Published as a conference paper at ICLR 2023

RELATIVE BEHAVIORAL ATTRIBUTES: FILLING THE
GAP BETWEEN SYMBOLIC GOAL SPECIFICATION AND
REWARD LEARNING FROM HUMAN PREFERENCES

Lin Guan, Karthik Valmeekam, Subbarao Kambhampati
School of Computing & Al

Arizona State University

Tempe, AZ 85281, USA

{lguan9, kvalmeek, rao}Rasu.edu

ABSTRACT

Generating complex behaviors that satisfy the preferences of non-expert users
is a crucial requirement for Al agents. Interactive reward learning from trajec-
tory comparisons (a.k.a. RLHF) is one way to allow non-expert users to convey
complex objectives by expressing preferences over short clips of agent behav-
iors. Even though this parametric method can encode complex tacit knowledge
present in the underlying tasks, it implicitly assumes that the human is unable
to provide richer feedback than binary preference labels, leading to intolerably
high feedback complexity and poor user experience. While providing a detailed
symbolic closed-form specification of the objectives might be tempting, it is not
always feasible even for an expert user. However, in most cases, humans are
aware of how the agent should change its behavior along meaningful axes to fulfill
their underlying purpose, even if they are not able to fully specify task objectives
symbolically. Using this as motivation, we introduce the notion of Relative Be-
havioral Attributes, which allows the users to tweak the agent behavior through
symbolic concepts (e.g., increasing the softness or speed of agents’ movement).
We propose two practical methods that can learn to model any kind of behavioral
attributes from ordered behavior clips. We demonstrate the effectiveness of our
methods on four tasks with nine different behavioral attributes, showing that once
the attributes are learned, end users can produce desirable agent behaviors rela-
tively effortlessly, by providing feedback just around ten times. This is over an
order of magnitude less than that required by the popular learning-from-human-
preferences baselines. The supplementary video and source code are available at:
https://guansuns.github.io/pages/rba.

1 INTRODUCTION

A central problem in building versatile autonomous agents is how to specify and customize agent
behaviors. Two representative ways to specify tasks include manual specification of reward func-
tions, and reward learning from trajectory comparisons. In the former, the user needs to provide
an exact description of the objective as a suitable reward function to be used by the agent. This
is often only feasible when the specification can be done at a high level, e.g. in symbolic terms
(Russell & Norvig, 2003) or by providing a symbolic reward machine or domain model (Yang et al.,
2018; Illanes et al., 2020; Guan et al., 2022; Icarte et al., 2022), or by giving a natural language
instruction (Mahmoudieh et al., 2022). Instead of requiring users to give precise task descriptions,
reward learning from trajectory comparisons (a.k.a. reinforcement learning from human feedback or
RLHF) learns a reward function from human preference labels over pairs of behavior clips (Wilson
etal., 2012; Christiano et al., 2017; Ouyang et al., 2022; Bai et al., 2022a), or from numerical ratings
on trajectory segments (Knox & Stone, 2009; MacGlashan et al., 2017; Warnell et al., 2018; Guan
et al., 2021; Abramson et al., 2022) or from rankings over a set of behaviors (Brown et al., 2019).

To illustrate the distinct characteristics of the two objective specification methods, let us consider
a Humanoid control task in a benchmark DeepMind Control Suite (Tunyasuvunakool et al., 2020).

https://guansuns.github.io/pages/rba

Published as a conference paper at ICLR 2023

The default symbolic reward function in the benchmark is a carefully-designed linear combination
of multiple explicit factors such as moving speed and control force. By optimizing the reward, the
agent will learn to run at the specified speed but in an unnatural way. However, to further specify
the motion styles of the robot (e.g., to define a human-like walking style), non-expert users may find
it hard to express such objectives symbolically since this involves tacit motion knowledge. Simi-
larly, in natural language processing tasks like dialogue (Ouyang et al., 2022) and summarization
(Stiennon et al., 2020), it can be extremely challenging to construct reward functions purely with
explicit concepts. Hence, for tacit-knowledge tasks, people usually resort to reward specification
via pairwise trajectory comparisons and learn a parametric reward function (e.g., parameterized by
deep neural networks). While pairwise comparisons are general enough to work for any setting, due
to the limited information a binary label can carry, they are also an impoverished way for humans to
communicate their preferences. Thus, treating every task at hand as a tacit-knowledge one and limit-
ing reward specification to binary comparisons can be unnecessarily inefficient. Moreover, since the
internal representations learned within neural networks are typically inscrutable, it’s unclear how a
learned reward model can be reused to serve multiple users and fulfill a variety of goals.

In short, symbolic goal specification is more
straightforward and intuitive to use, but it offers
limited expressiveness, making it more suitable
for explicit-knowledge tasks. Reward learning
from trajectory comparisons, in contrast, of-
fers better expressiveness, but it is more costly
and less intuitive to use. However, in many
real-world scenarios, user objectives are neither
completely explicit nor purely tacit. In other
words, although human users may not be able
to construct a reward function symbolically,
they still have some idea of how the Al agent

can change its behavior along certain meaning- pigyre 1: Visualizing behavioral attributes of
ful axes of variation to better serve the users. ywalker and Lane-Change. The behavioral at-

In the above Humanoid example, even though (1jhytes of other domains are shown in Fig. 3 in
the users can not fully define the motion style Appendix A.

in a closed-form manner, they may still be able

to express their preferences in terms of some

nameable concepts that describe certain properties in the agent behavior. For instance, the users of a
household humanoid robot may want it to not only walk in a natural way but also walk more softly
and take smaller steps at night when people are sleeping.

Walker Lane Change

Motivated by the observations above, we introduce the notion of Relative Behavioral Attributes
(RBA) to capture the relative strength of some properties’ presence in the agent’s behavior. We aim
to learn an attribute-parameterized reward function that can encode complex task knowledge while
allowing end users to freely increase or decrease the strength of certain behavioral attributes such as
“step size” and “movement softness” (Fig. 1). This new paradigm of reward specification is intended
to bring the best of symbolic and pairwise trajectory comparison approaches by allowing for reward
feedback in terms of conceptual attributes. The benefits of explicitly modeling RBAs are obvious:
(a) it offers a semantically richer and more natural mode of communication, such that the hypothesis
space of user intents or preferences can be greatly reduced each time the system receives attribute-
level feedback from the user, thereby improving the overall feedback complexity significantly; (b)
since humans communicate at the level of symbols and concepts, the learned RBAs can be used as
shared vocabulary between humans and inscrutable models (Kambhampati et al., 2022), and more
importantly, such shared vocabulary can be reused to serve any future users and support a diverse
set of objectives.

The concept of relative attributes has been introduced earlier in other areas like computer vision
(Parikh & Grauman, 2011) and recommender systems (Goenka et al., 2022). Though they share
some similarities in motivations and definition to our relative behavioral attribute, the key difference
is that relative attributes there only capture properties present in a single static image, while RBAs
aim to capture properties over trajectories of behavior, wherein an attribute may be associated with
either static features at a certain timestep (e.g., step size of a walking agent) or temporally-extended
features spanning multiple steps (e.g., the softness of movement). Additionally, we need to consider

Published as a conference paper at ICLR 2023

how to connect the captured attributes to a valid reward function. In this work, we propose two
generic data-driven methods to encode RBAs within a reward function. On four domains with nine
attributes in total, we show that our methods can learn to accurately capture the attributes from
roughly 200 labelled behavior clips. Once the attribute-parameterized reward is learned, any end
user can produce diverse agent behaviors with relative ease, by providing feedback just around
10 times. This offers a significant advantage over the learning-from-human-preferences baseline
(Christiano et al., 2017) that requires hundreds of binary labels from the user per task.

