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Abstract

Understanding the internal mechanisms of transformer-based language models
remains challenging. Mechanistic interpretability based on circuit discovery aims
to reverse engineer neural networks by analyzing their internal processes at the
level of computational subgraphs. In this paper, we revisit existing gradient-based
circuit identification methods and find that their performance is either affected
by the zero-gradient problem or saturation effects, where edge attribution scores
become insensitive to input changes, resulting in noisy and unreliable attribution
evaluations for circuit components. To address the saturation effect, we propose
Edge Attribution Patching with GradPath (EAP-GP), EAP-GP introduces an inte-
gration path, starting from the input and adaptively following the direction of the
difference between the gradients of corrupted and clean inputs to avoid the saturated
region. This approach enhances attribution reliability and improves the faithfulness
of circuit identification. We evaluate EAP-GP on six datasets using GPT-2 Small,
GPT-2 Medium, and GPT-2 XL. Experimental results demonstrate that EAP-GP
outperforms existing methods in circuit faithfulness, achieving improvements up to
17.7%. Comparisons with manually annotated ground-truth circuits demonstrate
that EAP-GP achieves precision and recall comparable to or better than previous
approaches, highlighting its effectiveness in identifying accurate circuits.

1 Introduction

In recent years, transformer-based language models (Vaswani et al., 2017) have achieved remarkable
success (Devlin et al., 2019 |Achiam et al.| [2023) with different applications [Yao et al.| (2025a);
Wang et al| (2025b); [Li et al.| (2025); |Yang et al.| (2025b)), but their internal mechanisms remain
unclear. Mechanistic interpretability (Olah, 2022; Nanda, [2023) aims to precisely describe neural
network computations, potentially in the form of pseudocode (also called reverse engineering), to
better understand model behavior (Geva et al., 2020} |Geiger et al., 2021} [Meng et al.,|2022; |Su et al.,
2025} |Yao et al.,|2025b; Zhang et al., [2024; Jiang et al., |2025; [Wang et al.,|2025a}; Dong et al., 2025
Zhang et al.,|2025a). Much research in mechanistic interpretability conceptualizes neural networks as
computational graphs (Conmy et al.| 2023} |Geiger et al.| |2021)), where circuits are minimal subgraphs
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Figure 1: Visualization of path constructions and gradient behavior in EAP-GP and its variants. The
left panel shows the gradient magnitude with respect to edge activation along different integration
paths. The right panel compares the straight-line path used in EAP-IG (blue) with the dynamically
adjusted GradPath in EAP-GP (green), which follows the steepest gradient directions. Circles (o) and
triangles (/) represent original and corrupted inputs, respectively, and ellipses visualize the gradient
field. The red-shaded region denotes the saturated gradient zone, which the EAP-IG path inevitably
passes through, while EAP-GP dynamically avoids it.

representing critical components for specific tasks and serving as fundamental building blocks of the
model. Thus, identifying such circuits is crucial to understanding the inner workings of language
models (LMs) (Olah et al., 2020; Wang et al., [2023}; |Zhang et al.,|2025b; |Yang et al.| 2025a).

Prior research on circuit identification in LMs follows a straightforward methodology (Conmy et al.,
2023; Hanna et al., 2024b)): employing causal interventions to identify components that contribute
to specific behaviors, then formulating and testing hypotheses about the functions implemented by
each component in the circuit. This approach has led to the development of frameworks that provide
causal explanations for model outputs, such as predicting indirect objects (Conmy et al., [2023)),
brain-inspired modular training (Nainanil 2024}, completing year-spans (Hanna et al.,|2024a), and
more (Lieberum et al., 2023} Tigges et al., 2023 [Prakash et al., 2024; Merullo et al., 2024)).

Recent work on circuit identification often aims to identify important components (e.g., attention
heads, residual streams, or MLPs) and important edges, i.e., critical connections between compo-
nents. Causal intervention-based circuit identification methods require a forward pass to test an
edge’s importance by observing whether the relevant model behavior changes (Conmy et al.| [2023).
However, as LMs contain an extremely large number of edges, testing all edges requires significant
computational resources, and as the model size increases, this challenge becomes even more severe.
To address this issue, researchers have developed faster gradient-based automated circuit identifica-
tion methods (O’Neill and Buil [2024; Marks et al.}[2024). Edge Attribution Patching (EAP) (Syed
et al., 2023) attributes each edge’s importance using two forward and one backward pass instead.
However, it can be affected by the zero-gradient problem, which may lead to incomplete attributions.
EAP-IG (Hanna et al.,2024b)) incorporates Integrated Gradients (IG) into EAP to mitigate this, which
produces more reliable attribution evaluations by computing the average gradients of corrupted inputs
(activations) along a straight-line path from the original inputs to the baseline inputs (counterfactual
input), resulting in more reliable importance (attribution) evaluation.

While EAP-IG can significantly improve the faithfulness of the discovered circuit, in this paper, we
carefully revisit the approach and identify a critical issue called the saturation effect. This effect
occurs when the corrupted input enters saturation regions, where the gradient becomes nearly zero
(see Section E] for details). As aresult, the loss function becomes insensitive to further input variations,
reducing the attribution’s responsiveness to input variations. This leads to inaccurate and unfaithful
edge attributions, ultimately reducing the faithfulness of circuit identification.

