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Abstract

Bi-level optimization, especially the gradient-based category, has been widely used in the
deep learning community including hyperparameter optimization and meta-knowledge ex-
traction. Bi-level optimization embeds one problem within another and the gradient-based
category solves the outer level task by computing the hypergradient, which is much more
efficient than classical methods such as the evolutionary algorithm. In this survey we first
give a formal definition of the gradient-based bi-level optimization. Secondly, we illustrate
how to formulate a research problem as a bi-level optimization problem, which is of great
practical use for beginners. More specifically, there are two formulations: the single-task
formulation to optimize hyperparameters such as regularization parameters and the distilled
data, and the multi-task formulation to extract meta knowledge such as the model initial-
ization. With a bi-level formulation, we then discuss four bi-level optimization solvers to
update the outer variable including explicit gradient update, proxy update, implicit function
update, and closed-form update. Last but not least, we conclude the survey by pointing out
the great potential of gradient-based bi-level optimization on science problems (AI4Science).

1 Introduction

With the fast development of deep learning, bi-level optimization is drawing lots of research attention due
to the nested problem structure in many deep learning problems, including hyperparameter optimization
Rendle| (2012));/Chen et al.[(2019); |Liu et al.| (2019) and meta knowledge extraction |Finn et al.| (2017)). The bi-
level optimization problem is a special kind of optimization problem where one problem is embedded within
another and can be traced to two domains: one is from game theory where the leader and the follower compete
on quantity in the Stackelberg game|Von Stackelberg| (2010)); another one is from mathematical programming
where the inner level problem serves as a constraint on the outer level problem [Bracken & McGilll (1973).
Especially, compared with classical methods|Sinha et al.| (2017) which require strict mathematical properties
or can not scale to large datasets, the efficient gradient descent methods provide a promising solution to
the complicated bi-level optimization problem and thus are widely adopted in many deep learning research
work to optimize hyperparameters in the single-task formulation Bertinetto et al.| (2019); Hu et al.| (2019);
Liu et al|(2019); Rendle| (2012); |Chen et al.|(2019); Ma et al.| (2020); |Zhang et al.| (2023)); |Li et al.| (2022)) or
extract meta knowledge in the multi-task formulation Finn et al. (2017); |Andrychowicz et al.| (2016)); |Chen
et al.| (2023Db)); |Zhong et al.[ (2022)); |Chi et al.| (2021} [2022); [Wu et al.[ (2022b); |Chen et al.| (2022d).

In this survey, we focus on gradient-based bi-level optimization on deep neural networks with an explicitly
defined objective function. This survey aims to guide researchers on their research problems involving bi-level
optimization. We first define notations and give a formal definition of gradient-based bi-level optimization in
Section [2 We then propose a new taxonomy in terms of task formulation in Section [3]and ways to compute
the hypergradient of the outer variable in Section |4 This taxonomy provides guidance to researchers on how
to formulate a task as a bi-level optimization problem and how to solve this problem. Last, we conclude the
survey with promising future directions on science problems (AI4Science) in Section
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Table 1: Key notations used in this paper.

Notations Descriptions
x; Input of data point indexed by i
Y, Label of data point indexed by i
D/Dtrain /pral | Supervised/Training/Validation dataset
|D| Number of samples in the dataset D
6/0 Inner learnable variable
¢/ P Outer learnable variable
0" (o) Best response of 6 given ¢
10,0, x;,y;) Loss on the iy, data point x;,y;
1(0,xz;,y;) Loss on data x;,y; without ¢
L£(0,¢,D) Loss on the whole dataset D
£(6,D) Loss on dataset D without ¢
Lm0, ¢, D) Inner level loss on dataset D
L0, ¢, D) Outer level loss on dataset D
dfl;m Hypergradient regarding ¢
n Inner level learning rate
M Number of inner level tasks
Q(0, ¢) Regularization parameterized by ¢
OoPT Some optimizer like Adam
Dreat/Dsyn Real/Synthetic dataset
p(+) Product price in the market
Ci(¢)/Cr(0) Cost of leader and follower
D Predicted atom-atom distances
prrf /DIt Pretraining/finetuning data
E Some equation constraint
Ay Regularization strength parameter
€/T Some small positive constant
P, Proxy network parameterized by «
T Number of iterations in optimization

2 Definition

In this section, we define the gradient-based bi-level optimization, which focuses on neural networks with an
explicit objective function. For convenience, we list some notations and their descriptions in Table [T}

Assume there is a dataset D = {(x;, y;)} under supervised learning setting where x; and y; represent the
it" input and label, respectively. Besides, D"*" and DV represent the training set and the validation set,
respectively. We use 6 (© for matrix form) to parameterize the inner learnable variable which often refers to
the model parameters and use ¢ (® for matrix form) to parameterize the outer learnable variable including
the hyperparameters and the meta knowledge. In this paper, the hyperparameters are not limited to the
regularization and the learning rate but refer to any knowledge in a single task formulation including network
architecture, and distilled data samples, as we will illustrate more detailedly in Section [3] Denote the loss
function on (x;,y;) as (0, x;,y;), which refers to a certain format of objectives depending on the tasks such
as Cross-Entropy loss or Mean Square Error (MSE) loss. Note that in some cases we use [(0, ¢, ;, y;), which
is an equivalent variant of 1(0, x;,y;) under this setting. This is because the outer learnable parameters ¢
can be some hyperparameters like the learning rate when calculating 1(0, x;,y;) and is thus not explicitly
represented. We then use £(6, ¢, D) or L(0,D) to denote the loss over the dataset D, and represent the
inner level loss and the outer level loss as £1"(0, ¢, D) and L% (0, ¢, D), respectively. We use 1 to represent
the learning rate adopted by the inner level optimizer. With these notations, we can formulate the following
bi-level optimization problem:
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¢ = arg min £O"t(0*(¢),¢,2>“al). (1)
[

st. 0*(¢) = argmin £7(0, p, DI"™), (2)
o

The inner level problem in Eq. builds the relation between the ¢ and 6. Here we use the arg min form
in Eq. but note that the inner level task can be extended to some equation constraints as we will further
illustrate in Section [3| In the nature of neural networks, one can use gradient descent to estimate 6 (¢).

