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Figure 1. Generated results and supported user editing in our framework. (a) HeadEvolver can deform a template mesh to stylized head
avatars under text guidance. (b) Users can use a text prompt to edit local geometry. (c) Shape attributes such as 3DMM parameters,
blendshapes, and UV coordinates are preserved for downstream animation and editing.

Abstract

Current text-to-avatar methods often rely on implicit rep-
resentations (e.g., NeRF, SDF, and DMTet), leading to 3D
content that artists cannot easily edit and animate in graph-
ics software. This paper introduces a novel framework
for generating stylized head avatars from text guidance,
which leverages locally learnable mesh deformation and
2D diffusion priors to achieve high-quality digital assets
for attribute-preserving manipulation. Given a template
mesh, our method represents mesh deformation with per-
face Jacobians and adaptively modulates local deformation
using a learnable vector field. This vector field enables
anisotropic scaling while preserving the rotation of vertices,

*indicates equal contribution

which can better express identity and geometric details. We
also employ landmark- and contour-based regularization
terms to balance the expressiveness and plausibility of gen-
erated head avatars from multiple views without relying on
any specific shape prior. Our framework can generate re-
alistic shapes and textures that can be further edited via
text, while supporting seamless editing using the preserved
attributes from the template mesh, such as 3DMM param-
eters, blendshapes, and UV coordinates. Extensive experi-
ments demonstrate that our framework can generate diverse
and expressive head avatars with high-quality meshes that
artists can easily manipulate in 3D graphics software, facil-
itating downstream applications such as efficient asset cre-
ation and animation with preserved attributes.



1. Introduction
Head avatar modeling is an important and challenging task
in visual computing due to its increasing need in applica-
tions such as games [16], movies [19], virtual reality [53],
and online education [7]. Traditionally, creating a high-
fidelity head avatar demands skilled technical artists to in-
vest considerable time and effort into modeling and an-
imation. While recent advances in AI-generated content
(AIGC), particularly in text-to-3D, offer new avenues for
accessible and cost-effective avatar creation, some practi-
cal gaps persist. For example, several methods [51, 62, 66]
used generative models [13, 15, 48] to support text-guided
human head generation. Nevertheless, these methods suffer
from acquiring high-quality and diverse datasets for train-
ing. Another set of methods [14, 23, 34, 64] leveraged
frozen large-scale vision language models (VLMs) to create
3D head avatars. These methods use 2D priors to provide
multi-view guidance without requiring 3D training data and
thus produce more diverse results.

However, there is a significant gap between current text-
to-avatar methods and 3D asset creation, as most meth-
ods do not effectively integrate high fidelity, user cus-
tomization, and animation support. This is mainly caused
by employing implicit shape representations that cannot
preserve 3D attributes essential for downstream manipu-
lation, e.g., mesh topology, rig, and UV mapping. For
instance, HeadArtist [34] and HeadSculpt [14] leverage
DMTet [46] to create head avatars with 3D Morphable Mod-
els (3DMMs) [4, 30] as shape priors. While these ap-
proaches create a realistic appearance, DMTet discards sta-
tistical parameters from 3DMMs, leading to noisy meshes.
In theory, including extra mapping functions may offer po-
tential solutions to these limitations.

Head avatar generation using an explicit mesh represen-
tation would benefit downstream applications because of
its editability and compatibility with graphics pipelines, al-
though there is less existing research in this direction. A
notable method is TADA [32], which incorporates the op-
timizations of vertex displacement and SMPL-X parame-
ters [38]. This strategy preserves the semantics of 3DMMs
and enables animatable 3D head avatar generation. How-
ever, direct vertex displacement tends to deform meshes
with self-intersected faces and noisy normals, leading to
limited mesh quality and artifacts in the animation. TextDe-
former [9] can change an input mesh smoothly and stably
by deforming through Jacobians, but it cannot generate a
textured appearance and lacks local geometry details.