To address this issue, we propose Edge Attribution Patching with GradPath (EAP-GP), a novel method
for mitigating saturation effects that can identify edges in circuits more accurately. Unlike previous
methods, which are model-agnostic, EAP-GP constructs an integral path between the clean input and



the baseline input in an adaptive and model-dependent way. Specifically, for the current corrupted
input, EAP-GP gradually adjusts its next movement based on its difference in gradient to the baseline
input rather than moving directly along a pre-fixed direction as in EAP-IG. Thus, intuitively, each
step of EAP-GP follows the steepest direction to rapidly decrease the model’s prediction, effectively
avoiding saturation regions and guiding a more efficient and faithful attribution evaluation.

We evaluate EAP-GP across six tasks and demonstrate that, at the same sparsity, it achieves im-
provements up to 17.7% across individual datasets in terms of circuit faithfulness, outperforming
previous gradient-based circuit identification methods. To further assess its performance, we extend
our experiments to larger models, including GPT-2 Medium and GPT-2 XL, and find that EAP-
GP maintains excellent performance. Finally, we compare the circuits identified by EAP-GP with
manually annotated ground-truth circuits from prior research (Syed et al.,|2023). The results show
that EAP-GP achieves precision and recall comparable to or better than existing methods, further
validating its reliability for circuit identification.

2 Related Work

Neural networks can be conceptualized as computational graphs, where circuits are defined as
subgraphs that represent the critical components necessary for specific tasks and serve as fundamental
computational units and building blocks of the network (Bereska and Gavves, 2024)). The task of
circuit identification leverages task-relevant parameters (Bereska and Gavves| [2024)) and feature
connections (He et al.|[2024) within the network to capture core computational processes and attribute
outputs to specific components (Miller et al., [2024), thereby avoiding the need to analyze the entire
model comprehensively. Existing research has demonstrated that decomposing neural networks
into circuits for interpretability is highly effective in small-scale models for specific tasks, such as
indirect object identification (Wang et al., [2023)), greater-than computations (Hanna et al.| 2024b)),
and multiple-choice question answering (Lieberum et al., 2023)). However, due to the complexity
of manual causal interventions, extending such comprehensive circuit analysis to more complex
behaviors in large language models remains challenging.

Automated Circuit Discovery (ACDC) (Conmy et al.| 2023)) proposed an automated workflow for
circuit discovery, but its recursive Activation Patching mechanism leads to slow forward passes,
making it inefficient. Syed et al.|(2023) introduced Edge EAP, which estimates multiple edges using
only two forward passes and one backward pass. Building upon this, Hanna et al.| (2024b) introduced
EAP-IG, enhancing the fidelity of the identified circuits. Our method is a variant of gradient-based
Automated Circuit Identification. As we will show in Section f] EAP-IG is limited by gradient
saturation. Our proposed EAP-GP aims to address this issue. In concurrent work, [Hanna et al.
(2024a)) argued that faithfulness metrics are more suitable for evaluating circuits than measuring
overlap with manually annotated circuits. Recent work has explored other notions of a circuit.
Inspired by the fact that Sparse Autoencoders (SAEs) can find human-interpretable features in LM
activations, (Cunningham et al.| 2023)), Marks et al.| (2024) identified circuits based on these features.
Additionally, Wu et al.| (2024)) aligned computation in Alpaca (Taori et al., 2023)) with a proposed
symbolic algorithm (Geiger et al.,|2024).

3 Preliminaries

To better illustrate our motivation and method, in this section we will revisit previous methods for
circuit discovery.

Integrated Gradients Method. Integrated Gradients (IG) (Sundararajan et al.,[2017)) is a gradient-
based attribution method in explainable Al that aims to quantify how each input feature contributes
to a deep neural network’s output. Generally, the idea is to evaluate how the model performance will
be changed if we change the target feature of the input to the baseline input (or counterfactual input).
It does so by estimating the accumulated gradients along a path from the baseline input to the target
input. The performance of IG largely depends on two key hyperparameters: the path and the baseline.
Specifically, consider an input x € R"™, a path for integrating gradients is formally defined as v(«)
for o € [0, 1]. This path is a sequence of points in R™ that transitions from the baseline x’ to the
target input x, i.e., 7(0) = x" and y(1) = x.



Given a path v and a model f : R™ — R, the integrated gradient for the i-th feature is computed
by integrating the model’s gradient with respect to that feature along the path. Formally, following
Sundararajan et al.|(2017)) we have
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where 8(;,5”((2)) ) is the gradient of the model’s output with respect to the i-th feature at v(«), and

0vi (@)

is the rate of change of that feature along the path. To simplify the computation, in practice,
the simplest path is a straight line from x’ to x, given by

(o) =x"+a(x—x'), acl0,1]. )

The choice of baseline x’ is an active research topic. Sturmfels et al.| (2020) provide a thorough study
of common baselines, including the zero vector (x’ = 0), the one vector (x’ = 1), and samples drawn
from the training data distribution (x” ~ Dyip ).

However, directly computing the integral in Eq (1)) is impractical. To address this computational
challenge, a discrete sum approximation with k points along the path is commonly used. For a
straight-line path, IG is calculated as:

k R A
=1 ‘

where the index j corresponds to the j-th sampling point along the path from the baseline x’ to the
input x, and the gradients are computed at each of these points.

Circuit discovery. Given a model GG, which can be represented as a computational subgraph, a
circuit C' C G is a subgraph, where it can be represented as a set of edges in the circuit|Olah et al.
(2020).

Definition 3.1 (Computational Graph |Hanna et al.[(2024b)). A transformer LM G’s computational
graph is a digraph describing the computations it performs. It flows from the LM’s inputs to the
unembedding that projects its activations into vocabulary space. We define this digraph’s nodes to be
the LM’s attention heads and MLPs, though other levels of granularity, e.g., neurons, are possible.
Edges specify where a node’s output goes; a node v’s input is the sum of the outputs of all nodes u
with an edge to v. A circuit C is a subgraph of G that connects the inputs to the logits.

