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ABSTRACT

Recent neural methods have shown promise in generalizing across various vehicle
routing problems (VRPs). These methods adopt either a fully-shared dense model
across all VRP tasks (i.e., variants) or a mixture-of-experts model that assigns
node embeddings within each task instance to different experts. However, they
both struggle to generalize from training tasks with basic constraints to out-of-
distribution (OOD) tasks involving unseen constraint combinations and new basic
constraints, as they overlook the fact that each VRP task is defined by a combi-
nation of multiple basic constraints. To address this, this paper proposes a novel
model, combination-of-experts with knowledge sharing (CoEKS), which lever-
ages the structural characteristic of VRP tasks. CoEKS enhances generalization
to constraint combinations via two complementary components: a combination-
of-experts architecture enabling flexible combinations via prior assignment of
constraint-specific experts, and a knowledge sharing strategy strengthening gen-
eralization via automatic learning of transferable general knowledge across con-
straints. Moreover, CoEKS allows new experts to be plugged into the trained
model for rapid adaptation to new constraints. Experiments demonstrate that Co-
EKS outperforms state-of-the-art methods on in-distribution tasks and delivers
greater gains on OOD tasks, including unseen constraint combinations (relative
improvement of 12% over SOTA) and new constraints (25% improvement).

1 INTRODUCTION

Combinatorial Optimization (CO) plays a pivotal role in numerous real-world applications, such as
logistics (Zong et al., 2022), transportation (Fu et al., 2025), supply chain management (Tirkolaee
et al., 2020), and resource allocation (Heydaribeni et al., 2024). The vehicle routing problem (VRP)
stands as one of the most fundamental yet challenging CO problems, requiring the determination of
optimal routes for a vehicle fleet serving a set of customers while satisfying multiple operational con-
straints. Despite decades of algorithmic progress, traditional methods face significant limitations:
exact approaches are computationally infeasible for large-scale instances due to the NP-hard nature
of VRP (Wu et al., 2024), while heuristic approaches heavily rely on handcrafted expert knowledge
and time-consuming iterative search from scratch for each new instance (Bogyrbayeva et al., 2024).

Recent advances in deep learning have introduced neural methods for VRPs, which autonomously
learn heuristic policies from massive data end-to-end. These methods not only circumvent the de-
pendency on expert domain knowledge but also produce high-quality solutions within short solving
time (Chen et al., 2025a; Li et al., 2025b; Goh et al., 2024; Chen et al., 2023b; Zhang et al., 2023).
However, despite the promising performance, most existing methods adopt a task-specific learning
paradigm, necessitating a separate neural model for each VRP task. This lack of cross-task general-
ization capability incurs costly retraining and deployment overhead when adapting to new tasks.

More recently, some efforts have focused on developing unified models for cross-task VRPs. De-
spite demonstrating feasibility, current methods still perform suboptimally, especially under out-of-
distribution (OOD) generalization scenarios: 1) tasks with unseen combinations of basic constraints,
and 2) tasks involving new basic constraints. According to their model architectures, they fall into
two categories: a task-shared dense model and a node-level mixture-of-experts (MoE) model. The
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task-shared dense model (Liu et al., 2024b; Berto et al., 2024; Li et al., 2025a), whose parameters
are fully-shared across all tasks, overemphasizes coupled representations but neglects task-specific
ones, resulting in negative transfer among tasks. This leads to particularly poor OOD generalization.
As an alternative, the node-level MoE model (Zhou et al., 2024a; Huang et al., 2025) employs a gat-
ing mechanism to assign each node embedding within a task instance to different experts, fostering
node-specialized experts. However, this gating mechanism restricts expert vision to a narrow node
subset, which weakens experts’ cognition of task-level knowledge.

Unlike general multi-task learning, we observe that VRP tasks often involve combinations of mul-
tiple basic constraints. This motivates us to develop an innovative model architecture, called
combination-of-experts with knowledge sharing (CoEKS). On the one hand, CoEKS utilizes
constraint-specific experts to facilitate learning dedicated knowledge for every basic constraint. This
enables flexible combinations of experts to manage diverse VRP tasks with constraint combinations
and allows further plugging in of new experts to adapt even to unseen basic constraints. On the other
hand, CoEKS transfers general knowledge across constraints to foster collaboration among experts
and enhance OOD generalization.