Moreover, by leveraging the relation built in Eq. , the outer level computes the hypergradient Loty

d¢
update the outer variable ¢. This is called as gradient-based bi-level optimization. In other words, one can

think of the outer variable ¢ as the decision variable of the leader-level objective and the inner variable 6
as the decision variable of the follower-level objective in the Stackelberg game [Von Stackelberg| (2010)).

When extended to the multi-task scenario to extract meta knowledge on M different tasks, the above for-
mulation can be rewritten as:

M
¢" = argmin Y | L7(0; (), ¢, Di™). (3)
A
s.t. 07 (¢p) = argmin LI"(0, p, DI"¥™), (4)

(4

where ¢ represents meta knowledge such as the model initialization across tasks.

3 Task Formulation

The bi-level optimization task formulation has two types: the single-task formulation and the multi-task
formulation, as shown in Figure [I] The choice of formulation depends on the specific research problem, as
we will illustrate in this section.

3.1 Single-task formulation

The single-task formulation applies bi-level optimization on a single task and aims to learn hyperparameters
for the task. Note that in this paper, the meaning of hyperparameter is not limited to its traditional meaning
like regularization but has a broader meaning, referring to all single-task knowledge including network
architecture, distilled data, etc. Regarding 6, the inner objective and the outer objective may have the same
math formula (e.g., L (x) = 012 + 02 and L% (x) = O3 + 0,4), or different math formulas (e.g., L (x) =
012 + 2 and L () = sin(O3x) + O4). Another criterion is whether the hypergradient computation only

out * val out * val
relies on the built inner level connection: %, or not: 47 (@ &¢)’¢’D ) To sum up, we consider

the following four cases and discuss the corresponding examples for better illustration:

e 1). L™ and L£°% share the same mathematical formula and the hypergradient only comes from the
inner level connection 6(¢);

e 2). L™ and L°"! share the same mathematical formula and the hypergradient comes from both the
inner level connection (¢) and the outer level objective explicitly;

e 3). L™ and L°% have different mathematical formulas and the hypergradient only comes from the
inner level connection 6(¢);

e 4). L™ and L£°% have different mathematical formulas and the hypergradient comes from both the
inner level connection 6(¢) and the outer level objective explicitly;
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Figure 1: Summary of gradient-based bi-level optimization.

3.1.1 Same formula without explicit outer level hypergradient

When the inner level and the outer level adopt the same mathematical formula, the task aims to optimize
a single objective, where the outer variable often describes some aspects of the training process besides the
model parameters. Usually, treating the outer variable as constant in the outer level provides supervision

signals to the update of the outer variable in the inner level task, which further improves the update of the

ou ou T
inner variable. In this case, the hypergradient of dfl 3 - 8%0 ‘ 89(;? . Based on the specific meanings of

¢, existing outer variables can be categorized into two types: model-related outer variables and data-related
outer variables.

Model-related. Model-related outer variables often describe the model optimization process, including
regularization parameters Franceschi et al.| (2018)), learning rate Franceschi et al.| (2017), etc, which are more
common compared with data-related ones.

Regularization plays an important role to avoid overfitting, and finding a good regularization term is non-
trivial, since evaluating a single regularization term requires training the whole model. The work in [Franceschil
formulates choosing regularization as a bi-level optimization problem, where a proper regular-
ization term results in a low error on the validation set. More specifically, this can be written as:

¢ =argmin > U67(¢),z;,y,). (5)
? (@iynepl
st. 0%(¢) = arg;nin Z U™ (@), i, y;) + (0, ). (6)

(@;,y;)€DPrain

where (60, ¢) denotes the regularization term parameterized by ¢ on 8. A simple case is L2 regularization
where Q(0,¢) = ¢[|0]|?>. It has been observed that learning a good regularization parameter is effective in
recommender system [Rendle| (2012); [Chen et al) (2019). The method in (2012) adopts dimension-
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Figure 2: Model-related outer variables.

wise regularization for embeddings and the approach in |Chen et al| (2019) further proposes fine-grained
regularization. These algorithm variants further boost the model performance a lot.

Besides, the work [Franceschi et al| (2017) treats the learning rate and the momentum as the outer variable
¢ and updates the outer variable by minimizing the validation loss. This can also be formulated as a bi-level
programming problem,

¢* = argmin Z 1O (D), i, ;). (7)
(zi,Y;)€EDval

st. 0%(¢p) = OPT(0, ¢, W) (8)

where OPT represents some optimization process of minimizing the Ly.q;. A simple case is SGD with one

step, which can be written as,
* 8‘6 0, D rain
0°(9) = 0 — 620 Dein), )

where the outer variable ¢ refers to the learning rate . This learning rate-learning procedure shares some
similarities with the meta-learned optimization as we will illustrate in Sec Compared with the regular-
ization parameters explicitly existing in the loss objective, the learning rates only exist in the optimization
process as shown in Figure [2|

Data-related. As shown in Figure |3 the data point (z;,y;) itself or weights can be viewed as the outer
variable and updated via bi-level optimization in some research problems including adversarial attack, data
distillation, label learning, etc.

