
Under review as submission to TMLR

Online black-box adaptation to generalized target-shift

Anonymous authors
Paper under double-blind review

Abstract

We explore the use of test-time pseudo-labels for online label-shift adaptation when deploying
black-box models. Specifically, we focus on settings where predictive models are deployed in
new locations (leading to conditional-shift), such that these locations are also associated with
differently skewed target distributions (label-shift), a combination more broadly referred to
as generalized target-shift. Adapting Bayesian tools, we illustrate empirically that online
estimates of label-shift using pseudo-labels can often be beneficial in such settings, even with
the conditional-shift associated with different deployment locations, when hyper-parameters
are learned on validation sets. We illustrate the potential of this approach on three synthetic
and two realistic datasets comprising both classification and regression problems.

1 Introduction

We consider a practical setting where we have black-box access to a predictive model which we are interested
in deploying in different places with skewed label distributions. Such situations can arise, for example, in
healthcare settings, where there are often differing rates of disease-incidence (Vos et al., 2020) accompanied
by distributional shift in input features at different deployment locations, for example with diagnostic
radiology Cohen et al. (2021). In notation, for input variable x and target variable y, we have that
Ptrain(x | y) ̸= Ptest(x | y) (conditional-shift) and Ptrain(y) ̸= Ptest(y) (label-shift), a combination broadly
referred to in the domain adaptation literature as generalized target-shift (GeTarS) (Zhang et al., 2013).

Contextual information can be useful The prevailing notion in current considerations of out-of-
distribution (OOD) generalization tends to promote agnosticism to background or ‘non-causal’ information,
since these are deemed to be potentially biasing. While this seems fairly sensible and certainly the reason
behind some failure-modes, sometimes background information can serve a purpose. Consider a poorly-lit
scene with a highly-occluded spotted wild cat; this could be either a leopard or a jaguar. However, leopards
and jaguars tend to have geographical biases – leopards are found in Africa and Asia while jaguars are found
in Central and South America. In such situations, contextual information can help resolve confusion, not
only for an AI system but perhaps also for the human expert who labelled the training data (Terry et al.,
2020). This can especially be leveraged in settings where contextual factors like deployment location skews
the label-distribution. To use the leopard/jaguar example – even if we do not know the label-distribution in
a new deployment, after observing a number of leopards and no jaguars, we would find an occluded spotted
wild cat less ambiguous.

Real-life deployments can come with practical constraints Consider a cloud-based AI service
provider servicing clients operating in real-time and numbering in the hundreds of thousands. Such providers
typically work with private training data and a proprietary model they are unwilling to share publicly. While
context-based adaptation of model parameters can provide personalized results, as discussed above, it is
often not possible for a provider to create as many copies of a model, especially as our models grow ever
larger. Placing copies of the model on-chip for every client would be expensive and would be associated with
specific assumptions about access to specialized hardware. In this paper, we adopt considerations of such
practically-motivated test-time restrictions in the context of realistic distributional shifts that are likely to
arise in multiple deployments. Under these settings, we show that it is often possible to improve upon base
performance by cheap output adjustments.

1

Under review as submission to TMLR

Problem setting We assume a test-time setting with the following characteristics.

1. Black-box model, private training data: We assume we cannot fine-tune the parameters of our
underlying predictive model, nor are we allowed access to examples of training data. This situation
can arise in practical settings where we use cloud-based, proprietary services trained on large, private
datasets (for example, Google’s Vision APIs).

2. Online predictions: We operate in an online setting, where we wish to make predictions with streaming
test data in different deployment locations, without access to a representative sample of test data in
each of these locations upfront.

Contributions We explore the possibility of adapting the outputs of such black-box models online to
label-shifts, when picking hyper-parameters with a validation set of data also exhibiting GeTarS. Using
Bayesian tools to estimate label-shifts with pseudo labels in different deployment locations, we evaluate the
applicability of this approach using three proof-of-concept synthetic tasks and two challenging real-world
datasets comprising both classification and regression. Our results suggest that such approaches might have
the potential to provide a cheap and efficient way to achieve improvements over baseline performance.

2 Approach

We consider classification or regression tasks, with input variable x and target variable y, such that the input
data come from a set of different sources s (deployment locations) at test-time. These sources are associated
with particular distributions of the target variable, P(y | s).

Predictive distribution The underlying predictive model comprises a feature extractor fθ(x), which
is either a continuous output for regression, or is combined with a linear layer w to produce logits for
classification. This provides us with P(y | x). Since we want to incorporate information from s, we want to
model the predictive distribution P(y | x, s). Assuming that an input x and a source s are independent given
the target y, as in Mac Aodha et al. (2019); Chu et al. (2019), we can derive (see Appendix A.1)

P(y | x, s) ∝ P(y | x)P(y | s)
P(y) , (1)

where P(y) is estimated from the training data. In the applications described in the next sub-sections, we
will use normalized class frequencies in the training set for representing P(y) in classification tasks and model
P(y) as a Gaussian with the training mean and variance for regression tasks. Since such summary statistics
of training labels do not expose specific (x, y) examples, providers should not be opposed to sharing this
information if the adaptation is to be performed at the client-end. When training labels are known to be
approximately uniform, one can drop the P(y) term, yielding a product-of-experts model (Hinton, 2002).

Posterior predictive distribution at s We represent P(y | s) using the posterior predictive distribu-
tion (Gelman et al., 2013) after seeing n test examples in s as

Pn(y | s) =
∫

ϕ

P(y | ϕ)Pn(ϕ | s) dϕ, (2)

where ϕ parameterizes the distribution over y, and Pn(ϕ | s) refers to the posterior after making n observations
from source s, Pn(ϕ | s) = P(ϕ | ys

1, · · · , ys
n, s).

Online posterior updates Since we are interested in the setting where test data is streaming in, we will
update ϕ in a recursive fashion per data point. Assuming the test points are independent and identically
distributed in location s, and imposing the same initial prior on ϕ in every s, we can derive (see Appendix A.2
for the steps of this derivation),

Pn(ϕ | s) ∝ P(ys
n | ϕ, s)Pn−1(ϕ | s). (3)

2

Under review as submission to TMLR

This corresponds to computing the n-th posterior by treating the posterior from the previous (n − 1)-th
step as prior. The computation typically yields the update rule for ϕ in closed forms, as long as conjugate
distributions are used. The form of this posterior-update equation is reminiscent of the recursive update in
continual learning (Parisi et al., 2019), with the difference that we have a black-box model, which prevents us
from updating neural network weights as developed in that literature. The initial prior is independent of
location, P1(ϕ | s) = P1(ϕ), and can be set to be either uniform or in proportion to P(y).

Pseudo-labels At test-time, since we do not have true observations, we will approximate Pn(ϕ | s) using
our model predictions, ŷn instead of true labels yn in Eq. 3. The predictions are the ones obtained sequentially
from our adjusted predictive distributions (using Eq. 1) at the test points in location s. Another alternative
is to use the pseudo-labels without performing adjustments first; we evaluate both variants.

Conditional-shift with s New locations s also entail a shift in the distribution of x, hence our estimate of
P(y | x) with a neural network is less reliable. We will show empirically that even with this shift, it is possible
to observe benefits in generalization when learning hyper-parameters on validation sets corresponding to
different deployment locations.