2 RELATED WORK

In general, direct reward specification is the most commonly employed approach. It is used in almost
all simulators with engineered reward functions and in industrial applications such as self-driving
vehicle control systems. Yet, there are still some challenges associated with it, such as extensive
requirement for sensory instrumentation, incomplete (sub)goal specification (Guan et al., 2022),
reward exploitation (Lee et al., 2021) and the expressiveness issue mentioned in the previous sec-
tion. These impediments motivate the idea of learning reward from states or trajectory comparisons
(Christiano et al., 2017; Warnell et al., 2018; Zhang et al., 2019; Lee et al., 2021), which lever-
ages the exceptional representational capacity of neural networks but tends to suffer from high data
complexity. Another alternative to symbolic reward specification is imitation learning or inverse re-
inforcement learning (Schaal, 1996; Ng et al., 2000; Abbeel & Ng, 2004). However, this is usually
infeasible for non-expert end-users, as it requires the user to have sufficient knowledge and proper
hardware setup in order to teleoperate the agent. Even if a pre-collected large-scale behavior dataset
is provided to the user, the process of finding the target behavior trace(s) from the large dataset can
still be frustrating.

The introduction of RBAs aligns with the broader intent of building symbolic interfaces as a middle
layer for humans to communicate effectively with the agent (Bobu et al., 2021; Guan et al., 2021;
2022; Silver et al., 2022; Zhang et al., 2022; Bucker et al., 2022; Cui et al., 2023) or for the agent to
explain to humans (Kim et al., 2018; Sreedharan et al., 2022; Kambhampati et al., 2022). Lee et al.
(2020) utilize relative-attribute information in robot skill learning, but their GAN-based formulation
is restricted to static visual attributes and is not applicable to temporally-extended concepts.

This paper adopts a similar setup to works that learn diverse skills or motion styles from large-
scale offline behavior datasets or demonstrations (Lee & Popovié, 2010; Wang et al., 2017; Zhou &
Dragan, 2018; Peng et al., 2018b; Luo et al., 2020; Chebotar et al., 2021; Peng et al., 2021). These
works emphasize on modeling a variety of reusable motor skills by learning a low-level controller
conditioned on skill latent codes. Since the latent codes are inscrutable to humans, for each new task,
the user must specify the desirable agent behavior by constructing an engineered symbolic reward
and use it to train a separate high-level policy that controls the low-level controller. Our methods
are complemented by existing diverse-skill learning methods because skill priors (i.e., pre-trained
low-level controllers) allow us to optimize the behavioral reward more efficiently. More recently,
there have been works in diffusion-based text-to-motion animation generation (Tevet et al., 2022;
Guo et al., 2022). They are similar to this work in the sense that we both allow humans to control the
agent behavior through explicit concepts. However, they do not support fine-grained control over
the strength of individual behavioral attributes, and their works are not applicable to physics-based
character control.

3 PROBLEM SETUP

Personalizing agent behaviors at skill level. We assume the users are interested in customizing
agent behaviors at the level of skills (e.g., making a lane change, taking a step, picking up an object).
A skill is a solution (i.e., policy) to an episodic task in an indefinite-horizon discounted MDP M =
(S, A, R, P,), where S is the set of states, A is the set of actions, R : S x A — R is the provided
reward function, P : .S x A x S — [0, 1] is the transition function and + is the discount factor.
An episode terminates whenever the agent reaches an absorbing terminal state or exceeds a fixed
number of time steps 7'. An agent M is supposed to find a policy (7 : S — A) that maximizes
the expected return F/ [Z;‘FZO v'ri],r € R. When executing a policy, the agent is initialized to some
initial state so € S at the beginning of each episode; and then at each succeeding time step ¢, the

Published as a conference paper at ICLR 2023

agent interacts with the environment £ by taking an action a; € A and receiving the next state
S¢+1 € S. In order to personalize agent behavior, rather than assuming that the reward function R
is supplied by the environment, we require the reward function to be specified by the end user.

Given a behavior clip or a trajectory 7 = {(s¢, ag), ..., (s, a;) }, where [is the length of the trajec-
tory, a relative behavioral attribute o € A captures the strength of the presence of a certain property
exhibited in 7. It assumes that a mapping ¢ can be established to map any («, 7) pair to a real value
that reflects the relative strength of a in 7. In this work, our goal is to construct a reward function
that allows end users to iteratively adjust attribute strengths presented in the agent’s behavior.

Learning to model RBAs from offline behavior datasets. RBAs are essentially semantically
capturing different ways to carry out a task. Ideally, the training data for the reward function should
contain clips of diverse skill behaviors. Although we used synthetic data in this study, there are many
publicly accessible behavior corpora, such as the Waymo Open Dataset for autonomous driving
tasks (Ettinger et al., 2021) and large-scale motion clips data for character control (Peng et al.,
2018a; 2022). Note that we do not expect the offline dataset to exhaustively cover all possible skill
behaviors, as the reward function should generalize to unseen configurations. Also, considering
that action information is not always available, to be more general, we assume the training dataset
D only consists of state-only trajectories. Last but not least, as a common setting, we assume the
embodiment of the agent is not significantly different from that in D.

Reward learning from trajectory comparisons. Methods for reward learning from trajectory
comparisons construct a reward function by learning to infer the user’s latent preference from a

set of ranked trajectories {(71,72)}. Typically, the user preference is modelled according to the
Bradley-Terry model (Bradley & Terry, 1952):

expy ., T (5%, [atl])
Dicqi2y exXp 2, 7 (sh, [af])’

where 7! = 72 denotes the event that the user prefers 7! over 72, r is a parametric learnable reward

function, and [a!] means the action input is optional. A cross-entropy loss is typically used for
optimization:

Pl =7 =

ey

Lossp(r) = — Z y(1)log P [7‘1 - 7’2] +y(2)log P [7‘2 - 7‘1] , ()
(71772&)6@[)

where y € {(1,0),(0,1),(0.5,0.5)} are possible preference labels indicating 7+ = 72, 72 = 71,
or 7! and 72 are equally preferred, respectively. The set of preference labels D, can be collected
beforehand (Brown et al., 2019) or through active queries to the user in an online manner (Wilson
etal., 2012; Christiano et al., 2017). The latter is often referred to as preference-based reinforcement
learning, or PbRL for short. Most PbRL methods build upon the Bradley-Terry model but differ in
the query strategies and how the network is initialized (Lee et al., 2021; Park et al., 2022; III &
Sadigh, 2022; Ren et al., 2022).

4 METHODOLOGY

4.1 PERSONALIZING AGENT BEHAVIOR VIA RELATIVE BEHAVIORAL ATTRIBUTES

Our framework involves two phases, namely, learning an attribute parameterized reward function
and interacting with the end user.

Learning attribute parameterized reward function (no interaction with the end user). This
phase is supposed to learn a reward function that internally learns a family of rewards that correspond
to behaviors with diverse attribute strengths. By varying the input attribute configurations, end users
will be able to find the preferred “reward member” and obtain desired behaviors. In Section 4.2 and
Section 4.3, we will present two methods that can learn such a reward function given a subset of
labelled trajectories from an offline behavior dataset D. We assume that the agent builders are the
ones who provide the training labels (e.g., the engineers of autonomous vehicles, and the developer
of virtual characters). In some extreme cases, if a novel concept has to be learned, the training labels
may also come from the end user. Also note that, this step can be skipped if the RBAs have already
been captured by a learned reward function.

