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Abstract

Understanding the contribution of the inputs001
on the output is useful across many tasks. This002
work provides an information-theoretic frame-003
work to analyse the influence of inputs for text004
classification tasks. Natural language process-005
ing (NLP) tasks take either a single or mul-006
tiple text elements to predict an output vari-007
able. Each text element has two components:008
the semantic meaning and a linguistic real-009
ization. Multiple-choice reading comprehen-010
sion (MCRC) and sentiment classification (SC)011
are selected to showcase the framework. For012
MCRC, it is found that the relative context influ-013
ence on the output reduces on more challenging014
datasets. In particular, more challenging con-015
texts allows greater variation in the question016
complexity. Hence, test creators need to care-017
fully consider the choice of the context when018
designing multiple-choice questions for assess-019
ment. For SC, it is found the semantic meaning020
of the input dominates compared to its linguis-021
tic realization when determining the sentiment.022

1 Introduction023

Natural Language Processing (NLP) requires ma-024

chines to understand language to perform a spe-025

cific task (Chowdhary and Chowdhary, 2020).026

NLP tasks take a single (e.g. summarization027

(Widyassari et al., 2022), sentiment classifica-028

tion (Wankhade et al., 2022), machine translation029

(Stahlberg, 2020)) or multiple (e.g. reading com-030

prehension (Baradaran et al., 2022), question gen-031

eration (Kurdi et al., 2020)) text elements at the032

input and return a specific output. Each input text033

element can further be partitioned into its seman-034

tic content and the linguistic realization. Semantic035

refers to the inherent meaning while the linguis-036

tic realization is the specific wording to present037

the meaning. There are several possible linguistic038

realizations for any semantic content. Therefore,039

for all NLP tasks, the output variable has contribu-040

tions from at least two components: the semantic041

meaning of the element and the specific linguistic 042

realization. Here, element refers to a specific input 043

that is formed of exactly two components. 044

We analyze the relative sensitivity of the output 045

variable to each of the input elements as well as 046

in terms of the breakdown between the elemental 047

semantic content and its corresponding linguistic 048

realization. A theoretical information-theoretic ap- 049

proach is applied to find the shared information 050

content between each input component and the 051

output variable. Here, the information-theoretic 052

approach is framed for NLP classification tasks 053

where the set of input components influence the 054

output probability distribution over a discrete set 055

of classes. We select multiple-choice reading com- 056

prehension (MCRC) and sentiment classification 057

(SC) as case studies for the analysis. 058

MCRC requires the correct answer option to be 059

selected based on several input elements: the con- 060

text paragraph, the question and the set of answer 061

options. Multiple-choice (MC) assessments are a 062

widely employed method for evaluating the com- 063

petencies of candidates across diverse settings and 064

tasks on a global scale (Lai et al., 2017a; Richard- 065

son et al., 2013a; Sun et al., 2019; Levesque et al., 066

2012). Given their consequential impact on real- 067

world decisions, the selection of appropriate MC 068

questions tailored to specific scenarios is impor- 069

tant for content creators. Consequently, there is 070

a need to comprehend the underlying factors that 071

contribute to the complexity of these assessments. 072

Complexity of an MC question is best modelled 073

by the distribution over the answer options by hu- 074

man test takers. Therefore, by understanding the 075

influence of each input element on the output distri- 076

bution, content creators can be better informed to 077

what extent the complexity of an MC question can 078

be controlled from changing each of the input ele- 079

ments. Moreover, analyzing the contribution of the 080

semantic content vs the linguistic realization on the 081

output human distribution informs the impact of the 082
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specific word choice in the element on the question083

complexity. However, it is not scalable to mea-084

sure the variation in the output human distribution085

with variation in each of the input elements. Liusie086

et al. (2023c) demonstrated that the output distribu-087

tion of automated systems is aligned (with minimal088

re-shaping parameters) to the human distribution.089

Therefore, the information-theoretic framework is090

applied to the output probability distribution by an091

automated comprehension system.092

SC is a common NLP classification task where093

the dominant sentiment class must be selected from094

a discrete set of sentiments based on a block of095

input text. This is an example of a single input096

text element NLP task. The information-theoretic097

approach is applied here to understand the role of098

the semantic content and the linguistic realization099

on the output distribution over the sentiment classes100

for popular datasets. It is interesting to analyze SC101

as ideally the sentiment of a text block should be102

based on only its semantic meaning. Here, we103

determine whether this ideal is held in practice.104

2 Related Work105

Features or variables are separate properties that106

are input to tabular machine learning models to107

predict a target variable (Hwang and Song, 2023).108

Feature importance is an active area of research109

(Huang et al., 2023) where the influence of each110

feature on the output is determined. The ability111

to determine which features are most important112

is useful across many verticals e.g. computer as-113

sisted medical diagnosis (Rudin, 2019), weather114

forecasting (Malinin et al., 2021), fraud detection115

(Xu et al., 2023) and customer churn prediction (Al-116

Shourbaji et al., 2023). Similarly, we explore the117

importance of different aspects (can be interpreted118

as features) at the input including individual ele-119

ments and the semantic vs linguistic components120

for NLP text classification tasks. Typically, the121

structured nature of tabular data allows common122

feature selection algorithms to be applied includ-123

ing LASSO (Tibshirani, 1996), marginal screening124

(Fan and Lv, 2008), orthogonal matching pursuit125

(Pati et al., 1993) and decision tree based (Costa126

and Pedreira, 2023). Due to the relatively unstruc-127

tured nature of text data (compared to tabular data),128

we propose an information-theoretic approach to129

identify the most influential inputs.130

Sugawara et al. (2017) find a weak correlation131

between question difficulty and context readability132

for MCRC. Additionally, Sugawara et al. (2020) 133

consider the impact on MCRC datasets when input 134

elements are omitted. We propose instead an au- 135

tomated information-theoretic framework for this 136

analysis. Finally, Sorensen et al. (2022) apply an 137

information-theoretic approach for prompt engi- 138

neering. Our approach can instead be generalized 139

to any NLP classification task. 140

3 Theory 141

Here, we describe the generalized framework to 142

analyze the influence of different elements in NLP 143

text classification tasks: 1. the individual influence 144

of each input element on the output class distribu- 145

tion; 2. the contribution of the semantic content vs 146

its linguistic realization component for a given ele- 147

ment. Let an NLP task consist of a set of elements, 148

{x1, . . . , xN} = x and the output, y, such that: 149

P (y) = EP (x)P (y|x) (1) 150

Let X denote the random variables of each the 151

corresponding instances x. Similarly, let Y be the 152

random variable for an instance of the output, y. 153

To measure the influence of input x on output y, 154

a good metric is the mutual information (Depeweg 155

et al., 2018; Malinin and Gales, 2018) which mea- 156

sures how the output changes due to variation in 157

the input. Thus we can define I(Y ;X) a measure 158

of the total input influence. Similarly we can de- 159

fine the influence from an individual element, Xj , 160

I(Y ;Xj) and it should obey: 161

I(Y ;Xj)︸ ︷︷ ︸
element

= I (Y ;X)︸ ︷︷ ︸
total

−I (Y ;X\Xj |Xj)︸ ︷︷ ︸
other

(2) 162

For each element Xj , its influence is always de- 163

termined by two components: X
(s)
j , the seman- 164

tic information and a relating linguistic realization 165

method which turns an abstract meaning into natu- 166

ral language. Thus, we can calculate the semantic 167

influence as I(Y ;X
(s)
j ) and the linguistic influence 168

implicitly I(Y ;Xj |X(s)
j ). They should satisfy: 169

I(Y ;Xj)︸ ︷︷ ︸
element

= I
(
Y ;X

(s)
j

)
︸ ︷︷ ︸

semantic

+ I
(
Y ;Xj |X(s)

j

)
︸ ︷︷ ︸

linguistic

(3)

