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Abstract001

The paradigm of reinforcement learning from002
human feedback (RLHF) after supervised fine-003
tuning (SFT) language models has become004
widespread. In this work, we investigate005
whether RLHF with turn-level preferences is006
still effective in task-oriented dialogue (TOD)007
task that requires dialog-level rewards. Since008
there is no human preference dataset for TOD009
task, we develop two synthetic feedback gener-010
ation methods for fully annotated or partially011
annotated TOD dataset. We compare these two012
methods to the corresponding SFT methods in013
an online environment where user goals are un-014
known. Despite the simplicity of the proposed015
methods, RLHF outperformed SFT on the par-016
tially annotated TOD dataset in both corpus-017
based and simulator-based evaluations. Our018
comprehensive experiments present a direction019
for effectively enhancing system performance020
using data generated while providing services021
in real-world environments.022

1 Introduction023

Task-oriented dialogue (TOD) systems are devel-024

oped to help users achieve specific goals by inter-025

acting with them. These systems are composed of026

four key components: (1) natural language under-027

standing module to comprehend the user’s intent,028

(2) dialog state tracking module to summarize the029

dialog history into a dialog state, (3) policy mod-030

ule to decide the strategy by referring to the dialog031

state and external resources (i.e., database), and032

(4) natural language generation module to gener-033

ate natural language responses based on the pol-034

icy. With the advancement of pre-trained language035

models (PLMs), integrating PLMs into TOD sys-036

tems has enhanced their performance. On the one037

hand, it has often been found that the responses038

from PLMs do not always reflect human prefer-039

ences (Schramowski et al., 2022; Korbak et al.,040

2023). To address this issue, (Ouyang et al., 2022)041

proposed a procedural learning framework, known 042

as reinforcement learning from human feedback 043

(RLHF), which consists of supervised fine-tuning 044

(SFT), reward modeling (RM), and reinforcement 045

learning using proximal policy optimization (PPO) 046

(Schulman et al., 2017). 047

With a reward model trained on the human pref- 048

erence dataset, it applies reinforcement learning 049

on online data to align PLMs with human values. 050

This is in line with improving the performance of 051

the TOD systems in real-world scenarios where the 052

user goals are unknown. However, there are chal- 053

lenges in applying RLHF to TOD systems. RLHF 054

provides rewards based on the appropriateness of 055

the model’s response at each turn, whereas TOD 056

systems require rewards to be given not only for 057

individual turns but also for the appropriateness of 058

the entire dialogue. Additionally, applying RLHF 059

to TOD systems by manually building preference 060

datasets demands significant effort and annotation 061

costs. For these reasons, there has been no research 062

investigating the effectiveness of RLHF in TOD 063

systems, despite the fact that it can be applied to 064

TOD systems. 065

In this paper, we investigate whether RLHF is 066

effective for TOD systems, focusing on the policy 067

optimization and the response generation task. To 068

this end, we propose two methods to apply RLHF 069

to TOD systems without the human preference an- 070

notation by using a rule of thumb to estimate the 071

human preference. These two methods are based 072

on assumptions that either (1) humans are better 073

than models or (2) in-distribution models are better 074

than out-distribution models. We compare these 075

methods to corresponding fine-tuning method for 076

TOD dataset where the TOD annotations (e.g., be- 077

lief states and system actions) are either partially 078

provided or fully provided. In the real-world sce- 079

narios where the user goals are unknown, our exper- 080

imental results show that RLHF improves the per- 081

formance of TOD systems when the TOD dataset 082
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is partially annotated.083