We summarize the procedure in the algorithm below.

Algorithm 1 Algorithm for online adjustment of predictive distributions
Given: Black-box model fθ, validation set with different locations {s1

v, · · · , sV
v }, initial prior P1(ϕ).

Init: Learn adjustment hyper-parameters on validation set using the same adjustment procedure described
below for testing. The specific hyper-parameters are described for classification and regression settings in the
following two sections.
Test-time: In a new test-time deployment location s, perform adjustments online:
n := 1
while true do

Compute P(y | xn) using trained model fθ(x).
Compute Pn(y | s) using Eq. 2.
Compute adjusted output ŷs

n = arg maxP(y | xn, s) using Eq. 1.
Update posterior parameters, Pn+1(y | s), using Eq. 3.
n := n+1

end

2.1 Classification

For classification problems, P(y | x) is a categorical distribution modeled by a neural network with parameters
Θ. P(y) is the distribution of training labels, obtained by normalizing class-frequencies in the training set. We
use the typical Dirichlet-Categorical forms to model P(y | s), with the parameters ϕ in Eq. 2 corresponding
to the class-probabilities.

P(ϕ | s) = Dir(αs), (4)
P(y | ϕ) = Cat(ϕ). (5)

Given previous n − 1 predictions, the posterior parameters αs are updated for the n-th point using Eq. 3 as

αs
n(k) = 1[ŷs

n = k] + αs
n−1(k) =

n∑
i=1

1[ŷs
i = k] + α0, (6)

where ŷs
i is the prediction for the i-th test point at location s and α0 is the pseudo-count added at initialization

(same at all s). Using these in Eq. 2 yields the posterior predictive distribution

Pn(y = k | s) = αs
n(k)∑K

k′=1 αs
n(k′)

. (7)

3

Under review as submission to TMLR

In practice, since neural networks are typically trained with a surrogate cross-entropy loss via a softmax
operation, the output distribution is typically not calibrated meaningfully for combination with other
probabilistic terms (Guo et al., 2017). With this consideration, we will simply learn hyper-parameters τ to
account for the potential mis-matches in calibration across terms, giving us the following predictive function
(in log-space):

arg max
y

logPΘ(y | x)+τs logP(y | s) − τy logP(y). (8)

Intuitively, the τ hyper-parameters also play the role of determining how much of the training prior to
“subtract”, and how much weight to assign to the pseudo-label based re-adjustment. When these hyper-
parameters are learned on a validation set also representing generalized target shift, one can hope to improve
at novel test-time deployments.

Logit adjustment Recall that the logits from the neural network f are softmax-ed to produce the predictive
distribution and the predicted class for a sample x is given by arg maxk w⊤

k fθ(x), where wk is the k-th column
of the weight matrix for the linear layer for a total of K classes. The modified predictive rule here therefore
corresponds to an adjustment of the output logits,

arg max
k∈[K]

w⊤
k fθ(xs

n) + τs logPn−1(y = k | s) − τy logP(y = k). (9)

Initializing pseudo-counts We will consider two possible initialization schemes: (1) we may initialize
every element of α0 to be the same, to impose uniform priors for new locations, and (2) we may initialize the
pseudo-count as an α0-scaling of the marginal distribution P(y).

2.2 Regression

For regression problems, we use Gaussians to model the target variable,

P(y | x) ∝ exp
(

− τx

2

(
y − fθ(x)

)2
)

(10)

P(y) ∝ exp
(

− τy

2

(
y − µy

)2
)

(11)

where fθ(x) is the output of the neural network f with parameters θ, τx is the output precision (inverse of
variance, treated as a hyper-parameter); µy, τy are the mean and precision of training-y.

The parameters ϕ in Eq. 2 are now the mean and precision parameters for y in location s. We use the
Normal-Gamma distribution to model the posterior, since this is the conjugate distribution for Gaussians
with unknown mean and precision (DeGroot, 2004),

P(µ, τ | s) = N
(

µ | µs,
1

κsτ

)
Ga(τ | αs, βs). (12)

Combined with the Gaussian likelihood in Eq. 2, this yields P(y | s) in the form of a Student’s t-distribution,

P(y | s) ∝

(
1 + λs

2αs
(y − µs)2

)− 2αs+1
2

, (13)

where 2αs is the number of degrees of freedom, and λs = αsκs

βs(κs+1) . Using these, our predictive function (in
log-space) takes the form

arg min
y

τx

2

(
y − fθ(x)

)2
− τy

2

(
y − µy

)2
+ 2αs + 1

2 log
(

1 + λs

2αs
(y − µs)2

)
. (14)

4

Under review as submission to TMLR

Setting the derivative wrt y to zero yields a cubic equation (see Appendix B.1):

mτdy3 + (mτµ − 2mµsτd)y2 + (τd + mµ2
sτd − 2mµsτµ + am)y + (τµ + mτµµ2

s − amµs) = 0, (15)

where

a = 2αs + 1, (16)

m = λs

2αs
, (17)

τd = τx − τy, (18)
τµ = τyµy − τxfθ(x). (19)

A positive sign of the second derivative of the objective, given by

τd + am(1 − mD2)
(1 + mD2)2 , (20)

where D = y − µs, tells us if a solution is a (local) minima. When we have one real solution with a positive
second derivative, we use this; when we have multiple real solutions with positive second derivatives, we
pick the one that corresponds to the smallest objective; when we have no real solutions with positive second
derivatives, we do not update P(y | x), retaining fθ(x) as the solution. Empirically, we find that the condition
for no local minima does not arise for optimal choices of hyper-parameters (also see Appendix B.2).

The update equations at the n-th step follow from the computation of the posterior using Eq. 3 (see Murphy
(2007), for example, for the derivation of these update steps) and are given as:

αn
s = αn−1

s + 1/2, (21)
κn

s = κn−1
s + 1, (22)

µn
s = κn−1

s µn−1
s + ŷn

s

κn−1
s + 1

, (23)

βn
s = βn−1

s + κn−1
s (ŷn

s − µn−1
s)2

2(κn−1
s + 1)

. (24)

κ and τx are chosen using the validation set. Similarly as for classification, we use a calibrating pre-multiplier
for the precision τy, thus once again giving us three hyper-parameters to tune.

Initializing priors Once again, we consider two forms of initial values. In order to place uniform priors
over the output range, we will simulate a uniform set of samples over the output range. To place training
set priors, we will use the mean and variance from the label distribution in the training set, and in this
case ypseudo = yempirical. The number of initial pseudo-samples are used to set initial values of κ and
α. µ = E[ypseudo] is the mean of the pseudo-samples, and β is initialized as 0.5(κ − 1)Var(ypseudo) (see
Appendix B.3 for details).

3 Experiments

We illustrate the applicability of the procedure we described with three proof-of-concept experiments on
synthetic datasets, and two challenging, realistic datasets – WILDS-iWildCam and WILDS-PovertyMap
from the WILDS set of OOD generalization benchmarks Koh et al. (2021). We evaluate the method using
both pre as well as post-adjustment pseudo-labels, as mentioned in Section 2.