170

In practice for an element, xj , its semantic content 171

is too abstract to be available. Instead we get access 172

to one of its realization r̃j which is considered to 173
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be generated from its unobserved semantic content,174

x
(s)
j . A set of possible realizations of this semantic175

element, R(i), are additionally where each member176

of this set is, r(i)j drawn as177

r
(i)
j ∼ Pr(r|r̃i) ≈ Pr(r|si) (4)178

With these settings, the mutual information is cal-179

culated as follows. The total influence is:180

I(Y ;X) (5)181

= H
(
EP (x)[P (y|x)]

)
− EP (x)[H(P (y|x))]182

We can also get the element influence as :183

I(Y ;Xj) (6)184

= H
(
EP (x)[P (y|x)]

)
− EP (xj) [H(P (y|xj))]185

It can be decomposed as the semantic influence:186

I
(
Y ;X

(s)
j

)
= H

(
EP (x)[P (y|x)]

)
(7)187

−E
P
(
x
(s)
j

) [H(
P
(
y|x(s)j

))]
188

and the linguistic influence:189

I
(
Y ;Xj |X(s)

j

)
= E

P
(
x
(s)
j

) [H(
P
(
y|x(s)j

))]
190

−EP (xj) [H (P (y|xj))] (8)191

The relative contribution of an element to the total192

influence and of the semantic component for an193

element can respectively be expressed as:194

relative element influence =
I(Y ;Xj)

I(Y ;X)
(9)195

196

relative semantic influence =
I
(
Y ;X

(s)
j

)
I(Y ;Xj)

(10)197

3.1 Multiple-choice reading comprehension198

In this task, candidates are provided with a context199

passage, c and a corresponding question, q. The200

objective is to determine the correct answer from a201

defined set of options, denoted as o. This process202

involves understanding the question and utilizing203

the context passage as a source of information to204

ascertain the most appropriate answer option. The205

output distribution can be categorised as:206

P (y) = EP (c,q,o)P (y|c, q, o) (11)207

Figure 1: Data generation for the multiple-choice read-
ing comprehension task.

3.1.1 Data generation 208

For a typical MCRC dataset, the data generation 209

process is shown in Figure 1. A specific semantic 210

content c(s) is chosen and a context c is generated 211

when a certain linguistic realization r is applied. 212

Therefore, the influence of the context C can be di- 213

vided into I(Y ;C(s)), I(Y ;C|C(s)) respectively. 214

A similar procedure is applied on the questions and 215

the options but usually (for the scope of this work) 216

they are generated together as a question-option 217

pair q: from a certain context, a content probe or 218

linguistic probe is generated and then a question- 219

option pair in natural language is a linguistic real- 220

ization of this probe as described by: P (q|c). Thus, 221

the output distribution can be rewritten as: 222

P (y) = EP (c(s))EP (c|c(s))EP (q|c)P (y|q, c) (12) 223

We consider only the questions generated from the 224

semantic contents and ignore the questions con- 225

strained to a specific realization, by filtering out 226

all questions generated from the specific linguistic 227

realization of the context. This allows our investi- 228

gation on the question influence to be agnostic of 229

the original context realization. 230

Note, different context realizations are generated 231

as paraphrases conditional on the original context 232

such that r ∼ Pgpt(r|c). 233

3.1.2 Measure of component influence 234

The question-option pair in Equation 12 appear 235

as P (q|c), thus instead of I(Y ;Q), we consider 236

I(Y ;Q|C) and get the decomposition: 237

I(Y ;C)︸ ︷︷ ︸
context

= I(Y ;C,Q)︸ ︷︷ ︸
total

−I(Y ;Q|C)︸ ︷︷ ︸
question

(13) 238

The context influence can be further decomposed: 239

I(Y ;C)︸ ︷︷ ︸
context

= I(Y ;C(s))︸ ︷︷ ︸
semantic

+ I(Y ;C|C(s))︸ ︷︷ ︸
linguistic

(14) 240
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Equations 13 and 14 are examples of Equations241

2 and 3 respectively. Thus, similar to Section 3,242

the influence terms can be calculated according to243

Equations 5 to 8. Besides the assumption made244

in Equation 4 which is general for all the tasks, a245

further assumption about the questions are made for246

the MCRC task: instead of sampling from the ideal247

question generation process, we only observe the248

question-option pairs generated by humans, Q̃(i),249

where each member of this set is, q̃(i)j drawn as:250

q̃
(i)
j ∼ Pman(q|r̃i) ≈ Pq

(
q|c(s)i

)
(15)251

We then make the following approximations:252

EP (c,q) [P (y|c, q)] ≈ (16)253

1

ns

ns∑
i=1

1

|R(i)||Q̃(i)|

∑
r∈R(i),q̃∈Q̃(i)

P (y|q̃, r)254

255

EP (c,q) [H(P (y|c, q))] ≈ (17)256

1

ns

ns∑
i=1

1

|R(i)||Q̃(i)|

∑
r∈R(i),q̃∈Q̃(i)

H(P (y|q̃, r))257

258

EP (c) [H(P (y|c))] ≈ (18)259

1

ns

ns∑
i=1

1

|R(i)|
∑

r∈R(i)

H(
1

|Q̃(i)|

∑
q̃∈Q̃(i)

P (y|q̃, r))260

261

EP (c(s))

[
H(P (y|c(s)))

]
≈ (19)262

1

ns

ns∑
i=1

H(
1

|R(i)|
∑

r∈R(i)

1

|Q̃(i)|

∑
q̃∈Q̃(i)

P (y|q̃, r))263

with ns as the number of contexts in a dataset.264

3.2 Sentiment classification265

For the SC task, the candidate receives a sentence266

or a short paragraph x and then is requested to267

choose the sentiment class. Here we are only inter-268

ested in the influence to the output y from semantic269

content x(s) and its linguistic realization method:270

I(Y ;X(s)), I(Y ;X|X(s)), as there is only one el-271

ement at the input. Following Equation 3, the se-272

mantic and linguistic breakdown is expressed as:273

I(Y ;X)︸ ︷︷ ︸
text

= I(Y ;X(s))︸ ︷︷ ︸
semantic

+ I(Y ;X|X(s))︸ ︷︷ ︸
linguistic

(20)274

In practice, the following approximations are made: 275

EP (x) [P (y|x)] ≈ (21) 276

1

ns

ns∑
i=1

1

|R(i)|
∑

r∈R(i)

P (y|r) 277

EP (x) [H(P (y|x))] ≈ (22) 278

1

ns

ns∑
i=1

1

|R(i)|
∑

r∈R(i)

H(P (y|r)) 279

280

EP (x(s))

[
H(P (y|x(s)))

]
≈ (23) 281

1

ns

ns∑
i=1

H(
1

|R(i)|
∑

r∈R(i)

P (y|r)) 282

4 Systems 283

4.1 Linguistic realization 284

To analyze the impact of the linguistic realization 285

of a given text element, it is necessary to fix the 286

semantic content of the element. In other work 287

(such as Sugawara et al. (2022)), they attempt to 288

evaluate the effect of linguistic content of the con- 289

text for MCRC. However, they ignore the require- 290

ment to fix the semantic content. We employ a 291

paraphrasing system to generate different linguistic 292

realizations for the same semantic content of a text 293

element. The paraphrasing approach is applied to 294

the context in MCRC and to the input element in 295

SC. To consider a broad range of linguistic real- 296

izations for a specific text’s semantic content, we 297

generate 8 paraphrases at different readability lev- 298

els. Hence, we assume (this assumption is assessed 299

in Appendix E) that the linguistic realizations at 300

different readability levels maintain the same se- 301

mantic content. To change the readability of the 302

text element, we use the zero-shot method as in 303

Farajidizaji et al. (2023) based on Equation 4: 304

r
(i)
j ∼ PLLM(r|r̃i) (24) 305

In practice, the zero-shot large language model 306

(LLM) (GPT-3.5-turbo) is fed with the original text 307

along with an instruction to alter the language of 308

the text to match the desired readability level. The 309

model, not previously trained on this specific task, 310

uses its pre-existing knowledge and understanding 311

of language structure to alter the readability whilst 312

maintaining the same semantic meaning. The read- 313

ability level is measured by Flesch reading-ease 314

(Flesch, 1948) score (FRES). See the prompts in 315

Appendix Table 7. 316
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4.2 Reading comprehension317

