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ABSTRACT

Deep neural networks have emerged as very successful tools for image restoration
and reconstruction tasks. These networks are often trained end-to-end to directly
reconstruct an image from a noisy or corrupted measurement of that image. To
achieve state-of-the-art performance, training on large and diverse sets of images is
considered critical. However, it is often difficult and/or expensive to collect large
amounts of training images. Inspired by the success of Data Augmentation (DA) for
classification problems, in this paper, we propose a pipeline for data augmentation
for image reconstruction tasks arising in medical imaging and explore its effective-
ness at reducing the required training data in a variety of settings. We focus on
accelerated magnetic resonance imaging, where the goal is to reconstruct an image
from a few under-sampled linear measurements. Our DA pipeline is specifically
designed to utilize the invariances present in medical imaging measurements as
naive DA strategies that neglect the physics of the problem fail. We demonstrate the
effectiveness of our data augmentation pipeline by showing that for some problem
regimes, DA can achieve comparable performance to the state of the art on the
fastMRI dataset while using significantly fewer training data. Specifically, for
8-fold acceleration we achieve performance comparable to the state of the art with
only 10% of the training data for multi-coil reconstruction and with only 33% of the
training data for single-coil reconstruction. Our findings show that in the low-data
regime DA is beneficial, whereas in the high-data regime it has diminishing returns.

1 INTRODUCTION

In magnetic resonance imaging (MRI), an extremely popular medical imaging technique, it is
common to reduce the acquisition time by subsampling the measurements, because this reduces cost
and increases accessibility of MRI to patients. However, since due to the subsampling, there are
fewer equations than unknowns, the signal is not uniquely identifiable from the measurements. To
overcome this challenge there has been a flurry of activity over the last decade aimed at utilizing prior
knowledge about the signal, in a research area referred to as compressed sensing (Candes et al., 2006;
Donoho, 2006).

Classical compressed sensing methods reduce the required number of measurements by utilizing
prior knowledge about the images during the reconstruction process, often via a convex regularization
that enforces sparsity in an appropriate transformation of the image. More recently, deep learning
techniques have been used to enforce much more nuanced forms of prior knowledge (see Ongie
et al. (2020) and references therein for an overview). The most successful of these approaches
aim to directly learn the inverse mapping from the measurements to the image by training on a
large set of training data consisting of signal/measurement pairs. This approach often enables faster
reconstruction of images, but more importantly, deep learning techniques yield significantly higher
quality reconstructions. This in turn enables fewer measurements further reducing image acquisition
times. For instance, in an accelerated MRI competition known as FastMRI Challenge (Zbontar et al.,
2018), all the top contenders used deep learning reconstruction techniques.

Contrary to classical compressive sensing approaches, however, deep learning techniques typically
rely on large sets of training data often consisting of images along with the corresponding measure-
ment. This is also true about the use of deep learning techniques in other areas such as computer
vision and Natural Language Processing (NLP) were superb empirical success has been observed.
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While large datasets have been harvested and carefully curated by tech companies in areas such as
vision and NLP, this is not feasible in many scientific applications including MRI. It is difficult and
expensive to collect the necessary datasets for a variety of reasons, including patient confidentiality
requirements, cost and time of data acquisition, lack of medical data compatibility standards, and the
rarity of certain diseases.

A common strategy to reduce reliance on training data in classification tasks is data augmentation. In
a classification setting data augmentation consists of adding additional synthetic data obtained by
performing invariant alterations to the data (e.g. flips, translations, or rotations) which do not affect the
labels. Such data augmentation techniques are commonly used in classification tasks to significantly
increase the performance on standard benchmarks such as ImageNet and CIFAR-10. More specific
to medical imaging, data augmentation techniques have been successfully applied to registration,
classification and segmentation of medical images. More recently, several studies (Zhao et al., 2020b;
Karras et al., 2020; Zhao et al., 2020a) have demonstrated that data augmentation can significantly
reduce the data needed for GAN training for high quality image generation. In regression tasks such
as image reconstruction, however, data augmentation techniques are less common and much more
difficult to design in part due to the lack of the aforementioned invariances (e.g., measurements of a
rotated image are not the same as measurements from the original image).

The goal of this paper is to explore the benefits of data augmentation techniques for accelerated MRI
with limited training data. By carefully taking into account the physics behind the MRI acquisition
process we design a data augmentation pipeline, which we call MRAugment, that can successfully
reduce the amount of training data required. Specifically, our contributions are as follows:

• We propose a data augmentation technique tailored to the physics of the MR reconstruction
problem. We note that it is not obvious how to perform data augmentation in the context of inverse
problems, because by changing an image to enlarge the training set, we do not automatically get a
corresponding measurement, contrary to classification problems, where the label is retained. In
fact, we demonstrate that naive forms of data augmentation that do not properly take into account
the underlying physics do not work.

• We demonstrate the effectiveness of MRAugment on a benchmark accelerated MRI data set,
specifically on the fastMRI (Zbontar et al., 2018) dataset. For 8-fold acceleration and multi-coil
measurements (multi-coil measurements are the standard acquisition mode for clinical practice)
we can achieve performance comparable to the state of the art with only 10% of the training data.
Similarly, again for 8-fold acceleration and single-coil experiments (an acquisition mode popular
for experimentation) MRAugment can achieve the performance of reconstructions methods trained
on the entire data set while using only 33% of the training data.

• We perform experiments showing that in a low-data regime, where we have only limited training
data MRAugment is beneficial, whereas in the high-data regime it has diminishing returns. In
particular we demonstrate that in a low data regime (≈ 1% of training data), data augmentation
very significantly boosts reconstruction performance and captures diagnostically significant detail
that is missed without data augmentation. In a moderate data regime (≈ 10 − 33% of training data),
MRAugment still achieves significant improvement in reconstruction performance and may help to
avoid hallucinations caused by overfitting without the use of DA.