3.1 Synthetic: MNIST

We split MNIST classes into two subsets: [0, 1, 2, 5, 9] and [3, 4, 6, 7, 8]. We use different colors to correspond
to different deployment locations. In the training set, we color digits in a particular subset a particular color

5

Under review as submission to TMLR

Train (r = 0.99)

Validation (opposite colors with r = 0.75)

Test (r = −1.0)

(a) Synthetic variant of the MNIST dataset constructed by
using colors to correspond to sources with skewed label-
distributions. The colors are flipped for validation and
test with different correlation strengths, corresponding to
(almost completely) reversing the label-skew at the sources
at test-time.

(b) Synthetic Mix-of-Gaussians data. Differently colored
regions along the x-axis correspond to training, validation
and test samples, with different regions of the same color
corresponding to different sources/locations.

Figure 1: Synthetic MNIST and Gaussian datasets.

Figure 2: Skewed COCO-on-Places: synthetic dataset constructed by superimposing COCO objects (Lin
et al., 2014) on scenes from the Places dataset (Zhou et al., 2017). The 5 columns correspond to 5 sources
of data, where the backgrounds correspond to examples of particular scenes, and the skew in number of
examples per row correspond to the skew in label distribution we impose. The figure shows samples from the
training set; for validation and test sets, different backgrounds are used.

99% of the time. This corresponds to a 99% skew in label-distributions across the two locations. The 1%
cross-over would instruct some color-invariance but not strongly enough to completely overcome the bias.
The validation set uses opposing colours for the subsets, but with a 75% correlation – this represents a
scenario where the class-distributions in different locations change from that in training. Finally, the test
set uses completely flipped colors in the two subsets compared to the training set – this implies reversed
label-distributions, resulting in poorer baseline performance.

Since the overall class frequencies are balanced in the training set, we drop the P(y) term, and are only left
with τs and α0 to tune through hyper-parameter optimization. This is done using the validation subsets. With
a 3-layer CNN trained for 20 epochs to 100% training set accuracy, we find, in Table 1a, that using online
adjustments at test-time can lead to marked improvements for the base model in the test set. Validation and
test sets were randomly shuffled for 5 trials. (More details in Appendix C.1)

Table 1: On synthetic datasets, base model performance improves significantly when using online adjustments.

Method Test accuracy
Base 81.00 ± 0.83
Online-Pre 97.50 ± 0.52
Online-Post 95.94 ± 1.46

(a) Colored MNIST

Method MSE
Base 9.17 ± 2.67
Online-Pre 4.35 ± 1.48
Online-Post 4.09 ± 2.27

(b) Mix-of-Gaussians

Method Test Accuracy
Base 56.09 ± 0.66
Online-Pre 57.92 ± 1.22
Online-Post 59.07 ± 0.61

(c) Skewed-COCO-on-Places

6

Under review as submission to TMLR

3.2 Synthetic: Mix-of-Gaussians

We create a synthetic regression dataset by constructing a curve from a mixture of Gaussians. We pick
regions on the x-axis to correspond to training, validation, and test sets, such that every set samples data
from two regions each, corresponding to two locations (see Appendix C.2). In Figure 1b, we depict the curve,
along with sampling indicators for the different sets and sources. The points have been placed at different
heights for clearer visualization of overlaps.

500 points are sampled from the two training regions, and 250 each for the validation and test sets from their
assigned regions. We train a 3-layer MLP with BatchNorm and ReLU activations and a mean squared loss
for 100 epochs, yielding an in-distribution test mean squared error (MSE) of ∼ 0.15. In Table 1b we find
that online updating reduces the OOD test MSE significantly. Results are aggregates over five trials, with a
different random sampling of all data, followed by training and validation each time. Full results and more
experimental details are in Appendix C.2).

3.3 Synthetic: Skewed-COCO-on-Places

We construct a synthetic dataset by superimposing segmented objects from COCO Lin et al. (2014) on
to scenes from the Places dataset Zhou et al. (2017), as in Ahmed et al. (2021). The scenes correspond
to the notion of a deployment location, albeit with significant intra-location variation. For every such
scene-represented source, we use a different class-distribution to simulate source-specific skews in the label
distribution. In Fig. 2 the relative number of images per row represent the relative frequency of a particular
class at a specific source. There are a total of ∼ 10K training images, ∼ 2.5K validation images (each for
seen and unseen sources), and ∼ 6K test images (each for seen and unseen sources).

The validation and test sets are constructed similarly. For in-distribution validation and test sets, the same
set of scenes as for training is used (with different instances), and for new-location validation and test sets,
different sets of scenes are used. See Appendix C.3 for details about dataset construction.

We train a ResNet-50 for 400 epochs with SGD+Momentum for the underlying model, achieving an in-
distribution test accuracy of 75%. Since the overall distribution of classes is close to uniform, we drop the
marginal P(y) term), learning τs, α0 on validation. In Table 1c we find improved performance over the
unadjusted base model. Accuracy is aggregated across 5 random orderings of the test set.

3.4 WILDS-iWildCam

We use the variant of the iWildCam 2020 dataset Beery et al. (2021) curated by the WILDS set of
benchmarks for out-of-distribution (OOD) generalization Koh et al. (2021). The data consists of burst images
taken at camera traps, triggered by animal motion. The task is to identify the species in the picture, and the
locations correspond to the unique camera trap the pictures are from. There are a total of 182 species in
this version of the dataset across a total of 323 camera traps. There is significant skew in terms of species
distribution across different camera traps, as well as the number of images available for each trap. The
training set consists of ∼ 130K images from 243 traps; the in-distribution validation set consists of ∼ 7.3K
images from the same traps as that in the training set but on different dates; the OOD validation set consists
of ∼ 15K images taken at 32 traps that are different from the ones in the training set; the in-distribution test
set consists of ∼ 8.1K images taken by the same camera traps as in the training set, but on different dates
from both training and validation; finally, the OOD test set consists of ∼ 43K images taken at 48 camera
traps that arae different from those for all other splits.

Koh et al. (2021) trained ResNet-50 based models along with their curation of this dataset, also evaluating
several methods for OOD generalization and releasing all models. We use their models trained with the
domain generalization method CORAL Sun & Saenko (2016), since this model has improved performance
over the ERM baseline. They released three sets of weights, trained with three random seeds, which result in
some variation in performance. Since our goal is to illustrate potential improvements when adjusting outputs
from a base model, we evaluate the online scheme for each of the three seeds and report results separately for
the seeds, with 5 random orderings each of the test set.

7

Under review as submission to TMLR

Table 2: WILDS-iWildCam OOD performance – (top) average accuracy, (bottom) Macro F1. Base
performance is achieved with the non-adjusted predictions from the underlying neural network model. Online-
U refers to the uniform prior scheme, Online-P refers to the scaled-up P(y) scheme. Online results are
aggregates over 5 random orderings of the test set.

Seed Base Online-Pre-U Online-Pre-P Online-Post-U Online-Post-P
0 70.25 71.61 ± 0.08 71.18 ± 0.06 71.78 ± 0.04 71.64 ± 0.05
1 76.79 78.79 ± 0.07 77.71 ± 0.05 78.65 ± 0.37 78.81 ± 0.10
2 72.30 70.91 ± 0.07 71.48 ± 0.10 72.92 ± 0.07 70.22 ± 0.18

Seed Base Online-Pre-U Online-Pre-P Online-Post-U Online-Post-P
0 32.69 33.04 ± 0.18 31.38 ± 0.64 33.43 ± 0.36 34.20 ± 0.44
1 32.91 34.44 ± 0.25 33.76 ± 0.31 33.39 ± 0.15 33.97 ± 0.51
2 32.78 33.00 ± 0.15 33.05 ± 0.15 33.38 ± 0.32 33.66 ± 0.07

Table 3: WILDS-PovertyMap OOD performance – (top) Pearson’s correlation coefficient on the entire test
set, (bottom) worst-group correlation. Online results are aggregates over 5 random orderings of the test set.