Adversarial generalization attack aims to find data perturbations where the model is trained to perform
poorly on the validation set, and this forms a traditional bi-level optimization problem Biggio et al.| (2012);
[Yuan & Wul (2021)),

" =argmin Y —U07(¢),x;,y;). (10)
¢ (mj:yj)EDval
st. 0%(¢)=argmin Y 10,2+ ¢, y,). (11)
]

(mi 7y17)€Dtrain

where ¢, denotes the perturbation added on x;. The inner level builds the connection between the perturba-
tion ¢; and model parameters by minimizing the training loss and the outer level updates the perturbation
¢ by maximizing the validation loss. In this way, we find the attacks ¢,.

Data distillation methods [Wang et al.| (2018); [Lei & Tao| (2023) try to distill the knowledge from a large
training dataset into a small one ¢, and these methods expect the model trained on the small one achieves
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good performance on the large one. The inner level builds the connection between the iy, data point ¢,
and the model parameters @ by minimizing the training loss, and the outer level updates the synthesized
¢ to obtain good performance on the real data. In this way, the model achieves good performance after
gradient descent steps only on the small synthesized dataset. The above process can be formulated as a
bi-level optimization problem:

¢" =argmin Y U6 (¢),zj,y;)- (12)
(mj7yj)€DTeal
s.t. 0%(¢) = argmin Z 1(0,0;,y:). (13)
0

(¢7, 7yi)eDsyn

where D,., represents the dataset containing the real data and D,y represents the dataset containing
the synthesized data. Furthermore, the work Nguyen et al| (2020) leverages the correspondence between
infinitely-wide neural network and kernel and obtains impressive performances on data distillation. In their
work, the label y; can also be learned in a bi-level optimization framework similar to that of the input x;
for distillation. |Chen et al.| (2022b; [2023a) apply the data distillation idea to the black-box optimization and
achieve impressive results.

Label learning methods Algan & Ulusoy| (2021); [Wu et al| (2021) treat the label y; as the outer variable
parameterized by ¢ and focus on improving the model performance under label noise. These methods do
not reduce the size of the dataset. Similarly, this can be formulated as a bi-level optimization problem:

¢* =argmin Y 1(6°(¢),x;,y;). (14)
@ (:Ej,yj)EDvaz
st. 0% (¢) = arggmin Z 1(0,z;,¢,). (15)

(xi,¢;)EDtrain

In this case, the validation data is clean, which guides the label learning of the noisy training data.

Besides (x;, y;) itself, some works (2018);
(2019) propose to assign an instance weight
¢; to every (x;,y;) and these instance weights can

also be treated as the outer variable. Instance
weighting methods play an important role in solv-
ing the two major issues coexisting in real-world
Noisy/syn dataset datasets: label noise and class imbalance. State-of-

¢ Yy label ﬁ 0<¢) the-art methods assign each instance a weight ¢; and
treat instance weights ¢ as the outer variable. The

Clean/real dataset

Outer level

x :input

w : weight inner level builds the connection between the model
parameters 0 and the instance weights ¢. The in-
Figure 3: Data-related outer variables. stance weight ¢; for each instance is treated as a

constant one in the outer level since the validation
set is clean and unbiased. Then ¢ is updated by the validation set in the outer level through the connection
built in the inner level. More specifically, the above process can be formulated as:

¢" =argmin > 1(07(¢), i, y,). (16)
(miayi)epval
t. 0" = i il 0, i Yi).
st 07(e) arg min > il(8,wi,ys) (17)

(24:,Y1) EDtrain

Many research works adopt this bi-level formulation to learn instance weights. The method in
assigns weights to instances only based on their gradient directions. The approach in m m
treats every instance weight as a learnable parameter and thus suffers from scalability for large datasets.
Meanwhile, the works [Shu et al. (2019); [Wang et al.| (2020 adopt a weighting network to output weights
for instances and use bi-level optimization to jointly update 8 and ¢ which can scale to large datasets.
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. “ Follower s best response@
/ ‘ \ Leader produceséﬂa_d’uc)ts;/ﬁ

Leader Follower
¢" = argmaxp(d + 07 (9))o — Ci(0) s.t. 0%(¢) =argmaxp(p + 0)0 — Cr(0)
@ 0

Figure 4: Stackberg game as bi-level optimization.

The approach proposes to build a more accurate relationship between @ and ¢ by implicit
function. Last but not least, GDW |Chen et al| (2021) finds that a scalar weight for every instance cannot
capture class-level information, and introduces a class-level weight for every gradient flow in the chain rule
to better use class-level information. Class-level weights are updated in the bi-level framework. Similar
techniques |Chen et al.| (2022a)Wu et al.| (2022a) are also used in recommender systems to model user-item
pairs and triplets, respectively.

3.1.2 Same formula with explicit outer level hypergradient

When the inner level and the outer level share the same mathematical objective, there are cases where the
hypergradient directly comes from the outer level. Compared with the previous case, these cases are not very
common. We suppose this is because we can directly update the outer variable along with the inner variable
by alternate optimization or joint optimization without turning to bi-level optimization in most cases.