• Finally, while we focus on the top performing neural networks, MRAugment can seamlessly
integrate with any deep learning model and therefore it can be useful in a variety of MRI problems.

2 BACKGROUND AND PROBLEM FORMULATION

In this section, we provide a brief background on accelerated MRI and formulate the problem.

MRI is a medical imaging technique that exploits strong magnetic fields to form images of the
anatomy. MRI is a prominent imaging modality in diagnostic medicine and biomedical research
because it does not expose patients to ionizing radiation, contrary to competing technologies such as
computed and positron emission tomography (CT and PET).

However, performing an MR scan is time intensive, which is problematic for the following reasons.
First, patients are exposed to long acquisition times in a confined space with high noise levels.
Second, long acquisition times induce reconstruction artifacts caused through patient movement,
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which sometimes requires patient sedation in particular in pediatric MRI (Vasanawala et al., 2010).
Reducing the acquisition time can therefore increase both the accuracy of diagnosis and patient
comfort. Furthermore, decreasing the acquisition time needed allows more patients to receive a scan
using the same machine. This can significantly reduce patient cost, since each MRI machine comes
with a high cost to maintain and operate.

Since the invention of MR in the 1980s there has been tremendous research focusing on reducing
their acquisition time. The two main ideas are to i) perform multiple acquisitions simultaneously
(Sodickson & Manning, 1997; Pruessmann et al., 1999; Griswold et al., 2002) and to ii) subsample
the measurements, known as accelerated acquisition or compressive sensing (Lustig et al., 2008).
Most modern scanners combine both techniques, and therefore we consider such a setup.

2.1 ACCELERATED MRI ACQUISITION

In magnetic resonance imaging, measurements of a patient’s anatomy are acquired in the Fourier-
domain, also called k-space, through receiver coils. In the single-coil acquisition mode, the k-space
measurement k ∈ Cn of a complex-valued ground truth image x∗ ∈ Cn is given by

k = Fx∗ + z,
where F is the two-dimensional Fourier-transform, and z ∈ Cn denotes additive noise arising in
the measurement process. In parallel MR imaging, multiple receiver coils are used, each of which
captures a different region of the image, represented by a complex-valued sensitivity map Si. In this
multi-coil setup, coils acquire k-space measurements modulated by their corresponding sensitivity
maps:

ki = FSix
∗ + zi, i = 1, ..,N,

where N is the number of coils. Obtaining fully-sampled k-space data is time-consuming, and
therefore in accelerated MRI we decrease the number of measurements by undersampling in the
Fourier-domain. This undersampling can be represented by a binary mask M that sets all frequency
components not sampled to zero:

k̃i =Mki, i = 1, ..,N.

We can write the overall forward map concisely as

k̃ = A (x∗),
whereA (⋅) is the linear forward operator and k̃ denotes the undersampled coil measurements stacked
into a single column vector. The goal in accelerated MRI reconstruction is to recover the image
x∗ from the set of k-space measurements k̃. Note that—without making assumptions on the image
x∗—it is in general impossible to perfectly recover the image, because we have fewer measurements
than variables to recover. This recovery problem is known as compressive sensing. To make image
recovery potentially possible, recovery methods make structural assumptions about x∗, such that it is
sparse in some basis or implicitly that it looks similar to images from the set of training images.

2.2 TRADITIONAL ACCELERATED MRI RECONSTRUCTION METHODS

Traditional compressed sensing recovery methods for accelerated MRI are based on assuming that
the image x∗ is sparse in some dictionary, for example the wavelet transform. Recovery is then posed
as a typically convex optimization problem:

x̂ = arg min
x

∥A (x) − k̃∥2 +R(x),
whereR(⋅) is a regularizer enforcing sparsity in a certain domain. Typical functions used in CS based
MRI reconstruction are `1-wavelet and total-variation regularizers. These optimization problems can
be numerically solved via iterative gradient descent based methods.

2.3 DEEP LEARNING BASED MRI RECONSTRUCTION METHODS

In recent years, several deep learning algorithms have been proposed and convolutional neural
networks established new state-of-the-art in MRI reconstruction significantly surpassing the classical

3



Under review as a conference paper at ICLR 2021

baselines. Encoder-decoder networks such as the U-Net (Ronneberger et al., 2015) and its variants
were successfully used in various medical image reconstruction (Hyun et al., 2018; Han & Ye,
2018) and segmentation problems (Çiçek et al., 2016; Zhou et al., 2018). These models consist of
two sub-networks: the encoder repeatedly filters and downsamples the input image with learned
convolutional filters resulting in a concise feature vector. This low-dimensional representation is then
fed to the decoder consisting of subsequent upsampling and learned filtering operations. Another
approach that can be considered a generalization of iterative compressed sensing reconstructions
consists of unrolling gradient descent iterations and mapping them to a cascade of sub-networks
(Zhang & Ghanem, 2018). Several variations of this unrolled method have been proposed recently
for MR reconstruction, such as i-RIM (Putzky & Welling, 2019), Adaptive-CS-Net (Pezzotti et al.,
2019), Pyramid Convolutional RNN (Wang et al., 2019) and E2E VarNet (Sriram et al., 2020), which
is at the top of the fastMRI Challenge Leaderboard at the time of the writing of this paper.

