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Abstract

The task of math word problem (MWP) gener-001
ation, which generates a MWP given an equa-002
tion and relevant topic words, has increasingly003
attracted researchers’ attention. In this work,004
we propose a seq2seq model with a disentan-005
gled memory retrieval module to better take ad-006
vantage of the logical description and scenario007
description within a MWP and more relevant008
training data to improve the generation qual-009
ity. We first disentangle the training MWPs010
into logical descriptions and scenario descrip-011
tion and then record them in respective mem-012
ory modules. Later, we use the given equa-013
tion and topic words as queries to retrieve the014
most relevant logical descriptions and scenario015
description from the corresponding memory016
modules respectively. The retrieved results017
are then used to complement the process of018
the MWP generation. Extensive experiments019
verify the superior performance and effective-020
ness of our method. The code is available on021
https://github.com/mwp-g/MWPG-DMR.022

1 Introduction023

Math word problems play an important role in024

mathematics education, since they are broadly used025

to assess and improve students’ understanding of026

mathematical concepts and skills of solving math027

problems (Walkington, 2013; Wang et al., 2018;028

Zhang et al., 2020; Verschaffel et al., 2020; Wang029

et al., 2021). As shown in Table 1, an MWP con-030

sists of a question and a corresponding equation,031

and the question is composed of the logical descrip-032

tion marked by the orange color and the scenario033

description marked by the cyan color. Students034

could strengthen their problem solving skills by035

learning from questions with the same logical de-036

scription but different scenario description (Ver-037

schaffel et al., 2020). Many studies (Karpicke and038

Roediger, 2008; Karpicke, 2012; Rohrer and Pash-039

ler, 2010) have showed that high-quality MWPs040

could lead to better engagement and improve the041

Table 1: An example of MWP

MWP:
There are N0 ducks in the farm, and chickens
are N2 more than N1 times of ducks.How
many chickens and ducks are there in total?

Topic Words: ducks, chickens
Equation: N0 ∗N1 +N2 +N0 ( 23 ∗ 2 + 6 + 23 )

learning outcomes. However, manually designing 042

MWPs by experts costs a lot and the qualities of 043

the generated MWPs heavily rely on the experts. 044

In this paper, we focus on the problem of au- 045

tomated math word problem generation, which 046

is to generate a MWP conditioned on both topic 047

words and an equation. Traditional methods usu- 048

ally heuristically generate MWPs, based on some 049

pre-defined text templates (Deane and Sheehan, 050

2003; Polozov et al., 2015; Williams, 2011; Nand- 051

hini and Balasundaram, 2011). However, the lan- 052

guage quality and diversity of MWPs generated 053

by text templates are not as expected. Recently, 054

some models (Huang et al., 2016; Liu et al., 2021; 055

Wang et al., 2021) based on deep neural networks 056

have bought significant improvement in generating 057

MWPs. However, since the generation process of 058

those methods only conditions on the given topic 059

words and equation, the scenario description lacks 060

richness and the logical description lacks equation- 061

consistency. As shown in Figure 1(a), the genera- 062

tion of seq2seq lacks some keywords of scenario 063

description(such as farm) and the logical descrip- 064

tion is inconsistent with the input equation. 065

To generate more rich scenario description and 066

more consistent logical description with equation 067

, we introduce a memory-retrieved module, which 068

takes full advantage of the training MWPs, into the 069

framework. Memory-retrieved module has been 070

shown to facilitate a number of text generation 071

tasks such as dialogue generation (Weston et al., 072

2018; Cai et al., 2019; Wu et al., 2019), machine 073

translation (Cai et al., 2021), and code genera- 074

tion (Hashimoto et al., 2018). To this goal, we 075

record all the training MWPs into the memory in 076

1

https://github.com/mwp-g/MWPG-DMR


v

v

 Ducks in the library are      , and chickens 
in the farm are      less than      times of  ducks.  

How many chickens in total?

There are      ducks, and there are      times  
as many chickens as ducks.  

How many chickens are there in total?

There are      ducks in the farm, and  
chicken is      less than ducks.  
How many chickens are there?

The library purchased      books yesterday,  
and the books purchased today are      more  
than      times of books purchased yesterday. 

How many books have been purchased in total?

Generation result

Generation result

ducks, chickens

Input

retrieved result  

retrieved result  

The farm has      ducks and chickens is  
more than      times of ducks. How many  

ducks and chickens altogether in the farm?

The farm has      ducks, and chickens 
are      more than ducks.How  many 

chickens and ducks are there in the farm?
Generation result

Retrieved result from LDM

Retrieved result from SDM

canteen bought flour      and rice 
bought is      more than      times of flour.  