We will first illustrate this case with the Stackberg game [Von Stackelberg| (2010). As shown in Figure
there are two companies, the leader company and the follower company, which compete on quantity. The
leader company produces ¢ products and the follower company produces 6 products. The overall price can
be written as p(¢ + ). The cost functions of the leader company and the follower company are Cj(¢) and
C#(0), respectively. Thus, the profits of the leader company and the follower company can be written as
p(d+0)d — Ci(¢) and p(¢ + 0)0 — C;(6). The Stackelberg game assumes the leader knows the best response
of the follower and this can be formulated as a bi-level optimization problem:

9" = argflinpw +07(¢))¢ — Ci(9). (18)

st. 0*(¢) = arg;ninp(¢ +0)0 — C(8). (19)

Note that we can not directly optimize ¢ in the outer level without considering the inner level constraint,
which necessitates the bi-level optimization formulation.

In the deep learning case, searching a neural network
architecture in a defined search space can be formu-
lated as a bi-level optimization problem. Generally
speaking, the inner level yields some network ar-
chitectures by some learned strategy, and the outer
1(%) level optimizes the strategy by evaluating the perfor-

=0 mance of the searched network architectures. The
traditional example DARTS (2019) pro-
BlOCk B poses a continuous relaxation of the architecture

representation parameterized by ¢ as shown in Fig-
ure[f|and updates ¢ to identify good neural network
architectures. This is a bi-level optimization prob-
lem where the inner level builds the relationship be-

Figure 5: Continuous relaxation of the neural archi-
tecture in DARTS.
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tween the model parameters @ and network architecture parameterized by ¢ by minimizing the training loss,
and the outer level updates ¢ by minimizing the validation loss through the inner level connection. The
above process can be written as:

¢ =argmin > U6°(}), P @i, y,). (20)
(:,Y;)€EDvar
st. 0% (¢) = arggmin Z 10,0, x;,y,). (21)

(wi 1yi)eDM‘ain

There is no ground truth for neural architectures and thus the outer variable ¢ can not be treated as
constant in the previous instance weighting cases [Shu et al.| (2019)); |(Chen et al.| (2021)). Note that the first-
order DART'S treat 0 (¢) as 8" independent of ¢, and in this case, bi-level optimization reduces to alternate
optimization. Accordingly, the first-order DARTS performs relatively worse than the original second-order
DARTS. Besides the first-order variant, stochastic methods|Giovannelli et al.[(2021]) are proposed to improve
DARTS. Furthermore, network architecture search techniques are also used to search feature interaction
modeling [Lyu et al.| (2021)).

Besides network architecture search, dictionary learning methods Mairal et al| (2010) also belong to this
category. These methods aim to find the sparse code ® € R™*¢ and the dictionary ® € R™*" to reconstruct
the noise measurements Y € R™*%. Note that d represents the dataset size, n represents the dictionary size
and m represents the feature size of the dictionary feature. The loss function can be written as:

1
arg min £(8, &) = =[50 — Y* +4]©)):. (22)

where + is a regularization parameter. Alternate optimization over ® and ® is very slow since they neglect
the explict relation between ® and ®: given a dictionary ®, the sparse code ® should be determined.
Instead, this can be formulated in a bi-level manner:

®* = argmin L(O(®), D). (23)
®

st. O%(®) = argmin L(O, D). (24)
e

which greatly accelerates the convergence rate. Recent work |Zhang et al. (2022) adopts a similar bi-level
formulation for model pruning where the sparse model is the inner variable, and the pruning mask is the
outer variable.

3.1.3 Different formulas without explicit hypergradient

The inner level objective and the outer level objective usually have the same mathematical form where the
validation set is used to evaluate the performance of the model parameters. Yet, in some cases, the inner
level objective and the outer level objective can be different.

The work in |Xu et al.| (2021 proposes to decompose molecular conformation prediction into two levels. The
inner level problem aims to construct the molecular conformation by leveraging the predicted atom distances
and the outer level problem aims to align the molecular conformation with the ground truth conformations.
Using £ and £°"! to denote the reconstruction loss and the alignment loss respectively, we have,

¢ = argmin L7 (0(9)). (25)
¢

st. 0"(¢) =argmin L(0,Dgy). (26)
0

where Dg are the predicted atom distances parameterized by ¢ and 6 is the predicted molecule
conformation.  This final output is a trained NN that could predict atoms’ distances correctly.

8
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ter | [: Finetuning on '
Outer leve etuning o fo A similar formulation is in

Pretraining Pretrained ¥ <¢) (2021)) which formulates 3d shape

hyper-parameters. model. reconstruction as a bi-level optimization

| level: Pretraini D problem. This work [Zhang & Wonka)
W (2021)) studies multi-task settings but the
formulation process is very similar to

so we discuss it here. At the

inner level, the data generating network
takes a single image as input and outputs
the training data with coordinates and labels. Then the predictor is updated by leveraging the training data.
In the outer level, the predictor expects to behave well on the validation set. The final output of this for-
mulation is a good prediction network initialization.

Figure 6: Pretraining and finetuning as bi-level optimization.

Besides, the work Raghu et al. (2021)) formulates the pretraining and finetuning process as a bi-level opti-
mization problem where the outer variable is the pretraining hyperparameters. The inner level builds the
connection between the model parameters and the hyperparameters by minimizing the pretraining loss. The
outer level optimizes the pretraining hyperparameters to minimize the finetuning loss. The above process
can be written as:

¢* = arg min Lout (0*(¢)7 ¢a th) (27)
¢

st. 0*(¢) = argmin £7(0, p, DP"). (28)
0

where £, £°U* represents the pretraining loss and finetuing loss respectively, and DP", Df* represents the
pretraining data and the finetuing data respectively.