Definition 3.2 (Circuit Discovery). Given a full model G and a subgraph C, for any pair of clean
and corrupted input (prompt) z and z’, denote T as the task distribution, E as the activations of G
with input z, Ec(z, 2’) as the activations of the subgraph when z is input, with all edges in G not
present in C' overwritten by their activations on z’. Moreover, denote L(A) as a loss on the logits
for activations A (with input z), which is used to measure the performance of subgraphs. Formally,
circuit discovery can be formulated as

argminB(. el L(Eo(z, 2')) - L(Eg(2))l 4)
In practice, we always use logit difference or probability difference as the loss L.

Many studies identify circuits using activation patching (Vig et al.l 2020; (Geiger et al.,2021)), which
evaluates the change by replacing a (clean) edge activation with a corrupted one during the model’s
forward pass. ACDC (Conmy et al.|[2023)) automatically checks whether for each edge such a change
exceeds some threshold. However, causal interventions scale poorly because their iterative cost
increases significantly as the model size grows. EAP (Syed et al., [2023) alleviates this issue. It
estimates edge importance (attribution) and selects the most important ones by computing the product
of activation changes and input gradients. Specifically, given an edge e = (u,v) with clean and
corrupted activations x,, and 2}, we aim to approximate the change in loss L (note that since Eg, z
and x,, are clear in the text, we will denote L(s) = L(Eq(z) — @, + s) as the loss where we change
the activation from x,, to s), i.e.,

L(xu) = L(xy,) = (zu — 27,) ®)



However, EAP may suffer from the zero-gradient problem, which may lead to inaccurate attributions.
To address this issue, based on the similarities between the goals of feature attribution and circuit
discovery, EAP-IG (Hanna et al.,|2024b) incorporates IG, which averages gradients along a straight-
line path v(«) in (@) from original to corrupted activations. This method provides more stable and
reliable attributions. Similar to (3)), the IG score for edge (u, v) is defined as:

OL ( + — 4,

Ly

This gradient is computed along an interpolated path from the original activation x,, to the corrupted
activation z/,. The interpolation factor 7% determines the position along this path, ensuring that the
gradient is averaged over multiple steps. This approach helps mitigate the zero-gradient problem,
reducing the risk of incomplete attributions.

4 Saturation Effects in Circuit Discovery

In this section, we revisit the above-mentioned gradient-based automatic circuit identification methods,
EAP and EAP-IG. Both of them determine edge importance by computing the activation difference
multiplied by the loss gradient. This product approximates the metric difference in (3] and is used to
evaluate each edge’s contribution.

Specifically, we analyze a circuit edge (u,v) with its clean activation x, in the IOI dataset and
examine how different input choices influence the gradient of the loss in both EAP and EAP-IG.
EAP in (5)) evaluates an edge’s importance by computing the product of the metric’s derivative at Ty
and the change in the edge’s activation. However, as illustrated in Figure[T|(black point), this approach
can be misleading: a nearly zero derivative at xz,, suggests that the edge has minimal influence and
will not contribute to the attribution, even if the activation has a non-zero gradient at x/, and the
difference in activations is significant.

We also conduct experiments under the same setting for EAP-IG in (6) with k£ = 5. As illustrated
in Figure we find that the gradient remains close to zero when £ falls within the ranges [0, 0.2]
and [0.8, I, where the IG score changes slowly. In contrast, slight variations in the score occur only
within the range € [0.2, 0.8]. While this approach partially mitigates the zero-gradient issue in EAP,
the nature of the chosen straight-line path inevitably leads it into regions where the gradient remains
nearly zero ([0, 0.2] and [0.8, 1]). The perturbed activation inputs within these regions cause the loss
function to become insensitive to further input variations, reducing the attribution’s responsiveness
to input perturbations. This results in inaccurate and unfaithful edge attribution evaluations and
ultimately leads to unfaithful circuit identification. We provide the following definition for this
saturation effect for gradient-based EAP methods.

Saturation Effects and Regions: For an edge (u, v) in a circuit discovery task, its saturation regions
refer to segments of the integration path where the gradient of the loss, a? , remains close to zero,
reducing the sensitivity of L to activation changes. Saturation effects occur When scores accumulate
in these regions, reducing the attribution’s responsiveness to activation variations. This distortion
ultimately compromises the reliability of circuit analysis, leading to unfaithful circuit evaluations.

S Mitigating Saturation Effect via EAP-GP

In the previous section, we discussed how EAP suffers from the zero-gradient problem and how
EAP-IG is affected by saturation effects. Our previous experiments show that the main reason
EAP-IG gets stuck in the saturation region is that the integration path is a direct line between the
clean and baseline input, which is independent of the full model G. Such a model-agnostic way
will unintentionally make the gradient nearly zero for some perturbed activations. Thus, we need to
construct an integral path that depends on the model to avoid the saturation region.

To address these issues, we propose Edge Attribution Patching with GradPath (EAP-GP). Unlike
the pre-fixed straight-line paths used in EAP-IG, EAP-GP introduces GradPath, a dynamically
adjusted path designed to integrate gradients more effectively and reduce saturation effects, as shown
in Figure[I] Specifically, given a target number of steps k, at step j, EAP-GP iteratively finds the best



Algorithm 1 Edge Attribution Patching with GradPath (EAP-GP) for edge (u, v)

Require: z,,2): Original/Corrupted activations; k: GradPath steps; C: Circuit; G: Full model;
L(-): Loss; n: Top edges to select.
Ensure: Circuit C and final intervention results.