Published as a conference paper at ICLR 2023

Supporting end users in the loop. Once an attribute parameterized reward function is learned,
any incoming users can leverage it to personalize the agent behavior through multiple rounds of
query. In each round of interaction, the agent presents the user a trajectory, sampled according to
the policy that optimizes the current reward function. Then the user provides a feedback on whether
the current behavior is desirable; and if not satisfied, the user can express the intent to increase or
decrease the strength of certain attributes. The concept-level feedback is a set of attribute-feedback
pairs {(a, h)}, where « is the attribute of interest, and h is a binary value indicating whether the
user wants to increase or decrease a’s strength. In this work, we consider two types of attribute
representation, namely the index of « in a list of known attributes or a natural-language description
of a. Upon collecting feedback from the user, the agent will adjust the reward function and update
the corresponding policy. This human-agent interaction process repeats until the user is satisfied
with the latest agent behavior.

In the next two sections, we will elaborate on two candidate architectures for the attribute parame-
terized reward function. We note that both architectures support the same type of user interaction as
outlined above.

4.2 METHOD |: MODELING BEHAVIORAL ATTRIBUTES BY ESTABLISHING GLOBAL
RANKINGS

The learning process of Method 1 consists of two steps. In the first step, we learn an attribute
strength estimator (, (parameterized by o) that can map any given attribute « and trajectory 7
to a real-valued score that measures the relative strength of attribute « in 7. Here, (, is essen-
tially establishing a global ranking among all possible behaviors according to any given attribute
«. Hence, we denote this method as RBA-Global. Then in the second step, given a finite set of at-
tributes .4, we learn a dense reward function 7y (s|vy = (v;?, ..., v{"*)), where v, is called the target
attribute-score vector, vy is the target strength of attribute o, and k = |A| is the total number of
attributes. 7”9 is expected to satisfy that, when rg(-|v;) is optlmlzed the agent is able to sample a
trajectory 7/, such that for any «; € A, we have (, (7', ;) ~ v;**. Hence, with a learned reward
function ry, the agent can produce diverse behaviors by varying the 1nput target attribute-score vec-
tor v;. As an example, let us consider the humanoid household robot domain with two attributes
{ap : “softness of movement”, ov; : “step size”}. By setting the target attribute vector v; to be
<v?° = —1.5,v"" = 2.0), we expect the agent that optimizes 7y to be able to produce a trajectory
7/ with a softness score (, (7', o) approximately equal to —1.5. A graphical illustration of the
overall architecture can be found in Fig. 4 in Appendix A. In the remainder of this section, we will
explain how (, and ry can be learned from the offline behavior dataset D.

The problem of learning an attribute strength estimator (,, is essentially a learning-to-rank problem.
Specifically, we assume we are given (normally by the agent designers rather than the end users) a
set of state-only trajectories {7} and their orderings according to different attributes {(7° = 7% =

. = 7N]a)}, or a set of ranked trajectory pairs D; = {(7° = 77|a)}, where a € A is one
of the attributes in the domain, (1t = 77|a) represents the event that the attribute o has a stronger
presence in trajectory 7 than that in trajectory 77, and N < |D\ is the length of the ranked trajectory
sequence. We propose to employ a modified state-only version of Bradley-Terry model (Eq. 1), in
which rather than assuming that the ranking is governed by the latent user preferences, we assume
the ranking is determined by the given attribute a:

exp 3, fo ([st, €al)
Yieqray exp X, fo ([si,€al)’

where f, is an attribute conditioned ranking function with parameters o, [-, -] is the vector con-
catenation operation and e, is the embedding of attribute «. The strength of any attribute « in a
trajectory 7 is given as (o (7,) = > .. fo ([5, €a]). Recall that we consider two types of attribute
representation, namely attribute index and natural language description. Accordingly, e, can either
be a one-hot vector or a sentence embedding generated by any pretrained natural language sentence
encoder like Sentence-BERT (Reimers & Gurevych, 2019). Since different behaviors may result in
trajectories of varying lengths, in Eq. 3 we do not require the two trajectories to have the same size.
Given the training dataset D;, f, can be trained via a cross-entropy loss similar to the one in Eq. 2.
For numerical stability, in practice, we also clip the values of 3, f5 ([si, €q]) (We used [—20, 20]
for all the attributes in our experiment). With a learned attribute strength estimator {, and a finite

Py [r' = 7% a] = 3)

Published as a conference paper at ICLR 2023

set of k attributes, the agent behavior in any trajectory 7 can be characterized by an attribute vector
U(T) = <<O’(T7 al)? neey CU(Ty Oék)>

The problem of learning r¢([s, v;]) can also be cast to a learning-to-rank or preference modeling
problem, wherein the reward function is supposed to give higher cumulative rewards to trajectories
that have attribute strengths closer to the targets in v;. Specifically, given v, for any two trajectories

7; and 7; from the offline behavior dataset D, the preference label lp(ri, 79, v;) is given as:

=i fu(rh) = el < Jlo(r7) = vell2 — &
(' 7 v) =878 < 77 if ||o(7?) = vell2 > Jo(77) — vel|2 + & “)
no ordering otherwise,

where &, is a small slack variable. To train ry, we can randomly sample a set of triplets from D,
namely {(7°, 71, 72)}. By treating 7° as the target behavior, we can generate a set of training labels
{l,(r1, 7%, v, = v(79))} for 7. In short, 7y can be trained as a standard state-only preference-based
reward function according to Eq. 1 and Eq. 2 but with preference labels given by the extracted
attribute strengths (i.e., by (,). Note that, unlike the training of (,, the training of ry does not
require any human-provided labels.

Once a reward function ry is learned, the end user can use it to specify agent behavior by simply
tuning the attribute strength values in the input target attribute vector v;. In our realization, we
implement the process of finding the target attribute score as a process of performing binary search
in real space (details can be found in Appendix A.3). The process of personalizing agent behavior
through 7y is highly intuitive because 7y handles the complex tacit parts of the problem internally
(e.g., how to walk naturally and realistically with the constraints of softness and step size) and only
relies on the end user to set the explicit parts. Additional discussion on alternative ways to leverage
(s without learning a reward function can be found in Appendix A.2.

4.3 METHOD 2: MODELING BEHAVIORAL ATTRIBUTES BY CAPTURING MINIMALLY
VIABLE LocAL CHANGES

One limitation of RBA-Global is that, it requires the total number of encoded attributes to be finite
because the size of the target attribute vector v; grows with the number of attributes. This may limit
the scalability of RBA-Global. In this section, we will introduce a more extensible method that can
potentially encode an arbitrary number of attributes. The key motivation is that in RBA-Global, the
user never directly manipulates the attribute scores. Instead, we can skip the explicit modeling of
attribute strength (i.e., learning () and directly learn a behavior-editing reward function.

Specifically, given a trajectory 7. and the corresponding human feedback («, k), our goal is to
construct a reward function r¢(-|a, h, 7.) that gives higher cumulative rewards to trajectories that
have some minimal but noticeable change in « in the direction specified by ~ while keeping other
unmentioned attributes unchanged (or minimally changed). We refer to such minimal but noticeable
changes as minimally viable local changes, and the queried trajectory 7. as the anchor trajectory.
Accordingly, we denote this method as RBA-Local.