In this work, MCRC systems are required to re-318

turn a probability distribution over the answer op-319

tions. Two alternative architectures are considered320

for performing the reading comprehension task:321

encoder-only and decoder-only (see further details322

in Appendix Figure 5).323

Encoder-only is based on the works of Yu et al.324

(2020); Raina and Gales (2022a); Liusie et al.325

(2023b); Raina et al. (2023b). Each option is in-326

dividually encoded along with both the question327

and the context to produce a score. Softmax is328

then applied to the scores linked to each option,329

transforming them into a probability distribution.330

During inference, the anticipated answer is chosen331

as the option with the highest associated probabil-332

ity. Inspired by Liusie et al. (2023a) and the recent333

success observed in finetuning large open-source334

instruction finetuned language models (Touvron335

et al., 2023a,b; Jiang et al., 2023, 2024; Tunstall336

et al., 2023) on various NLP tasks, this work addi-337

tionally finetunes Llama-2 (Touvron et al., 2023b)338

as a decoder-only architecture. The context, ques-339

tion and answer options are concatenated into a sin-340

gle natural language prompt. As an autoregressive341

language model, Llama-2 is requested to effectively342

return a single token at the output, represented by a343

single logit distribution over the token vocabulary.344

The logits associated with the tokens A,B,C,D are345

respectively normalized using softmax to return346

the desired probability distribution over the answer347

options. As with the encoder-only architecture, the348

option with the highest probability is selected as349

the answer at inference time. All model outputs are350

calibrated post-hoc (see Appendix C.4).351

4.3 Data complexity classification352

standard c + q + oA + oB + oC + oD
context c
context-question c + q

Table 1: Input formats for the complexity system.

Here, an automated complexity system takes all353

the components of an MC question and classifies354

it into one of the 3 classes: easy, medium or hard.355

The standard architecture is used for MC question356

complexity classification (Raina and Gales, 2022b;357

Benedetto, 2023) (see Appendix Figure 6). All ele-358

ments of an MC question and concatenated together359

and fed into a transformer. The embedding of the360

prepended [CLS] token is taken as the sentence 361

embedding, which is passed to a classification head, 362

to return a distribution over the three complexity 363

levels. To empirically investigate the relative im- 364

portance of each element, various input formats are 365

trialled. Table 1 presents different combinations of 366

the context, question and answer options. 367

4.4 Sentiment classification 368

SC models take the input text and return a probabil- 369

ity distribution over the set of sentiments. Here, the 370

sentiments considered are {negative, positive }. We 371

take the standard approach of taking a pretrained 372

transformer encoder model (Vaswani et al., 2017) 373

with a classification head at the output (Liusie et al., 374

2022). Similar to the encoder-only approach for 375

MCRC and the data complexity classification sys- 376

tem, the SC system only passes the hidden embed- 377

ding of the [CLS] token to the classification head. 378

Softmax normalizes the logits over the sentiments. 379

5 Experiments 380

5.1 Data 381

We use the RACE++ MCRC dataset (Lai et al., 382

2017b; Liang et al., 2019a) train split for train- 383

ing both the MC data complexity system and the 384

MCRC model. RACE++ is the largest publicly 385

available dataset from English exams in China par- 386

titioned into three difficulty levels: middle school, 387

high school and college (see Appendix D.1 for de- 388

tails about the splits). Additionally, various MCRC 389

datasets are considered as test sets for investigating 390

the influence of each element including the test sets 391

from RACE++, MCTest (Richardson et al., 2013b) 392

and CMCQRD (Mullooly et al., 2023). MCTest re- 393

quires machines to answer MCRC questions about 394

fictional stories. CMCQRD is a small-scale MCRC 395

dataset from the pre-testing stage partitioned into 396

grade levels B1 to C2 on the Common European 397

Framework of Reference for Languages scale. 398

For SC, we use IMDb (Maas et al., 2011), Yelp- 399

polarity (Yelp) (Zhang et al., 2015) and Amazon- 400

polarity (Amazon) (McAuley and Leskovec, 2013) 401

datasets. IMDb has reviews from the Internet 402

Movie Database. Yelp consists of reviews where 403

1 or 2 stars is interpreted as negative while 4 or 404

5 stars is interpreted as positive. Amazon has re- 405

views over a period of 13 years on various products. 406

Hence, all 3 datasets are binary classification tasks. 407

Table 2 details the main statistics. All the MCRC 408

test sets have 4 options while the selected SC test 409
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# examples # options # words # questions semantic diversity linguistic diversity

MCRC
MCTest 142 4 209 4 0.079±0.015 0.018±0.006
RACE++ 1,007 4 278 3.7 0.101±0.015 0.016±0.007
CMCQRD 150 4 683 5.5 0.092±0.010 0.022±0.011

SC
IMDB 500 2 226 - 0.084±0.019 0.023±0.011
Yelp 500 2 133 - 0.108±0.037 0.030±0.024
Amazon 500 2 74 - 0.135±0.024 0.037±0.022

Table 2: Statistics for multiple-choice reading comprehension (MCRC) and sentiment classification (SC) test
datasets. See Appendix 5 for additional datasets.

sets have 2 options: negative and positive. The410

number of words for MCRC is the lengths of the411

contexts. It is seen that the test sets have vary-412

ing lengths from 200 to 700 words and 75 to 230413

words for MCRC and SC tasks respectively. For414

the MCRC datasets, the total examples are reported415

after filtering out all linguistic probe questions (Ap-416

pendix D.3 for the procedure). So the focus is417

only on the semantic probe questions as assumed418

in Section 3.1.2. For the SC test sets, a subset of419

500 examples is selected for each dataset to remain420

within the financial budget for use of ChatGPT for421

the generation of different linguistic realizations.422

The semantic diversity is also calculated for each423

dataset. This score is the mean cosine distance be-424

tween each text embedding to the centroid of all425

embeddings (Raina et al., 2023a). Greater the score,426

greater the semantic variation in the set of texts be-427

ing considered. The sentence embedder from Ni428

et al. (2022) is used to generate the embeddings1.429

The semantic diversity is calculated on the contexts430

for MCRC. Finally, the linguistic diversity calcu-431

lates the mean variation in the embedding space for432

different linguistic realizations for each text.433

5.2 Model details434

The decoder-only implementation of the MCRC435

system is based upon the pretrained instruction436

finetuned Llama2-7B model2. The main paper for437

MCRC focuses only on the decoder-only imple-438

mentation (see Appendix D.2 for the encoder-only439

implementations). ELECTRA-base (Clark et al.,440

2020) is selected for the data complexity evalua-441

tor models. The pretrained model is finetuned on442

the RACE++ train split with the complexity class443

(easy, medium or hard) as the label (hyperparam-444

eter tuning details in Appendix D.2). For SC, the445

1Available at: https://huggingface.co/sente
nce-transformers/sentence-t5-base

2Available at https://huggingface.co/meta-l
lama/Llama-2-7b-chat-hf

main paper reports results based on a RoBERTa 446

architecture. The selected model has been fine- 447

tuned on IMDb training data3. Due to the similarity 448

in content between Yelp, Amazon and IMDb, the 449

RoBERTa model finetuned on IMDb is also applied 450

on all SC test sets. For reproducibility, see BERT 451

(Devlin et al., 2018) system in Appendix D.2. 452

6 Results 453

6.1 Reading Comprehension 454

Table 3 presents the performance of Llama-2 on 455

the various MCRC datasets. The highest accuracy 456

is observed on MCTest with 92.5% and the lowest 457

on CMCQRD with 79.9%. Additionally, the per- 458

formance of the model is reported on each dataset 459

after generating 8 paraphrases for each context (see 460

Section 4.1). It is observed there is a consistent 461

drop in performance on the paraphrased contexts 462

compared to the original. This is expected as the na- 463

ture of the machine generated paraphrased contexts 464

do not necessarily align with the type of contexts 465

observed in the original dataset. Table 3 further 466

investigates the influence of the different elements: 467

specifically the context influence compared to the 468

question influence (note the question includes the 469

options - see Section 3.1). The context of an MCRC 470

question plays an important role in the output with 471

influences up to 45% for MCTest. 472

The complexity of an MCRC question is de- 473

scribed by the shape of the output distribution. A 474

sharp distribution about the correct answer is in- 475

dicative of an easy question while a flatter distribu- 476

tion over all the answer options indicates a harder 477

question. Therefore, the strong influence of the 478

context demonstrated in Table 3 emphasises that 479

the context (alongside the specific posed question) 480

is important in controlling the complexity of a ques- 481

tion. To further verify the influence of the context, 482

3Available at https://huggingface.co/wrmur
ray/roberta-base-finetuned-imdb
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dataset accuracy influence
original para total question context context-semantic context-linguistic