1: A. GradPath Construction

2: ¥4(0) + z,

3: forj=1— kdo ‘

4 gin V5 IG(CE(3) - G(,)3

ve (% )
50 () «9(4) - ngj+1
6: end for

7. B. Edge Attribution (EAP-GP)
8: for each edge (u,v) in G do

9: score(u, v) + (2, — al,) X ZJ 1 dL(g%( ))
10: end for
11: C. Circuit Extraction
12: Sort edges by |score(u, v)|; select top n into C'; prune isolated nodes
13: D. Intervention & Evaluation
14: for each node v do
15: for each edge ¢ = (u, v) do
16: i+ 1le € C]
17: end for
18: Inputtov: 32, ep, [ic - @y + (1 —ic) - @]
19: end for
20: Evaluate the model output under this intervention
21: return C'

movement of the current perturbed input (activation), denoted as ~ ( ) starting from the original
input z,, (i.e., fy (O) = x,,) and ending at the baseline input 2’ (i.e., 7% (1) = 2/,). In detail, at the

current input vy ( ), we aim to find the best direction toward z/,, i.e., we aim to solve the following
optimization problem locally.

J 2

2)+8) = Gl ™
Here, for an activation s, G(s) = G(Fg(z) — x,, + s) is the output of the model G with prompt z
and activations E¢(z) — x,, + s, where we change the activation from z,, to s. Intuitively, such a task
can make sure that we can move the current input ’yG(%) to make it closer to the baseline input. Thus,
the gradient could not be too small to be nearly zero, making the path avoid the saturation region.

min |G

Here, we use one step of gradient descent for (7) and get the next perturbed input (”1) as

_ GO (}) — G)li3

g]+ - G(J )
" o ®)
Gy NGy
where W; = ||gj41]|2 is a normalization factor that dynamically adjusts the step size. Our integrating

path will be determined by these corrupted activations in v“. And we can approximate the integration
by using the finite sum to get the EAP-GP score for edge (u, v):

a—\m.
\_/

P = (2, — )

D an

After attributing each edge in the model, we follow the approach in (Hanna et al.| 2024b)) and employ
a greedy search strategy to iteratively evaluate the top-ranked edges iteratively, selecting the top n

w\»—
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Figure 3: Comparison of circuit performance across different methods on GPT-2 Small. In all plots, a
higher value indicates better performance. EAP-GP identifies circuits that outperform other methods
across all six tasks.

edges (a hyperparameter) with the highest scores to form the circuit. Once the circuit is identified, we
recursively prune nodes and edges with no parents or children, as they are redundant. We evaluate the
circuit by applying the following intervention. Let v represent a node in the model’s computational
graph, and let F, denote the set of all incoming edges to v. For each edge e € F,, let i, be a binary
indicator, where i, = 1 if the edge is part of the circuit and i, = 0 otherwise. Without intervention,
the input to v is:

P (10)

e=(u,v)EE,

which represents the sum of the outputs from all parent nodes of v. With intervention, the input to v
is modified as:

S derae+ (1 —ic) - al,. (11)

e=(u,v)EE,

If all edges are in the circuit (¢, = 1 for all e), this intervention is equivalent to running the model
on original inputs. Conversely, if no edges are in the circuit (. = 0 for all e), the intervention
corresponds to running the model on corrupted inputs. The overall pseudocode of the EAP-GP
algorithm is provided in Algorithmm
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Figure 4: Precision-recall curves for 101 (left) and Greater-Than (right) node/edge overlap.

6 Experiments

6.1 Experimental Setup

Datasets. We evaluate model performance using six datasets: Indirect Object Identification (IOI),
Subject-Verb Agreement (SVA), Gender-Bias, Capital-Country, Hypernymy, and Greater-Than
(Hanna et al.| |2024b). IOI tests the model’s ability to identify indirect objects, while SVA assesses
subject-verb agreement. Gender-Bias examines gender bias in language models, and Capital-Country
evaluates the prediction of a country given its capital. Hypernymy focuses on identifying hypernyms
(superordinate categories), and Greater-Than measures the model’s ability to predict numbers that
are greater than a specified value in a sentence. Table[I] provides representative task examples, and
Appendix [AT] details the datasets and the loss functions used for circuit identification.

Baselines. Since EAP-GP is a gradient-based method, we primarily compare it with previous
gradient-based approaches, such as EAP and EAP-IG. Both are outlined in Section|[3]

Evaluation Metrics. A circuit is considered faithful to a model’s behavior on a task if all model
edges outside the circuit can be corrupted while still preserving the model’s original outputs (Hanna
et al.,[2024b). Following the setting of [Hanna et al.|(2024b), we evaluate circuit faithfulness across
all tasks using the Normalized Faithfulness Score (NFS), which measures the similarity between the
circuit’s output and the full model’s output:

(12)

where 6, and J_ represent the full model’s performance on the original and corrupted inputs,
respectively, and 6¢(,,,/) represents the circuit’s performance. The value of d¢ () is measured
using the task-specific Logit Difference or Probability Difference, with detailed explanations provided
in the appendifA-1] 4. and 6_ for each dataset are provided in Table[2] Additionally, for the IOI and
Greater-Than datasets, we compare the precision-recall (PR) performance curve of gradient-based
methods with manually identified circuits from prior research (Syed et al.| 2023)).

Experimental Setup. All experiments are conducted on GPT-2 Small (117M), GPT-2 Medium
(345M), and GPT-2 XL (1.5B), which contain 32,491, 231,877, and 2,235,025 edges, respectively.
We set k = 5 in EAP-GP. Following (Hanna et al.,[2024b)), we perform EAP-IG with hyperparameters
set to k = 5 steps. All experiments are conducted on an NVIDIA A40 GPU.