Fold Base Online-Pre-U Online-Pre-P Online-Post-U Online-Post-P

A 0.84 0.84 ± 0.00 0.84 ± 0.00 0.84 ± 0.00 0.84 ± 0.00
B 0.83 0.82 ± 0.00 0.82 ± 0.00 0.82 ± 0.00 0.82 ± 0.00
C 0.80 0.83 ± 0.00 0.80 ± 0.00 0.83 ± 0.00 0.83 ± 0.00
D 0.77 0.77 ± 0.00 0.77 ± 0.00 0.77 ± 0.00 0.77 ± 0.00
E 0.75 0.75 ± 0.00 0.74 ± 0.00 0.75 ± 0.00 0.74 ± 0.00

Fold Base Online-Pre-U Online-Pre-P Online-Post-U Online-Post-P

A 0.42 0.43 ± 0.00 0.43 ± 0.00 0.43 ± 0.00 0.42 ± 0.01
B 0.52 0.50 ± 0.01 0.50 ± 0.00 0.51 ± 0.00 0.51 ± 0.00
C 0.42 0.56 ± 0.01 0.56 ± 0.01 0.57 ± 0.01 0.58 ± 0.02
D 0.50 0.56 ± 0.01 0.57 ± 0.01 0.56 ± 0.01 0.56 ± 0.02
E 0.34 0.37 ± 0.00 0.37 ± 0.00 0.36 ± 0.02 0.36 ± 0.01

Koh et al. (2021) recommend evaluation with both average accuracy as well as macro-F1 (since some species
in the dataset are rare). We perform evaluation with both metrics, but use our own trained models for average
accuracy – this is because Koh et al. (2021) trained their models optimizing for macro F1. We similarly
trained CORAL-augmented base models optimizing the penalty coefficient and choice of early stopping.

In Table 2, we show results for the base models trained with three seeds for both average accuracy and
macro-F1. For evaluating the online-update method, we report mean and standard deviation over five trials,
where each trial uses a different random ordering of the OOD test set. τs, τy, α0 are picked on the OOD
validation set.

3.5 WILDS-PovertyMap

We use the WILDS variant of a poverty mapping dataset Yeh et al. (2020). This is a dataset for estimating
average household economic conditions in a region through satellite imagery, measured by an asset wealth
index computed from survey data. The data comprises 8-channel satellite images with data from 23 African
countries. The locations here correspond to different countries.

Due to the smaller size of the dataset, Koh et al. (2021) recommend a five-fold evaluation, where every fold is
approximately constructed as follows – 10K images from 13-14 countries in the training set; 1K images from
the same countries for in-distribution validation; 1K images from these countries for in-distribution testing;
4K images from 4-5 countries not in the training set for OOD validation; and 4K images from 4-5 countries
in neither training nor validation sets.

8

Under review as submission to TMLR

This regression task is assessed with Pearson’s correlation between predicted economic index vs. actual index,
as is standard in the literature (Yeh et al., 2020). Following Koh et al. (2021), we split the assessment into
overall average as well as worst-group performance, which picks the worst performance across rural/urban
subgroups.

As with iWildCam, we use the base networks and weights released by Koh et al. (2021), but with our
retrained versions for average correlation coefficient (since the validation choices for the released weights were
for worst group performance). Once again, we use the CORAL-augmented models, although CORAL does
not seem to add significant advantages to ERM for this dataset. We evaluate separately for each fold (which
have quite a bit of variance in base performance) with 5 random orderings of the test set.

In Table 3, we find that while there seems generally little to no improvement for average correlation, there
are more significant improvements for three of five folds in terms of worst-group performance.

As noted in Koh et al. (2021), a wide range of differences along many dimensions such as infrastructure,
agriculture, development, cultural aspects play a role not only in determining wealth-distribution, but also in
terms of how the features manifest in different places (for example, different roof types might imply opposite
trends for wealthiness in different parts of the world). Such real-world issues imply that validating for OOD
performance is bound to be sensitive to problem types and the specific choices of validation sets used to tune
hyper-parameters, and the differences that may arise between an OOD validation set and an OOD test set.
This issue extends generally to all attempts at OOD generalization.

4 Limitations

Reliability of the underlying predictive model Models using pseudo-labels must ensure that the
underlying predictive distribution continues to be reliable to a certain extent to benefit from it. This is less
clear in settings with label- and conditional-shift. The division by P(y) in Eq. 1 can be viewed as correcting
for skewed label-distributions in the training set Menon et al. (2021). The use of models trained with penalties
designed for distributional robustness, as we do for iWildCam and PovertyMap with CORAL-augmented
base models, may help to an extent for robustness to distributional shift. Nevertheless, while we are able to
report improvements for most of our settings, we caution that the positive results ought to be taken with a
grain of salt. While our results are indicative that output-adjustment methods can be beneficial in online
settings for deployment in new environments, it is certainly plausible that the underlying predictive models
would cease to be similarly useful under more extreme shifts.

Validation Another aspect affecting test performance is choice of a validation set. In our experiments,
we have used official OOD validation splits from WILDS to pick calibration and prior hyper-parameters.
In real life, such sets might not exist beforehand and would require targeted curation by the entity (client
or provider) performing the location-based adjustment. It is likely that if the validation and test scenarios
differ significantly in terms of the extent and nature of label-shift and conditional shift from the training set,
performance might be unpredictable. In Appendix D, we report results for iWildCam and PovertyMap
when picking hyper-parameters using the in-distribution validation set and the test set itself (oracle τs and
pseudo-count). We find that while picking hyper-parameters on the in-distribution validation set comes
with high variance: we can sometimes observe improvements over the baseline model, but at other times
performance can drop significantly. With oracle hyper-parameters, we would not observe any drops below
baseline performance, since the learned τs can simply be shrunk to small values when the test distribution is
too challenging to adapt to.

Unexpected “adversarial” orderings are possible In the derivation for Eq. 3, we assumed the test
samples in a new location are presented in an IID manner wrt the distribution P(y | s). Violating this
assumption can sometimes be adversarial: consider a deployment where we initially observe a biased, very
high frequency of one particular category at the expense of other equally representative categories in that
location. This could skew our predictive distribution significantly so as to continuously predict this category
over and over again. As with any AI model when deployed in the wild, it is advisable to incorporate a
monitoring scheme to catch unexpected drifts.

9

Under review as submission to TMLR

5 Related work

While the online, black-box setting has not been explored in the context of adapting to label-shift in new
deployments with induced conditional shift, there are several closely-related aspects that have been studied
in different settings or contexts in the literature.

Label-shift for classifiers Saerens et al. (2002) provides a seminal discussion about adapting the output
distribution of a classifier when the test set undergoes label-shift. The update equation mirrors Eq. 1, and
relies upon an iterative Expectation Maximization strategy to estimate the new label distribution. This
approach presumes access to the entire test set up front, or a sufficiently representative sample.