This paper aims to create high-quality avatars that sup-
port animation and editing without reconstructing blend-
shapes or rigs. We propose a novel text-to-avatar frame-
work that produces stylized head avatars through expressive
and attribute-preserving mesh deformation. Given a single
template mesh such as FLAME [30], ICT-Face [29], or any

manifold mesh preferably with facial semantics, our frame-
work deforms it into a desired target shape while preserving
feature correspondences such as skinny weights and UV co-
ordinates for animation and editing, as shown in Figure 1(c).

The key observation is that optimizing Jacobians enables
smooth global shape changes [1] but lacks expressive local
deformations when processing gradients from text and im-
age losses, compared to direct vertex displacements. This
local control is essential for generating diverse styles, such
as the elongated nose in Figure 1(b). Furthermore, it is often
laborious to tune deformation hyper-parameters to achieve
both text-guided expressiveness and shape smoothness [37].
Therefore, we propose per-triangle learnable weighting fac-
tors coupled with Jacobians to enhance fine-grained defor-
mations, which we refer to as vector fields. The notion
of vector fields was initially introduced through a Poisson-
based solver [61] to guide mesh deformations and recon-
structions. In this study, we expand upon this by incorpo-
rating differentiable settings for 3D generation tasks.

In order to build a complete 3D head avatar genera-
tion framework via gradient-based optimization, we employ
a pre-trained diffusion model [40] with 3D awareness by
leveraging a frozen landmark-guided ControlNet [36, 67].
Given a camera pose, we render shaded and normal im-
ages and obtain the opacity mask and the predefined vertex-
indexed landmarks projected from the 3D head. As Figure 2
illustrates, the stable diffusion model accepts text prompts,
rendered images, and landmarks as additional conditions
from ControlNet to compute the Score Distillation Sam-
pling (SDS) loss. In addition, to mitigate unexpected ge-
ometry distortions and self-intersecting triangles, we intro-
duce landmark- and contour-based regularization terms. In
summary, our contributions are as follows.

• We introduce a per-triangle vector field to enhance the
expressiveness of mesh deformation over local regions
while preserving 3D attributes.

• We propose a diffusion-based framework with landmark-
and contour-based regularization terms to support text-to-
avatar generation with high-quality mesh.

• Extensive experiments demonstrate that our method can
generate stylized 3D head avatars supporting asset cre-
ation with interactive editing and animation.

2. Related Work

Recently, there has been rapid research progress in digital
human modeling and text-to-3D content generation. Our
work centers on text-guided synthesis of head avatars em-
ploying an explicit mesh representation, aiming to fulfill
three criteria outlined in Table 1. In addition, our framework
generates mesh models that are compatible with graphic
pipelines for direct manipulation in 3D software.



Table 1. Compared to other text-to-avatar approaches, our method
preserves predefined 3D attributes (e.g., vertex-indexed land-
marks, rig, blendshapes). It accommodates any template mesh
independent of parametric models and operates solely on gradient-
based optimizations without training data or fine-tuning.

Attribute Non-reliance on No Training Data
Preservation Parametric Models nor Fine-tuning

HeadScuplt [14] ✗ ✓ ✗
Fantasia3D [6] ✗ ✓ ✓

TADA [32] ✓ ✗ ✓
DreamFace [66] ✓ ✗ ✗

Ours ✓ ✓ ✓

2.1. Text-to-3D Avatar Generation

The success of text-driven generative models has sparked
a wide range of research in 3D content synthesis. These
methods are based on different geometry representations
such as NeRF [33, 52], tri-plane [47], mesh[6], and Gaus-
sian Splatting [31, 49]. In text-to-avatar generation, many
efforts have been made to develop 3D generative mod-
els [51, 60, 63, 66] typically based on GANs [12] or dif-
fusion models [15]. These methods often demand extensive
3D head data for training, incurring high costs. Moreover,
they face challenges due to limited 3D datasets for creating
diverse head avatars matching text prompts.