6.2 Experimental Results

This section compares the three methods based on our primary faithfulness metrics, with all experi-
ments conducted on GPT-2 Small (117M). Additional experiments on GPT-2 Medium (345M) (see
Figure [5] and Table [5) and GPT-2 XL (1.5B) (see Figure [6| and Table [6)), along with examples of
circuits identified by EAP-GP (see Figure[7)), are reported in Appendix

Circuit Faithfulness. We compare the faithfulness of identified circuits for three gradient-based
circuit identification methods (EAP, EAP-IG, and EAP-GP) across six tasks under edge sparsity
levels ranging from 96.9% to 99.9%, as shown in Figure [3|and Tabl¢4]

In IOI, SVA, and Hypernymy, EAP-GP significantly outperforms the other methods. For example,
in the I0I task, when sparsity is 97.5%, EAP-GP achieves a score of 80.1%, far exceeding EAP-IG
(62.4%) and EAP (56.9%) (see Table [3).. In IOI and SVA, the performance gap is small at low
sparsity levels, but as sparsity increases, EAP-GP’s advantage becomes more pronounced. However,
when edge sparsity ranges from 99.0% to 99.9%, EAP generates completely unfaithful circuits, with
a regularized faithfulness score of 0. This is partly due to EAP producing many “parentless heads”,
which are subsequently pruned. As a result, EAP’s generated circuits are entirely pruned to an empty
structure. In the Hypernymy task, this performance gap remains large across all sparsity levels,
indicating that EAP-GP consistently outperforms both EAP and EAP-IG in this task.

For Greater-Than and Gender-Bias, the performance differences among the three methods are
smaller, remaining relatively close across all sparsity levels. Although EAP-GP maintains a slight
advantage, the performance gap is minimal. For example, in the Gender-Bias task, EAP-GP (92.68%)
only slightly outperforms EAP-IG (90.76%). This is because these tasks primarily rely on direct
feature mappings rather than complex reasoning models. The Gender-Bias task focuses on the
direct association between professions and pronouns (e.g., banker — he), while the Greater-Than
task involves simple sequential relations in numerical data (e.g., 1352 — 1353). These tasks are
characterized by their reliance on explicit, localized features rather than requiring multi-step reasoning
or complex relational identification, as seen in IOI and Hypernymy.

In the Country-Capital task, EAP performs poorly, failing to maintain faithful circuit structures
as sparsity increases. EAP-IG performs better but remains slightly weaker than EAP-GP. Overall,
EAP-GP demonstrates superior performance, outperforming both EAP and EAP-IG, as it achieves
more effective edge attribution evaluation.

Comparison with Manual Circuit. We follow the approach of (Syed et al.|[2023)) to check whether
our method EAP-GP can identify the ground-truth circuits. Specifically, we compute the precision and
recall of the EAP, EAP-IG, and EAP-GP circuits concerning the manually found circuits. Our results
in Figure [ indicate that EAP-GP performs well in retrieving nodes and edges. Specifically, for the
IOI task, edge precision/recall and node precision/recall exhibit similar trends for all three methods.
EAP-GP initially performs worse but improves slightly as recall increases when it is greater than 0.8
and 0.25 for node and edge, respectively. However, for IO, this assessment may be somewhat flawed
due to the ambiguous role of MLPs in the manually found IOI circuit, which is mentioned by (Hanna
et al.;2024b)). In the Greater-Than task, where the manually identified circuit also includes MLPs,
we can easily see that EAP-GP outperforms both EAP and EAP-IG in both edge and node retrieval.
It identifies circuits with higher precision and recall than EAP and EAP-IG.

Effect on Number of Steps in EAP-GP. Note that the number of steps is the only hyperparameter
in EAP-GP. Here we perform an ablation study to see its effect on the performance of IOl and
Gender-Bias tasks. We use their respective logit difference and probability difference as metrics to
assess the circuit. Specifically, we run EAP-GP for k steps, where k ranges from 3 to 20. Notably,
when k£ = 1, EAP-GP is equivalent to EAP, as illustrated in Figure When k = 2, the gradient used
for evaluation is the average of the gradients of the clean and corrupted inputs.

We identify circuits at various edge sparsity levels, ranging from 96.9% to 99.9%. Our results
(Figure[2) indicate that, across all edge sparsity levels, only a few steps are sufficient to achieve high
faithfulness. At k = 4 or 5 steps, EAP-GP already produces faithful circuits for both the IOI and
Gender-Bias tasks.

We also observe that, in some cases, reducing sparsity (e.g., IOI from 97.5% to 97.2%) or increasing
the number of steps (e.g., k¥ > 5) leads to a decline in the metric. This may be because the greedy
and top-n edge selection strategies rely on absolute attribution scores to select edges, which may



inadvertently include components that harm model performance, such as edges encoding noise or
adversarial patterns. Furthermore, as the step count k increases, based on our method, the gradient
norm will become smaller, resulting in reciprocal growth of the normalized step sizes W;l. This
amplifies high-frequency oscillations in the integration path near the corrupted input z’, where
gradient directions become unstable. Consequently, noise-dominated steps accumulate, diluting the
accurate attribution signals and ultimately degrading the metric.