MCTest 92.5 85.8 0.212 0.116 (54.7%) 0.096 (45.3%) 0.068 (70.6%) 0.028 (29.4%)
RACE++ 86.0 82.9 0.298 0.161 (56.1%) 0.131 (43.9%) 0.108 (82.5%) 0.023 (17.5%)
CMCQRD 79.9 69.4 0.290 0.211 (72.7%) 0.079 (27.3%) 0.067 (83.8%) 0.012 (16.2%)

Table 3: Decomposition of total input influence for Llama-2 on MCRC datasets.

Figure 2: Normalized ranks (rank / total examples) of
complexity scores for each complexity level using 3
evaluators: context, context-question and standard. See
Appendix F.1.1 for the performance.

Figure 3: The relative question influence changes with
the subset chosen by the rank of context complexity.

Figure 2 plots the complexity score output by the483

data complexity classifier. In particular, the distri-484

bution is shown for the complexity scores on the485

different subsets from RACE++ (for CMCQRD see486

Appendix Figure 10) of different complexity lev-487

els. Note, the normalized ranks of the complexity488

scores is plotted where the global rank is found489

for a given complexity score and divided by the490

total number of examples. The distributions are491

shown for the standard system (context, question492

and options), context-question system (context and493

question) and the context-only system. The context494

is clearly sufficient to determine the complexity lev-495

els of MC questions for these datasets, empirically496

supporting the importance of the context.497

For the context, Table 3 further reports the influ-498

ence for the semantic and linguistic components.499

For all 3 datasets, the semantic meaning of a con- 500

text has a greater influence on the final output dis- 501

tribution but the specific linguistic realization also 502

influences the output. Specifically, the relative se- 503

mantic influence is greatest for MCTest and lowest 504

for CMCQRD. This is supported by Table 2 where 505

the calculated semantic diversity is the lowest for 506

MCTest with similar linguistic diversities across 507

the datasets. Additionally, Table 3 suggests a re- 508

lationship between the difficulty of a dataset (indi- 509

cated by the accuracy of the model) and the relative 510

question influence. The relative question influence 511

increases with more challenging datasets. To fur- 512

ther explore this observation, Figure 3 determines 513

whether the question influence is directly linked to 514

the complexity of a question. The data complexity 515

classifier (QC system) is used to rank all the con- 516

texts according to their complexity. Then retaining 517

a certain fraction of the most complex contexts, 518

the relative question influence is plotted. The plot 519

is for all the datasets combined (for RACE++ see 520

Appendix Figure 11). Compared to the random 521

ordering, it is clear that retaining the most complex 522

contexts leads to larger question influence scores. 523

The increase in question influence with more chal- 524

lenging contexts supports the trend from Table 3. 525

Therefore, a more challenging context allows a 526

greater variation in question difficulties, leading to 527

a greater question influence on the output. 528

6.2 Sentiment classification 529

For the SC task there is only a single input. There- 530

fore, we focus on exploring the relative contribu- 531

tions of the semantic and linguistic components of 532

the input. Intuitively, the sentiment of a passage 533

of text should be determined solely by its semantic 534

content. However, Table 4 shows that for 3 popular 535

SC datasets, the linguistic realization does influ- 536

ence the output. In particular, the relative linguistic 537

component for Amazon hits 10% of the total. It 538

appears the semantic component is more dominant 539

for IMDb and Yelp compared to Amazon. One 540

possible reason is that the length of texts is shorter 541

for Amazon compared to the other datasets (see 542

7



dataset accuracy influence
original para total semantic linguistic

IMDB 94.8 93.4 0.472 0.444 (94.0%) 0.028 (6.0%)
Yelp 94.3 93.9 0.472 0.445 (94.2%) 0.027 (5.8%)

Amazon 91.0 89.5 0.361 0.325 (90.0%) 0.036 (10.0%)

Table 4: Decomposition of input influence for different models in various datasets for sentiment classification.

(a) MCRC (b) SC

Figure 4: Entropy filtered pairwise agreement in paraphrase readability and true class probability ordering with
various minimum readability gaps.

Table 2). Hence, longer texts have a greater op-543

portunity to reinforce sentiment being expressed,544

which makes it more robust to different linguistic545

realizations. Appendix F.2 further explores this546

hypothesis by considering additional SC datasets.547

6.3 Impact of linguistic realization548

Section 6.1 demonstrated that the linguistic real-549

ization of the context in MCRC has measurable550

influence on the output distribution over the op-551

tions. Here, we investigate the correlation between552

the readability of a given paraphrase of the original553

text and the output probability of the true class,554

termed true class probability (TCP). An entropy555

filter is applied to remove examples for which the556

entropy of the output distribution is too high, as557

high entropy examples suggest a random guess558

and hence challenging to ascertain whether a cor-559

relation exists. Figure 4a sweeps the fraction of560

examples retained according to the entropy filter561

and plots the fraction of the remaining examples for562

which the ordering of TCP scores for every pair of563

paraphrases matches the ordering of their real read-564

ability scores. The plots are indicated for minimum565

readability gaps of 0, 25 and 50 for the pairs of566

paraphrases. It is observed that the readability of a567

paraphrase corresponds to the returned TCP, with a568

stronger correlation when the minimum readability569

gap between the pairs of paraphrases is higher. A570

similar process is applied for SC in Figure 4b to de-571

termine the relationship between the readability of 572

the linguistic realization of the input and the TCP. 573

Like MCRC there is a positive correlation between 574

the readability level and the TCP, with a more pro- 575

nounced relationship by constraining the pairs of 576

paraphrases to have a larger readability gap. 577

7 Conclusions 578

This work describes an information-theoretic 579

framework for text classification tasks. The frame- 580

work determines the influence of each input ele- 581

ment on the output. Additionally, each element is 582

partitioned into its semantic and linguistic compo- 583

nents. MCRC and SC are considered as case study 584

tasks for analysis. For MCRC, it is found that both 585

the context and question elements play influential 586

roles on the output distribution. It is further estab- 587

lished that selection of more challenging contexts 588

permits greater variation (in terms of complexity) 589

of questions on the context. Simpler contexts limit 590

the range of the complexity to only easy questions. 591

Hence, content creators need to carefully consider 592

the choice of the context when designing MC ques- 593

tions to cater to a range of difficulty levels. In SC, 594

the linguistic realization of the input has a measur- 595

able impact on the output. Hence, the text wording 596

cannot be neglected when deducing the sentiment. 597

For both tasks, higher the readability of a specific 598

linguistic realization, greater the probability of the 599

true class in the output distribution. 600
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8 Limitations601

