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Abstract

The task of math word problem (MWP) gener-
ation, which generates a MWP given an equa-
tion and relevant topic words, has increasingly
attracted researchers’ attention. In this work,
we propose a seq2seq model with a disentan-
gled memory retrieval module to better take ad-
vantage of the logical description and scenario
description within a MWP and more relevant
training data to improve the generation qual-
ity. We first disentangle the training MWPs
into logical descriptions and scenario descrip-
tion and then record them in respective mem-
ory modules. Later, we use the given equa-
tion and topic words as queries to retrieve the
most relevant logical descriptions and scenario
description from the corresponding memory
modules respectively. The retrieved results
are then used to complement the process of
the MWP generation. Extensive experiments
verify the superior performance and effective-
ness of our method. The code is available on
https://github.com/mwp-g/MWPG-DMR.

1 Introduction

Math word problems play an important role in
mathematics education, since they are broadly used
to assess and improve students’ understanding of
mathematical concepts and skills of solving math
problems (Walkington, 2013; Wang et al., 2018;
Zhang et al., 2020; Verschaffel et al., 2020; Wang
et al., 2021). As shown in Table 1, an MWP con-
sists of a question and a corresponding equation,
and the question is composed of the logical descrip-
tion marked by the color and the scenario
description marked by the cyan color. Students
could strengthen their problem solving skills by
learning from questions with the same logical de-
scription but different scenario description (Ver-
schaffel et al., 2020). Many studies (Karpicke and
Roediger, 2008; Karpicke, 2012; Rohrer and Pash-
ler, 2010) have showed that high-quality MWPs
could lead to better engagement and improve the

Table 1: An example of MWP

There are N in the farm, and
MWP: are No more than N7 times of .How
many and are there in total?
Topic Words: | ducks, chickens
Equation: No* Ny + No+ Ny (23%2+6+23)

learning outcomes. However, manually designing
MWPs by experts costs a lot and the qualities of
the generated MWPs heavily rely on the experts.

In this paper, we focus on the problem of au-
tomated math word problem generation, which
is to generate a MWP conditioned on both topic
words and an equation. Traditional methods usu-
ally heuristically generate MWPs, based on some
pre-defined text templates (Deane and Sheehan,
2003; Polozov et al., 2015; Williams, 2011; Nand-
hini and Balasundaram, 2011). However, the lan-
guage quality and diversity of MWPs generated
by text templates are not as expected. Recently,
some models (Huang et al., 2016; Liu et al., 2021;
Wang et al., 2021) based on deep neural networks
have bought significant improvement in generating
MWPs. However, since the generation process of
those methods only conditions on the given topic
words and equation, the scenario description lacks
richness and the logical description lacks equation-
consistency. As shown in Figure 1(a), the genera-
tion of seg2seq lacks some keywords of scenario
description(such as farm) and the logical descrip-
tion is inconsistent with the input equation.

To generate more rich scenario description and
more consistent logical description with equation
, we introduce a memory-retrieved module, which
takes full advantage of the training MWPs, into the
framework. Memory-retrieved module has been
shown to facilitate a number of text generation
tasks such as dialogue generation (Weston et al.,
2018; Cai et al., 2019; Wu et al., 2019), machine
translation (Cai et al., 2021), and code genera-
tion (Hashimoto et al., 2018). To this goal, we
record all the training MWPs into the memory in
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Figure 1: Illustration about different genneration models

advance. During inference, we utilize the most re-
lated MWPs retrieved from the memory module
to complement the generation condition, i.e., the
topic words and the equation. As shown in Fig-
ure 1(b), the 1% retrieved result from the single
memory module introduces a new word of sce-
nario description farm corresponding to ducks and
chickens, improving the richness of the scenario de-
scription. The 2" retrieved result introduces a new
word of logical description times corresponding
to the multiplication sign, improving the equation-
consistency. MWPs are composed of logical de-
scription and scenario description, which are en-
tangled in a MWP. Therefore, the retrieved MWPs
with good scenario description does not necessar-
ily have good logical description, and vice versa.
For example, as shown in Figure 1(b), the scenario
description library from the 2"¢ retrieved result
is irrelevant to the input topic words(i.e., ducks,
chickens). The logical description from the 15
retrieve result, i.e., /ess, and the input equation
Ny * N1 + Ny + Np mutually contradict. Appar-
ently, introducing those irrelevant information (i.e.,
library and less) into the generation module will
damage the quality of the generated MWPs.