To bypass the extensive training process of 3D generative
models and insufficient 3D data, recent research [18, 65]
has made remarkable advances by harnessing the capa-
bilities of vision-language models (e.g., CLIP [43] and
SDS [40]) to generate static human avatars from text
prompts. DreamWaltz [21] aims to enhance the realism of
avatar animations with pose-guided ControlNet [67]. Sim-
ilarly, DreamHuman [27] employs a signed distance field
conditioned on pose and shape parameters to empower an-
imations with NeRF. However, extracting, editing, and ani-
mating an explicit mesh from these works are not straight-
forward [21] (e.g., use marching cube or tetrahedra algo-
rithms) since NeRF and DMTet [46], for instance, represent
shapes through network weights. Meanwhile, the issue of
poor mesh quality is often concealed by texture, as the ge-
ometry and texture optimizations are fully mixed. Recent
works [6, 14, 34] disentangle the learning of geometry and
texture to improve the avatar mesh quality. Our work also
leverages differentiable rendering, stable diffusion, and a
hybrid optimization process for mesh and texture synthesis,
specifically emphasizing the deformation of an explicit ge-
ometry template through semantic guidance instead of gen-
eration from scratch or using implicit representations.

2.2. Learning-Based Mesh Optimization

Parametric mesh templates have been a prominent research
focus for human avatar reconstruction and generation tasks,
as these models are well-suited in a deep learning con-
text [26]. AvatarClip [17] and CLIP-Face [2] employ para-

metric models such as SMPL-X [38] and FLAME [30] as
geometry prior to produce text-aligned avatars. DreamA-
vatar [5] extracts the shape parameters of SMPL as a 3D
prior to learn a NeRF-based color field. HeadSculpt [14]
and HeadArtist [34] utilize the FLAME template as canon-
ical shape input and extract its facial landmark to guide
avatar generations through DMTet. However, meshes ex-
tracted from implicit representations tend to lose the seman-
tics of 3DMMs [4], posing challenges for downstream ap-
plications such as interactive editing and animation.

From the perspective of geometry editing through ex-
plicit mesh manipulations, recent works propose data-
driven approaches [1, 3, 54] to predict vertex positions and
some methods focus on learning deformation over one tem-
plate mesh through tuning per-vertex coordinates [8, 50, 58,
68]. TADA [32] directly optimizes vertex displacements
along with the SMPL-X’s pose and shape parameters and
achieves animatable avatars. However, this characteristic is
highly dependent on the quality of 3DMMs. Straightly op-
timization of non-convex mesh structures often converges
to undesirable local minima, resulting in noticeable arti-
facts on surface details. TextDeformer [9] initially inte-
grates CLIP into a learning-based deformation pipeline to
address the scarcity of 3D datasets that pair shapes with
captions. Our approach extends this by employing vector
fields to optimize local semantic deformations on any tem-
plate mesh, independent of its shape, expression, or blend-
shapes [4]. Our goal is to enhance identity expressiveness
guided by text input. The resulting head avatars can be an-
imated using the original rigging from the source mesh and
seamlessly integrated into existing 3D design and animation
workflows.

3. Methodology

In this section, we describe the details of our generation
pipeline, as shown in Figure 2. Given a source template
mesh, we jointly optimize the mesh deformation and an
albedo map guided by a text prompt. Our approach is not
limited to a specific parametric model (e.g., FLAME) and
Figures 9 and 11 show the generalization of our approach.