How many flour and rice altogether?

ducks, chickens

Input

ducks, chickens

Input

retrieve 
memory

retrieve 
SDM

retrieve 
LDM

(a) Overview of the seq2seq generation

(b) Overview of the memory retrieval generation

(c) Overview of the disentangled memory retrieval generation

Figure 1: Illustration about different genneration models

advance. During inference, we utilize the most re-077

lated MWPs retrieved from the memory module078

to complement the generation condition, i.e., the079

topic words and the equation. As shown in Fig-080

ure 1(b), the 1st retrieved result from the single081

memory module introduces a new word of sce-082

nario description farm corresponding to ducks and083

chickens, improving the richness of the scenario de-084

scription. The 2nd retrieved result introduces a new085

word of logical description times corresponding086

to the multiplication sign, improving the equation-087

consistency. MWPs are composed of logical de-088

scription and scenario description, which are en-089

tangled in a MWP. Therefore, the retrieved MWPs090

with good scenario description does not necessar-091

ily have good logical description, and vice versa.092

For example, as shown in Figure 1(b), the scenario093

description library from the 2nd retrieved result094

is irrelevant to the input topic words(i.e., ducks,095

chickens). The logical description from the 1st096

retrieve result, i.e., less, and the input equation097

N0 ∗N1 +N2 +N0 mutually contradict. Appar-098

ently, introducing those irrelevant information (i.e.,099

library and less) into the generation module will100

damage the quality of the generated MWPs.101

To alleviate this issue, we propose a disentangled102

memory retrieval framework. As shown in Figure103

1, we disentangle the training MWPs into the sce-104

nario description corresponding to the topic words 105

and the logical description corresponding to the 106

equations. Then, we utilize the disentangled MWPs 107

to build the scenario description memory (SDM) 108

and the logical description memory (LDM) individ- 109

ually. During inference, we obtain the most related 110

scenario description by leveraging the topic words 111

to retrieve the SDM and the most related logical 112

description by leveraging the equation to retrieve 113

the LDM. Both the retrieved scenario description 114

and logical description will complement the gener- 115

ation condition. As shown in Figure 1(c), the input 116

topic words ducks and chicken retrieve farm from 117

SDM, improving the richness of scenario descrip- 118

tion. The equation N0 ∗N1 +N2 +N0 retrieves 119

more than ... times from the LDM, improving the 120

equation-consistency of the generated MWP. We 121

name the framework as Math Word Problem Gener- 122

ation via Disentangled Memory Retrieval, MWPG- 123

DMR. The contributions are as follows: 124

• To the best of our knowledge, we are the first 125

work that introduces the memory module into 126

the math word problem generation; 127

• Inspired by the observation that MWPs are 128

composed of logical descriptions correspond- 129

ing to equation and scenario description corre- 130

sponding to topic words, we propose a disen- 131

tangled memory retrieval framework for gen- 132

erating math word problems; 133
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• The MWPG-DMR significantly outperforms134