While more recent works have investigated other ways to estimate label-shift (Lipton et al., 2018; Azizzade-
nesheli et al., 2019), they require holding out a random split of IID data to estimate confusion matrices
(used for re-training the classifier with importance-weighted ERM), which does not align well with the online,
black-box setting we study. Furthermore, it has been recently suggested (Alexandari et al., 2020; Garg et al.,
2020) that the simple correction method in Saerens et al. (2002) often outperforms these later methods when
combined with calibration. While Alexandari et al. (2020) perform their calibration using a held-out IID
validation set for the iterative method, we perform calibration for our online model using a validation set in
novel locations since our goal in this paper is to explore the setting where there is an associated conditional
shift with change in locations.

There are relatively much fewer precedents in consideration of label-shift in online settings. Very recently, Wu
et al. (2021) proposed to continually refine the output distribution by using online gradient methods when
the test-time label distribution drifts over time (in the same location). They rely on similar tools as in some
of the methods above, inheriting the need for robust estimates of a confusion matrix computed with held-out
IID data. We found that applying the method to iWildCam is unsuccessful because the large number of
classes and skewed representation in the validation sets result in non-invertible confusion matrices.

Unsupervised domain adaptation While unsupervised domain adaptation (UDA) (Wilson & Cook,
2020) typically assumes no label-shift between source and target domains, Zhang et al. (2013) pointed out
that in practical settings, domain shift often tends to be associated with concurrent label-shift, a setting they
christened generalized target-shift (GeTarS). The GeTarS setup has received limited attention compared
to standard UDA. The key ideas in the literature usually involve aligning latent spaces by conditionally
matching training and testing points with estimated class weights to account for label-shifts (Tachet des
Combes et al., 2020; Kirchmeyer et al., 2022). More recently, with similar practical considerations as ours
about data privacy, UDA with black-box source models has been explored by Zhang et al. (2021), in which a
target model is trained by querying a source model API, without access to the model internals or training
data. Our setup is not amenable to UDA because we presume both an online setting as well as lack of
test-time resources to train an AI model tailored to deployment locations.

Test-time training Another emerging line of literature focuses on updating neural network parameters
using test data without being able to match training statistics with test statistics, due to the potential lack of
access to training data for the same topical reasons – data privacy and large datasets. Some examples include
updating the Batch-Norm statistics optimizing for minimum test-time entropy Wang et al. (2021), or using
self-supervised pseudo-labels to adapt the feature extraction part of the network Liang et al. (2020). Our
setup here can be viewed as a form of test-time training, but in a more constrained setting, with inaccessible
model parameters and no resources to replicate an onsite-model by querying the black-box model, e.g. using
distillation (Hinton et al., 2015).

Contextual priors in fine-grained classification The use of context-driven priors for fine-grained
classification tasks, where context can resolve ambiguity, has been explored in various ways in the litera-
ture. Mac Aodha et al. (2019) use a spatio-temporal prior over species distributions in specific locations by
inferring these priors from image metadata such as location, time, and photographer information. Similar
works Skreta et al. (2020); Chu et al. (2019); de Lutio et al. (2021) have also demonstrated improvements in
fine-grained classifications when available or inferable contextual priors are factored into predictive models.

10

Under review as submission to TMLR

Out-of-distribution generalization There has been a recent surge in interest for methods aiming to learn
stable or invariant features across different domains/environments/groups Sun & Saenko (2016); Arjovsky
et al. (2019); Krueger et al. (2020); Sagawa et al. (2020). Such approaches have been demonstrated to be
useful for certain types of distributional shifts, such as with improved minority group robustness Sagawa
et al. (2020) and systematic generalization Ahmed et al. (2021).

Our discussion in this paper is complementary to this set of methods in OOD generalization research. One
can use an underlying model trained with cross-group penalties that result in improved OOD generalization,
and further improve performance by factoring in useful contextual information.

6 Conclusion

We discussed the applicability of probabilistic output-adjustments for black-box models in online novel-
deployment settings with private training data and inaccessible model weights. We illustrated that approximate
Bayesian accounting of label-shift estimated from pseudo-labels can potentially be used to improve performance
in situations such as these, which are becoming ever more practically relevant with widespread consumption
and larger models.

While invariance to contextual features imposed through cross-environment penalties can be useful in some
ways for robustness, there can be situations where specific contextual priors are helpful. In this paper, we
demonstrated how use of deployment-location information in associated label-shift scenarios can improve
performance. A practitioner can similarly use any other metadata deemed to provide useful contextual
information by domain experts in specific applications.

Broader Impact Statement

While our experiments show overall positive trends for the most part, in particular for worst-group performance,
it should be noted that any method aiming at improvements for novel deployments is never guaranteed to be
fail-safe, since too many things can change unexpectedly in the world. In Section 4, we discuss three possible
ways approaches such as ours can backfire, when the underlying assumptions are not met. We believe that if
such methods are thoughtfully put into practice with guard-rails for detecting failure-modes online if/when
they arise (or their use avoided altogether in specific applications, depending on the stakes), the potential
positives can outweigh the potential negatives.

References
Faruk Ahmed, Yoshua Bengio, Harm van Seijen, and Aaron Courville. Systematic generalisation with group

invariant predictions. In 9th International Conference on Learning Representations (ICLR), 2021.

Amr Alexandari, Anshul Kundaje, and Avanti Shrikumar. Maximum likelihood with bias-corrected calibration
is hard-to-beat at label shift adaptation. In International Conference on Machine Learning, pp. 222–232.
PMLR, 2020.

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization. CoRR,
2019.

Kamyar Azizzadenesheli, Anqi Liu, Fanny Yang, and Animashree Anandkumar. Regularized learning for
domain adaptation under label shifts. arXiv preprint arXiv:1903.09734, 2019.

Sara Beery, Arushi Agarwal, Elijah Cole, and Vighnesh Birodkar. The iwildcam 2021 competition dataset.
arXiv preprint arXiv:2105.03494, 2021.

Grace Chu, Brian Potetz, Weijun Wang, Andrew Howard, Yang Song, Fernando Brucher, Thomas Leung,
and Hartwig Adam. Geo-aware networks for fine-grained recognition. In Proceedings of the IEEE/CVF
International Conference on Computer Vision Workshops, pp. 0–0, 2019.

11

Under review as submission to TMLR

Joseph Paul Cohen, Tianshi Cao, Joseph D Viviano, Chin-Wei Huang, Michael Fralick, Marzyeh Ghassemi,
Muhammad Mamdani, Russell Greiner, and Yoshua Bengio. Problems in the deployment of machine-learned
models in health care. CMAJ, 193(35):E1391–E1394, 2021.

Riccardo de Lutio, Yihang She, Stefano D’Aronco, Stefania Russo, Philipp Brun, Jan D Wegner, and Konrad
Schindler. Digital taxonomist: Identifying plant species in community scientists’ photographs. ISPRS
Journal of Photogrammetry and Remote Sensing, 182:112–121, 2021.

Morris H. DeGroot. Optimal Statistical Decisions, chapter 9, pp. 155–189. John Wiley Sons, Ltd, 2004.

Saurabh Garg, Yifan Wu, Sivaraman Balakrishnan, and Zachary C Lipton. A unified view of label shift
estimation. arXiv preprint arXiv:2003.07554, 2020.