Another line of work, inspired by the deep image prior (Ulyanov et al., 2018) focuses on using the
inductive bias of convolutional networks to perform reconstruction without any training data (Jin et al.,
2019; Darestani & Heckel, 2020; Heckel & Soltanolkotabi, 2020; Heckel & Hand, 2019; Van Veen
et al., 2018). Those methods do perform significantly better than classical un-trained networks, but
do not perform as well as neural networks trained on large sets of training data.

3 MRAUGMENT: A DATA AUGMENTATION PIPELINE FOR MRI

In this section we propose our data augmentation technique, MRAugment, for MRI reconstruction.
We emphasize that data augmentation in this setup and for inverse problems in general is substantially
different from DA for classification problems. For classification tasks, the label of the augmented
image is trivially the same as that of the original image, whereas for inverse problems we have to
generate both an augmented target image and the corresponding measurements. This is non-trivial as
it is critical to match the noise statistics of the augmented measurements with those in the dataset.

We are given training data in the form of fully-sampled MRI measurements in the Fourier domain,
and our goal is to generated new training examples consisting of a subsampled k-space measurement
along with a target image. MRAugment is model-agnostic in that the generated augmented training
example can be used with any machine learning model and therefore can be seamlessly integrated
with existing reconstruction algorithms for accelerated MRI, and potentially beyond MRI.

Our data augmentation pipeline, illustrated in Figure 1, generates a new example consisting of
a subsampled k-space measurement k̃a along with a target image x̄a as follows. We are given
training examples as fully-sampled k-space slices, which we stack into a single column vector
k = col(k1,k2, ...,kN) for notational convenience. From these, we obtain the individual coil images
by applying the inverse Fourier transform as x = F−1k. We generate augmented individual coil
images with an augmentation function D, specified later, as xa = D(x). From the augmented images,
we generate an undersampled measurement by applying the forward model as k̃a = A (xa). Both
x and xa are complex-valued: even though the MR scanner obtains measurements of a real-valued
object, due to noise the inverse Fourier-transform of the measurement is complex-valued. Therefore
the augmentation function has to generate complex-valued images, which adds an extra layer of
difficulty compared to traditional data augmentation techniques pertaining to real-valued images (see
Section 3.1 for further details). Finally, the real-valued ground truth image is obtained by combining
the coil images xa,i by pixel-wise root-sum-squares (RSS) followed by center-cropping C:

x̄a = C (RSS(xa)) = C ⎛⎜⎝
¿ÁÁÀ N∑

i=1 ∣xa,i∣2⎞⎟⎠ .

In the following two sections we first argue why we generate individual coil images with the data
augmentation function, and then discuss the design of the data augmentation function D itself.

3.1 DATA AUGMENTATION NEEDS TO PRESERVE NOISE STATISTICS

As mentioned before, we are augmenting complex-valued, noisy images. This noise enters in the
measurement process when we obtain the fully-sampled measurement of an image x∗ as k = Fx∗+z,
and is well approximated by i.i.d complex Gaussian noise, independent in the real and imaginary
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Figure 1: Flowchart of MRAugment, our data augmentation pipeline for MRI.

parts of each pixel (Nishimura, 1996). Therefore, we can write x = x∗ + z′ where z′ has the
same distribution as z due to F being unitary. Since the noise distribution is characteristic to the
instrumental setup (in this case the MR scanner and the acquisition protocol), assuming that the
training and test images are produced by the same setup, it is important that the augmentation function
preserves the noise distribution of training images as much as possible. Indeed, a large mismatch
between training and test noise distribution leads to poor generalization (Knoll et al., 2019).

Let us demonstrate why it is non-trivial to generate augmented measurements for MRI through a
simple example. A natural but perhaps naive approach for data augmentation is to augment the
real-valued target image x̄ instead of the complex valued x. This would allow us to directly obtain
real augmented images from a real target image just as in typical data augmentation. However, this
approach leads to different noise distribution in the measurements compared to the test data due to
the non-linear mapping from individual coil images to the real-valued target and works poorly as
demonstrated in Section 4.

In contrast, if we augment the individual coil images x directly with a linear function D, which is our
main focus here, we obtain the augmented k-space data

ka = FDx = FD(x∗ + z′) = FDx∗ +FDz′,
where FDx∗ represents the augmented signal and the noise FDz′ is still additive complex Gaussian.
A key observation is that in case of transformations such as translation, horizontal and vertical flipping
and rotation the noise distribution is exactly preserved. Moreover, for general linear transformations
the noise is still Gaussian in the real and imaginary parts of each pixel. This example motivates our
choice to i) augment complex-valued images directly derived from the original k-space measurements
and ii) consider simple transformations which preserve the noise distribution. Next we overview the
types of augmentations we propose in line with these key observations.

3.2 TRANSFORMATIONS USED FOR DATA AUGMENTATION

We apply the following two types of image transformation D in our data augmentation pipeline:
Pixel preserving augmentations, that do not require any form of interpolation and simply result in
a permutation of pixels over the image. Such transformations are vertical and horizontal flipping,
translation by integer number of pixels and rotation by multiples of 90○. As we pointed out in Section
3.1, these transformations do not affect the noise distribution on the measurements and therefore are
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suitable for problems where training and test data are expected to have similar noise characteristics.
General affine augmentations, that can be represented by an affine transformation matrix and in
general require resampling the transformed image at the output pixel locations. Augmentations in this
group are: translation by arbitrary (not necessarily integer) coordinates, arbitrary rotations, scaling
and shearing. Scaling can be applied along any of the two spatial dimensions. We differentiate
between isotropic scaling, in which the same scaling factor s is applied in both directions (s > 1:
zoom-in, s < 1: zoom-out) and anisotropic scaling in which different scaling factors (sx, sy) are
applied along different axes.