all existing MWPG methods. Detailed analy-135

sis and discussion verify the effectiveness of136

the disentangled memory module.137

2 Related Work138

Math Word Problem Generation. Traditional139

methods usually heuristically generate MWPs,140

based on some pre-defined text templates (Deane141

and Sheehan, 2003; Polozov et al., 2015; Williams,142

2011; Nandhini and Balasundaram, 2011). Re-143

cently, some models based on deep neural networks144

have bought significant improvement in generating145

MWPs. MCPCC (Huang et al., 2016), based on a146

standard encoder-decoder architecture, forces the147

entities in the generated MWP to correspond to the148

variables in the input equation . The works in (Liu149

et al., 2021) fuses information from equations and150

commonsense knowledge to facilitate the genera-151

tion. And the work in (Wang et al., 2021), based152

on a large-scale pre-trained language model, in-153

troduces an equation consistency constraint, which154

encourages the generated MWP to contain the exact155

same equation as the one used to generate it. How-156

ever, since the generation process of those methods157

only conditions on the given topic words and equa-158

tion, the scenario description lacks richness and the159

logical description lacks equation-consistency.160

Text generation with retrieval. Memory-retrieved161

module has been shown to facilitate a number of162

text generation tasks such as dialogue generation163

(Weston et al., 2018; Cai et al., 2019; Wu et al.,164

2019), machine translation (Cai et al., 2021), and165

code generation (Hashimoto et al., 2018; Huang166

et al., 2021a). It is obvious that the retrieval algo-167

rithm can solve a particular task by constructing a168

knowledge base, which is suitable for the generator.169

Disentanglement. There are various definitions for170

disentanglement (Schmidhuber, 1992; Eastwood171

and Williams, 2018; Chen et al., 2018), but a com-172

mon goal is a latent space that consists of linear173

subspaces, each of which controls one factor of174

variation. So disentanglement is usually used when175

an entity has multiple parts. Many works in differ-176

ent fields such as representation learning (Huang177

et al., 2021b; Pfau et al., 2020; Locatello et al.,178

2019), image generation (Karras et al., 2019; Pid-179

horskyi et al., 2020), and moment retrieval (Yang180

et al., 2021) had adopted disentanglement to make181

they data be better represented, so that the model182

learns what it wants more accurately.183

3 Problem Setup and Notations 184

Following (Wang et al., 2021), we formulate MWP 185

generation as a task of multi-view (topic words and 186

an equation) conditional text generation. Then, we 187

describe the MWP generation process as: 188

M̂i = pΘ(x
eq
i , xtwi ), (1) 189

where the datasets are denoted as D = 190

{Mi, x
eq
i , xtwi }Ni=1. xeqi , xtwi , denoting the equa- 191

tion and topic words respectively, are the gener- 192

ation conditions. Mi = {m1, ...,mT }, as the 193

generation target, represents the MWP as a se- 194

quence of T tokens. pΘ denotes the MWP gen- 195

eration model parameterized by a set of parame- 196

ters. The generation model pΘ condition on topic 197

words xtwi and equation xeqi and generate the MWP 198

M̂i = {m̂1, ..., m̂T ′}. The generated MWP M̂i is 199

expected to be same with the generation target Mi 200

and consistent with the input equation xeqi . We will 201

discuss the detailed evaluation metric in section 202

5. 203

4 Proposed Approach 204

4.1 Overview of the proposed approach 205

We will elaborate the proposed approach in the next 206

4 subsections. 207

Pre-processing stage In this stage, we disentan- 208

gle all the training MWPs {Mi}Ni=1 into logi- 209

cal description {M ld
i }Ni=1 and scenario descrip- 210

tion {M sd
i }Ni=1 and then build the logical descrip- 211

tion memory(LDM) and scenario description mem- 212

ory(SDM). We will elaborate the details of the pre- 213

process in section 4.2. 214

The disentangled retrieval module In this mod- 215

ule, we use the topic words xtwi and equation xeqi 216

to retrieve SDM and LDM, built by disentangling 217

the training MWPs in the pre-processing stage, 218

respectively. The disentangled retrieval module 219

consists of the topic-words-based retrieval module 220

and the equation-based retrieval module. In spe- 221

cific, given the input (xtwi , xeqi ), the topic-words- 222

retrieval module selects a number of possibly help- 223

ful scenario description {M sd
j }Nsd

j=1 from SDM, ac- 224

cording to a relevant function fsd(x
tw
i ,M sd

j ). Sim- 225

ilarly, the equation-based-retrieval module selects 226

a number of possibly helpful logical descriptions 227

{M ld
j }Nld

j=1 from LDM, according to a relevant func- 228

tion fld(x
eq
i ,M ld

j ). We will elaborate the disentan- 229

gled retrieval module in the section 4.3. 230
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There are      pear trees in the orchard, 
 apple trees are     more than pear trees.How 
many apple trees are there in the orchard?

A school has     girls, boys are     times  
as many as girls. How  

many students are there in total?

trees, pear, orchard, apple 

school, girls, boys, students 

There are      pear trees in the orchard, 
 apple trees are     more than pear trees.How 

many apple trees are there in the orchard

A school has     girls, boys are     times  
as many as girls. How  

many students are there in total?