A. Gelman, J.B. Carlin, H.S. Stern, D.B. Dunson, A. Vehtari, and D.B. Rubin. Bayesian Data Analysis (3rd
ed.). Chapman and Hall/CRC, 2013.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural networks.
ICML, pp. 1321–1330, 2017.

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2(7), 2015.

Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. Neural computation,
14(8):1771–1800, 2002.

Matthieu Kirchmeyer, Alain Rakotomamonjy, Emmanuel de Bézenac, and Patrick Gallinari. Mapping
conditional distributions for domain adaptation under generalized target shift. In International Conference
on Learning Representations (ICLR), 2022.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Balsubramani,
Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A benchmark of
in-the-wild distribution shifts. In International Conference on Machine Learning, pp. 5637–5664. PMLR,
2021.

David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Remi Le Priol, and
Aaron Courville. Out-of-distribution generalization via risk extrapolation (rex). CoRR, 2020.

Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the source data? source hypothesis
transfer for unsupervised domain adaptation. In International Conference on Machine Learning, pp.
6028–6039. PMLR, 2020.

Tsung-Yi Lin, M. Maire, Serge J. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick.
Microsoft coco: Common objects in context. ArXiv, abs/1405.0312, 2014.

Zachary Lipton, Yu-Xiang Wang, and Alexander Smola. Detecting and correcting for label shift with black
box predictors. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 3122–3130. PMLR,
10–15 Jul 2018.

Oisin Mac Aodha, Elijah Cole, and Pietro Perona. Presence-only geographical priors for fine-grained
image classification. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
9596–9606, 2019.

Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit, and Sanjiv
Kumar. Long-tail learning via logit adjustment. ICLR, 2021.

Kevin P Murphy. Conjugate bayesian analysis of the gaussian distribution. https://www.cs.ubc.ca/
~murphyk/Papers/bayesGauss.pdf, 2007. [Online; accessed 19-January-2022].

12

https://www.cs.ubc.ca/~murphyk/Papers/bayesGauss.pdf
https://www.cs.ubc.ca/~murphyk/Papers/bayesGauss.pdf

Under review as submission to TMLR

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual lifelong
learning with neural networks: A review. Neural Networks, 113:54–71, 2019.

Marco Saerens, Patrice Latinne, and Christine Decaestecker. Adjusting the outputs of a classifier to new a
priori probabilities: A simple procedure. Neural Comput., 14(1):21–41, jan 2002. ISSN 0899-7667.

Shiori Sagawa, Pang Wei Koh, Tatsunori Hashimoto, and Percy Liang. Distributionally robust neural networks
for group shifts: On the importance of regularization for worst-case generalization. ICLR, 2020.

Marta Skreta, Alexandra Luccioni, and David Rolnick. Spatiotemporal features improve fine-grained butterfly
image classification. In Conference on Neural Information Processing Systems, 2020.

Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation. pp. 443–450,
2016.

Remi Tachet des Combes, Han Zhao, Yu-Xiang Wang, and Geoff Gordon. Domain adaptation with conditional
distribution matching and generalized label shift. In Neural Information Processing Systems (NeurIPS),
2020.

J. Christopher D. Terry, Helen E. Roy, and Tom A. August. Thinking like a naturalist: Enhancing computer
vision of citizen science images by harnessing contextual data. In Methods in Ecology and Evolution,
volume 11, pp. 303–315, 2020.

Theo Vos et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a
systematic analysis for the global burden of disease study 2019. Lancet, 396(10258):1204–1222, 2020.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully test-time
adaptation by entropy minimization. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=uXl3bZLkr3c.

Garrett Wilson and Diane J Cook. A survey of unsupervised deep domain adaptation. ACM Transactions on
Intelligent Systems and Technology (TIST), 11(5):1–46, 2020.

Ruihan Wu, Chuan Guo, Yi Su, and Kilian Q Weinberger. Online adaptation to label distribution shift.
Advances in Neural Information Processing Systems, 34, 2021.

Christopher Yeh, Anthony Perez, Anne Driscoll, George Azzari, Zhongyi Tang, David Lobell, Stefano Ermon,
and Marshall Burke. Using publicly available satellite imagery and deep learning to understand economic
well-being in africa. Nature communications, 11(1):1–11, 2020.

Haojian Zhang, Yabin Zhang, Kui Jia, and Lei Zhang. Unsupervised domain adaptation of black-box source
models. In BMVC, 2021.

Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, and Zhikun Wang. Domain adaptation under target
and conditional shift. In Proceedings of the 30th International Conference on International Conference on
Machine Learning - Volume 28, 2013.

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10 million image
database for scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017.

13

https://openreview.net/forum?id=uXl3bZLkr3c

Under review as submission to TMLR

A Derivations

A.1 Eq. 1

P(y | x, s) = P(x, s | y)P(y)
P(x, s) , (Bayes rule) (25)

∝ P(x, s | y)P(y), (dropping terms independent of y) (26)
= P(x | y)P(s | y)P(y), (using assumption x ⊥⊥ s | y) (27)

= P(y | x)P(x)
P(y)

P(y | s)P(s)
�
��P(y) �

��P(y), (Bayes rule) (28)

∝ P(y | x)P(y | s)
P(y) (dropping terms independent of y) (29)

A.2 Eq. 3

Pn(ϕ | s) = P(ϕ | ys
1, · · · , ys

n, s), (30)

= P(ys
1, · · · , ys

n | ϕ, s)P(ϕ | s)
P(ys

1, · · · , ys
n) , (Bayes rule) (31)

∝ P(ys
1, · · · , ys

n | ϕ, s)P(ϕ | s), (dropping terms independent of ϕ) (32)
= P(ys

1, · · · , ys
n | ϕ, s)P(ϕ), (same prior on ϕ in all s) (33)

=
n∏

i=1
P(ys

i | ϕ, s)P(ϕ) (using assumption ys
j ⊥⊥ ys

k | s) (34)

= P(ys
n | ϕ, s)

(
n−1∏
i=1

P(ys
i | ϕ, s)P(ϕ)

)
(regrouping terms) (35)

= P(ys
n | ϕ, s)Pn−1(ϕ | s), (by definition) (36)

B Regression model

B.1 Eq. 15

The required distributions are defined as

P(y | x) ∝ exp
(

− τx

2

(
y − fθ(x)

)2
)

, (37)

P(y | s) ∝

(
1 + λs

2αs
(y − µs)2

)− 2αs+1
2

, (38)

P(y) ∝ exp
(

− τy

2

(
y − µy

)2
)

, (39)

(40)

which gives us the objective J = − logP(y | x, s) expressed as

J = − logP(y | x) − logP(y | s) + logP(y) (41)

= τx

2

(
y − fθ(x)

)2
− τy

2

(
y − µy

)2
+ 2αs + 1

2 log
(

1 + λs

2αs
(y − µs)2

)
(42)

14

Under review as submission to TMLR

The derivative of this objective wrt y is

∂J

∂y
= τx(y − µx) − τy(y − µy) +

2αs+1

�2
λs

2αs
.�2.(y − µs)

1 + λs

2αs
(y − µs)2

(43)

= τx(y − fθ(x)) − τy(y − µy) +
(2αs + 1) λs

2αs
(y − µs)

1 + λs

2αs
(y − µs)2

(44)

