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Abstract

The paradigm of reinforcement learning from
human feedback (RLHF) after supervised fine-
tuning (SFT) language models has become
widespread. In this work, we investigate
whether RLHF with turn-level preferences is
still effective in task-oriented dialogue (TOD)
task that requires dialog-level rewards. Since
there is no human preference dataset for TOD
task, we develop two synthetic feedback gener-
ation methods for fully annotated or partially
annotated TOD dataset. We compare these two
methods to the corresponding SFT methods in
an online environment where user goals are un-
known. Despite the simplicity of the proposed
methods, RLHF outperformed SFT on the par-
tially annotated TOD dataset in both corpus-
based and simulator-based evaluations. Our
comprehensive experiments present a direction
for effectively enhancing system performance
using data generated while providing services
in real-world environments.

1 Introduction

Task-oriented dialogue (TOD) systems are devel-
oped to help users achieve specific goals by inter-
acting with them. These systems are composed of
four key components: (1) natural language under-
standing module to comprehend the user’s intent,
(2) dialog state tracking module to summarize the
dialog history into a dialog state, (3) policy mod-
ule to decide the strategy by referring to the dialog
state and external resources (i.e., database), and
(4) natural language generation module to gener-
ate natural language responses based on the pol-
icy. With the advancement of pre-trained language
models (PLMs), integrating PLMs into TOD sys-
tems has enhanced their performance. On the one
hand, it has often been found that the responses
from PLMs do not always reflect human prefer-
ences (Schramowski et al., 2022; Korbak et al.,
2023). To address this issue, (Ouyang et al., 2022)

proposed a procedural learning framework, known
as reinforcement learning from human feedback
(RLHF), which consists of supervised fine-tuning
(SFT), reward modeling (RM), and reinforcement
learning using proximal policy optimization (PPO)
(Schulman et al., 2017).

With a reward model trained on the human pref-
erence dataset, it applies reinforcement learning
on online data to align PLMs with human values.
This is in line with improving the performance of
the TOD systems in real-world scenarios where the
user goals are unknown. However, there are chal-
lenges in applying RLHF to TOD systems. RLHF
provides rewards based on the appropriateness of
the model’s response at each turn, whereas TOD
systems require rewards to be given not only for
individual turns but also for the appropriateness of
the entire dialogue. Additionally, applying RLHF
to TOD systems by manually building preference
datasets demands significant effort and annotation
costs. For these reasons, there has been no research
investigating the effectiveness of RLHF in TOD
systems, despite the fact that it can be applied to
TOD systems.

In this paper, we investigate whether RLHF is
effective for TOD systems, focusing on the policy
optimization and the response generation task. To
this end, we propose two methods to apply RLHF
to TOD systems without the human preference an-
notation by using a rule of thumb to estimate the
human preference. These two methods are based
on assumptions that either (1) humans are better
than models or (2) in-distribution models are better
than out-distribution models. We compare these
methods to corresponding fine-tuning method for
TOD dataset where the TOD annotations (e.g., be-
lief states and system actions) are either partially
provided or fully provided. In the real-world sce-
narios where the user goals are unknown, our exper-
imental results show that RLHF improves the per-
formance of TOD systems when the TOD dataset



is partially annotated.

2 Related Work

Task-Oriented Dialogue The next token predic-
tion task requires annotated TOD data and does
not guarantee to generate diverse and informative
responses (Zhang et al., 2020). To overcome these
limitations, reinforcement learning (RL) has been
studied for policy optimization and response gen-
eration, which can be formulated as a Markov De-
cision Process. The previous works can be cate-
gorized into three different approaches: offline RL
(Zhao et al., 2019; Ramachandran et al., 2022),
model-based RL (Peng et al., 2018; Wu et al.,
2020), and multi-agent RL (Papangelis et al., 2019;
Takanobu et al., 2020).