MWPs LDMSDM

Disentangle

Disentangle

Figure 2: Disentangle the training MWPs and build SDM and LDM

The generation module The generation mod-231

ule conditions on both the retrieved results232

({M sd
j }Nsd

j=1
, {M ld

j }Nld
j=1) and the original in-233

puts (xtwi , xeqi ) to generate the output M̂i.234

The generation module can be described as:235

p(M̂i|xtwi , xeqi ,M sd
1 , ...,M sd

Nsd
,M ld

1 , ...,M ld
Nld

).236

In section 4.4, we will elaborate the generation237

module.238

The training process In section 4.5, we will elab-239

orate the details of the training process and the240

pretraining process.241

4.2 Pre-processing242

In the pre-processing stage, we disentangle training243

MWPs {Mi}Ni=1 into logical description {M ld
i }Ni=1244

and scenario description {M sd
i }Ni=1 and build the245

logical description memory(LDM) and scenario246

description memory(SDM).247

Disentangle the training MWPs Following (Hos-248

seini et al., 2014) , we assume the scenario descrip-249

tion is mainly described by nouns and the logical250

description is described by the other words includ-251

ing verbs, adverbs, prepositions and so on. There-252

fore, we use the TF-IDF to identify the two part in253

the MWP. And, as shown in Figure 2, we extract254

the nouns in the MWP Mi as its scenario descrip-255

tion M sd
i . The others words except numbers and256

the mask token replacing the nouns are regarded as257

its logical description M ld
i . Unlike the nouns in the258

scenario description, the position of the words in259

the logical description may influence the semantic.260

Therefore, we preserve the position of the words in261

the logical description.262

Build Memory Further, as shown in Figure 2, we263

record all logical description {M ld
i }Ni=1 and sce-264

nario description {M sd
i }Ni=1 into logical descrip-265

tion memory(LDM) and scenario description mem-266

ory(SDM) respectively.267

4.3 Disentangled Retrieval Module 268

Compared with conventional retrieval module that 269

used the joint query(topic words and equation) to 270

retrieve all the training MWPs, our disentangled 271

retrieval module use the topic words xtwi and the 272

equation xeqi to retrieve the SDM and LDM, which 273

are the disentangled results from all the training 274

MWPs, respectively. In specific, the disentangled 275

retrieval module consists of a topic-words-based 276

retrieval module and an equation-based retrieval 277

module. 278

Topic-words-based Retrieval Module Given the 279

input topic words xtwi and the scenario description 280

memory (SDM), the topic-words-based retrieval 281

module retrieves the top Nsd relevant scenario de- 282

scriptions {M sd
j }Nsd

j=1, according to the relevance 283

score ftw(x
tw
i ,M sd

j ). We define the relevance 284

score ftw(xtwi ,M sd
j ) between the input topic words 285

xtwi and each candidate scenario description M sd
j 286

as the inner product of their representations: 287

ftw(x
tw
i ,M cn

j ) = ENCtw(x
tw
i )TENCsd(M

sd
j )
(2) 288

where ENCtw and ENCsd are the input topic 289

words encoder and the scenario description encoder 290

that encode xtwi and M sd
j to d-dimensional vectors 291

respectively. 292

ENCtw(x
tw
i ) = normalize(WtwTrtw(x

tw
i ))

(3)
293

ENCsd(M
sd
j ) = normalize(WsdTrcn(M

sd
j ))

(4)
294

where Trtw is the Transformer(Vaswani et al., 295

2017) encoder of the input topic words xtwi . Trsd 296

is the Transformer encoder of the scenario descrip- 297

tion M cn
j . Wtw and Wsd are the matrices of the 298

linear projections, which reduce the dimension of 299
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Topic-words-based Retrieval Module

Encoder

 Encoder

Inner Product

Output

Input Topic Words Relevant Memory

Relevance Scores

 ...
. . . 

Equation-based Retrieval Module

Encoder

 Encoder

Inner Product

Input Equation Relevant Memory

Relevance Scores

 ...
. . . 

Generation Module

Encoder

Encoder
GRU

Encoder

Encoder Decoder

Logical Description 
Memory(LDM)

Scene  Description 
Memory(SDM)

Figure 3: The framework of our DMR

the representations. normalize() could normalize300

any vector to a unit vector and is used to regulate301

the range of the relevance score.302

Equation-based Retrieval Module Given the in-303

put equation xeqi and the logical description mem-304

ory(LDM), the equation-based retrieval module re-305

trieves the top Nld relevant {M ld
j }Nld

j=1, according306

to the relevance score feq(x
eq
i ,M ld

j ), which is de-307

fined as follows:308

feq(x
eq
i ,M ld

j ) = ENCeq(x
eq
i )TENCld(M

ld
j )

(5)
309

ENCeq(x
eq
i ) = normalize(WeqGRUeq(x

eq
i ))

(6)
310

ENCld(M
ld
j ) = normalize(WldTrld(M

ld
j ))