To learn ry, we assume we are provided (again, normally by the agent builder and not the end user)
a set of trajectory pairs D; = {(7¢, 7, o, h)}, where 73 is a trajectory that reflects some minimally
viable local changes to the anchor trajectory 7. in terms of the attribute o and the direction h. rg
is trained to prefer 7; over other negative samples (such as trajectories that make excessive changes
to 7., or trajectories that are not significantly different from 7, or trajectories that make changes to
unspecified attributes). In practice, we select the negative samples by randomly sampling from the
behavior dataset D. Again, 79 can be formulated as a modified Bradley-Terry model:

exp e, 70 ([5, €as h, ¢(7e)])
expY ey, 7o (8 €as by ¢(7e)]) +exp X e, 7o ([, €, by G(7e)])

where 7, is a negative sample (i.e., trajectory), [-] is the vector concatenation operation, e, as in
RBA-Global can be either an one-hot representation of attribute « or a sentence embedding output
by Sentence-BERT, and ¢(7,) is a sequence encoder (e.g., an LSTM (Hochreiter & Schmidhuber,
1997)) that encodes the anchor trajectory 7. to a compact latent representation. Note that ¢(-) is
a sub-module of rg and it’s jointly optimized with 9. Since 7y is essentially a preference-based
reward function, it can be optimized by employing a cross-entropy loss as in the one in Eq. 2. We

Pyre = mn|a,h, 1] = 5)

Published as a conference paper at ICLR 2023

note that our computational framework is similar to the Prompt-DT (Xu et al., 2022) in the sense that
we both take a reference trajectory as a “prompt” to the model to obtain conditioned outputs. But
instead of trying to replicate the behavior in the “prompt” trajectory as in Prompt-DT, our reward
function learns to modify the prompt in a controlled way. In a more recent work (Liu et al., 2023),
similar ideas have been shown to be effective in refining language model outputs through sequences
of local changes informed by human feedback.

Compared to RBA-Global (Sec. 4.2) which requires a full specification of all the attributes’
strengths, the reward function in RBA-Local only takes one attribute as input at a time. This de-
sign is appealing as it offers better scalability and it affords the development of a big universal
behavioral concept “encoder”. Nevertheless, RBA-Local still has the following shortcomings: (a)
it is less efficient than RBA-Global in searching for the target behavior because it can only make
minimally viable changes to the presented behavior; (b) The training data for RBA-Local is harder
to collect. Unlike RBA-Global, where any random subset of trajectories exhibiting distinct behav-
iors can be used as the training samples, in RBA-Local, the agent builder must carefully pick pairs
of trajectories that reflect local changes. Also, the judgement of how much variation constitutes a
minimally viable change can be fairly subjective.

5 EMPIRICAL EVALUATION

As a proof of concept, we demonstrate the effectiveness of our methods in a diverse set of four
domains with nine behavioral attributes that are depicted in Fig. 1 and Fig. 3:

Walker. This environment corresponds to a scenario that involves a 2-legged home-service robot
walking around the house to perform household tasks. The users may want the robot to walk more
softly at night. This environment is also related to physical character control scenarios wherein we
want the character to move in a sneaky way. Two attributes are considered here: (a) step size; (b)
softness of movement.

Manipulator. We consider a virtual character control scenario wherein we want a simulated arm to
mimic the ways of a human lifting objects. When humans, especially elders and children, are lifting
heavy objects, their movement can be unstable. Hence, we consider two attributes: (a) moving speed
of the arm; (b) instability of the movement.

Lane Change. We consider a driving scenario wherein the rider would want to change the lane-
changing behavior of the cab to get a more pleasant experience. Two attributes are used for evalu-
ation: (a) the sharpness of steering: this attribute corresponds to how sharp a turn the agent makes
while changing lanes; (b) distance to the following vehicle: this attribute is about the distance be-
tween our agent and the following car at the moment when our agent starts making the lane change.

Snake Concertina. In this task, the agent is supposed to control a virtual snake to imitate diverse
concertina styles of a real snake’s locomotion. There are three relevant attributes in concertina
locomotion: (a) width of the bend (i.e., the maximal width that the snake occupies); (b) compression
(i.e., how much the snake’s body is compressed when it is moving); (c) speed of movement.

More details of the evaluation domains can be found in Appendix A.1. In our experiments, all the
behavior clips are generated either by hard-coded motions or by using reinforcement learning with
sophisticated reward designs and hard-coded constraints.

Method Lane-Change Manipulator Snake Walker

SR AF (std) SR AF (std) SR AF (std) SR AF (std)
RBA-Global 0.95 3.95(2.43) 1.0 28(1.21) 0.85 4.17 (1.85) 1.0 3.75(1.47)
RBA-Global-L 1.0 3.05(2.06) 1.0 25(1.32) 0.8 6.38(5.03) 0.95 3.78(2.25)
RBA-Local 0.7 7.07(3.49) 0.7 12.23(5.75) 0.55 6.45(3.82) 0.95 5.47(3.52)
RBA-Local-L 09 5.78(4.04) 0.8 10.75(6.35) 0.6 4.17(2.11) 0.9 5.16(3.08)
PbRL 1.0 1623 (184) 0.6 159.5(188.87) 0.05 N/A 1.0 84.6(79.87)

Table 1: SR - Success Rate; AF - Average Feedback (when success); L - Language

Published as a conference paper at ICLR 2023

Step: 0.47 Step: 0.70 Sopm o SoEey Sopas sipo Szl Sl S
Softness: 0.52 sof 048

1(I<8.9, -7.25) 1(I<16.2,-11.95) <

Step: 0.48 Step: 0.70 Step: 0.947
Softness: 0.52 Softness: 0.67 Somness: 0.77 Somness: 0.77 Sofmess: 056 Sofese 065 Sofiness067 Sommess: 067 Sofese; 0.7

lll N N

yo 3
(189,725 r(|<1379,-39%) H(I<1851,-395) r(J<18.62,-395)

Figure 2: A step-by-step visualization of the interaction process showing how the agent’s be-
haviors change according to sequences of user’s feedback in the Walker domain. The two se-
quences on the left showcase RBA-Global and the sequences on the right showcase RBA-Local.
The upper and bottom rows represent the success and failure cases respectively. The attribute
strength scores above each image frame are given by hard-coded proxy measures, which are in
the range of [0, 1]. For RBA-Global, we also show the corresponding reward function and input
vy = (target step size, target softness). A more detailed visualization is presented in the supplemen-
tary video.

5.1 BASELINE AND RESULTS

For comparisons, we use the PbRL algorithm proposed in (Christiano et al., 2017; Lee et al., 2021),
which learns a reward function from human preference labels collected by making active queries.
Considering that our methods assume the additional access to the offline behavior dataset D, we
made a couple of modifications to make PbRL into a stronger baseline. The most important one is
that, to optimize the most recent reward function and update the agent’s behavior after each query,
rather than applying reinforcement learning, we use the policies extracted from D. Specifically,
we stochastically sample a large set of rollouts by executing the policies we used to synthesize
dataset D, and the rollout with the highest cumulative rewards is set as the agent’s latest behavior.
In practice, these policies can also be unsupervisedly learned from D. This is identical to the use of
skill priors as in (Peng et al., 2018b; Pertsch et al., 2020; Luo et al., 2020; Peng et al., 2022), which
first learns a diverse set of natural and plausible motions from offline behavior datasets to reduce
online computation. Besides, for PbRL, we also experimented with different query strategies and
considered reusing previously trained reward models. For the sake of simplicity, we only report the
best PbRL performance achieved at different setups.