3.1. Mesh Deformation through Vector Fields

Let M = (V,F) denote a source template mesh which con-
sists of a set of vertices V ∈ Rn×3 and faces F ∈ Zm×3.
For the optimization strategy of mesh deformation, directly
applying displacement to each vertex can result in severe
self-intersections of mesh faces since it is susceptible to lo-
calized noisy gradients from pixel-level losses. Instead, we
parameterize deformation mapping Φ : Rn×3 → Rn×3 by
employing Jacobian fields [1] J = {Jf |f ∈ F} that rep-
resents the scaling and rotation of each mesh face. A dual
representation of M can be defined as a stack of per-face
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Figure 2. Framework overview. We deform a template mesh by optimizing per-triangle vector fields guided by a text prompt. Rendered
normal and RGB images coupled with MediaPipe landmarks are fed into a diffusion model to compute respective losses. Our regularization
of Jacobians controls the fidelity and semantics of facial features that conform to text guidance.

Figure 3. Visualization of vector field Hf through Wf . Orange
colors indicate strong deformations and Wf = I refers to no de-
formation enhancement.

Jacobians Jf ∈ R3×3 where

Jf = ∇fV, (1)

and ∇f is the gradient operator of triangle f . Conversely,
we optimize each vertex’s position from per-face Jacobian.

After obtaining optimized Jacobians in each iteration, we
can compute the deformation mapping Φ over a set of ver-
tices conforming to the source mesh topology by solving a
Poisson problem, i.e.,

Φ∗ = argmin
Φ

∑
f∈F

|f |∥∇f (Φ)− Jf∥22, (2)

where ∇f (Φ) is the Jacobian of Φ at a triangle face f and
|f | is the area of the face. Thus, the deformation map Φ
over the input template mesh is indirectly optimized through
Jacobians Jf in the least square sense. The solution can be
obtained by using a differentiable solver [1, 9]:

Φ∗ = L−1∇TAJ, (3)

where ∇ is a stack of per-face gradient operators, A ∈
R3m×3m is the mass matrix of M, and L ∈ R3n×3n is
the cotangent Laplacian of M. This learnable shape rep-
resentation based on Jacobians is robust to noisy gradi-
ents. It can achieve better geometry quality (e.g., fewer
self-intersections and noisy normals) than direct vertex dis-
placements, which is further justified in Section 4.

However, during our experiment, we observed that the
Poisson solver applied in Equation (2) can impose strong
geometry constraints for Jacobians to reach the global-
coherence mesh deformation [9], which may lose fine-grain
details for local shape features and compromise the iden-
tity of the generated head mesh (Figure 6). A straightfor-
ward approach is to increase the learning rate for Jacobians
to enhance their sensitivities to propagated gradients. This
amplifies the rotation and scaling of each face, resulting in
stronger deformations. However, intensified rotations raise
the likelihood of inverted triangles [45], leading to an un-
stable optimization process and a poor-quality mesh. To ad-
dress the above concerns, we introduce a learnable per-face
vector field H = {Hf |f ∈ F} to enhance the deformation
expressiveness of Jacobian field J , i.e.,

Wf = diag(wx, wy, wz),

Hf = WfJf .
(4)

By substituting H into Equation (3), the deformation map-
ping could be computed by

Φ∗ = L−1∇TAH. (5)

The effect of W = {Wf |f ∈ F} is to control the
anisotropic scaling (e.g., stretching and shrinking in dif-
ferent directions) on each face. As shown in Figure 3, it



can adaptively learn the anisotropic scaling on correspond-
ing triangular faces that can represent the character’s fea-
tures. Consequently, the per-face vector field H prioritizes
the Poisson solver for more effective head avatar identity
expression than using only Jacobians (Section 4.4).

3.2. Text-Guided 3D Synthesis

We aim to build a text-guided head avatar generation frame-
work based on differentiable mesh deformation and tex-
ture generation. Motivated by recent success in large-scale
VLMs and text-to-3D literature discussed in Section 2.1, we
utilize a powerful 2D diffusion prior (i.e., SDS [40]) to di-
rect deformations by scoring the rendering realism of the
generated shape in our framework.