Our work falls into model-based RL approach

where a user goal is not required to be annotated for
online data. To the best our knowledge, the model-
based RL methods have only been focused on the
policy optimization, whereas we investigate the
preference-based reward modeling for both policy
optimization and response generation. One of our
reward modeling methods, preferring the responses
of in-distribution model, is similar to (Ramachan-
dran et al., 2022). They train a turn-level reward
model with a preferential objective function using
K models trained by K -folded datasets. However,
their reward model cannot be used for online data
because it requires the user goal that is hard to
obtain in the real-world scenarios.
Reinforcement Learning from Human Feedback
RLHF has been proposed to reflect human’s prefer-
ences to the language models (Ouyang et al., 2022;
Ziegler et al., 2019). It is mainly studied for large
language models with preference datasets anno-
tated by human (Bai et al., 2022; Ethayarajh et al.,
2022). While it has been reported that RLHF works
on smaller models (like GPT-2) with the large hu-
man preference dataset , there is still a burden in
collecting the human preference dataset. Fortu-
nately, synthetic feedback that does not rely on hu-
man annotator has been shown to be able to reflect
human preferences (Kim et al., 2023). Inspired by
this work, we design criteria to generate synthetic
feedback and then investigate their usefulness for
TOD.

3 Method

In this section, we explain the entire framework
depicted in Figure 1, following the RLHF process.

First, SFT is conducted to enhance the PLMs’ per-
formance for specific data. Next, RM is performed
using the preference dataset. Finally, through the
RL algorithm, such as PPO, the model’s parame-
ters are adjusted to maximize the rewards from the
reward model, with kullback-leibler (KL) regular-
ization to prevent mode-collapse.

3.1 Dataset Partitioning and Supervised
Fine-Tuning

We have adopted MultiWOZ 2.1 (Eric et al., 2020),
containing over 10,000 dialogues across multiple
domains. In order to consider both fully annotated
and partially annotated datasets, the entire dataset is
divided into 4-fold splits, named Dg, D1, Do, and
D3, respectively. In our experiments, the subset Dy
is used for SFT while other subsets are used in the
process of constructing the preference dataset for
RM. The experiments on either partially annotated
or fully annotated TOD dataset depend on whether
the subsets D1, Do, and D3 are annotated with the
system actions and the belief states.

3.2 Synthetic Preference Dataset Construction

To construct the preference dataset without human
annotators, we leverage insights from previous stud-
ies, which have shown that humans achieve supe-
rior results in conversation compared to language
models (Ou et al., 2023), and models fine-tuned
on specific data perform better on in-distribution
data (Lee et al., 2019). Based on these findings,
we apply a rule of thumb to estimate the quality of
responses as follows:

e Human > Machine
e In-distribution model>Out-distribution model

The comparison between human and machine re-
sponses is utilized in the experiment where the
TOD dataset is partially annotated, while the com-
parison between in-distribution model and out-
distribution model is utilized in the experiment
where the TOD dataset is fully annotated. We
present experimental results supporting this as-
sumption in Appendix A.

Human > Machine Based on the assumption
that human responses will achieve higher prefer-
ences than language model responses, the model
My, fine-tuned on the subset Dy, generates out-
puts Diredel prodel and pedel for Dy, Do, and
D5 respectively. These outputs are then compared
with the human-crafted original data Dy, Do, and
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Figure 1: Overview of our proposed method. In this figure, M,, is the model fine-tuned on subset D,,. D°%! and
D2ut represent the outputs generated by M for D,,, while D" is the output generated by M,, for D,,.

Ds. The preference between each pair of dataset
is established as D,, > Dgwdel (where n=1, 2, 3).
We designate D,, as positive responses and D/70%!
as negative responses, forming binary pairs such
as (D, D{nodel)’ (Do, Dgnodel)’ and (Ds, Dgnodel).
Since the annotations for TOD task are only needed
to perform SFT, this method is applicable in semi-
supervised environment where the annotations are
partially provided.