To alleviate this issue, we propose a disentangled
memory retrieval framework. As shown in Figure
1, we disentangle the training MWPs into the sce-

nario description corresponding to the topic words
and the logical description corresponding to the
equations. Then, we utilize the disentangled MWPs
to build the scenario description memory (SDM)
and the logical description memory (LDM) individ-
ually. During inference, we obtain the most related
scenario description by leveraging the topic words
to retrieve the SDM and the most related logical
description by leveraging the equation to retrieve
the LDM. Both the retrieved scenario description
and logical description will complement the gener-
ation condition. As shown in Figure 1(c), the input
topic words ducks and chicken retrieve farm from
SDM, improving the richness of scenario descrip-
tion. The equation Ny * N1 + No + Ny retrieves
more than ... times from the LDM, improving the
equation-consistency of the generated MWP. We
name the framework as Math Word Problem Gener-
ation via Disentangled Memory Retrieval, MWPG-
DMR. The contributions are as follows:

* To the best of our knowledge, we are the first
work that introduces the memory module into
the math word problem generation;

* Inspired by the observation that MWPs are
composed of logical descriptions correspond-
ing to equation and scenario description corre-
sponding to topic words, we propose a disen-
tangled memory retrieval framework for gen-
erating math word problems;



* The MWPG-DMR significantly outperforms
all existing MWPG methods. Detailed analy-
sis and discussion verify the effectiveness of
the disentangled memory module.

2 Related Work

Math Word Problem Generation. Traditional
methods usually heuristically generate MWPs,
based on some pre-defined text templates (Deane
and Sheehan, 2003; Polozov et al., 2015; Williams,
2011; Nandhini and Balasundaram, 2011). Re-
cently, some models based on deep neural networks
have bought significant improvement in generating
MWPs. MCPCC (Huang et al., 2016), based on a
standard encoder-decoder architecture, forces the
entities in the generated MWP to correspond to the
variables in the input equation . The works in (Liu
et al., 2021) fuses information from equations and
commonsense knowledge to facilitate the genera-
tion. And the work in (Wang et al., 2021), based
on a large-scale pre-trained language model, in-
troduces an equation consistency constraint, which
encourages the generated MWP to contain the exact
same equation as the one used to generate it. How-
ever, since the generation process of those methods
only conditions on the given topic words and equa-
tion, the scenario description lacks richness and the
logical description lacks equation-consistency.
Text generation with retrieval. Memory-retrieved
module has been shown to facilitate a number of
text generation tasks such as dialogue generation
(Weston et al., 2018; Cai et al., 2019; Wu et al.,
2019), machine translation (Cai et al., 2021), and
code generation (Hashimoto et al., 2018; Huang
et al., 2021a). It is obvious that the retrieval algo-
rithm can solve a particular task by constructing a
knowledge base, which is suitable for the generator.
Disentanglement. There are various definitions for
disentanglement (Schmidhuber, 1992; Eastwood
and Williams, 2018; Chen et al., 2018), but a com-
mon goal is a latent space that consists of linear
subspaces, each of which controls one factor of
variation. So disentanglement is usually used when
an entity has multiple parts. Many works in differ-
ent fields such as representation learning (Huang
et al., 2021b; Pfau et al., 2020; Locatello et al.,
2019), image generation (Karras et al., 2019; Pid-
horskyi et al., 2020), and moment retrieval (Yang
et al., 2021) had adopted disentanglement to make
they data be better represented, so that the model
learns what it wants more accurately.

3 Problem Setup and Notations

Following (Wang et al., 2021), we formulate MWP
generation as a task of multi-view (topic words and
an equation) conditional text generation. Then, we
describe the MWP generation process as:

M; = pe(z?, zi*), (1)

where the datasets are denoted as D =
{M;, 2{9, 2N - 2f) 2l denoting the equa-
tion and topic words respectively, are the gener-
ation conditions. M; = {m1,...,mr}, as the
generation target, represents the MWP as a se-
quence of T' tokens. pe denotes the MWP gen-
eration model parameterized by a set of parame-
ters. The generation model pg condition on topic
words z!* and equation z;? and generate the MWP
M; = {mi1,...,miy }. The generated MWP M is
expected to be same with the generation target M;
and consistent with the input equation z;?. We will
discuss the detailed evaluation metric in section
5.