=
(
τx − τy

)︸ ︷︷ ︸
τd

y +
(
τyµy − τxfθ(x)

)︸ ︷︷ ︸
τµ

+

a︷ ︸︸ ︷
(2αs + 1)

m︷︸︸︷
λs

2αs
(y − µs)

1 + λs

2αs
(y − µs)2

(45)

= τdy + τµ + am(y − µs)
1 + m(y − µs)2 (46)

Setting to zero, we have(
τdy + τµ

)(
1 + m(y − µs)2

)
+ am(y − µs) = 0 (47)

=⇒
(

τdy + τµ

)(
1 + my2 + mµ2

s − 2mµsy
)

+ am(y − µs) = 0 (48)

=⇒ τdy + mτdy3 + mµ2
sτdy − 2mµsτdy2 + τµ + mτµy2 + mτµµ2

s − 2mµsτµy + amy − amµs = 0 (49)
=⇒ mτdy3 + (mτµ − 2mµsτd)y2 + (τd + mµ2

sτd − 2mµsτµ + am)y + (τµ + mτµµ2
s − amµs) = 0 (50)

which is the equation we shall solve for y. We use NumPys polynomial solver to find roots. A cubic equation
either has one real and a pair of conjugate imaginary roots, or all real roots. We test the real solutions for a
positive curvature (implying local minima), and pick the minima resulting in smallest value of the objective
J .

B.2 Second derivative test for solutions

The second derivative of J is given by

τd − 2am2(y − µs)2

(1 + m(y − µs)2)2 + am

1 + m(y − µs)2 (51)

Writing y − µs as D, we have

τd + am

(1 + mD2) − 2am2D2

(1 + mD2)2 = τd + am

1 + mD2

(
1 − 2mD2

1 + mD2

)
= τd + am(1 − mD2)

(1 + mD2)2 (52)

When this expression is positive, we have a local minima.

For the first term to be positive, we require that τd > 0, which has a straightforward intuitive interpretation:
τx > τy, i.e. output precision should be higher than marginal-adjustment precision. This is a reasonable
condition which we expect to be fulfilled, since we typically expect to rely more strongly on the underlying
predictive model than simply the marginal.

In the second term, am is always non-negative, for a positive pseudo-count. The denominator is always
positive. Substituting in expressions for the values after the n-th update, we have

mD2 =
κn

κn+1 (y − µn)2∑n−1
t=0

κt

κt+1 (ŷt+1 − µt)2
. (53)

where we have dropped dependence on s to reduce clutter. When this term is ≤ 1, we are guaranteed
positivity (strictly speaking, τd provides the second term with some room for negative values, but we ignore

15

Under review as submission to TMLR

it for simplification). This condition implies

(y − µn)2 ≤ κn + 1
κn

n−1∑
t=0

κt

κt + 1(ŷt+1 − µt)2, (54)

which then implies that the following range for y allows local minima

µn −

√√√√κn + 1
κn

n−1∑
t=0

κt

κt + 1(ŷt+1 − µt)2 ≤ y ≤ µn +

√√√√κn + 1
κn

n−1∑
t=0

κt

κt + 1(ŷt+1 − µt)2. (55)

An intuitive interpretation of this condition is that valid updates are allowed within an increasing range as a
function of the total observed variances up to the n-th test example. In practice, we find that validation
tends to pick values for τx > τy, and that the case for no-local-minima typically does not arise for the optimal
hyper-parameters in our experiments.

B.3 Initializing priors

For initializing priors, we might endeavour to stay unbiased, since we assume that deployment locations
can have significantly different target distributions than we might anticipate from the marginal over the
training set. For classification, we built this in by using a uniform pseudo-count for all classes and sources.
For regression, we simulate a pseudo-count of uniform samples from the output range.

If we start with a reference prior for the Normal-Gamma distribution with parameter settings

µ = ., κ = 0, α = −0.5, β = 0, (56)

then after observing a N data-points {y1, · · · , yN }, yi ∼ U [L, H] (the uniformly sampled points we will
simulate), the resulting posterior is

µ = 1
N

N∑
i=1

yi, (57)

κ = N, (58)

α = N − 1
2 , (59)

β = 1
2

N∑
i=1

(yi − µ)2. (60)

In this view, κ corresponds to the pseudo-count (as per the interpretation of the parameters of the Normal-
Gamma conjugate prior as in Murphy (2007)). α is defined in terms of κ. To improve stability, we will set µ
to the middle of the output range rather than actually estimate the mean of our uniform pseudo-samples.
Likewise, we will set β by estimating its value as a function of κ and using the expression for variance of a
uniform distribution,

E[β] = 1
2(κ − 1)Var(yi) = (κ − 1)(H − L)2

24 . (61)

For initializing with the scaled-up marginal distribution, we simply plug in the marginal mean and variance
into µ and the formula for E[β] (in place of Var(y)).

C Experimental details

C.1 Synthetic MNIST

The splitting of digits into two sets is performed by observing mis-classification matrices after 200 iterations
of training a neural network averaged across a 100 runs – digits are put into opposing sets if they tend to be
confused, while also trying to keep the set-sizes balanced.

16

Under review as submission to TMLR

The network architecture consists of 3 conv layers with 64, 128 and 256 channels, each followed by maxpool,
batchnorm, and relu. After the third layer, we spatially mean-pool activations and use a linear layer to
map to the logits. A weight-decay of 5e − 4 is applied on all parameters. Training is conducted for 20 epochs
with batches of size 256 where training accuracy saturates to 100%. An initial learning rate of 0.1 is used,
which is cut by 5 at the 6-th, 12-th and 16-th epochs.

C.2 Synthetic Gaussian

The synthetic data for this experiment is generated with the following function

y(x) = 10N (y | x; µ = −2, σ = 0.5) + 3N (y | x; µ = 2, σ = 0.5) + 6N (y | x; µ = 0, σ = 1) (62)

Training points: Training points are sampled from two regions on the x-axis, x ∼ N (−2, 0.4) and
x ∼ N (2, 0.2), with 250 points each.

OOD validation points: OOD validation points are sampled from N (−3.5, 0.2) and N (1, 0.2), with 250
points each.

OOD test points: OOD test points are sampled from N (0, 0.2) and N (3, 0.2), with 250 points each.

For OOD sets, the different sampling distributions correspond to different locations. For different trials, we
repeat the whole experiment from scratch, sampling new training, validation, and test sets, and performing
validation every time.

The network architecture is a 3 layer MLP with 128 hidden units, with batchnorm and relu after hidden
activations. A weight decay of 1e − 8 is applied on all parameters. We train for a 100 epochs with batch-sizes
of 100, with SGD + Momentum (0.9), starting with an initial learning rate of 0.01 and scaling it by 0.95
after every epoch.

We include the non-aggregated MSEs to confirm that in spite of the large standard deviations in the aggregated
results in Table 1b (due to base performance fluctuations), there are consistent improvements over every base
model/data-sampling individually.

Seed IID-Base OOD-Base OOD-Online
0 0.08 11.23 4.21
1 0.13 12.37 6.63
2 0.16 6.13 2.29
3 0.19 9.14 1.36
4 0.21 7.00 5.97

C.3 Synthetic Skewed-COCO-on-Places

We chose the following objects for this synthetic classification task: bicycle, train, cat, chair, horse, motorcycle,
bus, dog, couch, and zebra; and the following scenes to simulate different sources.