Specifically, by following the procedure described
in Section 3.1, we denote V∗ as the set of deformed ver-
tices from J . Then, by using a differentiable renderer R,
we render M∗ = (V∗,F) from a viewpoint delineated by
camera extrinsic parameter C, which produces an image
I = R(M∗, C). The SDS loss is leveraged to alter the
geometry and color respectively, that is:

∇JLSDS(ϵ, I) = Et,ϵ

[
w(t)(ϵθ(zt; y, C, t)− ϵ)

∂I

∂J

]
, (6)

where ϵ ∼ N (0, I), ϵθ is the pre-trained diffusion priors
with the network parameter θ, w(t) is a weight coefficient
related to timestep t ∼ U(0, 1), y is the text input condition,
zt denotes a latent embedding of I perturbed with noises at
time step t, and C is the MediaPipe [36] facial landmark
map. Rendered image I are obtained and encoded from the
normal In and shaded Is, as seen in Figure 2.

To ensure deformation mapping from propagated gradi-
ents and the Poisson solver can conform to the facial topol-
ogy and reasonable semantics of the source mesh, we fur-
ther develop two regularization terms, aiming to preserve
3D attributes of generated head avatars (Figure 8).

Landmark regularization. The landmark regulariza-
tion measures the difference between predefined N 3D face
landmarks ki ∈ R3 on the canonical template mesh M and
the corresponding ones on the deformed mesh k′

i ∈ R3 af-
ter projection. The landmark regularization loss is defined
as Llmk = 1

N

∑N
i=1 ||ki − k′

i||22.
Evolving contour-based regularization. Inspired by

AvatarCraft [24], we incorporate an opacity map O to pre-
serve a plausible head shape while minimizing excessive
or undesired vertex displacement. To balance diverse ge-
ometry shapes and constraints from severe deformations,
the source template mesh is periodically updated from de-
formed mesh every 300 steps [55]. The pixel-level loss is
parameterized as Lop = 1

hw

∑
h,w ||O−O′||22, where h and

w represent the height and width of the opacity mask of the
template mesh O and the optimized head avatar O′. The
total loss is defined as follows:

L = λ1∇ΦLSDS + λ2Llmk + λ3Lop, (7)

where λ1 = 1, λ2 = 200, and λ3 = 250 are the hyper-
parameters in our experiment settings.

4. Experiments
In this section, we conduct experiments to evaluate the effi-
cacy of our method both quantitatively and qualitatively for
text-to-avatar creation. We then present two ablation studies
that validate the significance of our key designs for vector
fields and regularization terms in Section 4.4.

Figure 4. Qualitative appearance comparisons. Our method can
produce diverse textured avatars.

4.1. Implementation Details

For geometry and texture generation, we render normal and
shaded images at a resolution of 1024×1024 pixels and feed
them into the Realistic Vision 5.1 (RV 5.1) [25]. Compared
with Stable Diffusion 2.1 [44], we find that RV 5.1 supports
a more appealing avatar appearance. The multi-face Janus
and texture misalignment problems are further alleviated by
introducing ControlNetMediaPipeFace [67]. The genera-
tion process runs on a single NVIDIA RTX 4090 GPU with
20, 000 iterations per avatar, which takes around 30 min-
utes. Negative prompts are leveraged to enhance the real-
ism and details of the texture, e.g., “unrealistic,” “blurry,”
“low quality,” “saturated,” “low contrast,” etc. In addition
to the proposed regularization terms, we enforce symmetry
along the y-axis in each iteration to ensure a reasonable face
appearance. Following established practices in TADA [32]
and DreamFace [66], the eyeball mesh is removed and can
be manually reintegrated after the generation is completed.



Figure 5. Qualitative geometry comparisons. Our method effectively preserves the topology and semantics of the input template mesh,
resulting in high-quality mesh models for smooth manipulations.

The differentiable rendering implementations are adapted
from Nvdiffrast [28].