2 Related Work084

Task-Oriented Dialogue The next token predic-085

tion task requires annotated TOD data and does086

not guarantee to generate diverse and informative087

responses (Zhang et al., 2020). To overcome these088

limitations, reinforcement learning (RL) has been089

studied for policy optimization and response gen-090

eration, which can be formulated as a Markov De-091

cision Process. The previous works can be cate-092

gorized into three different approaches: offline RL093

(Zhao et al., 2019; Ramachandran et al., 2022),094

model-based RL (Peng et al., 2018; Wu et al.,095

2020), and multi-agent RL (Papangelis et al., 2019;096

Takanobu et al., 2020).097

Our work falls into model-based RL approach098

where a user goal is not required to be annotated for099

online data. To the best our knowledge, the model-100

based RL methods have only been focused on the101

policy optimization, whereas we investigate the102

preference-based reward modeling for both policy103

optimization and response generation. One of our104

reward modeling methods, preferring the responses105

of in-distribution model, is similar to (Ramachan-106

dran et al., 2022). They train a turn-level reward107

model with a preferential objective function using108

K models trained by K -folded datasets. However,109

their reward model cannot be used for online data110

because it requires the user goal that is hard to111

obtain in the real-world scenarios.112

Reinforcement Learning from Human Feedback113

RLHF has been proposed to reflect human’s prefer-114

ences to the language models (Ouyang et al., 2022;115

Ziegler et al., 2019). It is mainly studied for large116

language models with preference datasets anno-117

tated by human (Bai et al., 2022; Ethayarajh et al.,118

2022). While it has been reported that RLHF works119

on smaller models (like GPT-2) with the large hu-120

man preference dataset , there is still a burden in121

collecting the human preference dataset. Fortu-122

nately, synthetic feedback that does not rely on hu-123

man annotator has been shown to be able to reflect124

human preferences (Kim et al., 2023). Inspired by125

this work, we design criteria to generate synthetic126

feedback and then investigate their usefulness for127

TOD.128

3 Method129

In this section, we explain the entire framework130

depicted in Figure 1, following the RLHF process.131

First, SFT is conducted to enhance the PLMs’ per- 132

formance for specific data. Next, RM is performed 133

using the preference dataset. Finally, through the 134

RL algorithm, such as PPO, the model’s parame- 135

ters are adjusted to maximize the rewards from the 136

reward model, with kullback-leibler (KL) regular- 137

ization to prevent mode-collapse. 138

3.1 Dataset Partitioning and Supervised 139

Fine-Tuning 140

We have adopted MultiWOZ 2.1 (Eric et al., 2020), 141

containing over 10,000 dialogues across multiple 142

domains. In order to consider both fully annotated 143

and partially annotated datasets, the entire dataset is 144

divided into 4-fold splits, named D0, D1, D2, and 145

D3, respectively. In our experiments, the subset D0 146

is used for SFT while other subsets are used in the 147

process of constructing the preference dataset for 148

RM. The experiments on either partially annotated 149

or fully annotated TOD dataset depend on whether 150

the subsets D1, D2, and D3 are annotated with the 151

system actions and the belief states. 152

3.2 Synthetic Preference Dataset Construction 153

To construct the preference dataset without human 154

annotators, we leverage insights from previous stud- 155

ies, which have shown that humans achieve supe- 156

rior results in conversation compared to language 157

models (Ou et al., 2023), and models fine-tuned 158

on specific data perform better on in-distribution 159

data (Lee et al., 2019). Based on these findings, 160

we apply a rule of thumb to estimate the quality of 161

responses as follows: 162

• Human > Machine 163

• In-distribution model>Out-distribution model 164

The comparison between human and machine re- 165

sponses is utilized in the experiment where the 166

TOD dataset is partially annotated, while the com- 167

parison between in-distribution model and out- 168

distribution model is utilized in the experiment 169

where the TOD dataset is fully annotated. We 170

present experimental results supporting this as- 171

sumption in Appendix A. 172

Human > Machine Based on the assumption 173

that human responses will achieve higher prefer- 174

ences than language model responses, the model 175

M0, fine-tuned on the subset D0, generates out- 176

puts Dmodel
1 , Dmodel

2 , and Dmodel
3 for D1, D2, and 177

D3 respectively. These outputs are then compared 178

with the human-crafted original data D1, D2, and 179
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Figure 1: Overview of our proposed method. In this figure, Mn is the model fine-tuned on subset Dn. Dmodel
n and

Dout
n represent the outputs generated by M0 for Dn, while Din

1 is the output generated by Mn for Dn.