As the evaluation metric, we count the number of human feedbacks (i.e., the binary preference labels
in PbRL and the attribute-level feedback in our methods) needed to produce the target behavior. For
each domain, we randomly sample 20 behavior configurations as targets, and the selected targets
were unseen in the behavior dataset D. A trial is considered as a success if the generated agent
behavior has a ground truth attribute strength or proxy score that falls within a certain range of the
target value. We use a threshold that roughly divides the strength of each attribute into five to ten
buckets. A trial is deemed unsuccessful if the agent fails to produce the target behavior within a
user-affordable number of feedbacks (we used 500 in our evaluation). The results are shown in
Table 1, where we add “L” as suffix to the names of variants that use language embedding as at-
tribute representation. Results show that with RBAs, users can obtain desired agent behavior much
more efficiently than with PbRL. The upper row in Fig. 2 showcases how the user can obtain de-
sired agent behaviors through sequences of attribute feedback with both methods. The interaction
processes suggest that the attribute-parameterized reward is able to modify agent behaviors mean-
ingfully in directions that are informed by RBAs. For full information of the interaction processes
in all domains, we encourage the reader to check out the supplementary video.'

Analysis of failure modes. Results suggest that both methods have a lower success rate when
trying to generate behaviors close to the two extremes (e.g., moving very softly or very recklessly).
The bottom row in Fig. 2 shows two failure cases. In RBA-Global, the reward function fails to

'Supplementary video at https://guansuns.github.io/pages/rba

https://guansuns.github.io/pages/rba

Published as a conference paper at ICLR 2023

produce a behavior with a larger step size when we increase the target step size score in v; from
18.51 to 18.62. This disrupts the binary search process (Appendix A.3) and causes the system to
get stuck. Similar failure patterns can also be observed in other domains. For example, in the Lane-
Change domain, the agent fails to increase the distance to the following vehicle when the sharpness
(proxy) score is 0.09. Since RBA-Global is composed of two learned models, namely the attribute
strength estimator (, and the reward function 7y, we also examine them separately to see which
module contributes more to the failures. By visualizing the outputs of (, and the corresponding
proxy ground truth (Fig. 5 in Appendix A), we observe a positively correlated or sometimes linear
relationship between them, suggesting that (,, can accurately capture the attribute strength even at
the two extremes. This observation verifies that the ineffectiveness of RBA-Global is mainly caused
by r¢’s failure to recover behaviors specified in the target attribute-score vector v;. Note that this
is not surprising since (, only needs to learn one global ordering per attribute while 7y has to learn
almost an infinite number of orderings given various input targets v,. Future work can explore better
training paradigms and more expressive model architectures for rg. In terms of the failure modes of
RBA-Local, it sometimes fails to edit the behavior in the anchor trajectory 7, and simply produces
the same behavior as in 7. As shown in the right bottom plot of Fig. 2, the agent gets stuck when the
user wants to increase the softness when the agent is taking a large step (proxy score: 0.954). Also,
RBA-Local tends to have a lower success rate than RBA-Global, indicating that its more complex
formulation and architecture might affect its performance.

5.2 ADDITIONAL DISCUSSION

To get more insights into the number of labels needed to learn an accurate attribute ranking function
or reward function in our methods, we conduct an extra experiment in which we train the model with
different numbers of samples uniformly sampled from the training set, and evaluate each model on a
held-out testing set. Results (Appendix A.5) show that to simultaneously learn two attributes, RBA-
Global needs around 200 labelled trajectories (and the orderings among them) and RBA-Local needs
around 200 (7, 7¢) pairs, which is a reasonable number. Also, the cost of learning a reward function
is amortized when we continue to use it to support incoming users over its lifetime.

Recall that in the main experiment, we consider a trial as a successful one if the difference between
the agent’s behavior and the target behavior is lower than a threshold. One interesting thing to see
is whether our methods can achieve even higher-precision control over the agent’s behavior. Hence,
we additionally experiment with a threshold value that roughly divides the attribute strengths into
five to ten times more buckets. As expected, a more restrictive threshold reduces the performance
of all algorithms, but our methods still have a significant advantage in terms of feedback efficiency.
Results are shown in Table 2 in Appendix A. Note that this performance degradation was expected
because the control precision we wanted to achieve in this experiment is higher than what we set
in the training data (e.g., the precision corresponds to changes that are smaller than the minimally
viable local changes defined in the training data for RBA-Local).

6 CONCLUSION

In this paper, we introduced the notion of relative behavioral attributes which allows users to pro-
vide symbolic feedback (i.e., their intent to increase/decrease attribute strength) to efficiently tweak
and get desired agent behavior. We proposed two approaches and demonstrated their effectiveness
through experiments in a varied set of domains. For future works, apart from the limitations we
discussed earlier, it would be interesting if we could develop methods that combine the strengths of
the two approaches proposed in this work. Also, currently, we use the sentence embedding of each
attribute only as an alternative to the one-hot vector. However, it would be beneficial to make better
use of the semantic structure inside the sentence embeddings.

Furthermore, it would be useful to explore the use of RBAs outside of continuous control tasks.
For instance, for Al chatbots, we may construct rewards to capture not only binary attributes like
helpfulness and harmfulness (Bai et al., 2022b) but also abstraction levels of the text (e.g., scientific
concepts need to be explained differently to kids and researchers) or the tonality of the response
(ranging from casual to a more formal or professional way). Inspired by recent attempts to build
reward-driven vision models (Pinto et al., 2023), it would be also interesting to investigate whether
RBAs can facilitate reward construction for fine-tuning models in computer vision tasks.

Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

This research is supported in part by ONR grants N00014-16-1-2892, N00014-18-1-2442,
NO00014-18-1-2840, N00014-9-1-2119, AFOSR grant FA9550-18-1-0067, DARPA SAIL-ON grant
WOI11NF19-2-0006 and a JP Morgan Al Faculty Research grant.

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, pp. 1, 2004.

Josh Abramson, Arun Ahuja, Federico Carnevale, Petko Georgiev, Alex Goldin, Alden Hung,
Jessica Landon, Jirka Lhotka, Timothy Lillicrap, Alistair Muldal, et al. Improving multi-
modal interactive agents with reinforcement learning from human feedback. arXiv preprint
arXiv:2211.11602, 2022.

Junwen Bai, Weiran Wang, and Carla P Gomes. Contrastively disentangled sequential variational
autoencoder. Advances in Neural Information Processing Systems, 34, 2021.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022a.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harm-
lessness from ai feedback. arXiv preprint arXiv:2212.08073, 2022b.

Andreea Bobu, Chris Paxton, Wei Yang, Balakumar Sundaralingam, Yu-Wei Chao, Maya Cakmak,
and Dieter Fox. Learning perceptual concepts by bootstrapping from human queries. arXiv
preprint arXiv:2111.05251, 2021.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: 1. the method
of paired comparisons. Biometrika, 39(3/4):324-345, 1952.

Daniel Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating beyond sub-
optimal demonstrations via inverse reinforcement learning from observations. In International
conference on machine learning, pp. 783-792. PMLR, 2019.

Arthur Bucker, Luis Figueredo, Sami Haddadin, Ashish Kapoor, Shuang Ma, and Rogerio Bonatti.
Latte: Language trajectory transformer. arXiv preprint arXiv:2208.02918, 2022.

Yevgen Chebotar, Karol Hausman, Yao Lu, Ted Xiao, Dmitry Kalashnikov, Jake Varley, Alex Irpan,
Benjamin Eysenbach, Ryan Julian, Chelsea Finn, et al. Actionable models: Unsupervised offline
reinforcement learning of robotic skills. arXiv preprint arXiv:2104.07749, 2021.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing sys-
tems, 30, 2017.