4.2. Qualitative Evaluation

Our evaluation compares two explicit mesh manipulation
methods (i.e., TADA [32] and TextDeformer [9]), and
two implicit methods (i.e., Fantasia3D [6] and Human-
Norm [20]) as baselines. While our framework focuses
on high-quality mesh topologies, we also compare ren-
dering appearance with recent non-mesh-dependent meth-
ods [14, 34, 69] in supplemental material (Figure 14). We
utilized FLAME [30] as a unified input template mesh to
conduct the experiments. We present the visual compar-
ison results in Figures 4 and 5. TADA and Fantasia3D
show detail-preserving geometry with 3D head priors but
still undergo geometric artifacts in dense areas like eye re-
gions, which are less noticeable in textured rendering. Hu-
manNorm performs underperforms in humanoid cases, e.g.,
“Terracotta Army” and “Monkey.” Compared to TextDe-
former, our approach exhibits similar mesh quality and am-
plifies facial characteristics following text specifications.

In summary, our framework generates expressive head
meshes that inherit facial attributes. The texture generation
maintains decent geometry consistency, facilitating usage in
graphics applications (Figures 1(c) and 4).

4.3. Quantitative Evaluation

We quantitatively evaluated our framework in terms of gen-
eration consistency with text input and generation quality.

Generation Consistency with Text. We first evaluated
the relevance of generated results to the corresponding text
descriptions by calculating the CLIP score [43]. We ren-
dered 20 distinct views and computed the average scores
respectively, as shown in Table 2. Our approach achieves
the highest scores compared to the baseline methods.

Table 2. Quantitative comparison of state-of-the-art methods.
The geometry CLIP score is measured on the shaded images ren-
dered with uniform albedo colors [42], the appearance CLIP score
is evaluated on the images rendered with textures, and the self-
intersection is quantified as the ratio of self-intersected mesh faces
to the total number of mesh faces.

Geometry Appearance Mesh
CLIP Score ↑ CLIP Score ↑ Self-Intersection ↓

Fantasia3D 0.1815 0.2718 -
HumanNorm 0.2443 0.3031 -
TextDeformer 0.2462 - 2.19%

TADA 0.2475 0.2931 14.22%
Ours 0.2538 0.3089 2.08%

Mesh Quality. We evaluated mesh quality through
self-intersection. Since the mesh from Fantasia3D and
HumanNorm are extracted through the marching cubes
algorithm [35], the produced triangles have no self-



Table 3. User evaluation of generated head avatars.

User Geometry Texture Consistency
Preference ↑ Quality Quality with Text
Fantasia3D 0.4% 2.0% 1.9%

HumanNorm 5.6% 22.7% 6.7%
TextDeformer 24.2% - 2.3%

TADA 3.9% 13.1% 22.2%
Ours 65.9% 62.2% 66.9%

intersections. Therefore, we only compared our method
with TADA and TextDeformer. Unlike our method, direct
vertex displacement tends to converge to a local minimum
and disregards the triangulation of the mesh.

Figure 6. Ablation study on the vector fields. The per-triangle H
can enhance the identity and character features of the avatar.

Figure 7. Learning rate (LR) tuning. Supported by our experi-
ments, adding per-triangle H through W can enhance the identity
and character features of the avatar from the text prompt.

User Study. We conducted a user study to evaluate the
robustness and expressiveness of our method with 18 dis-
tinct text prompts, 6 of which are from TADA. We used a
Google Form to assess 1) geometry quality, 2) texture qual-
ity, and 3) consistency with text. We recruited 46 partici-
pants, of whom 26 are graduate students majoring in com-
puter graphics and vision, and 20 are company employees
specializing in AI content generation. In this form, the par-

Figure 8. Preserved semantic consistency (e.g., 3D landmarks and
dense segmentation) with our deformation-based framework.