Furthermore, some work |Christiansen et al.| (2001); [Zehnder et al| (2021), focusing on topology design,
minimize the energy £ (6, ¢) in the inner level to achieve an equilibrium state 8*(¢) and the outer level
optimizes the cost function £°“(6(¢), ¢) to obtain the desired topology ¢. This process can be written as:

¢ = arg;nin L0 (9). ¢). (29)
st. 0%(¢) = argemin L£7(0, ). (30)

Note that similar formulations are also used to better simulate soft-body physics [Rojas et al.| (2021)).

This formula can extend to implicit layers including Deep Equilibrium Models (DEQ) Bai et al. (2019)
and Neural Ordinary Differential Equations (NeuralODE) [Chen et al| (2018)) where the inner level is not a
minimization problem but an equation constraint. Specifically, the DEQ formulation can be written as,

¢* = argmin L7 (0(¢), ., y). (31)
¢

st. 0=E(0,¢,z). (32)

where the inner level implements an infinite-depth layer E to build the relationship between the equilibrium
point @ and the model parameters ¢ and the outer level updates model parameters. The final output of
DEQ is the trained model parameters ¢. For NeuralODE, we have a similar formula,

¢* = arg(;nin ‘COUt(e(ta ¢)a Z, y) (33)
s.t. 0(t) = E(6(t),$,t) 6(0) = 8. (34)

where the inner level builds the relationship between the layer output @ and the layer parameters ¢ and the
outer level updates the layer parameters. In both cases, the hyper-gradient regarding ¢ is computed only
through 6(¢).
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3.1.4 Different formulas with explicit hypergradient

When the inner level objective and the outer level objective are different, there are cases where the explicit
hypergradient exists, including surrogate loss function learning Grabocka et al.|(2019)), protein representation
learning |Chen et al| (2022¢), adversarial training [Jiang et al.| (2021), etc. Take the surrogate loss learning
as an example. Machine learning often adopts the proxies of misclassification rate(e.g. cross-entropy) to
approximate the real losses due to the non-differential and non-continuous nature of these losses. To bridge
the gap, the work |Grabocka et al.| (2019) proposes a surrogate neural network to approximate the true
losses. To better learn the true loss with a dataset-specific distribution, a bi-level optimization formulation
is proposed. The inner level optimizes model parameters @ to minimize the surrogate loss £;, and the outer
level updates the surrogate loss ¢ to approximate the true loss £. The above process can be written as:

@' = argmin L7(L(0,D")), £7(0(9). 6, D). (35)

s.t. 0%(¢) = argmin £(0, p, D'"*™). (36)
0

where £°%' measures the distance between the true loss £ and the surrogate loss £. In this way, any non-
differentiable and non-decomposable loss function (e.g. misclassification rate) can be minimized virtually
and effectively.

This bi-level formulation is also used in protein representation learning |Chen et al.| (2022¢). In this task, the
protein modeling neural network has two kinds of information: sequential representation parameterized by 6
and the structural representation parameterized by ¢. The inner level identifies the relationship between the
sequential information and the structural information by minimizing the negative of the mutual information
loss as £°“ and the outer level updates structural parameters by minimizing the pretraining loss as £".
This can be written as,

¢* = argmin L"(6%(¢), p). (37)
¢

st. 0°(¢) = argmin L (0, ¢). (38)
0

This proposed pretraining scheme improves the performance of protein representation learning.

For adversarial training, the outer level may adopt a different loss function and thus adversarial training|Jiang
et al. (2021) also belongs to this category. In this case, the inner variable is the adversarial distribution and
the outer variable is the classifier.

3.2 Multi-task formulation

The multi-task formulation aims to extract meta knowledge across tasks. There are mainly two kinds of
meta knowledge represented by the outer variable: model initialization and optimizer.

3.2.1 Model initialization

The first kind of meta knowledge is model initialization, which is useful in the data-scarce scenario [Hiller
et al.| (2022); |Liu et al.| (2020); |Li et al|(2017)). The work [Finn et al| (2017) proposes MAML to train the
parameters of the model across a family of tasks to generate a good model initialization. A good model
initialization means a few steps on this initialization reach a good solution. Given a model initialization ¢,
the model parameters fine-tuned on the task i after a gradient descent step can be written as:

aﬁ:n (¢7 D;;rain)
n———==—""".

10
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The updated model parameters are expected to perform well on the validation set:

M
¢* = argmin Y _ L(0;(¢), D). (40)
L

st. 0;(¢p) = argmin LI"(¢p, DI"*™™). (41)
0

This forms a bi-level optimization problem as
shown in Figure [7] MAML is applicable to a
wide range of learning tasks including classifi-
cation, regression, etc.

Outer Level
M
arg min Z Eom(ei((ﬁ), D',wl)

i=1

A single initialization may not be able to gen-

eralize to all tasks and thus some research work

. propose to learn different initialization for dif-

ferent tasks. The method Vuorio et al.| (2019)

------ modulates the initialization according to the

Inner Level AL (p, Diyain) task mode and adapts quickly by gradient up-

On(d)=¢ - WT dates. The approach in[Yao et al.| (2019) clus-

ters tasks hierarchically and adapts the initial-

Figure 7: Illustration of MAML. ization according to the cluster. According to

the task formulation, maybe only part of the

model parameters need to be updated, which can save much memory considering millions of parameters for

the model. The work in |Lee et al.|(2019) fixes the user embedding and item embedding and only updates

the interaction parameters in the meta-learned phase. The method Rusu et al| (2018) proposes to map

the high dimensional parameter space to a low-dimensional latent where they can perform MAML. Besides,

some analyses |Zou et al.| (2021) are also proposed for choosing the inner loop learning rate. Last but not

least, domain knowledge such as biological prior [Yao et al.| (2021]) can also be incorporated into the MAML

modeling where they propose a region localization network to customize the initialization to each assay. |Tack

et al.| (2022) adapt the temporal ensemble of the meta-learner to generate the target model. [Hiller et al.