4 Proposed Approach

4.1 Overview of the proposed approach

We will elaborate the proposed approach in the next
4 subsections.

Pre-processing stage In this stage, we disentan-
gle all the training MWPs {M;}Y, into logi-
cal description {M!4}¥ | and scenario descrip-
tion { M4} | and then build the logical descrip-
tion memory(LDM) and scenario description mem-
ory(SDM). We will elaborate the details of the pre-
process in section 4.2.

The disentangled retrieval module In this mod-
ule, we use the topic words z!* and equation z;*
to retrieve SDM and LDM, built by disentangling
the training MWPs in the pre-processing stage,
respectively. The disentangled retrieval module
consists of the topic-words-based retrieval module
and the equation-based retrieval module. In spe-
cific, given the input (2!, 2{?), the topic-words-
retrieval module selects a number of possibly help-
ful scenario description { M/ ;d};\]:s‘{ from SDM, ac-

cording to a relevant function fsq(z", M jd). Sim-

ilarly, the equation-based-retrieval module selects
a number of possibly helpful logical descriptions

{M Jld}jv:ldl from LDM, according to a relevant func-

tion fiq(x?, M*). We will elaborate the disentan-
gled retrieval module in the section 4.3.
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Figure 2: Disentangle the training MWPs and build SDM and LDM

The generation module The generation mod-
ule conditions on both the retrieved results

({Mfd}jy:si,{M}d}jy:ldl) and the original in-
puts (21,259 to generate the output M;.

The generation module can be described as:
p(MG |, 2t My, M2 M, MY ).
In section 4.4, we will elaborate the generation
module.

The training process In section 4.5, we will elab-
orate the details of the training process and the
pretraining process.

4.2 Pre-processing

In the pre-processing stage, we disentangle training
MWPs {M;}¥, into logical description { M/} Y |
and scenario description { M4}~ | and build the
logical description memory(LDM) and scenario
description memory(SDM).

Disentangle the training MWPs Following (Hos-
seini et al., 2014) , we assume the scenario descrip-
tion is mainly described by nouns and the logical
description is described by the other words includ-
ing verbs, adverbs, prepositions and so on. There-
fore, we use the TF-IDF to identify the two part in
the MWP. And, as shown in Figure 2, we extract
the nouns in the MWP M; as its scenario descrip-
tion Mfd. The others words except numbers and
the mask token replacing the nouns are regarded as
its logical description M ild. Unlike the nouns in the
scenario description, the position of the words in
the logical description may influence the semantic.
Therefore, we preserve the position of the words in
the logical description.

Build Memory Further, as shown in Figure 2, we
record all logical description { M4} and sce-
nario description { M4} into logical descrip-
tion memory(LLDM) and scenario description mem-
ory(SDM) respectively.

4.3 Disentangled Retrieval Module

Compared with conventional retrieval module that
used the joint query(topic words and equation) to
retrieve all the training MWPs, our disentangled
retrieval module use the topic words 2! and the
equation z;? to retrieve the SDM and LDM, which
are the disentangled results from all the training
MWPs, respectively. In specific, the disentangled
retrieval module consists of a topic-words-based
retrieval module and an equation-based retrieval
module.

Topic-words-based Retrieval Module Given the
input topic words 2! and the scenario description
memory (SDM), the topic-words-based retrieval
module retrieves the top V4 relevant scenario de-
scriptions { M jd}jyﬁ, according to the relevance

score fyy (2, M J»Sd). We define the relevance
score fy, (', M ]-Sd) between the input topic words
z! and each candidate scenario description M ;d

as the inner product of their representations:

frw (@, M™) = ENCy (28) " ENCq (M%)
2
where FNCy, and ENC,, are the input topic
words encoder and the scenario description encoder
that encode xﬁw and M ;d to d-dimensional vectors
respectively.

ENCly (xﬁw) = normalize(Wthrtw(xfw))
3)

ENC’Sd(Mde) = normalize(WsdTrm(M]{”d))
4)

where T'ry, is the Transformer(Vaswani et al.,
2017) encoder of the input topic words . T'rgq
is the Transformer encoder of the scenario descrip-
tion M JC” Wiw and Wy are the matrices of the
linear projections, which reduce the dimension of
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Figure 3: The framework of our DMR

the representations. normalize() could normalize
any vector to a unit vector and is used to regulate
the range of the relevance score.