Training: beach, canyon, building_facade, desert/sand, iceberg

OOD validation: oast_house, orchard, crevasse, ball_pit, viaduct

OOD test: water_tower, staircase, waterfall, bamboo_forest, zen_garden

When there are multiple instances of a class in an image, we pick the instance occupying largest area, such
that only images with objects occupying at least 10K pixels are retained. All images are resized to 256 × 256.

Across the 5 sources, the number of examples for training, validation, and test sets are as follows.

17

Under review as submission to TMLR

Table 4: Training set

bicycle train cat chair horse motorcycle bus dog couch zebra

beach 669 669 429 176 46 7 0 0 0 0
canyon 135 329 513 513 329 135 35 6 0 0
building_facade 5 34 132 322 503 503 322 132 34 5
desert/sand 0 0 6 35 135 329 513 513 329 135
iceberg 0 0 0 0 7 46 176 429 669 669

Table 5: Validation sets

bicycle train cat chair horse motorcycle bus dog couch zebra

beach 167 167 107 44 11 1 0 0 0 0
canyon 33 82 128 128 82 33 8 1 0 0
building_facade 1 8 33 80 125 125 80 33 8 1
desert/sand 0 0 1 8 33 82 128 128 82 33
iceberg 0 0 0 0 1 11 44 107 167 167

Table 6: Test sets

bicycle train cat chair horse motorcycle bus dog couch zebra

beach 401 401 257 105 27 4 0 0 0 0
canyon 81 197 308 308 197 81 21 3 0 0
building_facade 3 20 79 193 302 302 193 79 20 3
desert/sand 0 0 3 21 81 197 308 308 197 81
iceberg 0 0 0 0 4 27 105 257 401 401

Note that the pattern of label-shift is the same across validation and test subsets. This proof-of-concept
experiment is intended as a middle-ground between the colored MNIST and WILDS-iWildCam exper-
iments, in that the potential of learning hyper-parameters to account for conditional shift is tested while
keeping label-shift fixed (recall that the in-distribution test accuracy is 75%, while the OOD test accuracy is
markedly lower, at 55%.

We train for 400 epochs with SGD + Momentum (0.9), using batch sizes of 128, with an initial learning rate
of 0.1 which is cut by 5 at the 240th, 320th, 360th epochs. An L2 weight decay regulariser is applied on
all parameters with a coefficient of 5e−4. We normalize images with the training set mean and standard
deviation per channel, and apply data augmentation of random crops to 224 × 224 and random horizontal
reflections.

C.4 Hyperparameters, compute, and code and data licenses.

The hyper-parameters involved are the two calibration terms τx, τs and the pseudo-count term α. These were
picked via grid-search on validation sets.

V100 GPUs were used to train base models (in cases where we trained our own models), and the online
adjustment experiments were performed on an Apple Macbook Air with saved outputs from the models.

We reused code from https://github.com/p-lambda/wilds, released under the MIT License. We also
used data from MS-COCO, released under the Creative Commons Attribution 4.0 License. WILDS-
iWildCam is under Community Data License Agreement – Permissive – V1.0, and the WILDS-
PovertyMap data is U.S. Public Domain (LandSat/DMSP/VIIRS).

18

https://github.com/p-lambda/wilds

Under review as submission to TMLR

D In-distribution and oracle validation

In this section, we report OOD performances when using the in-distribution validation set to pick calibration
and pseudo-count hyper-parameters, and when we use the OOD test set itself (oracle hyper-parameters). For
online-update methods, all numbers are aggregates over 5 trials corresponding to 5 random orderings of the
test set.

Table 7: WIDLS-iWildCam with in-distribution validation. (left) Average accuracy, (right) Macro F1

Seed Baseline Online-U Online-P

0 70.25 72.22 ± 0.48 72.58 ± 0.45
1 76.79 78.30 ± 0.10 78.23 ± 0.10
2 72.30 72.72 ± 0.73 72.72 ± 0.73

Seed Baseline Online-U Online-P

0 32.69 32.62 ± 0.18 32.61 ± 0.21
1 32.91 32.87 ± 0.38 33.47 ± 0.32
2 32.78 27.90 ± 0.17 32.70 ± 0.09

Table 8: WILDS-PovertyMap with in-distribution validation. (left) Overall correlation, (right) worst-group
correlation

Fold Baseline Online-U Online-P

A 0.84 0.80 ± 0.00 0.72 ± 0.00
B 0.83 0.82 ± 0.00 0.82 ± 0.00
C 0.80 0.82 ± 0.00 0.82 ± 0.00
D 0.77 0.78 ± 0.01 0.75 ± 0.02
E 0.75 0.72 ± 0.01 0.61 ± 0.01

Fold Baseline Online-U Online-P

A 0.42 0.43 ± 0.00 0.42 ± 0.00
B 0.52 0.33 ± 0.03 0.44 ± 0.02
C 0.42 0.50 ± 0.01 0.52 ± 0.01
D 0.50 0.46 ± 0.04 0.49 ± 0.07
E 0.34 0.36 ± 0.02 0.34 ± 0.01

Table 9: WILDS-iWildCam with oracle validation. (left) Average accuracy, (right) Macro F1

Seed Baseline Online-U Online-P

0 70.25 72.23 ± 0.48 72.89 ± 0.18
1 76.79 79.25 ± 0.07 78.85 ± 0.03
2 72.30 73.32 ± 0.07 73.21 ± 0.08

Seed Baseline Online-U Online-P

0 32.69 33.58 ± 0.26 34.20 ± 0.44
1 32.91 35.04 ± 0.93 34.15 ± 0.83
2 32.78 33.56 ± 0.09 33.86 ± 0.17

Table 10: WILDS-PovertyMap with oracle validation. (left) Overall correlation, (right) worst-group
correlation.

Fold Baseline Online-U Online-P

A 0.84 0.84 ± 0.00 0.84 ± 0.00
B 0.83 0.83 ± 0.00 0.83 ± 0.00
C 0.80 0.83 ± 0.00 0.83 ± 0.00
D 0.77 0.78 ± 0.00 0.78 ± 0.00
E 0.75 0.75 ± 0.00 0.75 ± 0.00

Fold Baseline Online-U Online-P

A 0.42 0.45 ± 0.02 0.44 ± 0.01
B 0.52 0.52 ± 0.00 0.52 ± 0.00
C 0.42 0.58 ± 0.02 0.58 ± 0.02
D 0.50 0.57 ± 0.02 0.56 ± 0.02
E 0.34 0.37 ± 0.00 0.37 ± 0.00

19

	Introduction
	Approach
	Classification
	Regression

	Experiments
	Synthetic: MNIST
	Synthetic: Mix-of-Gaussians
	Synthetic: Skewed-COCO-on-Places
	WILDS-iWildCam
	WILDS-PovertyMap

	Limitations
	Related work
	Conclusion
	Derivations
	Eq. 1
	Eq. 3

	Regression model
	Eq. 15
	Second derivative test for solutions
	Initializing priors

	Experimental details
	Synthetic MNIST
	Synthetic Gaussian
	Synthetic Skewed-COCO-on-Places
	Hyperparameters, compute, and code and data licenses.

	In-distribution and oracle validation