Yuchen Cui, Siddharth Karamcheti, Raj Palleti, Nidhya Shivakumar, Percy Liang, and Dorsa Sadigh.
” no, to the right”—online language corrections for robotic manipulation via shared autonomy.
arXiv preprint arXiv:2301.02555, 2023.

Scott Ettinger, Shuyang Cheng, Benjamin Caine, Chenxi Liu, Hang Zhao, Sabeek Pradhan, Yuning
Chai, Ben Sapp, Charles R Qi, Yin Zhou, et al. Large scale interactive motion forecasting for
autonomous driving: The waymo open motion dataset. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 9710-9719, 2021.

Sonam Goenka, Zhaoheng Zheng, Ayush Jaiswal, Rakesh Chada, Yue Wu, Varsha Hedau, and
Pradeep Natarajan. Fashionvlp: Vision language transformer for fashion retrieval with feedback.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
14105-14115, 2022.

10

Published as a conference paper at ICLR 2023

Lin Guan, Mudit Verma, Suna Sihang Guo, Ruohan Zhang, and Subbarao Kambhampati. Widening
the pipeline in human-guided reinforcement learning with explanation and context-aware data
augmentation. Advances in Neural Information Processing Systems, 34:21885-21897, 2021.

Lin Guan, Sarath Sreedharan, and Subbarao Kambhampati. Leveraging approximate symbolic mod-
els for reinforcement learning via skill diversity. arXiv preprint arXiv:2202.02886, 2022.

Chuan Guo, Shihao Zou, Xinxin Zuo, Sen Wang, Wei Ji, Xingyu Li, and Li Cheng. Generating
diverse and natural 3d human motions from text. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 5152-5161, 2022.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735-1780, 1997.

Rodrigo Toro Icarte, Toryn Q Klassen, Richard Valenzano, and Sheila A Mcllraith. Reward ma-
chines: Exploiting reward function structure in reinforcement learning. Journal of Artificial In-
telligence Research, 73:173-208, 2022.

Donald Joseph Hejna III and Dorsa Sadigh. Few-shot preference learning for human-in-the-loop
RL. In 6th Annual Conference on Robot Learning, 2022. URL https://openreview.
net/forum?id=IKC5TE£XLuWO.

Le6n Illanes, Xi Yan, Rodrigo Toro Icarte, and Sheila A. Mcllraith. Symbolic plans as high-level in-
structions for reinforcement learning. In Proceedings of the Thirtieth International Conference on
Automated Planning and Scheduling, Nancy, France, October 26-30, 2020, pp. 540-550. AAAI
Press, 2020.

Subbarao Kambhampati, Sarath Sreedharan, Mudit Verma, Yantian Zha, and Lin Guan. Symbols as
a lingua franca for bridging human-ai chasm for explainable and advisable ai systems. In AAAI,
2022.

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, et al.
Interpretability beyond feature attribution: Quantitative testing with concept activation vectors
(tcav). In International conference on machine learning, pp. 2668-2677. PMLR, 2018.

W Bradley Knox and Peter Stone. Interactively shaping agents via human reinforcement: The tamer
framework. In Proceedings of the fifth international conference on Knowledge capture, pp. 9-16,
2009.

Kimin Lee, Laura Smith, and Pieter Abbeel. Pebble: Feedback-efficient interactive rein-
forcement learning via relabeling experience and unsupervised pre-training. arXiv preprint
arXiv:2106.05091, 2021.

Lisa Lee, Ben Eysenbach, Russ R Salakhutdinov, Shixiang Shane Gu, and Chelsea Finn. Weakly-
supervised reinforcement learning for controllable behavior. Advances in Neural Information
Processing Systems, 33:2661-2673, 2020.

Seong Jae Lee and Zoran Popovi¢. Learning behavior styles with inverse reinforcement learning.
ACM transactions on graphics (TOG), 29(4):1-7, 2010.

Edouard Leurent. An environment for autonomous driving decision-making. https://github.
com/eleurent/highway-env, 2018.

Hao Liu, Carmelo Sferrazza, and Pieter Abbeel. Languages are rewards: Hindsight finetuning using
human feedback. arXiv preprint arXiv:2302.02676, 2023.

Ying-Sheng Luo, Jonathan Hans Soeseno, Trista Pei-Chun Chen, and Wei-Chao Chen. Carl: Con-
trollable agent with reinforcement learning for quadruped locomotion. ACM Transactions on
Graphics (TOG), 39(4):38-1, 2020.

James MacGlashan, Mark K Ho, Robert Loftin, Bei Peng, Guan Wang, David L Roberts, Matthew E
Taylor, and Michael L Littman. Interactive learning from policy-dependent human feedback. In
Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 2285—
2294. JMLR. org, 2017.

11

https://openreview.net/forum?id=IKC5TfXLuW0
https://openreview.net/forum?id=IKC5TfXLuW0
https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env

Published as a conference paper at ICLR 2023

Parsa Mahmoudieh, Deepak Pathak, and Trevor Darrell. Zero-shot reward specification via
grounded natural language. In ICML, 2022.

Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse reinforcement learning. In Icml, vol-
ume 1, pp. 2, 2000.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. arXiv preprint arXiv:2203.02155, 2022.

Devi Parikh and Kristen Grauman. Relative attributes. In 2011 International Conference on Com-
puter Vision, pp. 503-510. IEEE, 2011.

Jongjin Park, Younggyo Seo, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin Lee. Surf:
Semi-supervised reward learning with data augmentation for feedback-efficient preference-based
reinforcement learning. arXiv preprint arXiv:2203.10050, 2022.

Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel Van de Panne. Deepmimic: Example-
guided deep reinforcement learning of physics-based character skills. ACM Transactions On
Graphics (TOG), 37(4):1-14, 2018a.

Xue Bin Peng, Angjoo Kanazawa, Jitendra Malik, Pieter Abbeel, and Sergey Levine. Sfv: Rein-
forcement learning of physical skills from videos. ACM Transactions On Graphics (TOG), 37(6):
1-14, 2018b.

Xue Bin Peng, Ze Ma, Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa. Amp: Adver-
sarial motion priors for stylized physics-based character control. ACM Trans. Graph., 40
(4), July 2021. doi: 10.1145/3450626.3459670. URL http://doi.acm.org/10.1145/
3450626.3459670.

Xue Bin Peng, Yunrong Guo, Lina Halper, Sergey Levine, and Sanja Fidler. Ase: Large-
scale reusable adversarial skill embeddings for physically simulated characters. arXiv preprint
arXiv:2205.01906, 2022.

Karl Pertsch, Youngwoon Lee, and Joseph J Lim. Accelerating reinforcement learning with learned
skill priors. arXiv preprint arXiv:2010.11944, 2020.

André Susano Pinto, Alexander Kolesnikov, Yuge Shi, Lucas Beyer, and Xiaohua Zhai. Tuning
computer vision models with task rewards. arXiv preprint arXiv:2302.08242, 2023.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 11 2019. URL https://arxiv.
org/abs/1908.10084.

Zhizhou Ren, Anji Liu, Yitao Liang, Jian Peng, and Jianzhu Ma. Efficient meta reinforcement
learning for preference-based fast adaptation. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=61Uwgelotn.

Stuart J. Russell and Peter Norvig. Artificial intelligence - a modern approach, 2nd edition. In
Prentice Hall series in artificial intelligence, 2003.