7 Conclusion

In this paper, we revisited gradient-based automatic circuit identification and identified the saturation
effects and regions, which cause inaccurate edge attributions and unfaithful circuit identification. To
address this, we proposed Edge Attribution Patching with GradPath (EAP-GP), which replaces EAP-
IG’s fixed straight-line paths with GradPath. This dynamically adjusted path integrates gradients more
effectively and mitigates saturation effects. Extensive experiments showed that EAP-GP enhances
edge attribution accuracy and circuit faithfulness, outperforming previous methods.
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A Appendix

A.1 Datasets

Indirect Object Identification (IOI): The IOI task ((Wang et al., 2023)) involves inputs such as:
“When Amy and Laura got a snack at the house, Laura decided to give it to”’; where models are
expected to predict “Amy”. Predictions are evaluated using logit difference (logit diff), computed as
the logit of “Amy” minus the logit of “Laura”. Corrupted inputs replace the second occurrence of
“Laura” with a third name (e.g., “Nicholas”), making “Laura” and “Amy” roughly equiprobable. We
generate a dataset usingWang et al.| (2023))’s dataset generator.

Gender-Bias: The Gender-Bias task is designed to examine gender bias in language models. It
provides inputs such as “The banker wished that”, where biased models tend to complete the sentence
with “he”. Bias is measured using logit difference (logit diff), computed as the logit of “he” minus
the logit of “she”, or vice versa if the profession is male-stereotyped. Corrupted inputs replace
female-stereotyped professions with “man” and male-stereotyped professions with “woman”, such
as transforming “The banker wished that” into “The woman wished that”, prompting the model to
generate the opposite pronoun. This task originates from Vig et al.|(2020) and was later analyzed in a
circuit-based context by |(Chintam et al.| (2023)).

Capital-Country: In the Capital-Country task, models receive inputs such as “Port Vila, the capital
of”, and are expected to output the corresponding country (Vanuatu). Corrupted instances replace the
correct capital with another one, such as changing “Port Vila, the capital of” to “Niamey, the capital
of”. Performance is evaluated using the logit difference, defined as the logit of the correct country
(Vanuatu) minus the logit of the corrupted country (Niger).

Subject-Verb Agreement (SVA): In the Subject-Verb Agreement (SVA) task, models are given
sentences such as “The pilot the assistant” and must generate a verb that matches the subject’s number
(e.g., “is” or “has” for pilot). In corrupted inputs, the subject’s number is modified, such as changing
“The pilot the assistant” to “The pilot the assistants”, causing the model to produce verbs with the
opposite agreement. The model’s performance is evaluated using probability difference, defined as
the probability assigned to verbs that agree with the subject minus the probability assigned to those

that do not.

Hypernymy: In the Hypernymy task, models must predict a word’s hypernym (or superordinate
category) given inputs such as “, second cousins and other”, where the correct answer is “relatives”.
Corrupted inputs replace the target word with an instance from a different category, such as changing
“second cousins and other” to “robins and other”. Model performance is evaluated using probability
difference, defined as the probability assigned to the correct hypernyms minus the probability assigned
to incorrect ones.

Greater-Than: In the Greater-Than task, models receive a sentence containing a chronological
sequence of years as input and must predict the next year that follows the pattern. Given a clean
input, such as “The contract lasted from the year 1352 to the year 13”, the expected completion is
the next valid number in the sequence. Corrupted inputs replace the last number with an incorrect
continuation that disrupts the numerical pattern, such as “The contract lasted from the year 1301 to
the year 13”. Model performance is evaluated using probability difference (prob diff), defined as the
probability assigned to the correct next number minus the probability assigned to the incorrect one
(e.g., “52” in the example above).

Each dataset consists of both positive and negative examples. Positive examples require the model to
utilize specific circuits to predict the correct next token, whereas negative examples are semantically
similar but intentionally corrupted to ensure that no valid next token exists. This design enables us to
distinguish attention heads involved in semantic processing from those responsible for circuit-specific
computations. To ensure fair comparisons, the number of positive and negative examples in each
dataset is kept consistent with (Hanna et al.| | 2024b)). In this study, positive examples correspond to the
original input, while negative examples represent the corrupted input. Table[T|provides an example of
each task. Overall, For IOI, Gender-Bias, and Capital-Country, we also use Logit Difference defined
as:

log P(correct) — log P(misleading), (13)
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Table 1: Overview of Tasks and Metrics Used for Each Task. The table presents original and corrupted
examples along with the expected output token IDs for six tasks: Indirect Object Identification (IO1),
Subject-Verb Agreement (SVA), Gender Bias, Capital-Country, Hypernymy, and Greater-Than.
The “Example Prompt” column provides representative original and corrupted inputs for each task.
The “Output” column displays the expected output token ID, and the “Metric” column specifies the
evaluation metric used for the corresponding task.

TASK EXAMPLE PROMPT OUTPUT METRIC

101 “WHEN AMY AND LAURA GOT A SNACK  “14235” LOGIT DIFFER-
AT THE HOUSE, LAURA DECIDED TO GIVE “16753” ENCE
IT TO”

“WHEN AMY AND LAURA GOT A SNACK
AT THE HOUSE, NICHOLAS DECIDED TO

GIVE IT TO”
SVA “THE SONG THAT THE CHEF LIKES” “0” PROBABILITY
“THE SONGS THAT THE CHEF LIKES” “0” DIFFERENCE
GENDER-BIAS “THE POET WAS PROMOTED BECAUSE” “673” LOGIT DIFFER-
“THE MAN WAS PROMOTED BECAUSE” “339” ENCE
HYPERNYMY “, GEMSTONES AND OTHER” “[16840, PROBABILITY
“, VICE PRESIDENTS AND OTHER” 23685]” DIFFERENCE
“[7018,
760217
CAPITAL-COUNTRY “KABUL, THE CAPITAL OF” “8037” LOGIT DIFFER-
“LONDON, THE CAPITAL OF” “1578” ENCE
GREATER-THAN “THE CONTRACT LASTED FROM THE YEAR  “52” PROBABILITY
1352 TO THE YEAR 13” “52” DIFFERENCE

“THE CONTRACT LASTED FROM THE YEAR
1301 TO THE YEAR 13”

which measures the difference in log probabilities between the correct and misleading name/pronoun.
For SVA, Greater-Than, and Hypernymy, we use Probability Difference, defined as:

Z P(Yeorrect) — Z P (Yincorrect), 14)

which compares the probability of the correct answer with the sum of the probabilities of incorrect
answers.