Figure 9. Avatar generation with various template mesh inputs.
The meshes from (a) an arbitrary head model and (b) SMPL-
X [38] are deformed to align text descriptions respectively.

ticipants were instructed to choose the preferred renderings
of head avatars from different methods in randomized or-
der, as shown in Table 3. The results show that participants
preferred our method by a significant margin (over 60%).

4.4. Ablation Study

Effect of Vector field. We conducted three sets of quali-
tative comparisons to demonstrate the effectiveness of the
per-triangle vector field H . As shown in Figure 6, using Ja-
cobian J alone tends to overly smooth the gradients, lead-
ing to a loss of distinctive character features. Increasing
J’s learning rate emphasizes character identities but distorts
meshes and causes self-intersections. Additionally, our ex-
periments introduce the scalar field S, which represents the
isotropic scaling by setting diagonal elements of each Hi to
equal values. The results indicate that anisotropic scaling



Figure 10. Ablation study on regularization. The contour-based
and landmark regularizations contribute to maintaining symmetric
facial features and alignment with the pose of the input mesh.

guided through H generates avatars bearing more geome-
try details and character features than those through S (e.g.,
the eyebrow of ”Octopus Alien” and the ear of ”Goblin”).
Furthermore, we demonstrate the tuning process of the LR
to evaluate that the addition of H effectively enhances the
stability and expressiveness of deformations when the LR
of J is set in the reasonable range (e.g., between 0.01 to
0.025). In Figure 7, we provide the best LR settings, which
are 0.015 for H and 0.01 for J . We also demonstrate the
versatility of the vector field by applying it to the object
generation framework (Figure 11), observing that the use of
H accelerates optimization convergence to desired defor-
mation states compared to using Jacobians alone.

Regularization. In deformation optimization, facial fea-
tures and head poses may deviate unexpectedly. Land-
mark regularization constrains generated meshes to the in-
put shape’s canonical space, and contour-based regulariza-
tion contributes to reasonable head shapes. We demonstrate
the effectiveness of our regularization designs in Figure 10.

5. Limitations and Future Work
Our framework has a few limitations. Although many para-
metric head models do not contain eyeball mesh intrinsi-
cally (e.g., Facescape [56], NPHM [11], and BFM [10]), our
experiments removed the eyeball mesh from FLAME and
SMPL-X since Jacobians rely on the manifold mesh struc-
ture [41] (Section 4.1). A cage-based representation may
offer the possibilities of deformations among multiple mesh
instances simultaneously [57], enabling separately editable
details like hair and accessories. Another minor limitation
exists in that lighting isn’t disentangled from diffuse colors,
potentially causing noise and oversaturation artifacts.

It is worth mentioning that generated avatars exhibit rela-

Figure 11. Generalization experiments. We implement vector
fields in TextDeformer [9] and find that our method accelerates
mesh optimizations to approach text guidance in early epochs.

tively good geometry consistency with texture (Figure 20 in
supplementary material), but our method cannot guarantee
an exact match between geometry and texture. For instance,
eyeball appearance only shows in the texture, a problem
that also occurs in TADA and HumanNorm. Stronger se-
mantic labeling (e.g., canny edges [39]) may mitigate this
issue. Another future focus is to learn head generation from
a sphere without any avatar shape priors [37].

6. Conclusion

In this paper, we have presented a text-guided generative
framework for crafting stylized 3D head avatars through
learnable deformations. By employing Jacobians as an in-
termediate representation for vertex displacements and en-
hancing them with a learnable vector field, our method
has improved the expressiveness of the deformed mesh.
Consequently, learnable deformations are embedded into
score distillation for geometry and appearance generation.
Our regularization terms help retain 3D attributes from the
source mesh to support seamless editing by artists. Experi-
ments with various text prompts exhibit the remarkable per-
formance of our framework. Our work can inform future
research on effectively integrating mesh-based neural tech-
niques into practical graphics pipelines, such as boosting
the 2D and 3D deformation ability by applying our method
to APAP [59].
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