(7)
311

where the function of GRUeq, Trld, Weq, and Wld312

are similar to Trtw, Trsd, Wtw, and Wsd men-313

tioned in Eq.2-4, respectively. In Eq.6, we em-314

ploy GRUeq rather than Transformer to encode the315

equation xeqi , since GRU pays more attention to316

the order of the sequence. And we actually use the317

equation in the form of postfix expression in which318

the sequence order can represent the calculation319

order, so useing GRU, the whole model can learn320

more about the meaning of mathematical formulas.321

4.4 Generation Module322

Conditioned on both the original input (xtwi , xeqi )323

and the retrieved results ({M sd
j }Nsd

j=1, {M ld
j }Nld

j=1)324

from the disentangled retrieval module, our325

generation module outputs the generated326

MWP M̂i. Therefore, the generation module327

could be regarded as a probabilistic model328

p(M̂i|xtwi , xeqi ,M sd
1 , ...,M sd

Nsd
,M ld

1 , ...,M ld
Nld

).329

Since the retrieved scenario description {M sd
j }Nsd

j=1330

is a set of nouns without structure information, 331

we use them to augment the input topic words 332

xtwi directly. On the contrary, since the retrieved 333

logical description {M ld
j }Nld

j=1 contains the struc- 334

ture information, we copy the retrieved logical 335

description into generation via the cross attention 336

mechanism (See et al., 2017). The generation 337

module consists of an encoder and a decoder. 338

The encoder encodes the original input (xtwi , xeqi ) 339

and the retrieved results ({M cn
j }Ncn

j=1 , {M ld
j }Nld

j=1) 340

into representations: 341

vtwi = Tr
′
tw(x

tw
i ,M sd

1 , ...,M sd
Nsd

) (8) 342

veqi = GRU(xeqi ) (9) 343

vfsi = Trfusion(v
tw
i , veqi ) (10) 344

V ld
i = {Tr′

ld(M
ld
j )}Nld

j=1 (11) 345

In eq.8, the Transformer Tr
′
tw encodes the input 346

topic words xtwi and retrieved scenario descriptions 347

{M cn
j }Ncn

j=1 into the representation vtwi . In eq.9, the 348

GRU encodes the input equation xeqi into the repre- 349

sentation veqi . In eq.10, the Transformer Trfusion 350

fuses vtwi and veqi into vfsi . In eq.11, the logical de- 351

scription Transformer encoder Tr
′
ld encodes each 352

the retrieved logical description {M ld
j }Nld

j=1 individ- 353

ually, resulting in a set of representations V ld. 354

The decoder can be regarded as a probabilistic 355

model p(Mi|vfsi , V ld
i ). Fed with the presenta- 356

tions vfsi and V ld
i , the decoder generates an out- 357

put sequence Mi in an auto-regressive fashion. 358

At each time step t, the generation decoder at- 359

tends over both the representation vfsi from the 360

encoder and previously predicted sequence m1:t−1, 361

outputting a hidden state ht. The hidden state 362

ht is then converted to next-token probabilities 363

through a linear projection followed by softmax 364
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function, i.e., Pv = softmax(Wvht + bv). In ad-365

dition, we also compute a cross attention over the366

representation of all retrieved logical description367

V ld
i = {Tr′

ld(M
ld
j )}Nld

j=1:368

αij =
exp(hTt WmV ld

i,j)∑M
i=1

∑Li
k=1 exp(h

T
t Wmvi,k)

(12)369

ct = Wc

M∑
i=1

Li∑
j=1

αijV
ld
i,j (13)370

where V ld
ij is the j-th token in the i-th logical de-371

scription. Li denote the length of the i-th retrieved372

logical description Mi. αij is the attention score of373

V ld
ij , ct is a weighted combination of memory em-374

beddings, and Wm and Wc are trainable matrices.375

The next-token probabilities are computed as:376

p(mt|·) = (1− λt)Pv(mt) + λt

M∑
j=1

Li∑
j=1

αij1V ld
ij =mt

(14)

377

where 1 is the indicator function and λt is a gating378

variable computed by another feed-forward net-379

work λt = g(ht, ct).380

4.5 Training381

We optimize the parameters Θ of the model382

using stochastic gradient descent(SGD) on383

the negative log-likelihood loss function384

− log p(Mi|xtwi , xeqi ,M sd
1 , ...,M sd

Nsd
,M ld

1 , ...,M ld
Nld

)385

where Mi refers to the target MWP. To improve386

training efficiency, we warm-start the retrieval387

module by pre-training the four encoders in the dis-388

entangled retrieval module with a cross-alignment389

task.390

Pre-training for topic-words-based retrieval391

module We sample all topic-words and scenario392

description pairs {xtwi ,M sd
i }Ni=1 from training set393

and SDM at each training step. Let Xtw ∈ RB×b394

and Psd ∈ RB×b be the representation of the topic395

words and scenario description through ENCtw396

and ENCsd respectively. S = XtwP
T
sd is a397

(B×B) matrix of relevance scores, where each row398

corresponds to the topic words of one training ex-399

ample and each column corresponds to the scenario400

description of one SDM slot. Any (Xtw,i, Psd,j)401

pairs should be aligned when i = j and should not402

otherwise. Therefore, the loss function should max-403

imize the scores along the diagonal of the matrix404

and minimize the other scores. The loss function405

Table 2: Summary statistics of datasets

Dataset #trainset #valset #testset total
Math23K 16781 2083 2111 20975
Dolphin18K 7593 847 2110 10550
MAWPS 1865 241 241 2347

