
et al., 2004), although we do not perform an additional element-wise normalization step. The
network is trained in a similar way to OSLS, with mean squared error loss between the real and
predicted binding affinity of the query molecule at the output of the distance layer. We trained
the model until convergence using the Adam optimizer. For hyperparameter optimization, we se-
lected the highest Kendall’s tau on the previously described ranking task with a context molecule of
< 1 nM affinity over a grid search of the following hyperparameters (the best hyperparameters
are bolded): encoder layers: {2, 3, 4}, encoder layer width: {1024},
batch size: {64, 128, 256}, learning rate: {1e-4, 1e-5, 1e-6}

MaLSTM. We implemented and trained the MaLSTM model (Mueller & Thyagarajan, 2016) to
predict binding similarity using the SMILES tokens of the context and the query molecules. As the
context and query encoders must share weights, we did not incorporate binding affinity information
for the context molecule, and we trained the model only to predict the similarity in binding affin-
ity between two molecules. To do this, we used single-layered LSTM blocks, as reported in the
original paper, that received learned embedded SMILES tokens as input. We computed similarity
using the last hidden state of both the query and context encoders (a and b, respectively), terminat-
ing at the end of each SMILES sequence, as defined by the exp of the L1 norm of the difference
between a and b: exp (||a− b||1). We used the mean squared error between the predicted simi-
larity and the true similarity, which we define as exp (−abs(πP (mc)− πP (mq))), where πP (mc)
and πP (mq) are the true activity values of the context and query molecules, respectively, to the
target P . The selection of query and context molecules during training is identical to the process
described in Section 4.2. We trained the model until convergence using the Adam optimizer. Simi-
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larly to hyperparameter optimization for our model, we selected optimal hyperparameters based on
the highest Kendall’s tau on the previously described ranking task using a context ligand of < 1 nM,
and then used the same hyperparameters for all subsequent tasks. For hyperparameter optimization,
we performed a grid search over the following set of hyperparameters (the best hyperparameters
are bolded): batch size={256, 512, 1024}, embedding dim={64, 256, 512},
hidden dim={50, 100, 200, 500}, lr={1e-3, 1e-4, 1e-5}

Graph Matching Networks. We trained Graph Matching Networks for binary prediction
of molecular similarity using the implementation provided at https://github.com/
Lin-Yijie/Graph-Matching-Networks. For the binary classification task described in
Section 4.2, we trained and tested two separate models, one using a positive context molecule and
the other a negative. Specifically, while we used a similar context and query sampling procedure
as described in Section 4.2, we sampled the entire “active” range (< 10 nM) to generate context
molecules for training the first model, and the entire “negative” range (≥ 10 nM) for training
the second model. We did not provide the model with any continuous affinity data, as the model
is designed to operate only on two graphs with no additional information. As a training signal
for the first model, we assigned a “similar” label if the query molecule was active (as the query
and context molecules would both be active in that case), and otherwise “dissimilar”. For the
second model, we assigned a “similar” label if the query molecule was inactive, and “dissimilar”
otherwise. Molecules were represented as NetworkX graphs, with bond type represented as an
integer as an edge feature, and atom type as a one-hot encoded node feature. For the first model,
we reported ROC-AUC in a similar way as other baselines, but for the second model we reported
1 − AUC, as a dissimilar prediction to a non-active context molecule would actually indicate an
active query. We followed a similar hyperparameter optimization scheme as described previously,
except we used the highest ROC-AUC score instead of Kendall’s tau on the test set to evaluate
hyperparameter quality, as Graph Matching Networks are not applicable to ranking. We performed
a grid search over the following set of hyperparameters (the best hyperparameters are bolded):
graph representation dim={128, 256}, prop layers={5, 10}, lr={1e-3,
1e-4, 1e-5}, loss={margin, hamming}, batch size={10, 20, 40}

OpenEye Rapid Overlay of Chemical Structures (ROCS) OpenEye Scientific Software offers
Rapid Overlay of Chemical Structures (ROCS; Hawkins et al. (2006)), a program used here to de-
termine shape and electronic similarities between estradiol and drugs in the Selleck FDA-approved
drug database (Selleck). The similarity metrics used are ShapeCombo, which scores compounds
against estradiol with Gaussian spatial similarity estimations and TanimotoCombo, which combines
equal contributions of Gaussian spatial similarity estimations and the ImplicitMillsDean force field’s
(Mills & Dean, 1996) high-level chemical similarity estimations. To perform the ROCS analyses,
3D conformer generation of compounds in the Selleck database was required. The conformer gen-
eration was achieved using OpenEye’s OMEGA software (Hawkins et al., 2010), providing the
lowest-energy conformations which are then analyzed by ROCS. The result of ROCS analysis is
a scoring and ranking of Selleck database molecules by spatial and electronic similarity to estra-
diol. We only used ROCS as a baseline in the drug repositioning task, as conformer generation took
around a second per compound, which was too slow for the task in Section 4.2 that involved around
2 orders of magnitude more compounds.