This work has several assumptions that must be602

stated. For the multiple-choice reading comprehen-603

sion analysis, the question influence is based on604

real questions generated by humans on the original605

context. However, there is the possibility that the606

set of questions on a given context are not gener-607

ated independently but instead the question creator608

has curated the question set together. Additionally,609

it is assumed that the paraphrasing of texts only610

changes the linguistic realization. However, it is611

likely that it also has an impact on the semantic612

content to an extent, which is reflected in the lin-613

guistic component influence on the output. We do614

quantify the appropriateness of the paraphrasing615

system in the Appendix.616

9 Ethics statement617

There are no ethical concerns with this work.618
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A Extended related work973

In multiple-choice reading comprehension, the in-974

fluence of each element on the final output dis-975

tribution is directly linked to the complexity of a976

multiple-choice question. More complex multiple-977

choice questions can expect to have flat distribu-978

tions over the answer options while easier questions979

are sharp around the correct answer. Numerous980

studies have looked at the factors that potentially981

influence complexity of context passages in rela-982

tion with reading comprehension tasks. Sugawara983

et al. (2022) observed that the diversity of con-984

texts in MC questions determines the diversity of985

questions possible conditioned on the contexts. In986

their work they found that variables such as pas-987

sage source, length, or readability measures do not988

significantly affect the model performance. Fur-989

ther, Khashabi et al. (2018) introduced the role of990

the original source from which the contexts are991

extracted in shaping overall complexity. Through992

the augmentation of the dataset by diversifying the993

corpus sources, they aimed to enhance the dataset994

quality.995

Question complexity has repeatedly been dis-996

cussed within prior literature, with varying defi-997

nitions. Liang et al. (2019b) classified questions998

into distinct categories with complexity scores999

ranking from lowest to highest for word match-1000

ing, paraphrasing, single-sentence reasoning, multi-1001

sentence reasoning, and ambiguous questions. Gao1002

et al. (2018) quantified complexity as the number1003

of reasoning steps required to derive the answer.1004

Similar definitions have been upheld by Yang et al.1005

(2018) and Dua et al. (2019), who expanded the un-1006

derstanding of question complexity to encompass1007

not only contextual comprehension but also factors1008

such as the confidence of a pretrained question-1009

answering model.1010

Distractor (incorrect options for multiple-choice1011

questions) complexity has been less explored. Gao1012

et al. (2019) determined distractor complexity1013

based on the similarity between distractors and the1014

ground-truth. Employing an n-gram overlap metric,1015

Banerjee and Lavie (2005) introduced a method to1016

assess distractor complexity. Dugan et al. (2022)1017

further dissected distractor complexity, analyzing1018

qualities such as relevance, interpretability and ac-1019

ceptability compared to human markers.1020

As not explored in previous MCRC complexity1021

literature, in this work the information-theoretic1022

approach is applied to characterize the influence1023

of each element in a given multiple-choice reading 1024

comprehension dataset. Greater the influence of an 1025

element, greater the scope to control the complexity 1026

of the multiple-choice reading comprehension task. 1027

In sentiment classification, it is expected the sen- 1028

timent class should be dependent on the semantic 1029

meaning of the text rather than its linguistic real- 1030

ization. However, Liusie et al. (2022) find that 1031

shortcut systems that have access only to the stop- 1032

words in the original text are also able to identify 1033

the sentiment class. Hence, they find the stop words 1034

chosen in the text do influence the sentiment class, 1035

which we express as the specific linguistic realiza- 1036

tion. Chew et al. (2023) further aim to correct for 1037

the bias from spurious correlations. In this work, 1038

we explicitly quantify the influence of the semantic 1039

and linguistic components of the text. 1040

B Additional Tasks 1041

B.1 Grade classification 1042

In the grade classification task, the system is input 1043

a prompt z and a response x and then is required 1044

to output a number in the range 1 to 6 with 6 de- 1045

noting the highest degree of alignment between the 1046

given prompt and its corresponding response. The 1047

task is traditionally a regression-oriented but here 1048

we apply our information-theoretic classification 1049

framework by treating it as a 6-option classification 1050

task. 1051

P (y) = EP (z,x)P (y|z, x) (25) 1052

Further, the semantic meaning of the response x 1053

can be seen as generated from P (x|z). In the con- 1054

sidered datasets, a prompt has a large-scale number 1055

of responses while the number of prompts are lim- 1056

ited. Thus, here we focus only on the analysis of 1057

the influence of the response. The output equation 1058

can be rewritten as: 1059

P (y) = EP (z)EP (x(s)|z)EP (x|x(s))P (y|x, z) (26) 1060

Therfore, we can calculate the influence from the 1061

semantic meaning and the linguistic realization of 1062

the responses: 1063

I(Y ;X|Z)︸ ︷︷ ︸
text

= I(Y ;X(s)|Z)︸ ︷︷ ︸
semantic

+ I(Y ;X|X(s), Z)︸ ︷︷ ︸
linguistic

(27)
1064

In practice, we collect the prompt set Z and a re- 1065

sponse set X for each prompt. For each response 1066

13



Figure 5: Architectures for multiple-choice reading comprehension with context, c, question, q and options, o.

x(i,j) of the prompt z(i), we observe a realization1067

r̃(i,j) and additionally generate a set of realizations1068

R(i,j) of the semantic meaning of the responses.1069

The following approximations are made:1070

EP (z)

[
H

(
EP (x|z) [P (y|x, z)]

)]
≈ (28)1071

1

|Z|
∑
zi∈Z

H(
1

ni
s

ni
s∑

j=1

1

|R(i,j)|
∑

r∈R(i,j)

P (y|r, zi))1072

EP (x(s),z)

[
H(P (y|x(s), z))

]
≈ (29)1073

1

|Z|
∑
zi∈Z

1

ni
s

ni
s∑

j=1

H(
1

|R(i,j)|
∑

r∈R(i,j)

P (y|r, zi))1074

1075

EP (x,z) [H(P (y|x, z))] ≈ (30)1076

1

|Z|
∑
zi∈Z

1

ni
s

ni
s∑

j=1

1

|R(i,j)|
∑

r∈R(i,j)

H(P (y|r, zi))1077

where ni
s is the number of responses for prompt1078

z(i).1079

C Systems1080

C.1 Reading comprehension1081

In Section 4.1, we show the details of Llama-21082

model we used for reading comprehension tasks.1083

Here we show more details about the extra models1084

we trialled in the encoder-only set-up.1085

Models we used can be divided into two model1086

families: encoder-only and decoder-only. Within1087

the family of encoder-only models, we consider1088

a BERT (Devlin et al., 2018) and RoBERTa (Liu1089

et al., 2019) based systems. For these models, as 1090

shown in Figure 5, each option is paired with the 1091

context as well as the question at the model in- 1092

put. The model then generates a score based on 1093

the input on which Softmax is applied to convert to 1094

a probability distribution over the answer options. 1095

As mentioned in the main paper, Llama-2 is used as 1096

a popular example with the decoder-only architec- 1097

ture. The input consists the context, question and 1098

all options. The model output is the probability of 1099

all possible output tokens. The probability associ- 1100

ated with the tokens A,B,C,D are concatenated and 1101

normalized using softmax to return the final proba- 1102

bility distribution. An illustration of decoder-only 1103

architecture is also shown in Figure 5. 1104

C.2 Grade classification 1105

The architecture of the model used for grade classi- 1106

fication is based on the decoder-only transformer 1107

architecture with Llama-2 as described in Section 1108

C.1. Hence, the prompt and the response are con- 1109

catenated together at the input to the model, which 1110

is trained to return a probability distribution over 1111

the 6 grade classes. 1112

C.3 Data complexity classification 1113

The system is required to output a probability dis- 1114

tribution among options: easy, medium and hard. 1115

The architecture is presented in Figure 6. The com- 1116

plexity score Sc is calculated as: 1117

Sc = 0 ∗ Peasy + 0.5 ∗ Pmedium + 1 ∗ Phard (31) 1118

C.4 Calibration 1119

The trained models were calibrated post-hoc using 1120

single parameter temperature annealing (Guo et al., 1121

14



Figure 6: Architecture for MC question complexity
classifier with context, c, question, q and options, {o}.