Table 2: Original and Corrupted Baseline Performance of GPT-2 small across tasks, Clean Baseline
refers to ¢, while the Corrupted Baseline refers to J_.

Task Metric Clean Baseline Corrupted Baseline
101 logit diff 3.80 0.03
SVA prob diff 0.154 -0.157
Gender-Bias logit diff 0.88 -3.22
Hypernymy prob diff 23.43 -3.482
Capital-Country logit diff 0.25 -0.28
Greater-Than prob diff 0.814 -0.456

A.2 More results

In this section, we also test the runtime of the three methods on the IOI and Greater-Than datasets
with 97.5% edge sparsity (see Table [3). EAP-GP is approximately five times slower than EAP-
IG. However, this is not only due to the k forward and backward passes over the data but also
because constructing the intermediate points of the integration path requires an additional forward
and backward pass over the activations, further contributing to the overall runtime.
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Table 3: Comparison of different methods’ performance based on 97.5% sparsity. NFS represents the
Normalized Faithfulness Score, and Times represents the computation time for different methods. A
higher Normalized Faithfulness Score and shorter computation time indicate better performance.

Method Sparsity (%) 101 Greater-Than
NFS(%) 1 Time (s) | NFS(%) 1 Time (s) |

EAP 97.5£0.01 56.9 12.6 96.3 11.7

EAP-IG 97.5+0.01 62.4 49.7 97.6 443

EAP-GP 97.5£0.01 80.1 232.5 99.8 210.7
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Figure 5: Comparison of circuit performance across different methods on GPT-2 Medium. In all

plots, a higher value indicates better performance. EAP-GP identifies circuits that outperform other
methods across all six tasks.

we also perform experiments on GPT-2 Medium (345M) (see Figure EI) and GPT-2 XL (1.5B) (see
Figure[)) across six tasks and report the faithfulness of the identified circuits. Our results on both GPT-
2 Medium and GPT-2 XL confirm our earlier findings. In both models, when there are discernible
differences in the faithfulness of the identified circuits, EAP-GP outperforms both EAP and EAP-IG.

Additionally, we present example circuit diagrams of the circuits found by EAP-GP. However, these
come with one caveat: the typical circuits we found still contained too many edges to be displayed in
a reasonably sized figure. Therefore, we only provide visualizations for the Greater-Than task with
99.9% sparsity (such as those reported in Figure 7).
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Table 4: Normalized faithfulness for Six Tasks in GPT2-Small.

Task Edge Sparsity (%) EAP (%) EAP-IG (%) EAP-GP (%)
99.30% 0.03% 25.53% 29.18%
99.00% 0.05% 42.51% 41.05%
98.70% 3541% 45.10% 44.76%
98.40% 53.05% 49.68% 59.93%
98.10% 50.21% 65.12% 65.23%
101 97.80% 47.56% 66.18% 73.52%
97.50% 56.94% 62.47% 80.08%
99.30% 0.00% 5.79% 9.97%
99.00% 0.00% 13.83% 36.66%
98.70% 21.54% 46.95% 69.77%
98.40% 34.41% 72.03% 82.64%
98.10% 47.59% 80.06% 91.32%
SVA 97.80% 72.03% 84.57% 95.50%
97.50% 75.88% 84.57% 96.14%
99.30% 55.57% 70.06% 68.76%
99.00% 80.00% 73.91% 78.91%
98.70% 84.91% 85.00% 88.44%
98.40% 79.61% 88.76% 90.10%
98.10% 81.76% 90.47% 90.73%
Gender-Bias 97.80% 89.54% 90.88% 91.17%
97.50% 90.05% 90.95% 91.05%
99.30% -0.37% 52.89% 65.36%
99.00% 13.22% 75.42% 82.50%
98.70% 21.23% 82.31% 90.32%
98.40% 30.35% 86.41% 91.62%
98.10% 35.57% 90.50% 90.32%
Country-Capital 97.80% 57.54% 91.43% 91.81%
97.50% 60.52% 91.62% 93.67%
99.30% 7.41% 10.11% 14.01%
99.00% 10.30% 17.26% 24.32%
98.70% 17.11% 29.28% 38.27%
98.40% 29.57% 38.57% 46.22%
98.10% 35.51% 47.27% 54.93%
Hypernymy 97.80% 40.31% 53.07% 59.48%
97.50% 45.58% 55.62% 67.24%
99.30% 70.24% 81.89% 85.83%
99.00% 92.52% 95.35% 94.88%
98.70% 94.41% 98.43% 97.95%
98.40% 95.43% 98.03% 98.98%
98.10% 95.12% 98.66% 99.69%
Greater-Than 97.80% 95.98% 100.00% 99.53%
97.50% 96.38% 99.45% 98.98%
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Table 5: Normalized faithfulness for Six Tasks in GPT2-Medium.