D3. The preference between each pair of dataset180

is established as Dn > Dmodel
n (where n=1, 2, 3).181

We designate Dn as positive responses and Dmodel
n182

as negative responses, forming binary pairs such183

as (D1, Dmodel
1 ), (D2, Dmodel

2 ), and (D3, Dmodel
3 ).184

Since the annotations for TOD task are only needed185

to perform SFT, this method is applicable in semi-186

supervised environment where the annotations are187

partially provided.188

In-distribution model>Out-distribution model189

To realize the assumption that language mod-190

els trained on the distribution of specific divided191

dataset will perform better than those not specif-192

ically trained, we use the model Mn, fine-tuned193

on each subset Dn. The model M0 then generates194

outputs Dout
1 , Dout

2 , and Dout
3 for D1, D2, and D3,195

respectively. Other models generate outputs corre-196

sponding to the trained subsets. These are referred197

to as Din
1 , Din

2 , and Din
3 . Here, the preference is198

established by treating Din
n as positive responses,199

and Dout
n as negative responses. The final prefer-200

ence dataset forms binary pairs like (Din
1 , Dout

1 ),201

(Din
2 , Dout

2 ), and (Din
3 , Dout

3 ). In this method, the202

annotations for TOD task are needed to fine-tune203

the models for each subset.204

3.3 Reward Modeling205

In the process of RM, we utilize the positive and206

negative pairs generated from the previous step.207

The reward model may struggle to learn an ambigu-208

ous preference because the preference dataset is209

synthetically constructed. To encourage model dis-210

creteness, we inject a noise N into the loss function211

(Jang et al., 2016). Intuitively, the reward model212

may tend to avoid local minima, where the out-213

puts of the sigmoid function are mostly 0.5, due to214

the noise. Here, we use the Gaussian noise with215

a standard deviation of 0.25, since we found that 216

the Gaussian noise is better than Gumbel noise in 217

our preliminary experiments. The details of the 218

objective function are provided in Appendix B.1. 219

3.4 Reinforcement Learning 220

To simulate the real-world scenarios where the 221

users interact with TOD systems, we adopt a user 222

simulator, provided by ConvLab-2 (Zhu et al., 223

2020), as a real user. The user simulator is com- 224

posed of a rule-based policy module and a template- 225

based response generation module. To prevent goal 226

contamination, where test user goals are included 227

in the training data of the RL stage, we sample 1K 228

goals from the training data. We then collect the 229

dialogues using the sampled goals by interacting 230

the fine-tuned TOD model M0 with the user simula- 231

tor. Note that the user goals are not used in the RL 232

stage. For this online data, we train the fine-tuned 233

TOD model M0 using PPO. The objective function 234

is described in Appendix B.2. 235

4 Experiments 236

We investigate the effectiveness of RLHF on TOD 237

systems in the real-world scenarios, given two dif- 238

ferent data annotation conditions. When the an- 239

notations are fully provided in TOD dataset, the 240

preference dataset can be built from the assump- 241

tion that in-distribution models are better than out- 242

distribution models. Based on this assumption, the 243

model trained with PPO is called Mdist
ppo . It is com- 244

parable to the model supervised fine-tuned on the 245

fully annotated data (called Mfull) and the model 246

further supervised fine-tuned on the online data 247

(called Monline
full ). On the other hand, when the an- 248

notations are partially provided in TOD dataset, the 249

preference dataset can be built from the assumption 250
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Model Noise Corpus-based Evaluation Simulator-based Evaluation

Match Success BLEU Combined
score

Success
rate Completeness Turns

Mfull
* - 89.4 82.4 18.0 103.9 95.2 96.6 7.1

Monline
full - 77.3 67.5 10.3 82.7 96.8 97.7 7.6

Mdist
ppo

- 86.7 79.7 16.1 99.3 96.1 98.6 7.3
O 89.4 82.8 15.0 101.1 93.6 99.0 6.7

M0 - 85.1 76.6 16.3 97.1 95.4 97.0 7.6
Monline

0 - 76.3 65.1 9.9 80.6 98.0 98.9 7.6

Mhuman
ppo

- 87.2 79.9 15.9 99.5 96.2 98.9 7.2
O 87.2 80.3 15.9 99.6 95.8 98.4 7.2

Table 1: Experimental results with corpus-based and simulator-based evaluations. In the original paper, UBAR
achieved scores of 92.7 / 81.0 / 16.7 / 103.6 for the corpus-based evaluation. We set our better model Mfull as a
baseline from combined score perspective.