Figure 2 provides a visual overview of the types of augmentations applied in this paper. Numerous
other forms of transformation may be used in this framework such as exposure and contrast adjustment,
image filtering (blur, sharpening) or image corruption (cutout, additive noise). However, in addition
to the noise considerations mentioned before that have to be taken into account, some of these
transformations are difficult to define for complex-valued images and may have subtle effects on
image statistics. For instance, brightness adjustment could be applied to the magnitude image, the real
part only or both real and imaginary parts, with drastically different effects on the magnitude-phase
relationship of the image. That said, we hope to incorporate additional augmentations in our pipeline
in the future after a thorough study of how they affect the noise distribution.

Original V-flip H-flip Rot. k90○ Rotation Transl. Zoom-in Zoom-out Aniso sc. Shearing

Figure 2: Transformations used in MRAugment applied to a ground truth slice.

3.3 SCHEDULING AND APPLICATION OF DATA AUGMENTATIONS

With the different components in place we are now ready to discuss the scheduling and application of
the augmentations, as depicted in the bottom half of Figure 1. Recall that MRAugment generates
a target image x̄a and corresponding under-sampled k-space measurement k̃a from a full k-space
measurement. Which augmentation is applied and how frequently is determined by a parameter
p, the common parameter determining the probability of applying a transformation to the ground
truth image during training, and the weights W = (w1,w2, ...,wK) pertaining to the K different
augmentations, controlling the weights of transformations relative to each other. We apply a given
transformation ti with probability pi = p ⋅wi. The augmentation function is applied to the coil images,
specifically the same transformation is applied with the same parameters to the real and imaginary
parts (R{x1},I{x1},R{x2},I{x2}, ...,R{xN},I{xN}) of coil images. If a transformation ti is
sampled (recall that we select them with probabilities pi), we randomly select the parameters of the
transformation from a pre-defined range (for example, rotation angle in [0,180○]). To avoid aliasing
artifacts, before transformations that require interpolation we first upsample the image and apply the
transformations to the upsampled image. Then the result is downsampled to the original size.

A critical question is how to schedule p over training in order to obtain the best model. Intuitively,
in initial stages of training no augmentation is needed, since the model can learn from the available
(possibly limited) original training data. As training progresses the network learns to fit the original
data points and their utility decreases over time. We found schedules starting from p = 0 and
increasing over epochs to work best. The ideal rate of increase depends on both the model size and
amount of available training data. We experimented with linear (ramp) and exponential scheduling
and observed that linear functions work best when we have a large amount of training data compared
to the model size. In contrast, steeper exponential scheduling helps in the low-data regime.

4 EXPERIMENTS

In this section we explore the effectiveness of MRAugment in the context of accelerated MRI
reconstruction in various regimes of available training data sizes on the fastMRI dataset. We present
a detailed description of this dataset in Appendix A.
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Figure 3: Visual comparison of single-coil (top row) and multi-coil (bottom-row) reconstructions
using varying amounts of training data with and without data augmentation. We achieve reconstruction
quality comparable to the state of the art but using 1% of the training data. Without DA fine details
are completely lost.

Experimental setup. We use the state-of-the-art End-to-End VarNet model (Sriram et al., 2020),
because it is as of now the best performing neural network on the fastMRI dataset. We measure
performance in terms of the structural similarity index measure (SSIM), which is the standard
evaluation metric on the fastMRI dataset. We study the performance of MRAugment as a function of
the size of the training set. We construct different subsampled training sets by randomly sampling
volumes of the original training dataset and adding all slices of the sampled volumes to the new
subsampled dataset. The original training set consists of approximately 35k MRI slices in 973
volumes and we subsample to 1%, 10%, 33% and 100% of the original size. We measure performance
on the original validation set separate from the training set. For all experiments, we apply random
masks by undersampling whole kspace lines in the phase encoding direction and including 4% of
lowest frequency adjacent kspace lines in order to be consistent with baselines in (Zbontar et al.,
2018). For both the baseline experiments and for MRAugment, we generate a new random mask for
each slice on-the-fly while training by uniformly sampling kspace lines, but use the same fixed mask
for each slice within the same volume on the validation set (different across volumes). This technique
is standard for models trained on this dataset and not part of our data augmentation pipeline. For
augmentation probability scheduling we use

p(t) = pmax

1 − e−c (1 − e−tc/T ), (4.1)

where t is the current epoch, T denotes the total number of epochs, c = 5 and pmax = 0.6 for
1% training data experiments and pmax = 0.55 in other data augmentation experiments. More
experimental details can be found in Appendix B and the source code is attached in the supplementary.

Single-coil experiments. For single-coil acquisition we are able to exactly match the performance of
the model trained on the full dataset using only a third of the training data as depicted on the left in
Fig. 4. Moreover, with only 10% of the training data we achieve 99.5% of the SSIM trained on the full
dataset. The visual difference between reconstructions with and without data augmentation becomes
striking in the low-data regime. As seen in the top row of Fig. 3, the model without DA was unable
to reconstruct any of the fine details and the results appear blurry with strong artifacts. Applying
MRAugment significantly improves reconstruction quality both in a quantitative and qualitative sense,
visually approaching that obtained from training on the full dataset but using hundred times less data.

Multi-coil experiments. As depicted on the right in Fig. 4 for multi-coil acquisition we closely
match the state of the art while significantly reducing training data. More specifically, we approach
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Figure 4: Single-coil (left) and multi-coil (right)
validation SSIM vs. # of training images.