Stefan Schaal. Learning from demonstration. Advances in neural information processing systems,
9, 1996.

Tom Silver, Ashay Athalye, Joshua B Tenenbaum, Tomas Lozano-Perez, and Leslie Pack Kaelbling.
Learning neuro-symbolic skills for bilevel planning. arXiv preprint arXiv:2206.10680, 2022.

Sarath Sreedharan, Utkarsh Soni, Mudit Verma, Siddharth Srivastava, and Subbarao Kambhampati.
Bridging the gap: Providing post-hoc symbolic explanations for sequential decision-making prob-
lems with inscrutable representations. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=o-1v9hdSult.

12

http://doi.acm.org/10.1145/3450626.3459670
http://doi.acm.org/10.1145/3450626.3459670
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://openreview.net/forum?id=61UwgeIotn
https://openreview.net/forum?id=o-1v9hdSult

Published as a conference paper at ICLR 2023

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008-3021, 2020.

Guy Tevet, Sigal Raab, Brian Gordon, Yonatan Shafir, Daniel Cohen-Or, and Amit H Bermano.
Human motion diffusion model. arXiv preprint arXiv:2209.14916, 2022.

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom
Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm_control: Software and tasks for
continuous control. Software Impacts, 6:100022, 2020.

Ziyu Wang, Josh S Merel, Scott E Reed, Nando de Freitas, Gregory Wayne, and Nicolas Heess.
Robust imitation of diverse behaviors. Advances in Neural Information Processing Systems, 30,
2017.

Garrett Warnell, Nicholas Waytowich, Vernon Lawhern, and Peter Stone. Deep tamer: Interactive
agent shaping in high-dimensional state spaces. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

Aaron Wilson, Alan Fern, and Prasad Tadepalli. A bayesian approach for policy learning from
trajectory preference queries. Advances in neural information processing systems, 25, 2012.

Mengdi Xu, Yikang Shen, Shun Zhang, Yuchen Lu, Ding Zhao, Joshua Tenenbaum, and Chuang
Gan. Prompting decision transformer for few-shot policy generalization. In International Con-
ference on Machine Learning, pp. 24631-24645. PMLR, 2022.

Fangkai Yang, Daoming Lyu, Bo Liu, and Steven Gustafson. Peorl: Integrating symbolic
planning and hierarchical reinforcement learning for robust decision-making. arXiv preprint
arXiv:1804.07779, 2018.

Ruohan Zhang, Faraz Torabi, Lin Guan, Dana H Ballard, and Peter Stone. Leveraging human
guidance for deep reinforcement learning tasks. arXiv preprint arXiv:1909.09906, 2019.

Ruohan Zhang, Dhruva Bansal, Yilun Hao, Ayano Hiranaka, Jialu Gao, Chen Wang, Roberto
Martin-Martin, Li Fei-Fei, and Jiajun Wu. A dual representation framework for robot learning
with human guidance. In 6th Annual Conference on Robot Learning, 2022.

Allan Zhou and Anca D Dragan. Cost functions for robot motion style. In 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pp. 3632-3639. IEEE, 2018.

13

Published as a conference paper at ICLR 2023

Walker Manipulator Lane Change Snake Concertina

igher nstabilty ighar nstabilty
— —

higher bend higher bend
width width

Figure 3: Visualizations of the evaluation domains and behavioral attributes.

A APPENDIX

A.1 DETAILS OF THE EVALUATION DOMAINS

Walker. Two attributes are considered in this domain: (a) step size; (b) softness of movement.
To synthesize dataset and simulate human feedbacks, we use the moving speed and landing speed
of the feet as proxies to measure the abstract concept softness or “sneaky”. The environment is
implemented based on the Walker-2d domain in the DeepMind control suite (Tunyasuvunakool et al.,
2020).

Manipulator. We consider two attributes: (a) moving speed of the arm; (b) instability of the
movement. The environment is implemented based on the Manipulator domain in the DeepMind
control suite. We synthesize the behavior clips by hard coding the arm motion and by adding random
noises in a controlled way. The purpose of conducting experiments in this domain is to demonstrate
that our method can capture not only regular behavior patterns but also the irregularities. A Markov
state is constructed by stacking five consecutive raw states of the environment to ensure it contains
information about the irregularities.

Lane Change. Two attributes are used for evaluation: (a) the sharpness of steering: this attribute
corresponds to how sharp a turn the agent makes while changing lanes; (b) distance to the following
vehicle: this attribute is about the distance between our agent and the following car at the moment
when our agent starts making the lane change. This environment is built on the highway environment
in (Leurent, 2018). Note that the environment is an image based domain, so the objective here is to
verify that our methods can be scaled to image inputs.

Snake Concertina. There are three relevant attributes in concertina locomotion: (a) width of the
bend (i.e., the maximal width that the snake occupies); (b) compression (i.e., how much the snake’s
body is compressed when it is moving); (c) speed of movement.

A.2 ALTERNATIVE WAYS TO USE THE ATTRIBUTE STRENGTH ESTIMATOR FUNCTION IN
METHOD 1 (RBA-GLOBAL)

Recall that in RBA-Global, given a trained attribute strength estimator (, and a finite set of
attributes A, the agent behavior in any trajectory 7 can be represented by an attribute vector
(1) = ((o(7,01), ..., (s (T, ar)), where k = |.A| is the number of attributes. If we assume the
optimal policy is approximated via some parametric model (e.g., neural networks), we can actually
skip the learning of the attribute parameterized reward function by viewing the attribute vectors as
skill latent codes and learning a versatile policy conditioned on them. This is similar to the opera-
tions in (Wang et al., 2017; Peng et al., 2022) but with a more structured latent code. Also, one might
create a sparse reward given at the end of episode by computing the distance between the extracted
attribute vector and the target attribute vector. But such a reward is usually hard to optimize.

The main reason we choose to construct a reward function is that we find it more general, since
rewards can be optimized not only by RL, but also by other optimization-based methods. Another
consideration here is whether it is easier to learn a policy directly (e.g., via BC or IL) or to learn the
reward first and then the policy (e.g., via IRL or PbRL). Prior empirical results suggest that the latter
tends to be a more robust solution.

14

Published as a conference paper at ICLR 2023

A.3 FINDING THE TARGET ATTRIBUTE SCORES WITH BINARY SEARCH

Binary search is highly efficient because it narrows down the search space by cutting it in half at
each step. In order to apply binary search in the attribute space, we need to maintain beliefs about
the upper and lower bounds of each attribute. In our case, the upper and lower bounds can be
initialized to the maximum and minimum attribute scores observed in the offline behavioral dataset
D, where the scores are given by (.. Ateach query step, the agent presents to the human the behavior
corresponding to the median attribute value, i.e., QuppertQlower g updates the beliefs accordingly
after getting the feedback. In the case of extrapolation, we can also go beyond the maximum and
minimum attribute strengths, but this is no longer a binary search.

A.4 ARCHITECTURES AND HYPERPARAMETERS

When one-hot representation is used to represent attributes, both f, and r9 in RBA-Global employ a
3-layer fully-connected network with 512 hidden neurons as the architecture. In RBA-Local, for the
trajectory encoder, we use a 2-layer bi-directional LSTM with 128 as the hidden dim. The trajectory
embedding, along with the input state and attribute, are fed into a 3-layer fully-connected network
with 512 hidden neurons to compute the reward.

When sentence embeddings are used as attribute representation, for both RBA-Global and RBA-
Local, we increase the number of hidden neurons in fully-connected layers from 512 to 1024 due to
the increase in the size of attribute embedding (size 768).