can be written as: 406

L(i)
tw =

−exp(Sii)

exp(Sii) +
∑

j ̸=i exp(Sij)
(15) 407

Pre-training for equation-based retrieval mod- 408

ule We sample all equation and logical-description 409

pairs {xeqi ,M ld
i }Ni=1} from the training set and 410

LDM at each training step. Let Xeq ∈ RB×b and 411

Pld ∈ RB×b be the representation of the equa- 412

tion and logical description through ENCeq and 413

ENCld respectively. Similar to S in Equ. 15, 414

U = XeqP
T
ld is a (B × B) matrix of relevance 415

scores between the equation and retrieved logical 416

description from LDM. Thus, the loss for this mod- 417

ule is computed as follows: 418

L(i)
eq =

−exp(Uii)

exp(Uii) +
∑

j ̸=i exp(Uij)
(16) 419

5 Experiments 420

We now perform a series of experiments to validate 421

the effectiveness of our proposed MWP generation 422

approach. 423

Datasets We perform experiments on three 424

commonly used MWP solving datasets, i.e., 425

Math23K (Wang et al., 2017), MAWPS (Koncel- 426

Kedziorski et al., 2016) and Dolphine18K (Huang 427

et al., 2016). Following the splitting strategy of 428

(Lan et al., 2021), we split each dataset into trainset, 429

validation set and test set. The summary statistics 430

of datasets are shown in Table 2. 431

To transfer those MWP solving datasets into 432

MWPG datasets, we obtain equation and topic 433

words for each problem as their input. We extract 434

as most ntp words with highest TF-IDF scores as 435

the topic words in our experiments. As shown in 436

Table 1, the equation N0 ∗ N1 + N2 + N0 and 437

the extracted topic words ducks, chickens is the 438

input and the MWP is its ground-truth label. For 439

a fair comparison, we follow the settings of base- 440

lines and set ntp = 5, ntp = 10 and ntp = 5 441

on Math23K, Dolphin18K and MAWPS respec- 442

tively. Different from Math23K and MAWPS, Dol- 443

phin18K is a multiple-equation MWP dataset. Fol- 444

lowing (Zhou and Huang, 2019), we concatenate 445

multiple equations as a single equation. 446
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Table 3: Experiment results on MAWPS and Math23k

MAWPS Math23K
BLEU-4 METEOR ROUGE-L ACC-eq BLEU-4 METEOR ROUGE-L ACC-eq

Seq2Seq-rnn 0.153 0.175 0.362 0.472 0.196 0.234 0.444 0.390
+GloVe 0.592 0.412 0.705 0.585 0.275 0.277 0.507 0.438

Seq2Seq-tf 0.544 0.387 0.663 0.588 0.301 0.294 0.524 0.509
GPT 0.368 0.294 0.538 0.532 0.282 0.297 0.512 0.477

GPT-pre 0.504 0.391 0.664 0.512 0.325 0.333 0.548 0.498
MCPCC 0.596 0.427 0.715 0.557 0.329 0.328 0.544 0.505