Equation-based Retrieval Module Given the in-
put equation z? and the logical description mem-
ory(LDM), the equation-based retrieval module re-
trieves the top N4 relevant { M ld}jvldl, according
to the relevance score feq(;?, M%), which is de-
fined as follows:

feq(x{%, M%) = ENCeo(z{)"ENCia(M!?)

is a set of nouns without structure information,
we use them to augment the input topic words
z!™ directly. On the contrary, since the retrieved
loglcal description {M; ld}Nld contains the struc-
ture information, we copy the retrieved logical
description into generation via the cross attention
mechanism (See et al., 2017). The generation
module consists of an encoder and a decoder.
The encoder encodes the original input (z*, ;7)
and the retrieved results ({ M f"};vzc*f, {M; ld}N‘d)
into representations:

5)
ENC’eq(:qu) = normalize(WquRUeq(qu)) = Trtw(wng Mfd7 cors M]@id) ®)
(6) = GRU(z7) )
ENCig(M}*) = normalize(WigTria(M]")) VI* = T7 ysion (V1 057) (10)
M — {Try (M)} N (11)

where the function of GRUq, T'r1q, Weq, and Wig
are similar to T'ry,, Trsq, Wiy, and Wy men-
tioned in Eq.2-4, respectively. In Eq.6, we em-
ploy G RU,, rather than Transformer to encode the
equation z;?, since GRU pays more attention to
the order of the sequence. And we actually use the
equation in the form of postfix expression in which
the sequence order can represent the calculation
order, so useing GRU, the whole model can learn

more about the meaning of mathematical formulas.

4.4 Generation Module

Conditioned on both the original 1nput (zlw, 25)

and the retrieved results ({1} sd) Nsa =1 AM; ld}Nld)
from the disentangled retrleval module our
generation module outputs the generated
MWP M;. Therefore, the generation module
could be regarded as a probabilistic model
P(MimngquaMfda MNd,M{d,.. MNM)

Since the retrieved scenario description { M ;d} =

In eq.8, the Transformer Tr;w encodes the input
topic words x!* and retrieved scenario descriptions
{ M C”}N °» into the representation v{". In eq.9, the
GRU encodes the input equation z? into the repre-
sentation v;’. In eq.10, the Transformer Tr fysion,
fuses v and v into v/*. In eq.11, the logical de-
scription Transformer encoder Trz 4 €ncodes each

N, ..
" individ-

the retrieved logical description {1/; ld}
ually, resulting in a set of representations Vld.

The decoder can be regarded as a probabilistic
model p(Mi|vZ-f °,V!d). Fed with the presenta-
tions vlf ® and Vild, the decoder generates an out-
put sequence M; in an auto-regressive fashion.
At each time step ¢, the generation decoder at-
tends over both the representation v ® from the
encoder and previously predicted sequence m .41,
outputting a hidden state h;. The hidden state
h; is then converted to next-token probabilities
through a linear projection followed by softmax



function, i.e., P, = softmax(Wyh; + by). In ad-
dition, we also compute a cross attention over the

representation of all retrieved logical description
d _ "My Y N
Vit =A{Tr (M%) };15:

I AL N
Qi = M L T (12)
Y im1 2oy exp(hy Winvi k)
M L;
=W Y Vi (13)

i=1 j=1

where Vé-d is the j-th token in the i-th logical de-
scription. L; denote the length of the i-th retrieved
logical description M;. c; is the attention score of
Viljd, ¢t s a weighted combination of memory em-
beddings, and W,,, and W, are trainable matrices.
The next-token probabilities are computed as:

M L;

p(mt|-) = (1 — /\t)Pv(mt) + )\t Z Z 07%] ]lVil]d:mt

j=1j=1
(14)

where 1 is the indicator function and ); is a gating
variable computed by another feed-forward net-
work A\ = g(hy, cp).

4.5 Training

We optimize the parameters © of the model
using stochastic gradient descent(SGD) on
the negative log-likelihood loss function
—log p(M;|af®, x5, M3, .., M3, M, ..., M
where M; refers to the target MWP. To improve
training efficiency, we warm-start the retrieval
module by pre-training the four encoders in the dis-
entangled retrieval module with a cross-alignment
task.