In-distribution model>Out-distribution model
To realize the assumption that language mod-
els trained on the distribution of specific divided
dataset will perform better than those not specif-
ically trained, we use the model M, fine-tuned
on each subset D,,. The model M then generates
outputs D¢“, D§“, and D" for Dy, D2, and Ds,
respectively. Other models generate outputs corre-
sponding to the trained subsets. These are referred
to as DI, Di", and D¥". Here, the preference is
established by treating D™ as positive responses,
and D2" as negative responses. The final prefer-
ence dataset forms binary pairs like (DI, D§“t),
(Dir, D§*Y), and (DI, D"). In this method, the
annotations for TOD task are needed to fine-tune
the models for each subset.

3.3 Reward Modeling

In the process of RM, we utilize the positive and
negative pairs generated from the previous step.
The reward model may struggle to learn an ambigu-
ous preference because the preference dataset is
synthetically constructed. To encourage model dis-
creteness, we inject a noise N into the loss function
(Jang et al., 2016). Intuitively, the reward model
may tend to avoid local minima, where the out-
puts of the sigmoid function are mostly 0.5, due to
the noise. Here, we use the Gaussian noise with

a standard deviation of 0.25, since we found that
the Gaussian noise is better than Gumbel noise in
our preliminary experiments. The details of the
objective function are provided in Appendix B.1.

3.4 Reinforcement Learning

To simulate the real-world scenarios where the
users interact with TOD systems, we adopt a user
simulator, provided by ConvLab-2 (Zhu et al.,
2020), as a real user. The user simulator is com-
posed of a rule-based policy module and a template-
based response generation module. To prevent goal
contamination, where test user goals are included
in the training data of the RL stage, we sample 1K
goals from the training data. We then collect the
dialogues using the sampled goals by interacting
the fine-tuned TOD model M with the user simula-
tor. Note that the user goals are not used in the RL
stage. For this online data, we train the fine-tuned
TOD model M using PPO. The objective function
is described in Appendix B.2.

4 Experiments

We investigate the effectiveness of RLHF on TOD
systems in the real-world scenarios, given two dif-
ferent data annotation conditions. When the an-
notations are fully provided in TOD dataset, the
preference dataset can be built from the assump-
tion that in-distribution models are better than out-
distribution models. Based on this assumption, the
model trained with PPO is called Mgggt. It is com-
parable to the model supervised fine-tuned on the
fully annotated data (called M ;) and the model
further supervised fine-tuned on the online data
(called M}’Zﬁ"e) On the other hand, when the an-
notations are partially provided in TOD dataset, the
preference dataset can be built from the assumption



. Corpus-based Evaluation Simulator-based Evaluation

Model Noise Combined | Success

Match Success BLEU Completeness Turns
score rate

My ¥ - 89.4 82.4 18.0 103.9 95.2 96.6 7.1
M}’ﬁff”e - 77.3 67.5 10.3 82.7 96.8 97.7 7.6
it - 86.7 79.7 16.1 99.3 96.1 98.6 7.3
ppo (0] 89.4 82.8 15.0 101.1 93.6 99.0 6.7
My - 85.1 76.6 16.3 97.1 95.4 97.0 7.6
Mg”“"e - 76.3 65.1 9.9 80.6 98.0 98.9 7.6
fhuman - 87.2 79.9 159 99.5 96.2 98.9 7.2
ppo (0] 87.2 80.3 15.9 99.6 95.8 98.4 7.2

Table 1: Experimental results with corpus-based and simulator-based evaluations. In the original paper, UBAR
achieved scores of 92.7 / 81.0 / 16.7 / 103.6 for the corpus-based evaluation. We set our better model M ,;; as a

baseline from combined score perspective.

that humans are better than models. We call the
model, trained with PPO under this assumption,
M;};‘Oma". As mentioned in section 3, the dataset
is divided into 4-fold splits, of which only Dy is
assumed to be annotated for the belief states and
the system actions. We compare Mgplgman to the
model supervised fine-tuned on the Dy (called M)
and the model further supervised fine-tuned on the
online data (called M{f"””e). The details of our im-
plementation, dataset, and evaluation metrics can

be found in Appendix C.