E GENERATIVE MODELING

We selected a variational autoencoder (VAE, Kingma & Welling (2013)) as our generative model
due to its relatively easy training and ability to take advantage of differentiable objective functions.
We trained a simple feedforward VAE to reconstruct compounds from BindingDB (the same set as
used in other tasks) using byte-pair encoded SMILES tokens as a molecular representation. After
experimentation with other string-based molecular representations (raw SMILES tokens and SELF-
IES; Krenn et al. (2020a)), byte-pair encoding of SMILES strings (Li & Fourches, 2021) generated
the most reasonable molecular samples from sampling random locations in the latent space (i.e. the
fewest number of very large rings and uncommon atom and bond configurations). The byte pair-
encoded SMILES tokens for each molecule were embedded into 512 dimensions and then padded to
the maximum length, which was then flattened such that the input and output of the VAE had dimen-
sion max len · embedding dim. After the output of the VAE decoder, we unflattened the sequence
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into a max len× embedding dim matrix and applied softmax over each position in the sequence,
so that the summed probability of all possible tokens at each position in the sequence was 1. The
encoder and decoder of the VAE were mirrored, both having 3 1024-dimensional hidden layers with
ReLU activations and batch norm before the activation. We trained the VAE until convergence using
the Adam optimizer with a learning rate of 1e-4. The loss function was negative log-likelihood loss
between the true and reconstructed output plus a KL-divergence term on the latent space of 1024
dimensions. During training, we warmed up the weight of the KL-divergence loss starting from 0 to
1 at epoch 1,000 to avoid mode collapse.

Separately, we trained OSLS on BindingDB using the same hyperparameters as previously described
except using a random context compound from the entire binding affinity range, and with byte-
pair encoded SMILES instead of raw SMILES tokens so that the VAE and OSLS can be stacked,
following Eckmann et al. (2022). While the final trained model had worse performance than the
raw SMILES version (see Section 4.6), it was sufficient for this purpose. To make OSLS fully
differentiable so that it can be used as an objective function for the VAE, we applied Gumbel softmax
instead of regular softmax at the output of the VAE decoder, so that the output of the VAE was fully
discretized, but still allowed for differentiation through the “straight-through” technique, where the
output of Gumbel softmax is fully discretized in the forward pass but an approximate version is used
for the backward pass (Jang et al., 2016). With a set of discretized tokens, we were then able to
perform matrix multiplication on the one-hot encoded tokens (produced by Gumbel softmax) with
the weights of the embedding layer, which produces the same embeddings as the typical indexing-
based method, but in a differentiable manner. These embeddings were then fed into the encoders of
OSLS, and then the prediction head, making for a fully differentiable forward pass from VAE latent
space to output activity prediction. Similarly to Eckmann et al. (2022), we attached the input of the
differentiable OSLS architecture to the output of the VAE decoder, and propagated the gradients of
the OSLS output layer back to the latent space, altering the latent space in such a way as to generate
compounds with higher predicted activities.

Tanimoto similarity baseline. We trained a convolutional neural network to approximate Tani-
moto similarity between random compounds from the entire BindingDB dataset and estradiol, to
simulate a similarity-based molecular generation process. This surrogate model consisted of 3 1-D
convolutional layers, that take a sequence of 128-dim embedded SMILES byte-pair encoded tokens
as input, with a kernel size of 3 and stride of 1, ReLU activations, and a final 1-D max pooling layer.
The output of the convolutional layers was flattened, then fed to a 3-layer ReLU-activated feedfor-
ward network with batch normalization, which produced a final sigmoid-activated prediction of the
Tanimoto similarity. The network was trained until convergence using the Adam optimizer with a
learning rate of 1e-3 with mean squared error loss between real and predicted Tanimoto similarity to
estradiol, and the embedding layers were made differentiable, and hence able to be attached to the
VAE decoder, using the matrix multiplication trick described in the previous paragraph. There was a
strong correlation between the real and network-predicted Tanimoto similarity on a held-out test set
(r2 > 0.9), meaning the network was an effective surrogate model for Tanimoto similarity. As the
hyperparameters of OSLS were not optimized specifically for the generative task, and the trained
model already had close to optimal performance, no hyperparameter optimization was performed
for the Tanimoto surrogate model. Similarly to OSLS, we attached the Tanimoto surrogate model to
the output of the VAE decoder and backpropagated its output back to the latent space of the VAE so
that the generated molecules were of higher Tanimoto similarity to estradiol.

Other baselines. We compare the target-free generative models with REINVENT (Olive-
crona et al. (2017); https://github.com/MarcusOlivecrona/REINVENT), MARS (Xie
et al. (2021); https://github.com/bytedance/markov-molecular-sampling),
and LIMO (Eckmann et al. (2022); https://github.com/Rose-STL-Lab/LIMO), all re-
cently proposed generative models that can use full 3D target information. We ran each generative
model until 256 valid molecules were generated, and then computed metrics on those molecules.
We set the objective function for all models to be the docked energy to the estrogen receptor (as de-
scribed in the “Docking details” paragraph). Default hyperparameters were used for all models, and
pretrained models were used where applicable (the Prior of REINVENT, and the VAE of LIMO).

Metrics. We report the following metrics to evaluate the quality of generated molecules. For all
methods, we only report these metrics on valid SMILES strings.
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• Best (nM) the lowest generated docked affinity value in nanomoles/liter.
• # clusters the number of Butina clusters (Butina, 1999), where each cluster consists of

molecules that have at least a 0.6 Tanimoto similarity to each other, computed using 1024-
dimensional Morgan fingerprints with a radius of 2.

• Diversity one minus the average pairwise Tanimoto similarity between molecules. We use
the same number of molecules across all methods to compute this metric as scores may
be different across sets of molecules with different sizes even if the overall number of
compound scaffolds, which are most relevant to drug discovery, are the same.

• Novelty the proportion of molecules that are less than 0.2 Tanimoto similarity to estradiol.

Docking details. We used AutoDock-GPU (Santos-Martins et al., 2021) to evaluate the molecules
from generative modeling. A grid file of PDB ID 1ERR was produced by AutoGrid4, using the same
binding site as estradiol. 10 random conformers of each ligand to score were then generated using
obabel 3.1.0, docked against the grid file using the default AutoDock-GPU parameters, and then the
best energy was taken from the 10 runs as the final docked energy.
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