Pre-training for topic-words-based retrieval
module We sample all topic-words and scenario
description pairs {z!%, M4} | from training set
and SDM at each training step. Let X;,, € RB*?
and P,y € RP*? be the representation of the topic
words and scenario description through ENCy,
and ENCy4 respectively. S = thPS:Ci is a
(B x B) matrix of relevance scores, where each row
corresponds to the topic words of one training ex-
ample and each column corresponds to the scenario
description of one SDM slot. Any (X i, Psd, ;)
pairs should be aligned when ¢ = j and should not
otherwise. Therefore, the loss function should max-
imize the scores along the diagonal of the matrix
and minimize the other scores. The loss function

Table 2: Summary statistics of datasets

Dataset #trainset  #valset  #testset  total
Math23K 16781 2083 2111 20975
Dolphin18K | 7593 847 2110 10550
MAWPS 1865 241 241 2347
can be written as:
(@) —exp(Sii) (15)

" ewp(Sii) + Y05 exp(Sig)

Pre-training for equation-based retrieval mod-
ule We sample all equation and logical-description
pairs {x{?, M4} |} from the training set and
LDM at each training step. Let X, € RB*b and
Py € RPB*® be the representation of the equa-
tion and logical description through ENC,, and
ENC)4 respectively. Similar to S in Equ. 15,
U = XPL is a (B x B) matrix of relevance
scores between the equation and retrieved logical
description from LDM. Thus, the loss for this mod-
ule is computed as follows:
—exp(Uy;)

£ = (16)
 exp(Ui) + 354 exp(Usj)

S Experiments

We now perform a series of experiments to validate
the effectiveness of our proposed MWP generation
approach.

Datasets We perform experiments on three
commonly used MWP solving datasets, i.e.,
Math23K (Wang et al., 2017), MAWPS (Koncel-
Kedziorski et al., 2016) and Dolphinel 8K (Huang
et al., 2016). Following the splitting strategy of
(Lan et al., 2021), we split each dataset into trainset,
validation set and test set. The summary statistics
of datasets are shown in Table 2.

To transfer those MWP solving datasets into
MWPG datasets, we obtain equation and topic
words for each problem as their input. We extract
as most ny, words with highest TE-IDF scores as
the topic words in our experiments. As shown in
Table 1, the equation Ny * N1 + Ny + Ny and
the extracted topic words ducks, chickens is the
input and the MWP is its ground-truth label. For
a fair comparison, we follow the settings of base-
lines and set ny, = 5, ny = 10 and ny, = 5
on Math23K, Dolphin18K and MAWPS respec-
tively. Different from Math23K and MAWPS, Dol-
phin18K is a multiple-equation MWP dataset. Fol-
lowing (Zhou and Huang, 2019), we concatenate
multiple equations as a single equation.



Table 3: Experiment results on MAWPS and Math23k

MAWPS Math23K
BLEU-4 METEOR ROUGE-L ACC-eq | BLEU-4 METEOR ROUGE-L ACC-eq
Seq2Seq-rnn | 0.153 0.175 0.362 0.472 0.196 0.234 0.444 0.390
+GloVe 0.592 0.412 0.705 0.585 0.275 0.277 0.507 0.438
Seq2Seq-tf 0.544 0.387 0.663 0.588 0.301 0.294 0.524 0.509
GPT 0.368 0.294 0.538 0.532 0.282 0.297 0.512 0.477
GPT-pre 0.504 0.391 0.664 0.512 0.325 0.333 0.548 0.498
MCPCC 0.596 0.427 0.715 0.557 0.329 0.328 0.544 0.505
DMR (ours) 0.634 0.545 0.758 0.605 0.388 0.372 0.627 0.545
Table 4: Experiment results on Dolphin18K Table 5: Ablation study
Models BLEU-4 METEOR | ROUGE-L Models | BLEU-4 | METEOR | ROUGLE-L | ACC-¢eq
Equ2Math 0.050 0.135 0.296 seq2seq(ours) | 0.310 0.329 0.526 0.490
KNN 0.120 0.168 0.361 seazseq(ours) | 350 | (333 0.545 0.506
w/ memory
Topic2Math | 0.123 0.239 0.422 DMR(ours) | 0.388 0372 0.627 0.545
MaGNET 0.125 0.248 0.436
DMR (ours) 0.228 0.339 0.478