Task Edge Sparsity (%) EAP (%) EAP-IG (%) EAP-GP (%)
98.38% 46.71% 60.03% 64.75%
97.98% 57.24% 62.95% 70.04%
97.58% 62.44% 69.54% 72.94%
97.19% 65.75% 75.52% 76.83%
101 96.79% 70.70% 77.67% 78.03%
99.17% 82.11% 91.05% 93.37%
98.77% 89.52% 94.33% 98.19%
98.38% 94.56% 96.08% 98.81%
97.98% 95.40% 97.09% 99.09%
97.58% 96.16% 98.82% 98.40%
SVA 97.19% 96.26% 99.00% 98.73%
96.79% 96.62% 99.14% 98.89%
99.17% 77.20% 80.17% 83.28%
98.77% 77.63% 81.86% 85.46%
98.38% 81.46% 86.47% 88.69%
97.98% 85.61% 90.92% 90.74%
97.58% 88.74% 91.42% 92.85%
Gender-Bias 97.19% 90.87% 94.11% 95.52%
96.79% 94.62% 98.30% 97.82%
99.17% 42.73% 71.34% 75.24%
98.77% 54.78% 75.72% 78.88%
98.38% 62.91% 78.74% 84.78%
97.98% 71.47% 81.36% 85.25%
97.58% 75.52% 84.19% 87.35%
Country-Capital 97.19% 79.23% 85.58% 87.76%
96.79% 80.45% 86.16% 88.16%
99.17% 33.42% 42.16% 54.82%
98.77% 41.45% 52.54% 64.08%
98.38% 51.24% 59.53% 72.10%
97.98% 56.07% 65.81% 76.61%
97.58% 61.14% 69.87% 79.55%
Hypernymy 97.19% 64.88% 74.83% 82.08%
96.79% 68.53% 77.98% 87.02%
99.17% 79.90% 83.23% 87.96%
98.77% 82.99% 87.50% 91.78%
98.38% 84.00% 89.47% 94.71%
97.98% 89.84% 91.60% 95.15%
97.58% 91.63% 93.96% 97.90%
Greater-Than 97.19% 97.64% 92.85% 99.19%
96.79% 96.68% 95.76% 99.16%
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Table 6: Normalized faithfulness for Six Tasks in GPT2-XL.

Task Edge Sparsity (%) EAP (%) EAP-IG (%) EAP-GP (%)
99.19% 55.63% 60.02% 61.43%
98.79% 64.71% 69.69% 68.59%
98.39% 73.07% 74.77% 74.51%
97.99% 78.55% 77.99% 80.24%
97.59% 82.27% 81.33% 82.97%
101 97.19% 83.91% 84.90% 86.08%
96.79% 85.20% 85.52% 88.14%
99.20% 90.17% 93.69% 96.22%
98.80% 94.28% 96.27% 98.00%
98.40% 96.30% 97.73% 98.30%
98.00% 97.10% 98.66% 98.25%
97.60% 97.53% 98.97% 98.57%
SVA 97.20% 98.01% 99.18% 98.75%
96.80% 98.38% 99.39% 99.06%
98.80% 98.26% 98.96% 99.58%
98.40% 98.85% 99.36% 99.91%
98.00% 99.25% 99.63% 100%
97.60% 99.67% 100% 100%
97.20% 99.67% 100% 100%
Gender-Bias 96.80% 99.58% 100% 100%
99.20% 43.96% 74.92% 83.46%
98.80% 64.10% 81.29% 86.78%
98.40% 72.07% 85.23% 89.97%
98.00% 78.09% 88.18% 91.28%
Country-Capital 97.60% 80.66% 89.28% 92.42%
97.20% 85.00% 90.91% 93.49%
96.80% 87.06% 92.03% 94.17%
99.20% 55.16% 60.54% 74.73%
98.80% 68.55% 73.93% 84.02%
98.40% 76.64% 82.15% 88.42%
98.00% 82.60% 86.41% 91.24%
97.60% 86.50% 88.67% 93.61%
Hypernymy 97.20% 88.79% 90.94% 95.23%
96.80% 90.71% 92.79% 95.92%
98.80% 97.96% 98.15% 98.68%
98.40% 98.30% 98.75% 98.91%
98.00% 98.15% 98.74% 99.08%
97.60% 98.47% 98.61% 99.11%
Greater-Than 97.20% 98.53% 98.75% 99.13%
96.80% 99.31% 98.89% 99.45%
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Figure 6: Comparison of circuit performance across different methods on GPT-2 XL. In all plots, a
higher value indicates better performance. EAP-GP identifies circuits that outperform other methods
across all six tasks.
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Figure 7: A circuit for Greater-Than with 99.9% sparsity, found by EAP-GP.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the key contributions, including the
proposed method, theoretical analysis, and empirical results, all of which are consistently
elaborated in the main text.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the current method’s limitation in terms of time efficiency in the
appendix, highlighting the computational cost as a trade-off for performance.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We formally define the saturation effects in circuit discovery and support this
definition with a complete set of experiments and empirical validations in Section 4. While
not stated as formal theorems, the behavior is rigorously demonstrated through controlled
analyses.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All experiments were performed using public datasets and models. Detailed
information is provided in the Appendix and the experimental setup section. Additionally,
we plan to release the code to further support reproducibility.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Code will be provided by acceptance.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The detailed information is provided in the Appendix and the experimental
setup section.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: Our experiments are not accompanied by error bars
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The detailed information is provided in the Appendix and the experimental
setup section.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our research is aligned with the NeurIPS Code of Ethics
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We properly credit the code and models used in the paper.
Guidelines:

e The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: The codebase will be published under a CC BY license.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:

Justification: No crowdsourcing experiments or research with human subjects were per-
formed.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:
Justification: Our experiments do not have risks.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:
Justification: LLMs were only used for writing assistance.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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