
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ANTIPODAL PAIRING AND MECHANISTIC SIGNALS IN
DENSE SAE LATENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Sparse autoencoders (SAEs) are designed to extract interpretable features from
language models, yet they often yield frequently activating latents that remain dif-
ficult to interpret. It is still an open question whether these dense latents are an
undesired training artifact or whether they represent fundamentally dense signals
in the model’s activations. Our study provides evidence for the latter explanation:
dense latents capture fundamental signals which (1) align with principal directions
of variance in the model’s residual stream and (2) reconstruct a subspace of the
unembedding matrix that was linked by previous work to internal model computa-
tion. Furthermore, we show that these latents typically emerge as nearly antipodal
pairs that collaboratively reconstruct specific residual stream directions. These
findings reveal a mechanistic role for dense latents in language model behavior
and suggest avenues for refining SAE training strategies.

1 INTRODUCTION

Sparse autoencoders (SAEs) offer an unsupervised method for extracting interpretable features from
language models (Bricken et al., 2023; Huben et al., 2024; Kissane et al., 2024). They address the
challenge of polysemanticity, where individual neurons activate in semantically diverse contexts that
defy simple explanation (Olah et al., 2017; Elhage et al., 2022). SAEs are trained to reconstruct the
activations of a language model under a sparsity constraint applied to a bottleneck layer, ensuring
that only a small subset of latents is active at a time.1 This method was shown to effectively recover
interpretable features in a variety of models, including Claude 3 Sonnet (Templeton et al., 2024) and
GPT-4 (Gao et al., 2025).

Ideally, training would yield a large set of latents that activate sparsely and in an interpretable man-
ner. In practice, however, most SAEs exhibit densely activating latents, with some activating on
more than 10% and up to 50% of tokens (Cunningham & Conerly, 2024; Rajamanoharan et al.,
2024). These dense activations are challenging to interpret based solely on their patterns, and it
remains unclear whether they arise as an optimization by-product or if they capture inherently dense
signals present in the model’s residual stream.

In this work, we examine the relationship between the activation frequency of SAE latents and their
composition with specific subspaces of the residual stream. We analyze of SAEs trained on Gemma
2 (Gemma Team, 2024), GPT-2 (Radford et al., 2019), and LLaMA 3.1 (AI @ Meta, 2024), finding
that densely activating latents tend to read from and write to the space spanned by the top principal
components of the residual stream. Further, we observe that some of these directions align with the
bottom singular vectors of the model’s unembedding matrix–a subspace previously linked to internal
computation signals (Cancedda, 2024) such as confidence regulation (Stolfo et al., 2024). We also
show that most dense latents are arranged in antipodal pairs, with encoder and decoder weights
operating in nearly opposite directions, reconstructing specific directions within this subspace.

Our findings provide evidence that SAEs learn to allocate a subset of their latents to precisely re-
construct specific directions in the residual stream. These directions appear to represent signals that
are fundamentally dense and play a mechanistic role rather than conveying semantic properties of
the input. This work contributes to a better understanding of SAE training and lays the groundwork
for future research on SAE methods to more effectively account for these dense signals.

1We use “latent” to refer to an entry in the SAE’s sparse hidden layer.
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Figure 1: Dense latents align with key residual subspaces. (a) Activation density vs. norm fraction
in top 300 residual PCs. (b) Norm composition in top residual PCs vs. bottom WU singular vectors,
highlighting paired outliers. (c) Projection of two dense latents onto WU singular vectors.

2 BACKGROUND

Sparse autoencoders (SAEs) are trained to reconstruct a language model’s activations x ∈ Rdmodel

while imposing a sparsity constraint (Yun et al., 2021; Huben et al., 2024). This computation can be
represented as:

f(x) := σ(Wencx+ benc),

x̂(f) := Wdecf + bdec,

where f(x) ∈ Rdsae is a sparse, non-negative vector of latents, with dsae >> dmodel, and σ is a
non-linear activation function. SAEs are typically trained to minimize the L2 distance between the
original activation and its reconstruction ∥x − x̂(f(x))∥22 while a sparsity constraint is imposed on
f by adding a sparsity-related loss component or via specific activation functions. We denote the
encoder and decoder weights of the latent at index i as W(i)

enc and W
(j)
enc, respectively. Unless noted

otherwise, we use “dense” to refer to latents with an activation frequency larger than 0.1.

We focus our investigation on the Gemma Scope SAEs (Lieberum et al., 2024) trained on Gemma
2 2B (Gemma Team, 2024), which use a JumpReLU activation function (Rajamanoharan et al.,
2024). However, we provide results also for TopK SAEs (Gao et al., 2025) trained on the activations
of GPT-2 (Radford et al., 2019) and LLaMA 3.1 8B (AI @ Meta, 2024).

3 EMPIRICAL ANALYSES

3.1 DENSE LATENTS ALIGN WITH DOMINANT RESIDUAL SUBSPACE

Because SAEs are trained under a constraint that limits the number of active latents at any given
time, the presence of densely activating latents represents a significant allocation of representational
capacity. This observation implies that these latents encode signals that are important for minimizing
reconstruction loss. We therefore hypothesize that such signals are concentrated along the residual
stream directions that account for most of its variance, namely, the top principal components.