Figure 5: Hallucinated features appear on recon-
structions without data augmentation.

the state of the art SSIM within 0.6% using 10% of the training data and within 0.25% with 33%
of training data. As seen in the bottom row of Fig. 3, when using only 1% of the training data we
successfully reconstruct fine details comparable to that obtained from training on the full dataset,
while high frequencies are completely lost without DA. More visual comparisons for both single-coil
and multi-coil reconstruction can be found in Appendix D.

Hallucinations. An unfortunate side-effect of deep learning based reconstructions may be the
presence of hallucinated details. This is especially problematic in providing accurate medical
diagnosis and lessens the trust of medical practicioners in deep learning. We observed that data
augmentation has the potential benefit of eliminating hallucinations by preventing overfitting to
training data, as seen in Fig. 5.

Our empirical observations on data augmentation can be summarized as follows:

• In the low data regime (≈ 1% of training data), data augmentation very significantly boosts
reconstruction performance. The improvement is large both in terms of raw SSIM and visual
reconstruction quality. Using MRAugment, fine details are recovered that are completely missing
from reconstructions without DA. This suggests that DA improves the value of reconstructions for
medical diagnosis, since health experts typically look for small features of the anatomy.

• In the moderate data regime (≈ 10 − 33% of training data), MRAugment still achieves significant
improvement in reconstruction SSIM. We want to emphasize the significance of seemingly small
differences in SSIM close to the state of the art and invite the reader to visit the FastMRI Challenge
Leaderboard that demonstrates how close the best performing models are. Moreover, MRAugment
achieves visual improvement in fine details that may have diagnostic value. Fig. 5 shows that in
some cases hallucinated details can be avoided in this regime using data augmentation. Additional
visual comparison of recovered details is provided in Appendix D.

• Data augmentation applied to the full training dataset has diminishing returns. It does not improve
performance if applied to the full dataset, but it does not degrade it either. This suggests that it may
be possible to further improve upon the state of the art when using the entire dataset by combining
data augmentation with more advanced transformations and larger models. We plan to pursue this
exciting direction in our future work.

Ablation studies. We performed ablation studies on 1% training data in order to better understand
which augmentations are useful. We use the multi-coil experiment with all augmentations as baseline
and tune augmentation probability for other experiments such that the probability that a certain slice
is augmented by at least one augmentation is the same across all experiments. We depict results on the
validation dataset in Table 1. Both pixel preserving and general (interpolating) affine transformations
are useful and can significantly increase reconstruction quality. Furthermore, we observe that their
effect is complementary: they are helpful separately, but we achieve peak reconstruction SSIM when
all applied together. Finally, the utility of pixel preserving augmentations seems to be lower than that
of general affine augmentations, however they come with a negligible additional computational cost.

Furthermore, we investigate the effect of varying the augmentation probability scheduling function.
The results on the validation dataset are depicted in Table 2, where exponential, p̂ denotes the
exponential scheduling function in (4.1), with pmax = p̂ and constant, p̂ means we use a fixed
augmentation probability p̂ throughout training. We observe that scheduling starting from low
augmentation probability and gradually increasing is better than a constant probability, as initially
the network does not benefit much from data augmentation as it can still learn from the original
samples. Furthermore, too low or too high augmentation probability both degrade performance. If the
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Augmentations Val. SSIM
none 0.8396
pixel preserving only 0.8585
interpolating only 0.8731
all augmentations 0.8758

Table 1: Comparison of peak validation SSIM
applying various sets of augmentations on 1% of
training data, multi-coil acquisition.

Aug. scheduling Val. SSIM
none 0.8396
exponential, 0.3 0.8565
constant, 0.3 0.8588
exponential, 0.6 0.8758
constant, 0.6 0.8611
exponential, 0.8 0.8600

Table 2: Comparison of peak validation SSIM
using different augmentation probability sched-
ules on 1% of training data, multi-coil acquisi-
tion.

(a) Naive data augmentation that does not preserve measurement noise distri-
bution leads to significantly degraded reconstruction quality.
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(b) Naive data augmentation
degrades generalization per-
formance.

Figure 6: Experimental results comparing MRAugment with naive data augmentation.

augmentation probability is too low, the network may overfit to training data as more regularization is
needed. On the other hand, too much data augmentation hinders reconstruction performance as the
network rarely sees images close to the original training distribution.

Noise considerations. Finally, we would like to emphasize the importance of applying DA in a way
that takes into account the measurement noise distribution. When applied incorrectly, DA leads
to significantly worse performance than not using any augmentation. We train a model using DA
without considering the measurement noise distribution as described in Section 3.1 by augmenting
real-valued target images. We use the same exponential augmentation probability scheduling for
MRAugment and the naive approach. As Fig. 6b demonstrates, reconstruction quality degrades over
training using the naive approach. This is due to the fact that as augmentation probability increases,
the network is being fed less and less original images, whereas the poorly augmented images are
detrimental for generalization due to the mismatch in train and validation noise distribution. On the
other hand, MRAugment clearly helps and validation performance steadily improves over epochs.
Fig. 6a provides a visual comparison of reconstructions using naive DA and our data augmentation
method tailored to the problem. Naive DA reconstruction exhibits high-frequency artifacts and low
image quality caused by the mismatch in noise distribution. These drastic differences underline
the vital importance of taking a careful, physics-informed approach to data augmentation for MR
reconstruction.

5 CONCLUSION

In this paper, we develop a physics-based data augmentation pipeline for accelerated MR imaging.
We find that DA yields significant gains in a low-data regime which can be beneficial in applications
where only little training data is available or where the training data changes quickly. We also
demonstrate that even with a moderate amount of training data, DA enables reconstructions that
contain diagnostically significant detail and may help avoiding hallucinations caused by overfitting
without DA.