that humans are better than models. We call the251

model, trained with PPO under this assumption,252

Mhuman
ppo . As mentioned in section 3, the dataset253

is divided into 4-fold splits, of which only D0 is254

assumed to be annotated for the belief states and255

the system actions. We compare Mhuman
ppo to the256

model supervised fine-tuned on the D0 (called M0)257

and the model further supervised fine-tuned on the258

online data (called Monline
0 ). The details of our im-259

plementation, dataset, and evaluation metrics can260

be found in Appendix C.261

4.1 Experimental Results262

Table 1 shows the results for corpus-based and263

simulator-based evaluations. We will describe the264

main results and provide discussion about them.265

RLHF vs. SFT In fully supervised setting, the266

RLHF-applied models Mdist
ppo show lower perfor-267

mance in the corpus-based evaluation compared to268

the SFT model Mfull. In semi-supervised setting,269

in contrast, the RLHF-applied models Mhuman
ppo270

achieve better performance than the SFT model M0.271

This indicates the effectiveness of applying RLHF272

to TOD systems when only a subset of the entire273

TOD dataset is annotated. Additionally, we ob-274

served that the RLHF-applied models consistently275

outperform the SFT models in the simulator-based276

evaluation, except for Mdist
ppo with noise.277

Effect of noise In the corpus-based evaluation,278

the noise injection is helpful for both settings, but279

there is no significant gain in semi-supervised set-280

ting. This may be consistent with our observation281

in RM stage, that distinguishing between human282

and model responses are easier than distinguishing283

between in-distribution and out-distribution model284

responses. Because it is more ambiguous to differ- 285

entiate the preference between models, the noise 286

can be more helpful in this case. 287

RLHF vs. SFT on online data Further fine- 288

tuning of the SFT models on online data improves 289

performance on simulator-based evaluation, but sig- 290

nificantly degrades performance on corpus-based 291

evaluation. We conjecture this phenomenon comes 292

from overfitting to the user simulator. This can 293

be detrimental to serving the dialogue systems in 294

real-world environments where the online data is 295

utilized for the sustainability of the systems. 296

5 Conclusion 297

We have explored whether RLHF can improve 298

TOD systems when the user goals and additional 299

annotations are not provided, as in real-world sce- 300

narios. Furthermore, two preferential criteria are 301

presented to unburden the cost of annotating human 302

preference. One, which favors human responses 303

over model responses, is applied to the partially 304

annotated TOD dataset, and the other, which favors 305

in-distribution models over out-distribution models, 306

is applied to the fully annotated TOD dataset. Our 307

experiments demonstrate that RLHF is effective 308

for TOD systems in the semi-supervised setting, 309

rather than fully supervised setting. RLHF may be 310

better suited for maintaining and enhancing system 311

performance by leveraging data generated in real- 312

world environments. We hope that our research can 313

inspire more future works on applying RLHF to 314

TOD systems. 315
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6 Limitations316

Our work has limitations in that it completely ex-317

cluded the DST task and examined one method318

of RLHF. Although the models that are further319

supervised fine-tuned on the online data perform320

better in the simulator-based evaluation, they seem321

to suffer from a forgetting problem. Additionally,322

while noise injection is helpful for both settings323

in the corpus-based evaluation, there is no sig-324

nificant gain in the semi-supervised setting, and325

the noise-injected models perform worse in the326

simulator-based evaluation. It is necessary to in-327

vestigate whether similar phenomena occur with328

various RLHF methods (Rafailov et al., 2024; Azar329

et al., 2023). Addressing these limitations could330

provide a more comprehensive understanding of331

how RLHF can be applied to TOD systems.332
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A Experimental results 485