To test this hypothesis, we compute the top k principal components of the Gemma 2 2B residual
stream over approximately 250k tokens of the C4 Corpus (Raffel et al., 2020). We then quantify the
“composition” of an SAE latent i with the top k subspace by computing the fraction ρk of the norm
of its encoder weight W(i)

enc that lies in this subspace:

ρk =

∑k
j=1 v

T
j W

(i)
enc

∥W(i)
enc∥

, (1)

where vi indicates the i-th principal component. In Figure 1a, we report this composition against
the activation density for k = 300 for each latent in the 16k-latent SAE trained on the residual
stream at layer 25 (0-indexed) of Gemma 2 2B. The plot reveals a clear trend: 99% of latents
exhibit a composition less than 0.7 and an activation density below 0.1, whereas outliers with high
composition (ρ300 > 0.7)–of which 67% are densely activating–account for 82% of all densely
activating latents.
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Figure 2: Dense latents reconstruct a key residual direction. (a) Latent pair activation difference
vs. residual projection on the last WU singular vector U−1. (b) Residual norm fraction in this
direction across layers and tokens for a single sequence. (c) Correlation between residual stream
value along U−1 and model entropy across 100k tokens.

3.2 DENSE LATENTS ALIGN WITH THE WU DARK SUBSPACE

Prior work on language model interpretability has identified an interaction between high-norm
model components and the dark subspace spanned by the last singular vectors of the unembedding
matrix WU (Stolfo et al., 2024; Cancedda, 2024). Given that this subspace absorbs a substantial
portion of the residual stream’s norm, we hypothesize that some of the top variance directions in the
residual stream may coincide with the bottom WU subspace.

To investigate this possibility, we compute the singular value decomposition WU = UΣVT. Then,
we study the composition of each latent’s decoder weights with the top residual stream principal
components against its composition with the bottom 10 left singular vectors U−10, . . . ,U−1 of WU

(Figure 1b).2 The analysis shows that latents with high composition in the top residual subspace also
tend to have high composition in the bottom WU subspace.

Furthermore, the outliers–latents with high composition in both subspaces–appear to be clustered in
pairs. On closer inspection, these pairs exhibit antipodal encoder and decoder weights; that is, the
cosine similarity between the corresponding encoder vectors (and likewise for the decoder vectors)
is close to −1. Figure 1c illustrates an example where the latent weights are highly aligned with
the last singular vector U−1. Although these paired latents are densely activating, they are virtually
never active simultaneously (Appendix B, Figure 5b). This observation suggests that the pair
collectively reconstructs points along a specific line: the direction defined by the U−1. In Figure 2a,
we plot the difference in activation values fi − fj for the paired latents against the projection of the
residual stream onto U−1, obtaining a correlation of 0.99.

Finally, we show the U−1 dense signal reconstructed by this pair of antipodal latents is related
to entropy regulation. This is motivated by previous work linking the bottom WU subspace to a
LayerNorm-based confidence regulation mechanism that is implemented in the model’s final layer
(Stolfo et al., 2024). First, we study the fraction of the residual stream norm along the last WU sin-
gular vector U−1 (Figure 2b), which increases gradually towards later layers with a notable change
at the final residual stream layer (just before unembedding). Then, we plot the variation of the resid-
ual stream projection along this direction against the model output entropy (Figure 2c), observing
a significant correlation. These findings indicates that certain dense SAE latents are organized into
nearly antipodal pairs that almost perfectly reconstruct a dense signal tied to entropy-related internal
computation.

3.3 ANTIPODAL PAIRING IN DENSE LATENTS

In this section, we investigate the connection between latent density and antipodal pairing. To quan-
tify antipodal pairing, we introduce a metric based on cosine similarity. For each latent i, we com-
pute the pairwise cosine similarities between its weights (both encoder and decoder) and those of
all other latents. Then, we compute the maximum product of encoder and decoder cosine similarity

2Similarly to the computation for the residual stream principal components, the composition with the WU

singular vectors is calculated according to Eq. (1).
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Figure 4: Dense latents align with top residual components across models. Latents with high
activation density consistently exhibit strong alignment with the top 300 residual principal compo-
nents (ρ300) and high pairwise scores across SAEs.

across all pairs (i, j) for all i ̸= j. Specifically, we define a pairwise score si for latent i as

si := max
j ̸=i

(
sim

(
W(i)

enc,W
(j)
enc

)
· sim

(
W

(i)
dec,W

(j)
dec

))
,

where sim(u, v) denotes the cosine similarity between vectors u and v. This score reflects the extent
to which latent i forms an antipodal pairing with another latent: high values of si indicate that there
exists another latent j with both encoder and decoder weights nearly opposite in direction to those
of i.3
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Figure 3: Dense latents form
antipodal pairs. Latents with
high activation density exhibit
strong pairwise alignment, often
aligning with top residual com-
ponents (ρ300).