9



Under review as a conference paper at ICLR 2021

REFERENCES

Emmanuel J. Candes, Justin K. Romberg, and Terence Tao. Stable signal recovery from incomplete
and inaccurate measurements. Communications on Pure and Applied Mathematics: A Journal
Issued by the Courant Institute of Mathematical Sciences, 59(8):1207–1223, 2006.

Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp, Thomas Brox, and Olaf Ronneberger. 3D U-
Net: learning dense volumetric segmentation from sparse annotation. In International Conference
on Medical Image Computing and Computer-Assisted Intervention, pp. 424–432. Springer, 2016.

Mohammad Zalbagi Darestani and Reinhard Heckel. Can Un-trained Neural Networks Compete
with Trained Neural Networks at Image Reconstruction? arXiv:2007.02471 [cs, eess, stat], 2020.

David L. Donoho. Compressed sensing. IEEE Transactions on information theory, 52(4):1289–1306,
2006.

Mark A Griswold, Peter M Jakob, Robin M Heidemann, Mathias Nittka, Vladimir Jellus, Jianmin
Wang, Berthold Kiefer, and Axel Haase. Generalized autocalibrating partially parallel acquisitions
(GRAPPA). Magnetic Resonance in Medicine: An Official Journal of the International Society for
Magnetic Resonance in Medicine, 47(6):1202–1210, 2002.

Yoseob Han and Jong Chul Ye. Framing U-Net via deep convolutional framelets: Application to
sparse-view CT. IEEE Transactions on Medical Imaging, 37(6):1418–1429, 2018.

Reinhard Heckel and Paul Hand. Deep Decoder: Concise Image Representations from Untrained
Non-convolutional Networks. In International Conference on Learning Representations, 2019.

Reinhard Heckel and Mahdi Soltanolkotabi. Compressive sensing with un-trained neural networks:
Gradient descent finds the smoothest approximation. In International Conference on Machine
Learning, 2020.

Chang Min Hyun, Hwa Pyung Kim, Sung Min Lee, Sungchul Lee, and Jin Keun Seo. Deep learning
for undersampled MRI reconstruction. Physics in Medicine & Biology, 63(13):135007, 2018.

Kyong Hwan Jin, Harshit Gupta, Jerome Yerly, Matthias Stuber, and Michael Unser. Time-Dependent
Deep Image Prior for Dynamic MRI. arXiv:1910.01684 [cs, eess], 2019.

Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Training
generative adversarial networks with limited data. arXiv preprint arXiv:2006.06676, 2020.

Florian Knoll, Kerstin Hammernik, Erich Kobler, Thomas Pock, Michael P Recht, and Daniel K
Sodickson. Assessment of the generalization of learned image reconstruction and the potential for
transfer learning. Magnetic Resonance in Medicine, 81(1):116–128, 2019.

Michael Lustig, David L. Donoho, Juan M. Santos, and John M. Pauly. Compressed sensing MRI.
IEEE signal processing magazine, 25(2):72–82, 2008.

Dwight George Nishimura. Principles of magnetic resonance imaging. Stanford University, 1996.

Gregory Ongie, Ajil Jalal, Christopher A. Metzler Richard G. Baraniuk, Alexandros G. Dimakis, and
Rebecca Willett. Deep learning techniques for inverse problems in imaging. IEEE Journal on
Selected Areas in Information Theory, 2020.

Nicola Pezzotti, Elwin de Weerdt, Sahar Yousefi, Mohamed S Elmahdy, Jeroen van Gemert,
Christophe Schülke, Mariya Doneva, Tim Nielsen, Sergey Kastryulin, Boudewijn PF Lelieveldt,
et al. Adaptive-CS-Net: fastmri with adaptive intelligence. arXiv preprint arXiv:1912.12259,
2019.

Klaas P Pruessmann, Markus Weiger, Markus B Scheidegger, and Peter Boesiger. SENSE: sensitivity
encoding for fast MRI. Magnetic Resonance in Medicine: An Official Journal of the International
Society for Magnetic Resonance in Medicine, 42(5):952–962, 1999.

10



Under review as a conference paper at ICLR 2021

Patrick Putzky and Max Welling. Invert to learn to invert. In Advances in Neural Information
Processing Systems, pp. 446–456, 2019.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In International Conference on Medical Image Computing and Computer-
Assisted Intervention, pp. 234–241. Springer, 2015.

Daniel K Sodickson and Warren J Manning. Simultaneous acquisition of spatial harmonics (SMASH):
fast imaging with radiofrequency coil arrays. Magnetic Resonance in Medicine: An Official Journal
of the International Society for Magnetic Resonance in Medicine, 38(4):591–603, 1997.

Anuroop Sriram, Jure Zbontar, Tullie Murrell, Aaron Defazio, C Lawrence Zitnick, Nafissa Yakubova,
Florian Knoll, and Patricia Johnson. End-to-end variational networks for accelerated MRI recon-
struction. arXiv preprint arXiv:2004.06688, 2020.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Deep Image Prior. In Conference on
Computer Vision and Pattern Recognition, pp. 9446–9454, 2018.

Dave Van Veen, Ajil Jalal, Mahdi Soltanolkotabi, Eric Price, Sriram Vishwanath, and Alexandros G
Dimakis. Compressed sensing with deep image prior and learned regularization. arXiv preprint
arXiv:1806.06438, 2018.

Shreyas S Vasanawala, Marcus T Alley, Brian A Hargreaves, Richard A Barth, John M Pauly, and
Michael Lustig. Improved pediatric MR imaging with compressed sensing. Radiology, 256(2):
607–616, 2010.