(2022) develop a novel method to increase adaptation speed inspired by preconditioning. |Guan et al.| (2022)
analyze modern meta-learning algorithms and give a detailed analysis of stability and generalization.

(f)[’in((ﬁ’ Diruin)
N——
¢

01(¢p) =¢ —

3.2.2 Optimizer

Another kind of meta knowledge across tasks is an optimizer. Previous optimizers such as Adam are designed
by hand and may be sub-optimal. The work in |Andrychowicz et al| (2016)) proposes to learn an optimizer
for a family of tasks. As shown in Figure [8] the learned optimizer is parameterized by ¢ where an LSTM
takes the state as input and outputs the update. In this way, for the i, task, the model parameters 0 are
connected with the optimizer parameters via:

111(8) = 0, + 9 (). (42)

[9()), hi+1] = OPT(V@;% hi, ). (43)

where OPT denotes the learned LSTM optimizer and h represents the hidden state. The optimizer is updated
to improve the validation performance over a horizon T, and this can be written as:

T

¢ = arg(;nin D Lowt(05(9), Dyy)- (44)

t=1

Overall, this can be formulated as a bi-level optimization problem where the inner level builds the connection
between the model parameters @ and the optimizer parameters ¢ by minimizing the training loss, and the
outer level updates the optimizer by minimizing the validation loss. Formally, the formulation of bi-level
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optimization across a family of M tasks can be written as:

M T
" = arg;ninz Z Lout (03&((@, ial)' (45)

i=1 t=1
st 0i1(9) = 0; + 91(9); [9:(9), hit1] = OPT(Vgils, hi, ). (46)

To optimize millions of parameters, the LSTM is designed to be coordinatewise, which means ev-

ery parameter shares the same LSTM. This greatly alleviates the computational burden. Be-
sides, some preprocessing and postprocessing techniques are proposed to rescale the inputs and
the outputs of LSTM into a normal range. Omne key challenge of learning to optimize is the

generalization to longer horizons or unseen optimizees and many research works try to mitigate
this challenge.  The work in Metz et al| (2019) proposes to use an MLP layer instead of an
LSTM to parameterize the optimizer and smooth the loss scope by dynamic gradient reweighting.
The approach in [Wichrowska et al)

0o N0 N 0 Oy proposes a hierarchical RNN

Optimizee * U N formed by three RNN layers that could
communicate from bottom to up and this
hierarchical design achieves better gener-
alization. The work (2017) pro-
poses training tricks such as random scal-
ing to improve the generalization. Be-
Figure 8: LSTM optimizer. sides the above, some work [Knyazev et al.|

(2021)Kang et al.| (2021)) proposes to di-

rectly predict parameters, which can be seen as a specially learned optimizer without any gradient update.

Optimizer
1t—2

Recent works also try to incorporate the existing optimizer into the optimizer learning, which can
leverage both the existing prior and the learning capacity. The key is to replace the constant (i.e.
scalar /vector /matrix) in the existing optimizer with learnable parameters. HyperAdam [Wang et al| (2019)
learns the combination weights and decay rates according to the task. The method in |Gregor & LeCun|
first writes the ISTA as a recurrent formula and then parameterizes the coefficients as the outer
variable. The approach in designs a Meta-LR-Schedule-Net which takes the loss value and
the state as input and outputs the learning rate for the current iteration. The work in Ravi & Larochelle|
proposes to parameterize the weight coefficient and the learning rate.

Besides the model initialization and the parameterized optimizer, there is some other meta knowledge like
the loss function learning |Gao et al.| (2022)). They propose to learn a generic loss function to train a robust
DNN model that can perform well on out-of-distribution tasks. Given a parametric loss function as the outer
variable ¢, the inner level yields the optimized model parameters 6(¢) by minimizing the training loss on
the source domain. Then a good parametric loss can be identified by minimizing the validation loss on the
target domain. The above process formulates a bi-level optimization problem, which is given by

N
¢* = argmin » L (07 (), D;™). (47)
¢ i1
M
st. 0%(¢) = arg minZEi"(G, ¢, Direin), (48)
¢ 0

where £°% is a loss function to measure the performance on target domains and N, and M represent the
number of target domain and source domain tasks, respectively. They further propose to compute the
hyper-gradient by leveraging the implicit function theorem.
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4 Optimization
Gradient-based bi-level optimization requires the hypergradient computation of dg;ut in the outer level. The

hypergradient dfi;m can be unrolled via the chain rule as:

dEO“t B 8£out 80(¢) 8£0“t
ip ~ 00 o0¢ o (49)

6%—(;)) often involves second-order gradient computation and thus are resource demanding. There are generally

four types of methods to calculate 8%(¢): explicit gradient update, explicit proxy update, implicit function

update, and closed-form method, where the previous three are approximation methods for general functions
with the difference in how to build the connection between @ and ¢ and the last one is an accurate method
for certain functions.