4.1 Experimental Results

Table 1 shows the results for corpus-based and
simulator-based evaluations. We will describe the
main results and provide discussion about them.
RLHF vs. SFT In fully supervised setting, the
RLHF-applied models M;%it show lower perfor-
mance in the corpus-based evaluation compared to
the SFT model M. In semi-supervised setting,
in contrast, the RLHF-applied models Mﬁ;gm“”
achieve better performance than the SFT model M.
This indicates the effectiveness of applying RLHF
to TOD systems when only a subset of the entire
TOD dataset is annotated. Additionally, we ob-
served that the RLHF-applied models consistently
outperform the SFT models in the simulator-based
evaluation, except for Mggff with noise.

Effect of noise In the corpus-based evaluation,
the noise injection is helpful for both settings, but
there is no significant gain in semi-supervised set-
ting. This may be consistent with our observation
in RM stage, that distinguishing between human
and model responses are easier than distinguishing
between in-distribution and out-distribution model

responses. Because it is more ambiguous to differ-
entiate the preference between models, the noise
can be more helpful in this case.

RLHF vs. SFT on online data Further fine-
tuning of the SFT models on online data improves
performance on simulator-based evaluation, but sig-
nificantly degrades performance on corpus-based
evaluation. We conjecture this phenomenon comes
from overfitting to the user simulator. This can
be detrimental to serving the dialogue systems in
real-world environments where the online data is
utilized for the sustainability of the systems.

5 Conclusion

We have explored whether RLHF can improve
TOD systems when the user goals and additional
annotations are not provided, as in real-world sce-
narios. Furthermore, two preferential criteria are
presented to unburden the cost of annotating human
preference. One, which favors human responses
over model responses, is applied to the partially
annotated TOD dataset, and the other, which favors
in-distribution models over out-distribution models,
is applied to the fully annotated TOD dataset. Our
experiments demonstrate that RLHF is effective
for TOD systems in the semi-supervised setting,
rather than fully supervised setting. RLHF may be
better suited for maintaining and enhancing system
performance by leveraging data generated in real-
world environments. We hope that our research can
inspire more future works on applying RLHF to
TOD systems.



6 Limitations

Our work has limitations in that it completely ex-
cluded the DST task and examined one method
of RLHF. Although the models that are further
supervised fine-tuned on the online data perform
better in the simulator-based evaluation, they seem
to suffer from a forgetting problem. Additionally,
while noise injection is helpful for both settings
in the corpus-based evaluation, there is no sig-
nificant gain in the semi-supervised setting, and
the noise-injected models perform worse in the
simulator-based evaluation. It is necessary to in-
vestigate whether similar phenomena occur with
various RLHF methods (Rafailov et al., 2024; Azar
et al., 2023). Addressing these limitations could
provide a more comprehensive understanding of
how RLHF can be applied to TOD systems.
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A Experimental results

Table 2 compares the performance between in-
distribution and out-distribution through the corpus-
based evaluation. The results indicate that mod-
els trained on in-distribution data achieved better
performance across all metrics compared to those
trained on out-distribution data. This supports the
reliability of our experiments conducted under the
assumption that in-distribution models are better
than out-distribution models.

B Mathematical Formulations

B.1 Reward Modeling

The loss function for the reward model is defined
as follows:

J(e) = _E(vaposyyneg)’\’D
[ZOQ(U(TH(?JPOS|C) - TG(yneg‘C)) +N)| (D)

In this equation, ¢, Ypos, and ype4 represent a dia-
logue context, positive response, and negative re-
sponse, respectively. The injected noise /N encour-
ages the model to avoid local minima by making
the outputs of the sigmoid function less likely to
be mostly 0.5. Gaussian noise with a standard de-
viation of 0.25 is used, as it was found to be more
effective than Gumbel noise in preliminary experi-
ments.