DMR(ours) 0.634 0.545 0.758 0.605 0.388 0.372 0.627 0.545

Table 4: Experiment results on Dolphin18K

Models BLEU-4 METEOR ROUGE-L
Equ2Math 0.050 0.135 0.296

KNN 0.120 0.168 0.361
Topic2Math 0.123 0.239 0.422
MaGNET 0.125 0.248 0.436

DMR (ours) 0.228 0.339 0.478

Baselines In Table 3, seq2seq-rnn, based on the447

LSTMs with attention (Zhou and Huang, 2019; Liu448

et al., 2020), regards the MWP generation task as a449

sequence-to-sequence task, which splices the input450

equation and the input topic words together as a451

single sequence input. Compared with seq2seq-452

rnn, seq2seq-rnn-glove uses GloVe (Pennington453

et al., 2014) instead of random embeddings at ini-454

tialization and seq2seq-tf is based on Transform-455

ers (Vaswani et al., 2017) rather than RNN. We456

also compare our approach to vanilla GPT-2 (Rad-457

ford et al., 2019), either finetuned or not; we de-458

note these models as GPT and GPT-ft, respectively.459

Based on GPT-ft, MCPCC introduces an equation460

consistency constraint, which encourages the gen-461

erated MWP to contain the exact same equation as462

the one used to generate it (Wang et al., 2021). In463

Table 4, MaGNET (Zhou and Huang, 2019), based464

on a standard seq2seq encoder-decoder architec-465

ture, forces the entities in the generated MWP to466

correspond to the variables in the equation. KNN,467

Equ2Math and Topic2Math are MaGNET’s ab-468

lation methods. In the original papers of base-469

lines (Wang et al., 2021; Zhou and Huang, 2019),470

experiments are only performed on part of those471

three datasets. Therefore, our method is compared472

with different baselines on different datatsets.473

Ablation Study Baselines We perform two ab-474

lation methods on Math23K to verify the effec-475

tiveness of the memory module and the disen-476

tangle strategy respectively. seq2seq(ours) and477

Table 5: Ablation study

Models BLEU-4 METEOR ROUGLE-L ACC-eq
seq2seq(ours) 0.310 0.329 0.526 0.490
seq2seq(ours)
w/ memory

0.330 0.333 0.545 0.506

DMR(ours) 0.388 0.372 0.627 0.545

seq2seq(ours) w/ memory are based on the same 478

encoder-decoder structure with our DMR. Differ- 479

ent with our DMR, seq2seq(ours) does not contain 480

the memory module and seq2seq(ours) w/ mem- 481

ory employs a single memory module without the 482

disentangle strategy. Since Math23K is the largest 483

dataset of those three datasets, the ablation study is 484

performed on the Math23K. 485

Metrics We leverage the following three com- 486

monly used evaluation metrics: BLEU-4 (Papineni 487

et al., 2002), METEOR (Lavie and Agarwal, 2007) 488

and ROUGE (Lin, 2004) to measure the language 489

quality. We implement those three metrics using 490

the package provided by (Chen et al., 2015). For 491

mathematical consistency, we use the equation ac- 492

curacy (ACC-eq) metric that measures whether the 493

generated MWP is mathematically consistent with 494

the input equation. 495

5.1 Quantitative Results 496

Comparsion with baselines We show the quan- 497

titative results of our experiments performed on 498

MAWPS, Math23K and Dolphin18K in the Ta- 499

ble 3 and Table 4. As shown in Table 3, our 500

DMR achieves better language quality and equa- 501

tion consistency than both seq2seq-based methods 502

and GPT-based methods on Math23K and MAWPS. 503

However, the metric ACC-eq of all the methods 504

is not good enough. ACC-eq equals 60.5% and 505

54.5% on the MAWPS and Math23K respectively. 506

In other words, at least 39.5% and 45.5% of the 507

generated MWPs are unusable, since their logical 508

description is inconsistent with their equations. 509
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Table 4 shows our DMR outperforms the best510