A.5 NUMBER OF TRAINING SAMPLES NEEDED IN OUR METHODS

Fig. 7 and Fig. 8 show the performance (on a held-out testing set) of Method 1 (RBA-Global)
and Method 2 (RBA-Local) when different numbers of training samples are used. For RBA-Global,
given an ordered trajectory pair (11 >, T2), the ranking function is converted into a binary classifier
that predicts the ordering of the given pair. The performance is measured in terms of the accuracy of
this binary classifier. Similarly for RBA-Local, the performance is measured by converting Equation
5 to a binary classification problem where the function predicts whether a trajectory is the target
trajectory or not. Note that the sample complexity of the two methods is not directly comparable
because their training samples are in different formats.

A.6 DISCUSSION ON UNSUPERVISED DISCOVERY OF BEHAVIORAL ATTRIBUTES

As a preliminary attempt in this study, we explored the possibility of unsupervised discovery of
concepts or properties. We applied a state-of-the-art disentangled sequential variational autoencoder
method, C-DSVAE (Bai et al., 2021), to learn to encode behaviors in the offline behavior dataset
D. Though the behavior/motion embeddings given by C-DSVAE are able to cluster visually similar
traces together, it still has difficulty capturing subtle but meaningful differences in behaviors. More
importantly, it fails to establish any meaningful ordering among behaviors. As an example (Fig. 6),
we visualize the variations encoded in a specific dimension in the latent space of the Lane-Change
domain. This observation is consistent with the current trend in vision-text research, which suggests
unless additional supervision signals are provided, representations developed by neural networks are
not guaranteed to capture semantics that make sense to humans. This preliminary study confirms
the necessity to employ supervised learning for behavioral attribute modeling.

15

Published as a conference paper at ICLR 2023

Method 1: Encoding behavioral attributes
by establishing global rankings

Step 1: attribute global
rankings by learning a ranking function f,

current state
s

trajectory

fo(s1@) * Zsecfo([s al)

attribute a attribute strength target attribute vector
v, = <'step size’: 15.5,

‘softness’: -10.6>,

(corresponds to

scores given by f;)

Step 2: Learn a preference-based reward
according to f,;

r(S|vy) — rewards

Method 2: Encoding behavioral attributes by
capturing minimally viable local changes

h: to
increase or a-the current
decrease attribute State s

anchor/reference
trajectory 7.
(entire trajectory)

iR

! reward : 7(s|T., h, @)
LSTM |
give higher rewards to states in
a trajectory that makes

minimally viable local changes

Figure 4: Overview of Method 1 (RBA-Global) and Method 2 (RBA-Local).

Lane Change Manipulator Lifting

Attributes Attributes
Sharpness Instability

08 Turning Dist 0.8 Speed
= = <
3 2 3
£ £ g
El 06 ;-] 06 °
s g 2
8] K
5 5
2 oa 2 oa H
g e g
& & &

02 02

o o

-10 0 10 -10 o 10 20

Attribute Score Attribute Score

Walker Step

0

Attribute Score

Snake Concertina

Attributes
Step Size
Softness

Attributes

Bend Width
—— Speed
Compression

Proxy Ground Truth

10 0

Attribute Score

Figure 5: The relationship between (, and the hand-designed proxy ground truth. The attribute
strength scores are computed with one-hot vectors used as the attribute representation. We can
observe a similar pattern when language embeddings are used.

Method Lane-Change Manipulator Snake Walker
SR AF (std) SR AF (std) SR AF (std) SR AF (std)
RBA-Global 0.60 6.75(2.98) 0.80 7.00 (2.45) 0.55 8.00(3.67) 0.70 7.29(2.63)
RBA-Global-L 0.7 6.79 (1.66) 0.75 5.47(3.2) 0.25 10.4(6.02) 0.75 6.00 (3.59)
RBA-Local 0.25 5.00(0.63) 0.45 19.44(5.57) 0.30 8.16(3.18) 0.40 9.37(4.15)
RBA-Local-L 04 8.63(2.45) 0.30 10.5(5.5) 0.50 7.2(4.621) 0.40 6.25(2.48)
PbRL 0.35 286.22 0.15 81.33(66.97) 0.05 N/A 0.35 288.0(143.45)
(167.49)

Table 2: Results on controlling the agent’s behavior with higher precision. SR - Success Rate; AF - Average

Feedback (when success); L - Language

16

Published as a conference paper at ICLR 2023

Figure 6: A failure case of unsupervised concept discovery. Each row corresponds to a behavior
trace.

17

Published as a conference paper at ICLR 2023

Lane Change - Turning Dist Lane Change - Sharpness Manipulator - Instability
— RBA-Global = RBA-Global-Language 1 1
1
fgl 0.9 0.9
0.9
0.8 0.8
0.8
0.7 0.7 0.7
0.6 0.6 0.6
of labelled trajectories # of labelled trajectories # of labelled trajectories
0.5 0.5 0.5
100 200 300 400 500 100 200 300 400 500 50 100 150 200 250 300
Manipulator - Force/Speed Snake - Bend Width Snake - Compression
1 1 1
0.9 0.9 0.9
0.8 08 0.8
0.7 0.7 0.7
0.6 0.6 0.6
of labelled trajectories # of labelled trajectories #of labelled trajectories
0.5 05 0.5
50 100 150 200 250 300 100 200 300 400 500 100 200 300 400 500
Snake - Moving Speed Walker - Softness Walker - Step Size

-
-
-

0.9 09 0.9
0.8 0.8 0.8
0.7 0.7 0.7
0.6 0.6 0.6
of labelled trajectories # of labelled trajectories # of labelled trajectories
0.5 0.5 0.5
100 200 300 400 500 100 200 300 400 500 100 200 300 400 500

Figure 7: Performance of the ranking function in Method 1 (RBA-Global) versus # of training
samples.

18

Published as a conference paper at ICLR 2023

Lane Change - Turning Dist

— RBA-Local =— RBA-Local-Language
1

0.8
0.6
0.4

0.2

of labelled tuples

100 200 300 400 500

Manipulator - Force/Speed

0.6
0.4

0.2

of labelled tuples

100 200 300 400 500

Snake - Moving Speed

//

08 /

0.6

0.4

0.2

of labelled tuples

1k 2k 3k 4k

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

Lane Change - Sharpness

of labelled tuples

100 200 300 400 500

Snake - Bend Width

=

200

of labelled tuples

1k 2k 3k 4k

Walker - Softness

of labelled tuples

400 600 800 1k

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

Manipulator - Instability

of labelled tuples

100 200 300 400 500

Snake - Compression

of labelled tuples

1k 2k 3k 4k

Walker - Step Size

of labelled tuples

200 400 600 800 1k

Figure 8: Performance of Method 2 (RBA-Local) versus # of training samples in Method 2 (RBA-

Local).

19

	Introduction
	Related Work
	Problem Setup
	Methodology
	Personalizing Agent Behavior via Relative Behavioral Attributes
	Method 1: Modeling Behavioral Attributes by Establishing Global Rankings
	Method 2: Modeling Behavioral Attributes by Capturing Minimally Viable Local Changes

	Empirical Evaluation
	Baseline and Results
	Additional Discussion

	Conclusion
	Appendix
	Details of the evaluation domains
	Alternative ways to use the attribute strength estimator function in Method 1 (RBA-Global)
	Finding the target attribute scores with binary search
	Architectures and Hyperparameters
	Number of training samples needed in our methods
	Discussion on Unsupervised Discovery of Behavioral Attributes