B.2 Reinforcement Learning

The objective function for the RL stage is defined
as follows:

J(®) = =E(cy)~Doniine
[ro(ylc) — BDxuwL[me(ylo)||mo(ylc)]] (2)

In this equation, 3 is a coefficient for KL regulariza-
tion, and 7y and 7y are the trainable model policy
and the initial model (M) policy, respectively. The
reward ry(y|c) is provided by the reward model
trained with the synthetic preference dataset. For
all experiments, we set 3 to 0.2.
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Model Data Corpus-based Evaluation .
Match Success BLEU Combined

score
My Dy 71.0 57.8 16.5 80.9
M, Dy 74.4 63.7 24.5 93.6
My Do 71.1 59.2 16.4 81.6
Mo Do 74.0 63.6 25.1 93.9
My Ds 69.8 58.7 16.5 80.8
Ms Ds 74.4 64.6 24.5 94.0

Table 2: Performance Comparison Based on Distributions

C Experiment Configurations

C.1 Implementation details

We use UBAR (Yang et al., 2021) which is one
of state-of-the-arts in TOD systems for all mod-
els. In SFT stage, we use DistilGPT2!, which has
82M parameters, as a backbone. We train the SFT
models for 15 epochs with a batch size of 16 and
a learning rate of 1e-4. We further fine-tune these
models on the online data for 3 epochs with the
same configuration. In RM stage, all reward mod-
els are initialized with the fine-tuned model M.
And then, the models are trained for 5 epochs. We
use 10% of the preference dataset as a development
set for model selection. In PPO stage, all mod-
els are equipped with a rule-based DST provided
by ConvLab-2 to focus on the policy optimization
and the response generation. The batch size is set
to 32 and the learning rate is set to le-6. In this
stage, all models are also initialized with My, and
trained for only one epoch. For all experiments, we
use AdamW optimizer and linear scheduler with-
out warmup. The experiments were consistently
performed on a 48G Quadro RTX 8000.

C.2 Dataset

MultiWOZ (Budzianowski et al., 2018), collected
through human-to-human interactions, is an open-
source dataset extensively used for examining the
TOD systems. This dataset encompasses TOD
dialogues for a single domain and multiple do-
mains across 7 domains (hotel, hospital, attrac-
tion, train, restaurant, policy, and taxi). It also
provides train/dev/test splits for 8,434/1,000/1,000
dialogues. We follow the provided split and the
pre-processing procedures described in DAMD-
MultiWOZ?.

'https://huggingface.co/distilbert/distilgpt2
Zhttps://github.com/thu-spmi/damd-multiwoz

C.3 Evaluation Metric

We evaluate our method using two approaches:
corpus-based evaluation, where we assess the
model responses to user utterances in the corpus
given the ground-truth belief states, and simulator-
based evaluation, where we use the rule-based
user simulator to simulate the interaction between
real user and dialogue system. The corpus-based
evaluation includes Match, measures whether the
dialogue system has provided the correct entity,
Success evaluates whether the dialogue system
has provided the correct entity and has fully an-
swered all the information requested by the user,
and BLEU (Papineni et al., 2002), which measures
how similar the generated responses are to human
responses. We also report Combined score (Mehri
et al., 2019), which is calculated as, (Match + Suc-
cess) * 0.5 + BLEU, to assess the overall quality
of the dialogue system. For the simulator-based
evaluation, Success Rate measures whether the di-
alogue system has provided not only the correct
entity but also all the information requested by the
user including booking information if available,
Completeness measures whether user has fulfilled
for own goal, and Turns means the average of the
number of turns of the simulated dialogues. We
report the average of five runs for the metrics of
simulator-based evaluation, because the user simu-
lator has diverse policies unlike corpus-based eval-
uation. All simulations have been conducted for
the user goals in the test split of MultiWOZ.
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