We then analyze the relationship between the pairwise score si
and the activation density of latent i. As shown in Figure 3,
the majority of dense latents–particularly those with an activation
frequency exceeding 0.3–exhibit pairwise scores greater than 0.9.
This result highlights the observation that dense latents tend to or-
ganize into antipodal pairs, thereby facilitating the reconstruction
of specific directions in the residual stream.

3.4 DIFFERENT MODELS AND SAES

We extend the analyses performed on the GemmaScope
JumpReLU SAE to 32k-latent TopK SAEs (Gao et al., 2025)
trained on the residual streams of GPT-2 Small and LLaMA 3.1
8B (He et al., 2024). Figure 4 illustrates the relationship between
ρ300, the pairwise score s, and the density for each latent of the
last-layer SAEs of these models The TopK SAEs exhibit an over-
all smaller number of latents with very high density (>0.2), most
likely due to their larger number of latents (32k versus 16k in
the Gemma Scope SAE). However, the trend remains consistent: latents with a high composition
relative to the top k = 300 principal components of the residual stream also tend to exhibit high
pairwise scores si and high activation densities.

4 CONCLUSION

In this work, we demonstrate that dense latents in sparse autoencoders (SAEs) are purposefully
allocated to reconstruct key directions in the residual stream. Our experiments on GemmaScope
JumpReLU and TopK SAEs for GPT-2 Small and LLaMA 3.1 8B reveal that these latents align with
the top residual stream principal components and the bottom singular vectors of the unembedding
matrix WU–a subspace linked to internal signals such as entropy regulation–and are often orga-
nized into nearly antipodal pairs that jointly reconstruct specific directions. These findings suggest
that dense latents capture mechanistic signals important to language model behavior, pointing to
opportunities for refining SAE training objectives.

3Although high values of s could be produced by two nearly identical latents, retaining such a pair would
be redundant–a scenario we do not observe. Evidence for this is provided in Appendix B, Figure 5c.
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Figure 5: Encoder-decoder similarity and antipodal pairs. (a) High-density latents exhibit strong
encoder-decoder alignment. (b) A dense latent pair rarely activates simultaneously. (c) High pair-
wise scores (s) occur when encoder and decoder weights are nearly opposite.
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(b) Antipodal Latents in LLaMA 3.1 8B
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Figure 6: Antipodal dense latents align with the bottom subspace of WU. Projection of decoder
weights for two dense latent pairs from TopK SAEs trained on GPT-2 Small (a) and LLaMA 3.1 8B
(b), showing near-opposite alignment along the lowest singular vectors of the unembedding matrix.

A IMPLEMENTATION DETAILS

We carry out our experiments using the TransformerLens (Nanda & Bloom, 2022) and
SAELens (Bloom et al., 2024) libraries. Our analyses use SAEs from Gemma Scope (Lieberum
et al., 2024) and LLaMA Scope (He et al., 2024) for Gemma 2 2B and LLaMA 3.1 8B, respectively.
For GPT-2 Small, we use the SAE family released by Gao et al. (2025).

B ADDITIONAL RESULTS

Encoder-decoder Cosine Similarity. We analyze the similarity between the directions SAE la-
tents read from and write onto. In Figure 5a, we plot the cosine similarity between each latent’s
encoder and decoder weights, sim(W

(i)
enc,W

(i)
dec). Interestingly, latents with high composition in

the top residual principal components (which are also highly dense) exhibit strong encoder-decoder
alignment, suggesting they both extract and reconstruct information along the same direction.

Activation Patterns of Antipodal Pairs. Figure 5b shows the activation values of the dense latent
pair analyzed in §3.2 over 250k tokens. Despite their high activation frequency, they are virtually
never active simultaneously.

Pairwise Similarity Between Latents’ Weights. In Figure 5c, we report for each latent
i, the maximum-magnitude cosine similarity of its encoder and decoder weights with any
other latent In particular, we show sim(W

(i)
enc,W

(j)
enc) and sim(W

(i)
dec,W

(k)
dec), where j =

argmaxl ̸=i(| sim(W
(i)
enc,W

(l)
enc)|) and k = argmaxl ̸=i(| sim(W

(i)
dec,W

(l)
dec)|). We find that the

pairwise score s approaches 1 only when both encoder and decoder similarities are close to −1.

Examples of Antipodal Latent Pairs. We present two examples of antipodal dense latents from
TopK SAEs trained on GPT-2 Small and LLaMA 3.1 8B. Figure 6 shows the projection of their de-
coder weights onto the respective model’s unembedding matrix WU. These latents, with activation
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densities of 0.86 and 0.09 for GPT-2 and 0.60 and 0.26 for LLaMA, exhibit strong composition with
the bottom subspace of WU.

8


	Introduction
	Background
	Empirical Analyses
	Dense Latents Align with Dominant Residual Subspace
	Dense Latents Align with the WU Dark Subspace
	Antipodal Pairing in Dense Latents
	Different Models and SAEs

	Conclusion
	Implementation Details
	Additional Results