baselines on Dolphin18K. The quantitative re-511

sults on Dolphin18K is lower than results on512

MAWPS and Math23k, since generating MWPs513

on a multiple-equation MWP datset is much more514

difficult. The metric ACC-eq of multiple-equation515

MWP dataset is difficult to calculate and thus ACC-516

eq is not used on Dolphin18K.517

Ablation Study We can find that seq2seq(ours)518

w/ memory performs slightly better than519

seq2seq(ours). This shows that the retrieved results520

from the single memory improve the language521

quality of the generated MWPs. However, the522

improvement is limited. According to the case523

study in Figure 1, we can speculate that this524

is because not all information of the retrieved525

results is beneficial. Our DMR achieves much526

better performance than seq2seq(ours) w/ memory.527

Therefore, we can conclude that the disentangled528

memory retrieval(DMR) is better than the single529

memory retrieval.530

Number of the input topic words To verify the531

claim in section 1 that our method could improve532

the richness of the scenario description, we per-533

form experiments with different number of input534

topic words on Dolphin18K. As shown in Figure 4,535

the fewer topic words we input, the greater the gap536

between the our DMR and the seq2seq. A small537

number of topic words in the training examples538

means that they do not fully summarize the scenar-539

ios of the MWPs. However, our DMR still achieve540

higher BLEU value by generating MWPs as similar541

as possible to the ground-truth MWPs. Also based542

Table 6: Human evaluation results

Models
Equation

Relevance
Topic Words
Relevance

Language
Fluency

Seg2Seq-rnn 1.71 2.34 2.19
Seq2Seq-tf 2.17 2.57 2.55

GPT-pre 2.24 2.71 2.60
MCPCC 2.42 2.80 2.64

DMR 2.54 2.88 2.76

on the case study, we can conclude that our DMR 543

could improve the richness of the scenario descrip- 544

tion by augmenting the topic words with retrieved 545

scenario description. 546

5.2 Qualitative Results 547

Case Study Cases in Figure 1 is real cases from 548

the generation results of test set. From Figure 1(a), 549

the scenario description of the seq2seq is limited 550

to the input topic words. As shown in figure 1(b), 551

some retrieved results (i.e., "farm" and "times") 552

from the single memory of seq2seq w/ memory 553

facilitate the generation and some accompanying 554

retrieved results (i.e.,"library" and "less") damage 555

the generation. Figure 1(c) shows that our DMR 556

could only retrieve the beneficial results and avoid 557

the accompanying poisonous results via its disen- 558

tangled memory. More case study is presented in 559

section Appendix. 560

Human Evaluation In addition, because automatic 561

evaluation metrics are not always consistent with 562

human judgments on the correctness of a math 563

word problem,we conducted human evaluation on 564

our model compared with several baselines men- 565

tioned above. We consider three metrics: 566

• Equation Relevance: a problem is relevant to 567

the given equation; 568

• Topic Word Relevance: a problem is relevant 569

to all given topic words; 570

• Language Fluency: a problem is grammati- 571

cally correct and is fluent to read. 572

For human evaluation, we randomly selected 100 573

instances from the Math23K test set,and then show 574

the equations and topic words lists with generated 575

math problems from different models to three hu- 576

man annotators to evaluate the generated problems’ 577

quality. For each metrics, we ask the annotators 578

to rate the problems on a 1-3 scale (3 for the best). 579

Results of each human evaluation metric are pre- 580

sented in Table 6. We can see that our DMR has 581

the highest scores across all the metrics. Therefore, 582
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the MWPs generated by our method achieve better583

performance on Equation Relevance, Topic Word584

Relevance and Language Fluency.585

6 Conclusions586

In this work, we observe that each MWP is com-587

posed of two parts: logical descriptions correspond-588

ing to the equation and context narratives corre-589

sponding to the topic words. We design a disen-590

tangled memory module which leverages the equa-591

tion to retrieve the logical description memory and592

leverages the topic words to retrieve the context593

narrative memory. Experiments show our superior594

performance and the effectiveness of each intro-595

duced module.596

Acknowledgements597

This document has been adapted by Steven Bethard,598

Ryan Cotterell and Rui Yan from the instructions599

for earlier ACL and NAACL proceedings, includ-600

ing those for ACL 2019 by Douwe Kiela and Ivan601
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A Training details800

Table 7 provides the configurations for our method801

and all baselines. Experiments performed on all802

datasets use the same configuration. Each model803

are trained on two NVIDIA RTX 3090 GPUs.804

B Case study805

Table 8 presents additional examples of MWPs gen-806

erated by our method. All the generated examples807

are taken from the Math23K dataset. These exam-808

ples are consistent with the qualitative results in809

Figure 1.810
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Table 7: Model configurations.

architecture #layers input size layer size #params optimizer learning rate batch size training epoch/steps
seq2seq-rnn 2 300 512 11M adagrad 0.15 64 {5000, 15000∗}
seq2sea-tf 6 512 512 52M Adam 2 4096 {5000, 15000∗}

GPT 36 1280 1280 774M Adam 5e-5 8 {15000, 40000∗}
MCPCC 36 1280 1280 774M Adam 5e-5 16 {1000, 3000∗}

DMR 11 512 512 59.39M Adam 1.4e-6 512 {8000, 15000∗}

Table 8: Additional examples of MWPs generated by our approach

Equation N0/N1

Topic words village, canal
Ground truth The village needs to dig a N0 kilometers canal, digging N1 kilometers every day.

How many days can it be dug?
Gen.MWP The village needs to dig a N0 kilometers canal. It planned to dig N1 kilometers

every day. How many days will it take to complete the canal?
Equation N0 +N1

Topic words mother, vegetables
Ground truth My mother spent N0 yuan to buy vegetables, and there is still N1 yuan left.

How much money did my mother bring?
Gen.MWP My mother went to the street to buy vegetables, spent N0 yuan, and there was

N1 yuan left. How much money did mom bring?
Equation N0/(N1 ∗N2)
Topic words library, books, bookshelves, floors
Ground truth The library bought N0 books and placed them on N1 bookshelves. Each bookshelf

has N2 floors. How many books are on each floor on average?
Gen.MWP The library bought N0 books. These books should be placed on N1 bookshelves

and each bookshelf is divided into N2 layers. How many books are placed on
each layer on average?

Equation: N0 ∗N1 +N2

Topic words school, storybooks
Ground truth The school plans to distribute storybooks to N0 classes, N1 for each class,and N2 for

spare. How many storybooks should the school prepare?
Gen.MWP The school bought N0 storybooks and bought comics N2 more than N1 times the

number of storybooks. How many comics did the school buy?
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