Puyang Wang, Eric Z Chen, Terrence Chen, Vishal M Patel, and Shanhui Sun. Pyramid convolutional
RNN for MRI reconstruction. arXiv preprint arXiv:1912.00543, 2019.

Jure Zbontar, Florian Knoll, Anuroop Sriram, Matthew J Muckley, Mary Bruno, Aaron Defazio,
Marc Parente, Krzysztof J Geras, Joe Katsnelson, Hersh Chandarana, et al. fastMRI: An open
dataset and benchmarks for accelerated MRI. arXiv preprint arXiv:1811.08839, 2018.

Jian Zhang and Bernard Ghanem. ISTA-Net: Interpretable optimization-inspired deep network for
image compressive sensing. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1828–1837, 2018.

Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han. Differentiable Augmentation for
Data-Efficient GAN Training. arXiv:2006.10738, 2020a.

Zhengli Zhao, Zizhao Zhang, Ting Chen, Sameer Singh, and Han Zhang. Image Augmentations for
GAN Training. arXiv:2006.02595, 2020b.

Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh, and Jianming Liang. Unet++: A
nested u-net architecture for medical image segmentation. In Deep Learning in Medical Image
Analysis and Multimodal Learning for Clinical Decision Support, pp. 3–11. Springer, 2018.

11



Under review as a conference paper at ICLR 2021

A THE FASTMRI DATASET

The fastMRI dataset (Zbontar et al., 2018) is a large open dataset of knee and brain MRI volumes.
The train and validation splits contain fully-sampled k-space volumes and corresponding target
reconstructions for both (simulated) single-coil and multi-coil acquisition. The knee MRI dataset we
are focusing on in this paper includes 973 train volumes (34742 slices) and 199 validation volumes
(7135 slices). The target reconstructions are fixed size 320×320 center cropped images corresponding
to the fully-sampled data of varying sizes. The under-sampling ratio is either 25%( 4× acceleration)
or 12.5% (8× acceleration). Under-sampling is performed along the phase encoding dimension in
k-space, that is columns in k-space are sampled. A certain neighborhood of adjacent low-frequency
lines are always included in the measurement. The size of this fully-sampled region is 8% of all
frequencies in case of 4× acceleration and 4% in case of 8× acceleration.

B EXPERIMENTAL DETAILS

Here we provide details of the setup for our main experiments.

Datasets. We use the FastMRI (Zbontar et al., 2018) single-coil and multi-coil knee dataset for
our experiments. For creating the sub-sampled datasets, we uniformly sample volumes from the
training set, and add all slices from the sampled volumes. Our validation results are reported on
the whole validation dataset. Images in the dataset have varying dimensions. Due to GPU memory
considerations we center-cropped the input images to 640 × 368 pixels (which covers most of the
images). We use random undersampling masks with 8× acceleration and 4% fully-sampled low-
frequency band, undersampled in the phase encoding direction by masking whole kspace lines. We
generate a new random mask for each slice on-the-fly while training, but use the same fixed mask for
each slice within the same volume on the validation set (different across volumes).

Model. We train the default E2E-VarNet network from Sriram et al. (2020) with 12 cascades (approx.
30M parameters) for both the single-coil and multi-coil reconstruction problems. For single-coil data
we remove the Sensitivity Map Estimation sub-network as sensitivity maps are not relevant in this
problem.

Hyperparameters and training. We use an Adam optimizer with 0.0003 learning rate following
Sriram et al. (2020). We train the baseline model on the full training dataset for 50 epochs. For the
smaller, sub-sampled datasets we train for the same computational cost as the baseline, that is we
train for N ⋅ 50 epochs on 1/N th of the training data. Without data augmentation, we observe a
saturation in validation SSIM during this time. With data augmentation we trained 50% longer as we
still observe improvement in validation performance after the standard number of epochs. We report
the best SSIM on the validation set throughout training. We train on 4 GPUs for single-coil data and
on 8 GPUs for multi-coil data. The batch size matches the number of GPUs used for training, since a
GPU can only hold a single datapoint.

Data augmentation parameters. The transformations and their corresponding probability weights
and ranges of values are depicted in Table 3. We adjust the weights so that groups of transformations
such as rotation (arbitrary, by k ⋅ 90○), flipping (horizontal or vertical) or scaling (isotropic or
anisotropic) have similar probabilities. For both the affine transformations and upsampling we
use bicubic interpolation. Due to computational considerations we only use upsampling before
transformations for the single-coil experiments.

C COMPARISON OF ADDITIONAL METRICS

In order to provide more in-depth comparison for our main experiment, here we provide results on
PSNR as an additional image quality metric. We observe significant and consistent improvement
in PSNR when applying MRAugment (Fig. 7) with similar trends to SSIM: the improvement is the
most prominent in the low-data regime, but still significant in the moderate domain.
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Transformations Range of values wi

Horizontal flip flipped/not flipped 0.5
Vertical flip flipped/not flipped 0.5
Rotation by k ⋅ 90○ k ∈ {0,1,2,3} 0.5
Rotation [−180○,180○] 0.5
Translation width: [−8%,8%], height: [−12.5%,12.5%] 1.0
Isotropic scaling [0.75,1.25] 0.5
Anisotropic scaling [0.75,1.25] along each axes 0.5
Shearing [−12.5○,12.5○] 1.0

Table 3: Data augmentation configuration for all experiments.
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Figure 7: Single-coil (left) and multi-coil (right) validation PSNR vs. # of training images.

D MORE EXPERIMENTAL RESULTS

Additional reconstructions. In order to demonstrate that MRAugment works well across a wide
range of MR slices and the results depicted in Section 4 are not cherry-picked, here we provide
additional reconstructions with and without data augmentation. In multi-coil reconstructions the visual
differences are more subtle, therefore we magnified regions with fine details for better comparison.