2017). It is necessary to calibrate the models for1122

the absolute information-theoretic measures to be1123

meaningful. Uncalibrated, model probabilities are1124

determined by applying the softmax to the output1125

logit scores si:1126

P (y = k;θ) ∝ exp(sk) (32)1127

where k denotes a possible output class for a predic-1128

tion y. Temperature annealing ‘softens’ the output1129

probability distribution by dividing all logits by a1130

single parameter T prior to the softmax.1131

PCAL(y = k;θ) ∝ exp(sk/T ) (33)1132

As the parameter T does not alter the relative rank-1133

ings of the logits, the model’s prediction will be un-1134

changed and so temperature scaling does not affect1135

the model’s accuracy. The parameter T is chosen1136

such that the accuracy of the system is equal to the1137

mean of the maximum probability (as is expected1138

for a calibrated system).1139

D Experiments1140

D.1 Data1141

Table 5 provides a breakdown of the RACE++1142

dataset, which is divided into three subsets: RACE-1143

M, RACE-H, and RACE-C. These subsets corre-1144

spond to English exam materials from Chinese mid-1145

dle schools (RACE-M), high schools (RACE-H),1146

and colleges (RACE-C) respectively. Table 5 dis-1147

plays key statistics for each of these subsets includ-1148

ing the number of contexts, the average number1149

of questions for one context, and the semantic and1150

linguistic diversity. Note, for all MCRC datasets,1151

the options are re-ordered such that the true class1152

is the first option.1153

SST-2 (Socher et al., 2013) and TweetEval (Bar-1154

bieri et al., 2020) are considered as additional1155

datasets for sentiment classification, which were1156

not presented in the main text. SST-2 (Stanford1157

Sentiment Treebank) corpus consists of movie re- 1158

views provided by Pang and Lee (2005) which are 1159

classified as either positive or negative. TweetE- 1160

val consists of seven heterogeneous tasks based on 1161

tweets from Twitter. Here, the focus is on the tweet- 1162

emotion task where each tweet is classified as joy, 1163

sadness, optimism or anger. These two datasets are 1164

included here as they have shorter inputs texts than 1165

IMDb, Yelp and Amazon. 1166

Hewlett foundation4, a competition requiring au- 1167

tomated grading of student-written essays, is in- 1168

cluded as the dataset for the grade classification 1169

task. In total it has 8 subgroups and each subgroup 1170

has 1 prompt with several responses. Here we only 1171

choose the first 2 subgroups and turn them into a 6 1172

option classification task with 6 denoting the high- 1173

est degree of alignment between the given prompt 1174

and its corresponding response. 3,583 responses 1175

are sampled for the training split while 500 are se- 1176

lected randomly as the test split. From Table 5, it 1177

is clear compared to other dataset, the responses in 1178

Hewlett are mutually semantically closer in mean- 1179

ing compared to other datasets as they are all re- 1180

sponses to just 2 prompts. 1181

Table 5 also supports that our paraphrasing sys- 1182

tem is sensible by showing the linguistic diversity 1183

is much lower than the semantic diversity among 1184

all responses. A more detailed quality verification 1185

process of our paraphrasing system is shown in 1186

Appendix E. 1187

D.2 Models 1188

For the multiple choice reading comprehension 1189

tasks, three models are used: Llama2, RoBERTa 1190

and Longformer. 1191

Pretrained Llama-2 (7 billions parameters) is 1192

finetuned specifically on the train split of RACE++ 1193

with hyperparameter tuning on the validation split. 1194

However, it is not computationally feasible to train 1195

all the model parameters of Llama-2. Therefore, 1196

parameter efficient finetuning is used with quan- 1197

tized low rank adapters (QLoRA) (Dettmers et al., 1198

2023). The final training parameters finetune the 1199

model with a learning rate of 1e-4, batch size of 1200

4, lora rank of 8 with lora α = 16 and dropout 0.1. 1201

The model is trained for 1 epoch taking 7 hours 1202

on an NVIDIA A100 machine. For the main paper 1203

results, the Llama-2 model is selected due to its 1204

best accuracy. 1205

4Available at: https://www.kaggle.com/c/asa
p-aes
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# examples # options # words # questions semantic diversity linguistic diversity

MCRC
RACE-M 362 4 200 4 0.096±0.017 0.017±0.007
RACE-H 510 4 308 3.3 0.100±0.012 0.016±0.006
RACE-C 135 4 375 5.2 0.097±0.011 0.018±0.006

SC SST-2 500 2 20 - 0.145±0.021 0.087±0.034
TweetEval 500 4 17 - 0.149±0.022 0.081±0.033

GC Hewlett 500 6 383 2 0.063±0.017 0.021±0.009

Table 5: Statistics for breakdown of additional test datasets including RACE-M, RACE-H, RACE-C for RACE++ in
multiple-choice reading comprehension (MCRC); SST-2, TweetEval in sentiment classification (SC) and Hewlett in
grade classification (GC).

filter accuracy influence
original para total question context context-semantic context-linguistic

No 84.2 81.5 0.284 0.164 (57.7%) 0.120 (42.3%) 0.135 (81.4%) 0.031 (18.6%)
Yes 86.0 82.9 0.298 0.161 (56.1%) 0.131 (43.9%) 0.108 (82.5%) 0.023 (17.5%)

Table 6: The effect of the question filter on element influence for Llama-2 on the RACE++ test set.

RoBERTa (82 millions parameters)5 is finetuned1206

on the train split of the RACE dataset (RACE-M1207

and RACE-H). The details of the specific Long-1208

former (336 million parameters)6 are detailed in1209

Manakul et al. (2023). For the main paper results,1210

the Llama-2 model is selected due to its best accu-1211

racy.1212

For the data complexity classification system,1213

pretrained ELECTRA-base (110 millions parame-1214

ters) is finetuned on the RACE++ train split with1215

the complexity class (easy, medium or hard) as1216

the label. The model is trained using the AdamW1217

optimizer, a batch size of 3, learning rate of 2e-5,1218

max number of epochs of 3 with all inputs trun-1219

cated to 512 tokens. An ensemble of 3 models is1220

trained. Training for each model takes 3 hours on1221

an NVIDIA V100 graphical processing unit.1222

For the sentiment classification task, we used1223

the models from RoBERTa and distilBERT(82 mil-1224

lions parameters) (Sanh et al., 2019) family and the1225

they are finetuned on various datasets as explained1226

in the following. The train split of IMDb is used1227

to finetune RoBERTa7 and BERT8. Both of these1228

models are applied on the test sets for IMDb, Yelp1229

and Amazon. The models we used for SST-2 and1230

TweetEval are finetuned n their corresponding train-1231

5Available at https://huggingface.co/LIAMF
-USP/roberta-large-finetuned-race

6Available at https://huggingface.co/potsa
wee/longformer-large-4096-answering-race

7Available at: https://huggingface.co/wrmur
ray/roberta-base-finetuned-imdb

8Available at : https://huggingface.co/lvwer
ra/distilbert-imdb

ing split, namely RoBERTa-SST29, distilBERT- 1232

SST210, RoBERTa-Tweet11, distilBERT-Tweet12. 1233

For the grade classification task, we finetuned 1234

Llama-2 on the training split of the Hewlett dataset 1235

using QLoRA. The chosen training parameters fine- 1236

tune the model with a learning rate of 1e-4, batch 1237

size of 4, lora rank of 8 with lora α = 16 and 1238

dropout 0.1. The model is trained for 1 epoch 1239

taking 30 minutes on an NVIDIA A100 machine. 1240

D.3 Question filter 1241

Based on manual observation, the RACE++ dataset 1242

has some questions that are generated from the lin- 1243

guistic contents of the contexts rather than from 1244

the semantic contents. As explained in Section 3.1, 1245

these questions will invalidate the theoretical as- 1246

sumption when calculating the influence of each 1247

component because the question would be unan- 1248

swerable for a generated paraphrase that does not 1249

maintain the same linguistic information. Namely, 1250

these linguistic questions are often related to their 1251

positions in the context and are always correlated 1252

with certain key words such as ‘in paragraph 2’. 1253

Thus, we apply a word-matching question filter 1254

to filter out all such examples, ensuring that only 1255

relevant and contextually coherent questions are re- 1256

9Available at: rasyosef/roberta-base-finet
uned-sst2

10Available at: https://huggingface.co/disti
lbert/distilbert-base-uncased-finetuned
sst-2-english

11Available at: cardiffnlp/twitter-roberta-b
ase-dec2021-emotion

12Available at: https://huggingface.co/phils
chmid/DistilBERT-tweet-eval-emotion
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Target Level (US) Prompt

5 Professional Paraphrase this document for a professional. It should be extremely difficult to read and best
understood by university graduates.