4.1 Explicit gradient update

The explicit gradient update is the most straight-forward one which approximates @ via some optimizer
directly:
0, = OPT(6;_1,0), t=1,---,T. (50)

where T' denotes the number of iterations, @ represents the model parameters and other optimization variables
like momentum, OPT represents the optimization algorithm like SGD, and ¢ denotes the outer variable in
the training process. Note that when OPT is the SGD optimizer and only one gradient descent step is
considered, Eq. becomes

85“’(0, ¢7 Dtrain)

0(p) =0 — 51
(0) U 50T (51)
In this case, we can compute the hypergradient as:
80(¢)) aQ[/zn(e7 ¢7 Dt'r‘ain)
a9 1 00 0 ®2)

which often requires the second-order gradient computation. In some cases, the first-order approximation can
be adopted to replace the second-order gradient in |Liu et al.| (2019)); |[Finn et al.| (2017)); |[Nichol et al.| (2018).
Besides, [Liu et al. (2019) uses the finite difference approximation technique to compute the second-order
gradient efficiently.
BQU”(O, o, Dtrain) Lout N 8E1"(9+é‘£vptraln) _ aﬁln(e_ézyptmm)
90" 0 00 2¢

(53)

out
where 6 = 6 + EW. This avoids the expensive computational cost of the Hessian matrix. Further-
more, the work Deleu et al.| (2022) proposes to adopt infinitely small gradient steps to solve the inner level
task, which leads to a continuous-time bi-level optimization solver:

dO(t) _ aﬁin(07¢7ptrain)

dt 00" (54)

In this way, the final output is the solution of an ODE. One great advantage of this formulation is making
the fixed and discrete number of gradient steps the length of the trajectory, which serves as a continuous
variable and is also learnable. This work also proposes to use forward mode differentiation to compute the
hypergradient where the memory does not scale with the length of the trajectory. A similar continuous
bi-level solver is used in [Yuan & Wul (2021)).

Generally speaking, the update is not limited to one step nor SGD optimizer, which makes the hypergradient
computation process complicated. There are generally two modesFranceschi et al. (2017) to compute the
hypergradient: forward mode and reverse mode.
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Forward mode. Forward mode methods apply the chain rule to the composite functions:
d8, _ OOPT(6,-1,9) 6,1 , JOPT(8:-1.9)

6~ 061 ¢ o6 (%)
Then the matrics are defined as:
Z, = %’ A, = 6OPT(0t,<;5)7 = OOPT(6y, QS)_ (56)
¢ 06, O,
Thus the Eq. can be written as:
Zy=AZ; 1+ By_1. (57)
In this way, Zr can be written as:
Zr=ArZr 1+ Bp_4 (58)
T T
=>"(II 4.B. (59)

t=1 s=t+1
which yields the final hypergradient.
Reverse mode. The reverse mode is derived from Lagrangian optimization. The Lagrangian of bi-level

problems can be written as:
-

L(6,¢,0) = L (O7) + Y 1(OPT(6;_1,¢) — 6;). (60)

t=1

By setting the partial derivates as zeros, we can have,

Ve = Vi1 Att1- (61)

Y

v Z . B;. (62)
t=1

We can see this reverse mode yields the same solution as the forward mode. The works in [Shaban et al.
(2019); [Luketina et al.| (2016]) propose to ignore the long-term dependencies for efficiency.

4.2 Explicit proxy update

Besides using explicit gradient update to solve the inner level task, a more direct way MacKay et al.| (2019);
Bae & Grosse| (2020); Lorraine & Duvenaud| (2018) is to fit a proxy network P, (-) which takes the outer
variable as input and outputs the inner variable,

0" = P,(¢). (63)
There are two ways to train the proxy: global and local. The global way aims to learn a proxy for all ¢ by

minimizing L7 (P, (), ¢, DI"*") for all ¢ against a while the local way minimizes £ (P (¢), ¢, DIre")
against a for a neighborhood of ¢.

A special case Bohdal et al.|(2021)) is to design the proxy as a weighted average of the perturbed inner variable.
This work adopts an evolutionary algorithm to obtain an approximate solution for 6. By perturbing 8 to
0. for K times, they compute the training losses as {I;(¢)}5_, where l;.(¢p) = L™(0, ¢, DI"*™). Then the
weights for each perturbed loss are,

w1, Wa, - -+, wi = softmax([—11 (@), —la(@), -+ , —lk(@)]/7). (64)
where 7 > 0 is a hyperparameter. Last, the proxy is obtained as
0" = w101 + w01 + - +wrOk. (65)

Compared with explicit gradient update methods, these proxy methods can adopt deep learning modules
to directly build the relationship between the inner variable and the outer variable. Thus these methods
generally require less memory while are less accurate due to the rough approximation brought by the deep
learning module.
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4.3 Implicit function update

The hypergradient computation of the explicit gradient update methods relies on the path taken at the
inner level, while the implicit function update makes use of the implicit function theorem to derive a more
accurate hypergradient without vanishing gradients or memory constraints issues. First, the derivate of the
inner level is zero:

785(9%@ =0. (66)
00

Then according to the implicit function theorem, we have:

2L(0,9) 00(p)  OLX(6, )

=0. 67
00'06 09 90" o¢ (67
At last, we can compute the hypergradient as:
00(¢) _  L(6(¢). ¢),_19L%(6,9)
- *( T ) T . (68)
¢ 00" 00 00" 0¢p

Take iIMAMIJRajeswaran et al.[(2019) as an example. To keep the dependency between the model parameters
0 and the meta parameters ¢, iIMAML proposes a constraint on the inner level task, which can be written
as:
. in rain A
0:(¢) = argmin L (0, D! )+§H¢—0||2. (69)
6

The regularization strength A controls the strength of the prior ¢ relative to the dataset. The iMAML
bi-level optimization task can be formulated as:

M
¢* =argmin Yy _ L7 (6;(¢),D;"). (70)
¢ =
st. 0;(¢p) = argmin £I"(6, DI"*™) 4 %H(b — 0| i=1,---,M. (71)
)

The hyper-gradient can be computed as:

d02(¢) _ ( N la2ﬂin(0i,DtTGin)
de A 96/ 06,

)L (72)

which is independent of the inner level optimization path. In this case, the hypergradient can be computed as

. . 82[:1'71. (e,th'r‘ain) . BLO'u.t
the solution g to a linear system 56798 9= g

solution to the following optimization problem:

. More specifically, g can be seen as the approximate

2 rin
argminw ' (I + l(?Eiﬁo))w -

T Lo () .
A 90700

00" ()

Conjugate gradient methods can be applied to solve this problem where only Hessian-vector products are
computed and the hessian matrix is not explicitly formed. This efficient algorithm is also used in HOAG [Pe-
dregosal (2016)) to compute the hypergradient. Besides the linear system way to compute hypergradient, the
work in |Lorraine et al.| (2020) proposes to unroll the above term into the Neumann Series:

2 pin inf 2 pin
(8£ (9))_122(1_8/3 (0)

74
90" 00 90" 0 ) (74)

=0

9°L(6(9).¢)

20T 00 s contractive. This

The first 4, steps’ result are used to approximate the computation if I —
can avoid the expensive computation of the inverse Hessian.
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4.4 Closed-form update

While the above three methods provide an approximate solution for general loss functions, we here consider
deriving a closed-form connection between 8 and ¢ from

0(¢) = argmin L"(0, ¢, D). (75)
]

which is only applicable for some special cases. |Bertinetto et al. (2019)) propose ridge regression as part of
its internal model for closed-form solutions. Assume a linear predictor f parameterized by 6 is considered
as the final layer of a CNN parameterized by ¢. Asume the input X € R™*?% and the output Y € R"*°
where n represents the number of data points and d,o represents the input dimension and the output
dimension, respectively. Denote the CNN as ¢(X): RY — R and then the predictor’s output is ¢(X)8
where ¢(X) € R"*¢ and 0 € R°*°. The iy, inner level optimization task can be written as:

0i(¢) = arg;nin||¢(X7:)9—Y1zll2 +Ale]. (76)

where A controls the strength of L? regularization. The closed form solution of 8 is

0:(d) = (#(X:) ' O(Xi) +AD)'p(X:) Y. (77)
The solution can also be written as:

0:(¢) = ¢(X:) T (S(X:)(X:)" + M) 'Y . (78)

In this way, ¢(X;)@(X;)T € R"*™ saves much memory since n is small in the few-shot setting. To sum up,
to extract meta knowledge ¢ in the feature extractor, we have the bi-level optimization formulation as:

M
¢ = arg min > Lov0(e), DY). (79)
=1
st 0;(d) = d( X)) (P(X)P(X)T +A) Y0 =1,---, M. (80)

Applying Newton’s method to logistic regression, yields a series of weighted least squares (or ridge regression)
problems. This is also a closed-form solution but requires a few steps.

Another special case is to assume the model to be wide enough. Recent workJacot et al.| (2018)); [Lee
et al.| (2017) build the correspondence between the NNGP kernel and the Bayesian Neural Network and the
correspondence between the NTK kernel and the gradient trained Neural Network with MSE loss. In this
case, the inner level can have a closed-form solution. The works Nguyen et al.| (2020)); Yuan & Wu| (2021))
treat the data as the outer variable for data distillation and adversarial attack tasks respectively, which
yield better-distilled samples and adversarial attacks. These algorithms can be achieved by NTK tool |[Novak
et al.| (2019)) easily. The approach [Dukler et al.| (2021) treats the instance weights as the outer variable and
assumes the pretrained model with linear representation to yield a closed-form solution for the inner level
task. Besides assuming the inner level as ridge regression and least squares, some works |(Ghadimi & Wang
(2018); [Yang et al.| (2021) also assume the inner level loss function is strongly convex and propose effective
algorithms to better solve the bi-level optimization problem.

5 Conclusion and Future Direction

Bi-level optimization embeds one problem within another and the gradient-based category solves the outer
level task via gradient descent methods. We first discuss how to formulate a research problem from a bi-level
optimization perspective. There are two formulations: the single-task formulation to optimize hyperparam-
eters and the multi-task formulation to extract meta knowledge. Further, we discuss four possible ways
to compute the hypergradient in the outer level, including explicit gradient update, proxy update, implicit
function update, and closed-form update. This could serve as a good guide for researchers on applying
gradient-based bi-level optimization.

16



Under review as submission to TMLR

We end our survey by pointing out the great potential of gradient-based bi-level optimization in the science
area. This merging Al4Science direction is attracting lots of research attention recently, including topology
design (Christiansen et al.| (2001)); Zehnder et al.| (2021)), molecular conformation prediction | Xu et al.| (2021)),
differentiable simulation |[Rojas et al. (2021)), protein representation learning Chen et al.| (2022c|), low-resource
drug discovery |[Yao et al|(2021)), etc. The reason why this bi-level formulation is popular in the science area is
that many science problems have a nested problem structure and differentiable nature, and the deep learning
methods endow these traditional problems with the expressive representation ability. We also note that the
great success of bi-level optimization often needs careful design of the outer variable. Like in DARTS|Liu et al.
(2019), we may need to transform the outer variable to a continuous form to enable direct optimization. To
sum up, the combination between gradient-based bi-level optimization and science problems deserves more
research attention and we believe there will be many high-impact research on this area in the future.
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