Complete version of Figure 3 extended with reconstructions with and without data augmentation for
10% and 33% training data are presented in Figures 9 and 10 respectively.

Figures 11 and 12 provide more reconstructed slices randomly sampled from the validation dataset
with and without DA.

Figure 8: MRAugment recovers additional fine details even in the moderate data regime.

Other models. Even though we demonstrated our DA pipeline on E2E-VarNet, the potential of our
technique is not limited to a specific model. We performed preliminary experiments on i-RIM Putzky
& Welling (2019), another top performing model on single-coil MR reconstruction. We kept the
hyperparameters proposed in Putzky & Welling (2019) for the single-coil problem with modifications
as follows. Due to computational considerations, we decreased the number of invertible layers to
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Figure 9: Visual comparison of single-coil reconstructions depicted in Figure 3 extended with
additional images corresponding to various amount of training data.

Figure 10: Visual comparison of multi-coil reconstructions depicted in Figure 3 extended with
additional images corresponding to various amount of training data.

6 with [64,128,256,256,128,64] hidden features inside the reversible blocks and [1,2,4,4,2,1]
kernel strides in each layer, resulting in a model with 20M parameters. In order to further reduce
training time, we trained on volumes without fat suppression that take up 50% of the full fastMRI knee
dataset. We refer to this new reduced dataset ass ’full’ in this section. Finally, we trained on 368x368
center crops of input images for each experiment. We used ramp scheduling with augmentation
probability linearly increasing from 0 to pmax = 0.4. The acceleration factor and under-sampling
mask were the same as in Section 4 . As depicted in Fig. 13 , our experiments show that applying
data augmentation to only 10% of the training data can match the performance of the model trained
on the full dataset.
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Ground truth 100% training data 1% training data + DA 1% training data

Figure 11: Visual comparison of single-coil reconstructions using varying amounts of training data
with and without data augmentation.

10 20 30 40 50
0.72

0.74

0.76

0.78

Epochs

V
al
.
S
S
IM

10%

10%+DA

100% baseline

1
15



Under review as a conference paper at ICLR 2021

Ground truth 100% training data 1% training data + DA 1% training data

Figure 12: Visual comparison of multi-coil reconstructions using varying amounts of training data
with and without data augmentation.

Figure 13: Experimental results on the i-RIM network. We are able to achieve SSIM comparable to
the 100% baseline with only 10% of the training data.

E SENSITIVITY MAP PRESERVING AUGMENTATIONS

In the multi-coil case, our augmentation pipeline applies transformations to the underlying object
modulated by the different coil sensitivity maps. In particular, the fully sampled measurement of the
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ith coil in the image domain takes the form

xi = Six
∗ + z′i, (E.1)

where z′i = F−1zi is i.i.d Gaussian noise obtained via a unitary transform of the original measurement
noise. Assuming linear augmentations, the augmented coil image from MRAugment can be written
as

xa,i = D(Six
∗ + z′i) = DSix

∗ +Dz′i, (E.2)

where the additive noise is still Gaussian and the augmentation is applied to the coil sensitivity maps
as well. However, the models we experimented with had no issues learning the proper mapping from
transformed sensitivity maps as our experimental results show.

It is natural to ask if data augmentation would be possible by directly augmenting the object. If the
coil sensitivities are known or are estimated a priori, one may recover the object from the various
coils as

x = N∑
j=1S

∗
j xj = N∑

j=1S
∗
j (Sjx

∗ + z′j) = ( N∑
j=1S

∗
j Sj)x∗ + N∑

j=1S
∗
j z

′
j = x∗ + N∑

j=1S
∗
j z

′
j ,

where S∗j is the complex conjugate of Sj and ∑N
j=1 S∗j Sj = I due to typical normalization (Sriram

et al., 2020). Then, we can apply the augmentation as

xa = Dx = D(x∗ + N∑
i=1S

∗
j z

′
j) = Dx∗ +D N∑

j=1S
∗
j z

′
j .

Finally, we obtain the augmented coil images as

xa,i = Sixa = SiDx∗ + SiD N∑
j=1S

∗
j z

′
j . (E.3)

Comparing this result to E.1, one may see that the additive noise has a very different distribution
from the original noise distribution, even worse noise on different augmented coil images are now
correlated! Moreover, in this last step we modulated the additive noise with the sensitivity map,
resulting in regions with low noise variance where the coil is less sensitive and higher variance
in more sensitive regions. This does not reflect the i.i.d noise distribution present on the original
coil measurements. Finally, the sensitivity maps are typically not known and need to be estimated
before we can apply this augmentation technique, which can introduce additional inaccuracies in the
augmentation pipeline.

F ROBUSTNESS
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Figure 14: Generalization performance of models trained on knee MRI data and evaluated on brain
MRI data. Data augmentation improves validation performance on unseen datasets.
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We observed an additional benefit of data augmentation, namely its potential to improve the robustness
of the trained model. First, we trained a VarNet model on the complete fastMRI knee train dataset
using the hyperparameters recommended in Sriram et al. (2020), and evaluated the network on the
fastMRI brain validation dataset throughout training. We repeated the experiment with the same
hyperparameters, but with MRAugment turned on (exponential scheduling, peak probability 0.4).
The results can be seen in Fig. 14. The regularizing effect of data augmentation impedes the network
to overfit to the training dataset, thus the resulting model is more robust to shifts in test distribution.
This results in higher reconstruction quality in terms of SSIM on unseen brain data when using
MRAugment.
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