20 College graduate Paraphrase this document for college graduate level (US). It should be very difficult to read
and best understood by university graduates.

40 College Paraphrase this document for college level (US). It should be difficult to read.

55 10-12th grade Paraphrase this document for 10th-12th grade school level (US). It should be fairly difficult
to read.

65 8-9th grade Paraphrase this document for 8th/9th grade school level (US). It should be plain English and
easily understood by 13- to 15-year-old students.

75 7th grade Paraphrase this document for 7th grade school level (US). It should be fairly easy to read.

85 6th grade Paraphrase this document for 6th grade school level (US). It should be easy to read a

95 5th grade Paraphrase this document for 5th grade school level (US). It should be very easy to read and
easily understood by an average 11-year old student.

Table 7: Prompts to generate paraphrases with different target readability (using FRES).

(a) Reading Comprehension (b) Sentiment Classification

Figure 7: Averaged measured readability.

tained for further processing. We specifically filter1257

out all questions containing the following phrases:1258

‘{number} + word/sentence/paragraph + {number}1259

+ refer to/mean’.1260

In total, for the RACE++ dataset, approximately1261

6.2% questions are found to be generated from the1262

linguistic content of the context and thus filtered1263

out. The effects of the filter on the element influ-1264

ence analysis using Llama-2 is shown in Table 6.1265

It is clear the measured question influence drops as1266

expected by 1.6%.1267

E Paraphrasing1268

The readability level is measured by Flesch reading-
ease (Flesch, 1948) score (FRES) where higher
scores indicate material that is easier to read while
lower scores are reflective of more challenging

texts.

FRES = 206.835 − 1.015
(
nw

nse

)
− 84.6

(
nsy

nw

)
nw is the total number of words, nse is the total 1269

number of sentences, nsy the total number of sylla- 1270

bles. 1271

We grouped the original texts into eight differ- 1272

ent readability levels: 5, 20, 40, 55, 65, 75, 85, 1273

and 95 for the reading comprehension and grade 1274

classification tasks and used the final 7 groups for 1275

the sentiment classification task as there were no 1276

texts in sentiment classification that fell into the 1277

most challenging category of 0-10 on the readabil- 1278

ity scale. The specific prompts for each difficulty 1279

level we used are shown in Table 7. Here we also 1280

present the quality of our paraphrase generation 1281

process. Figure 7 displays the average readability 1282

score of the paraphrased text for each combination 1283
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(a) Reading Comprehension (b) Sentiment Classification

Figure 8: Averaged BERTScore F1.

(a) Reading Comprehension (b) Sentiment Classification

Figure 9: Averaged Word Error Rate.

of original and target readability levels. From the1284

heatmap, we can see that while the readability of1285

the paraphrased text is influenced by the readability1286

of the original text, the paraphrases still fall within1287

an acceptable range of readability. We also report1288

the averaged BertScore F1 (Zhang et al., 2019) and1289

Word Error Rate (WER) (Och, 2003) to ensure the1290

quality of our paraphrasing system as shown in Fig-1291

ure 8 and Figure 9. An ideal paraphrasing system1292

should expect high semantic similarity with high1293

BERTScore and low linguistic similarity with high1294

WER.1295

F Additional results1296

Here we present the results from some additional1297

experiments that act as a supplement to the main1298

paper.1299

F.1 Reading comprehension 1300

F.1.1 Data complexity classifier 1301

input format accuracy F1
single ens single ens

mode class 61.6 – 25.4 –

standard 84.7±0.5 87.2 81.7±1.1 83.7
context 84.9±0.3 85.1 81.8±0.8 81.7
context-question 84.7±0.7 86.0 81.8±0.6 82.2
question-option 70.2±0.5 71.3 67.3±0.7 68.2

Table 8: Accuracy of data complexity evaluators on the
RACE++ test set.

In Section 4.3, we used the data complexity clas- 1302

sifier with the data context as the input. Here we 1303

assess its quality by testing its performances in- 1304

domain (with an ensemble of 3 models) on the 1305

RACE++ test set. We additionally compare the 1306

performance on the standard input with other pos- 1307

sible combinations of the input, as shown in Table 1308
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(a) RACE++ (b) CMCQRD

Figure 10: Normalized ranks (rank / total examples) of complexity scores for each complexity level using three
complexity evaluators: context, context-question and standard.

dataset model accuracy influence
original para total question context context-semantic context-linguistic

MCTest
RoBerta 95.3 93.0 0.254 0.140 (55.2%) 0.114 (44.8%) 0.076 (67.0%) 0.037 (33.0%)

Longformer 98.3 91.3 0.285 0.152 (53.5%) 0.133 (46.5%) 0.068 (70.6%) 0.028 (29.4%)
Llama2 92.5 85.8 0.212 0.116 (54.7%) 0.096 (45.3%) 0.068 (70.6%) 0.028 (29.4%)

RACE++
RoBerta 84.2 81.5 0.379 0.213 (56.3%) 0.166 (43.7%) 0.135 (81.4%) 0.031 (18.6%)

Longformer 81.6 79.3 0.390 0.228 (58.6%) 0.162 (41.1%) 0.135 (83.2%) 0.027 (16.8%)
Llama2 86.0 82.9 0.298 0.161 (56.1%) 0.131 (43.9%) 0.108 (82.5%) 0.023 (17.5%)

CMCQRD
Roberta 73.5 69.4 0.383 0.287 (74.9%) 0.096 (25.1%) 0.074 (77.5%) 0.022 (22.4%)

Longformer 71.9 69.8 0.467 0.326 (69.9%) 0.141 (30.1%) 0.114 (81.0%) 0.027 (19.0%)
Llama2 79.9 69.4 0.290 0.211 (72.7%) 0.079 (27.3%) 0.067 (83.8%) 0.012 (16.2%)

Table 9: Decomposition of total input influence for different models in various multiple-choice reading comprehen-
sion datasets.

8. As well as accuracy, macro F1 is reported to1309

account for the imbalance in the complexity level1310

classes. The results for the mode class indicate the1311

baseline performance when the mode class is se-1312

lected for every example in the test set. All systems1313

significantly outperform the baseline. Inputting the1314

context alone is sufficient to get an accuracy close1315

to the full input and when extra information is in-1316

putted, the gain is marginal. Hence, compared with1317

question and options, the context carries a substan-1318

tial proportion of the information to determine the1319

complexity of a question.1320

In Figure 10, the data complexity classifier1321

model shows strong generalizability by clearly1322

classifying different subsets of CMCQRD dataset,1323

which differ a lot from the model’s training dataset.1324

The plot also supports the context is a sufficient1325

input to determine the different complexity levels.1326

F.1.2 Additional models1327

In Section 6, we analyse the influence from differ-1328

ent elements and components on the output for two1329

specific models: Llama-2 for the multiple choice1330

reading comprehension task, Roberta for the sen-1331

timent classification task. Here we show the in- 1332

fluence terms calculated are not model-specific by 1333

showing the consistency of the element influences 1334

on the same datasets but evaluated by different 1335

models: Llama-2, Roberta and Longformer as in 1336

Table 9. 1337

F.1.3 Further analysis 1338

In Figure 3, we show a strong positive correla- 1339

tion between the question influence and the context 1340

complexity when we consider all three dataset to- 1341

gether. Here we show the rule still holds for data 1342

points inside a single dataset in Figure 11 where 1343

the trend in RACE++ dataset is pretty similar to 1344

the all three datasets together. 1345

We also explore other potential factors influenc- 1346

ing the relative question influences. From Table 1347

2, there are two marked differences between the 1348

datasets: the number of words (length) and the 1349

number of questions. To find their influence in the 1350

relative question influence score, Figure 12a and 1351

Figure 12b show the relative question influence of 1352

the subset chosen from the contexts ranked by their 1353

number of words or the number of questions of 1354
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(a) Total (b) RACE++

Figure 11: The relative question influence changes with the subset chosen by the rank of context complexity in all
three datasets (left) and in RACE++ only (right). 13 0.2 in x-axis means we leave contexts with top 20% context
complexity as the subset.