Baselines In Table 3, seq2seq-rnn, based on the
LSTMs with attention (Zhou and Huang, 2019; Liu
et al., 2020), regards the MWP generation task as a
sequence-to-sequence task, which splices the input
equation and the input topic words together as a
single sequence input. Compared with seg2seq-
rnn, seq2seq-rnn-glove uses GloVe (Pennington
et al., 2014) instead of random embeddings at ini-
tialization and seq2seq-tf is based on Transform-
ers (Vaswani et al., 2017) rather than RNN. We
also compare our approach to vanilla GPT-2 (Rad-
ford et al., 2019), either finetuned or not; we de-
note these models as GPT and GPT-ft, respectively.
Based on GPT-ft, MCPCC introduces an equation
consistency constraint, which encourages the gen-
erated MWP to contain the exact same equation as
the one used to generate it (Wang et al., 2021). In
Table 4, MaGNET (Zhou and Huang, 2019), based
on a standard seq2seq encoder-decoder architec-
ture, forces the entities in the generated MWP to
correspond to the variables in the equation. KNN,
Equ2Math and Topic2Math are MaGNET’s ab-
lation methods. In the original papers of base-
lines (Wang et al., 2021; Zhou and Huang, 2019),
experiments are only performed on part of those
three datasets. Therefore, our method is compared
with different baselines on different datatsets.

Ablation Study Baselines We perform two ab-
lation methods on Math23K to verify the effec-
tiveness of the memory module and the disen-
tangle strategy respectively. seq2seq(ours) and

seq2seq(ours) w/ memory are based on the same
encoder-decoder structure with our DMR. Differ-
ent with our DMR, seq2seq(ours) does not contain
the memory module and seq2seq(ours) w/ mem-
ory employs a single memory module without the
disentangle strategy. Since Math23K is the largest
dataset of those three datasets, the ablation study is
performed on the Math23K.

Metrics We leverage the following three com-
monly used evaluation metrics: BLEU-4 (Papineni
et al., 2002), METEOR (Lavie and Agarwal, 2007)
and ROUGE (Lin, 2004) to measure the language
quality. We implement those three metrics using
the package provided by (Chen et al., 2015). For
mathematical consistency, we use the equation ac-
curacy (ACC-eq) metric that measures whether the
generated MWP is mathematically consistent with
the input equation.

5.1 Quantitative Results

Comparsion with baselines We show the quan-
titative results of our experiments performed on
MAWPS, Math23K and Dolphinl8K in the Ta-
ble 3 and Table 4. As shown in Table 3, our
DMR achieves better language quality and equa-
tion consistency than both seq2seq-based methods
and GPT-based methods on Math23K and MAWPS.
However, the metric ACC-eq of all the methods
is not good enough. ACC-eq equals 60.5% and
54.5% on the MAWPS and Math23K respectively.
In other words, at least 39.5% and 45.5% of the
generated MWPs are unusable, since their logical
description is inconsistent with their equations.
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Table 4 shows our DMR outperforms the best
baselines on Dolphinl18K. The quantitative re-
sults on Dolphinl8K is lower than results on
MAWPS and Math23k, since generating MWPs
on a multiple-equation MWP datset is much more
difficult. The metric ACC-eq of multiple-equation
MWP dataset is difficult to calculate and thus ACC-
eq is not used on Dolphin18K.

Ablation Study We can find that seg2seq(ours)
w/ memory performs slightly better than
seq2seq(ours). This shows that the retrieved results
from the single memory improve the language
quality of the generated MWPs. However, the
improvement is limited. According to the case
study in Figure 1, we can speculate that this
is because not all information of the retrieved
results is beneficial. Our DMR achieves much
better performance than seq2seq(ours) w/ memory.
Therefore, we can conclude that the disentangled
memory retrieval(DMR) is better than the single
memory retrieval.

Number of the input topic words To verify the
claim in section 1 that our method could improve
the richness of the scenario description, we per-
form experiments with different number of input
topic words on Dolphin18K. As shown in Figure 4,
the fewer topic words we input, the greater the gap
between the our DMR and the seq2seq. A small
number of topic words in the training examples
means that they do not fully summarize the scenar-
ios of the MWPs. However, our DMR still achieve
higher BLEU value by generating MWPs as similar
as possible to the ground-truth MWPs. Also based

Table 6: Human evaluation results

Equation | Topic Words | Language
Models Relevance | Relevance Fluency
Seg2Seq-rnn 1.71 2.34 2.19
Seq2Seq-tf 2.17 2.57 2.55
GPT-pre 2.24 2.71 2.60
MCPCC 242 2.80 2.64
DMR 2.54 2.88 2.76

on the case study, we can conclude that our DMR
could improve the richness of the scenario descrip-
tion by augmenting the topic words with retrieved
scenario description.