Table 2 compares the performance between in- 486

distribution and out-distribution through the corpus- 487

based evaluation. The results indicate that mod- 488

els trained on in-distribution data achieved better 489

performance across all metrics compared to those 490

trained on out-distribution data. This supports the 491

reliability of our experiments conducted under the 492

assumption that in-distribution models are better 493

than out-distribution models. 494

B Mathematical Formulations 495

B.1 Reward Modeling 496

The loss function for the reward model is defined 497

as follows: 498

J(θ) = −E(c,ypos,yneg)∼D 499

[log(σ(rθ(ypos|c)− rθ(yneg|c)) +N)] (1) 500

In this equation, c, ypos, and yneg represent a dia- 501

logue context, positive response, and negative re- 502

sponse, respectively. The injected noise N encour- 503

ages the model to avoid local minima by making 504

the outputs of the sigmoid function less likely to 505

be mostly 0.5. Gaussian noise with a standard de- 506

viation of 0.25 is used, as it was found to be more 507

effective than Gumbel noise in preliminary experi- 508

ments. 509

B.2 Reinforcement Learning 510

The objective function for the RL stage is defined 511

as follows: 512

J(ϕ) = −E(c,y)∼Donline
513

[rθ(y|c)− βDKL[πϕ(y|c)||π0(y|c)]] (2) 514

In this equation, β is a coefficient for KL regulariza- 515

tion, and πϕ and π0 are the trainable model policy 516

and the initial model (M0) policy, respectively. The 517

reward rθ(y|c) is provided by the reward model 518

trained with the synthetic preference dataset. For 519

all experiments, we set β to 0.2. 520
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Model Data Corpus-based Evaluation

Match Success BLEU Combined
score

M0 D1 71.0 57.8 16.5 80.9
M1 D1 74.4 63.7 24.5 93.6
M0 D2 71.1 59.2 16.4 81.6
M2 D2 74.0 63.6 25.1 93.9
M0 D3 69.8 58.7 16.5 80.8
M3 D3 74.4 64.6 24.5 94.0

Table 2: Performance Comparison Based on Distributions

C Experiment Configurations521

C.1 Implementation details522

We use UBAR (Yang et al., 2021) which is one523

of state-of-the-arts in TOD systems for all mod-524

els. In SFT stage, we use DistilGPT21, which has525

82M parameters, as a backbone. We train the SFT526

models for 15 epochs with a batch size of 16 and527

a learning rate of 1e-4. We further fine-tune these528

models on the online data for 3 epochs with the529

same configuration. In RM stage, all reward mod-530

els are initialized with the fine-tuned model M0.531

And then, the models are trained for 5 epochs. We532

use 10% of the preference dataset as a development533

set for model selection. In PPO stage, all mod-534

els are equipped with a rule-based DST provided535

by ConvLab-2 to focus on the policy optimization536

and the response generation. The batch size is set537

to 32 and the learning rate is set to 1e-6. In this538

stage, all models are also initialized with M0, and539

trained for only one epoch. For all experiments, we540

use AdamW optimizer and linear scheduler with-541

out warmup. The experiments were consistently542

performed on a 48G Quadro RTX 8000.543

C.2 Dataset544

MultiWOZ (Budzianowski et al., 2018), collected545

through human-to-human interactions, is an open-546

source dataset extensively used for examining the547

TOD systems. This dataset encompasses TOD548

dialogues for a single domain and multiple do-549

mains across 7 domains (hotel, hospital, attrac-550

tion, train, restaurant, policy, and taxi). It also551

provides train/dev/test splits for 8,434/1,000/1,000552

dialogues. We follow the provided split and the553

pre-processing procedures described in DAMD-554

MultiWOZ2.555

1https://huggingface.co/distilbert/distilgpt2
2https://github.com/thu-spmi/damd-multiwoz

C.3 Evaluation Metric 556

We evaluate our method using two approaches: 557

corpus-based evaluation, where we assess the 558

model responses to user utterances in the corpus 559

given the ground-truth belief states, and simulator- 560

based evaluation, where we use the rule-based 561

user simulator to simulate the interaction between 562

real user and dialogue system. The corpus-based 563

evaluation includes Match, measures whether the 564

dialogue system has provided the correct entity, 565

Success evaluates whether the dialogue system 566

has provided the correct entity and has fully an- 567

swered all the information requested by the user, 568

and BLEU (Papineni et al., 2002), which measures 569

how similar the generated responses are to human 570

responses. We also report Combined score (Mehri 571

et al., 2019), which is calculated as, (Match + Suc- 572

cess) * 0.5 + BLEU, to assess the overall quality 573

of the dialogue system. For the simulator-based 574

evaluation, Success Rate measures whether the di- 575

alogue system has provided not only the correct 576

entity but also all the information requested by the 577

user including booking information if available, 578

Completeness measures whether user has fulfilled 579

for own goal, and Turns means the average of the 580

number of turns of the simulated dialogues. We 581

report the average of five runs for the metrics of 582

simulator-based evaluation, because the user simu- 583

lator has diverse policies unlike corpus-based eval- 584

uation. All simulations have been conducted for 585

the user goals in the test split of MultiWOZ. 586
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