(a) Length (b) Number of questions

Figure 12: The relative question influence for a subset of contexts swept in order of length (left) or average number
of questions per context (right) for all MCRC datasets with Llama-2.

the corresponding context. A strong positive trend1355

between the relative question influence scores and1356

the context length is observed as expected: a longer1357

context naturally has a larger question generation1358

capacity. As shown in Figure 12b, the number of1359

questions does not have a direct impact, indicating1360

the results are not affected by the specific number1361

of questions per context.1362

F.1.4 Question Generation1363

In Section 3.1 we investigate the influence of differ-1364

ent element of model input and focuses on human-1365

generated questions only. Here we investigate the1366

influence from the LLM-generated questions.1367

To be more specific, for each context, using GPT-1368

4, we generate 4 questions with prompt:1369

“Given the context: {context}, please generate1370

four multiple choice questions with options where1371

the first option is the correct answer and the other1372

three are distractors. The questions should be of1373

varying difficulty levels: low, middle, high, and1374

very high. Please output the questions in the format1375

of a dictionary with the keys: ‘easy’, ‘middle’,1376

‘high’, and ‘very high’. Each key should map to a 1377

dictionary representing a question, with the fields 1378

‘question’, ‘options’, and ‘answer’ indicating the 1379

correct answer.” 1380

However, as indicated in (Sun et al., 2023), 1381

LLMs struggle at tasks with hard constraints, Ta- 1382

ble 10 shows the generated questions are relatively 1383

easy and have a lower influence on model output. 1384

F.1.5 Ordering 1385

For humans taking multiple-choice tests, the role 1386

of the context compared to the question may be 1387

influenced by the ordering in which they read each 1388

of these elements. Similarly, a reading comprehen- 1389

sion system may be susceptible to the ordering of 1390

the context and the question. Here we compare 1391

the influence of the ordering by reversing the stan- 1392

dard context followed by question at the input to 1393

the question followed by the context . Table 11 1394

demonstrates that the ordering for the automated 1395

system does not lead to differing influences on each 1396

element. The results here are provided for the fine- 1397

tuned Llama-2 model from Section 5.2. 1398
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Question Source accuracy influence
original para total question context context-semantic context-linguistic

human 84.2 81.5 0.284 0.164 (57.7%) 0.120 (42.3%) 0.135 (81.4%) 0.031 (18.6%)
automatic 96.1 93.7 0.266 0.121 (45.4%) 0.145 (54.6%) 0.101 (69.5%) 0.044 (30.5%)

Table 10: Human sources questions vs GPT4 generated questions for Llama-2 on the RACE++ test set.

dataset direction influence
total question context context-semantic context-linguistic

RACE++ Forward 0.304 0.171 (56.3%) 0.133 (43.7%) 0.109 (82.1%) 0.024 (17.9%)
Reverse 0.305 0.172 (56.7%) 0.133 (43.6%) 0.109 (82.3%) 0.024 (17.7%)

MCTest Forward 0.212 0.116 (54.7%) 0.096 (45.3%) 0.068 (70.6%) 0.028 (29.4%)
Reverse 0.229 0.129 (56.6%) 0.100 (43.4%) 0.067 (67.2%) 0.032 (32.3%)

CMCQRD Forward 0.290 0.211 (72.7%) 0.079 (27.3%) 0.067 (83.8%) 0.012 (16.2%)
Reverse 0.278 0.204 (73.4%) 0.074 (26.6%) 0.061 (82.5%) 0.013 (17.5%)

Table 11: Decomposition of total input influence for different models in various datasets for context-question
(forward) vs question-context (reverse) using Llama-2.

dataset model accuracy influence
original para context semantic linguistic

IMDb RoBERTa 94.8 94.0 0.472 0.444 (94.2%) 0.028 (5.8%)
BERT 93.3 92.9 0.483 0.458 (94.7%) 0.025 (5.3%)

Yelp RoBERTa 94.3 93.9 0.472 0.445 (94.2%) 0.027 (5.8%)
BERT 92.9 92.6 0.518 0.488 (94.2%) 0.030 (5.8%)

Amazon RoBERTa 91.0 89.5 0.361 0.325 (90.0%) 0.036 (10.0%)
BERT 91.2 90.3 0.425 0.389 (91.5%) 0.036 (8.5%)

SST-2 RoBERTa 87.4 82.5 0.210 0.171 (81.4%) 0.039 (18.6%)
BERT 89.0 84.7 0.274 0.229 (83.5%) 0.045 (16.5%)

TweetEval RoBERTa 85.2 74.5 0.570 0.469 (82.2%) 0.101 (17.8%)
BERT 77.7 75.3 0.592 0.506 (85.5%) 0.086 (14.5%)

Table 12: Decomposition of total input influence for different models in various sentiment classification dataset

accuracy influence
original para response response-semantic response-linguistic

79.2 64.4 0.399 0.283 (70.9%) 0.116 (29.1%)

Table 13: Influence from semantic meaning and linguistic realization of the responses in grade classification task in
Hewlett dataset.

F.2 Sentiment classification1399

For the sentiment classification task, to show the1400

consistency of the element influence among dif-1401

ferent models, Table 12 presents additional results1402

using the BERT model as a comparison against the1403

RoBERTa model.1404

It can be observed also that for shorter input1405

text datasets, such as SST-2 and TweetEval, the lin-1406

guistic component is more significant, approaching1407

20% of the total.1408

F.3 Grade classification 1409

The influence to the model output from the re- 1410

sponse, its semantic component and linguistic com- 1411

ponent are respectively shown in Table 13. We ob- 1412

serve a large influence from the linguistic content 1413

of the responses which agrees with the 15% drop 1414

in model accuracy when the paraphrased dataset is 1415

used. Further, we measure the correlation between 1416

the readability and true class probability in Figure 1417

13. It is clear that with a higher readability, the 1418

probability of selecting the true grade increases. 1419
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Figure 13: Entropy filtered pairwise agreement in para-
phrase readability and true class probability ordering
with various minimum readability gaps.

G Future work1420

The analysis in this work has applied the frame-1421

work to specifically NLP classification tasks. It1422

would be interesting to extend the framework to1423

both regression and sequence output tasks. For se-1424

quential outputs, there needs to be a methodology1425

to convert the generated sequence to a single score1426

such that its sensitivity can be measured to each1427

input element.1428

The framework applied to textual data to explore1429

the influence of semantic vs linguistic components1430

can also be extended to image inputs. Here, we1431

can perceive the semantic content as the object1432

being described in the image while the linguistic1433

realization is based on the recording equipment1434

that controls aspects such as orientation, resolution1435

(blurring), camera angle, e.t.c. Therefore, the pro-1436

posed information-theoretic approach has potential1437

applications across several modalities.1438

H Licenses1439

The RACE dataset is available for non-commercial1440

research purposes only. Also for CMCQRD,1441

the license14 states the licensed dataset for non-1442

commercial research and educational purposes1443

only.1444

14Available at: https://englishlanguageituto
ring.com/datasets/cambridge-multiple-cho
ice-questions-reading-dataset
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