5.2 Qualitative Results

Case Study Cases in Figure 1 is real cases from
the generation results of test set. From Figure 1(a),
the scenario description of the seg2seq is limited
to the input topic words. As shown in figure 1(b),
some retrieved results (i.e., "farm" and "times")
from the single memory of seq2seq w/ memory
facilitate the generation and some accompanying
retrieved results (i.e.,"library" and "less") damage
the generation. Figure 1(c) shows that our DMR
could only retrieve the beneficial results and avoid
the accompanying poisonous results via its disen-
tangled memory. More case study is presented in
section Appendix.

Human Evaluation In addition, because automatic
evaluation metrics are not always consistent with
human judgments on the correctness of a math
word problem,we conducted human evaluation on
our model compared with several baselines men-
tioned above. We consider three metrics:

* Equation Relevance: a problem is relevant to
the given equation;

» Topic Word Relevance: a problem is relevant
to all given topic words;

* Language Fluency: a problem is grammati-
cally correct and is fluent to read.

For human evaluation, we randomly selected 100
instances from the Math23K test set,and then show
the equations and topic words lists with generated
math problems from different models to three hu-
man annotators to evaluate the generated problems’
quality. For each metrics, we ask the annotators
to rate the problems on a 1-3 scale (3 for the best).
Results of each human evaluation metric are pre-
sented in Table 6. We can see that our DMR has
the highest scores across all the metrics. Therefore,



the MWPs generated by our method achieve better
performance on Equation Relevance, Topic Word
Relevance and Language Fluency.

6 Conclusions

In this work, we observe that each MWP is com-
posed of two parts: logical descriptions correspond-
ing to the equation and context narratives corre-
sponding to the topic words. We design a disen-
tangled memory module which leverages the equa-
tion to retrieve the logical description memory and
leverages the topic words to retrieve the context
narrative memory. Experiments show our superior
performance and the effectiveness of each intro-
duced module.
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A Training details

Table 7 provides the configurations for our method
and all baselines. Experiments performed on all
datasets use the same configuration. Each model
are trained on two NVIDIA RTX 3090 GPUs.

B Case study

Table 8 presents additional examples of MWPs gen-
erated by our method. All the generated examples
are taken from the Math23K dataset. These exam-
ples are consistent with the qualitative results in
Figure 1.
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Table 7: Model configurations.

architecture #layers inputsize layer size #params optimizer learning rate batch size training epoch/steps
seq2seq-rnn 2 300 512 11M adagrad 0.15 64 {5000, 15000}
seq2sea-tf 6 512 512 52M Adam 2 4096 {5000, 15000}
GPT 36 1280 1280 774M Adam Se-5 8 {15000, 40000 }
MCPCC 36 1280 1280 774M Adam Se-5 16 {1000, 3000}
DMR 11 512 512 59.39M  Adam 1.4e-6 512 {8000, 15000%}
Table 8: Additional examples of MWPs generated by our approach

Equation No/Ny

Topic words  village, canal

Ground truth The village needs to dig a Ny kilometers canal, digging N; kilometers every day.
How many days can it be dug?

Gen.MWP The village needs to dig a Ny kilometers canal. It planned to dig /N7 kilometers
every day. How many days will it take to complete the canal?

Equation NO -+ N1

Topic words  mother, vegetables

Ground truth My mother spent Ny yuan to buy vegetables, and there is still N; yuan left.

How much money did my mother bring?

Gen.MWP My mother went to the street to buy vegetables, spent Ny yuan, and there was
N7 yuan left. How much money did mom bring?

Equation NQ/(Nl * NQ)

Topic words library, books, bookshelves, floors

Ground truth The library bought Ny books and placed them on N7 bookshelves. Each bookshelf
has N; floors. How many books are on each floor on average?

Gen.MWP The library bought Ny books. These books should be placed on N7 bookshelves
and each bookshelf is divided into /Ny layers. How many books are placed on
each layer on average?

Equation: Ny * N1+ Ny

Topic words school, storybooks

Ground truth The school plans to distribute storybooks to N classes, N7 for each class,and N for
spare. How many storybooks should the school prepare?

Gen.MWP The school bought Ng storybooks and bought comics Ny more than [V; times the

number of storybooks. How many comics did the school buy?
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