The contributions of this paper can be summarized as follows: 1) We introduce a novel CoEKS
model, building on the recognition of the prior structural characteristics of VRPs. This model is
designed to enhance OOD generalization for VRPs with constraint combinations via two comple-
mentary components and adapts to unseen constraints by plugging in new experts. 2) We design
a combination-of-experts (CoE) architecture to acquire specialized constraint-level knowledge, in
which each expert specializes in a basic constraint, enabling the model to effectively solve diverse
VRPs by flexibly combining corresponding experts. 3) We propose a multi-view knowledge sharing
strategy to transfer general knowledge across constraints, utilizing mutual distillation and shared
transformation layers to automatically learn coordination among experts. 4) We demonstrate that
CoEKS can be deployed on both state-of-the-art (SOTA) and classic backbones to show its univer-
sality. Extensive experiments indicate that CoEKS outperforms SOTA cross-task neural methods for
in-distribution (ID) and particularly OOD generalization.

2 RELATED WORKS

Neural combinatorial optimization for VRPs. Existing neural methods for VRPs can be primarily
categorized into two distinct groups: 1) Neural construction methods leverage deep neural networks
to generate feasible solutions in an end-to-end manner. Some works (Vinyals et al., 2015; Bello et al.,
2017; Nazari et al., 2018) pioneer this direction to address the Traveling Salesman Problem (TSP)
and VRP. Attention Model (Kool et al., 2019), which combines Transformer with reinforcement
learning, is regarded as a milestone. Policy Optimization with Multiple Optima (POMO) (Kwon
et al., 2020) leverages solution symmetry to improve policy learning and has become a typical back-
bone model for many subsequent extensions (Bi et al., 2024; Chen et al., 2025b; 2023a; Zhou et al.,
2024b; Hou et al., 2023; Fang et al., 2024) due to its prominent performance and flexibility. Recently,
RELD (Huang et al., 2025) has emerged as the SOTA backbone model by incorporating a feedfor-
ward neural network (FFN) and identity mapping (IDT) into the decoder. 2) Neural improvement
methods employ neural networks to replace handcrafted rules, iteratively refining an initial solution
to meet specified requirements (Wu et al., 2021; Ma et al., 2021; Luo et al., 2025; Ma et al., 2023).
Although such methods often yield superior solutions, their computational overhead is considerable.
Consequently, this paper focuses on neural construction methods.

Some subsequent works enhance the generalization of neural construction methods across problem
sizes (Luo et al., 2023; Pan et al., 2025), node distributions (Bi et al., 2022; Liu et al., 2024a) and
their interactions (Manchanda et al., 2022; Wang et al., 2024). Our work targets a more challenging
and underexplored scenario: generalization across diverse VRP tasks.

Cross-task generalization for VRPs. Recent studies (Drakulic et al., 2024; Wang & Yu, 2023;
Jiang et al., 2024b) investigate a unified model for cross-task CO problems, but focus only on ID
generalization. In addition, Lin et al. (2024) develop fine-tuning adapters on a pre-trained TSP model
for new tasks. These methods fall short of zero-shot OOD generalization across diverse VRPs.

Existing approaches to zero-shot OOD generalization for diverse VRPs with constraint combina-
tions can be divided into two categories. One type, such as POMO-MTL (Liu et al., 2024b),
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Figure 1: Illustrations of feasible solutions with various constraints.

RouteFinder (Berto et al., 2024), and CaDA (Li et al., 2025a), adopts a task-shared dense model,
which overemphasizes coupled representations at the expense of task-specific ones, leading to neg-
ative transfer among tasks. The other type employs a node-level MoE model to route each node
embedding to different experts, like MVMoE (Zhou et al., 2024a). ReLD-MoEL (Huang et al.,
2025) integrates MVMoE with the ReLD backbone, achieving the SOTA performance on OOD
generalization across VRP tasks. Nevertheless, these node-level MoE models suffer from narrow
expert vision limited to a node subset, which deteriorates task-level generalization (Further compar-
isons with the MoE models are provided in Appendix F.1). In summary, existing models overlook
the structural characteristic of VRPs, which motivates us to propose a novel architecture, CoEKS.
Along another orthogonal lines of research, Liu et al. (2025) propose a pre-training paradigm for
VRPs to improve generalization and Goh et al. (2025) study the multi-task multi-distribution VRPs
using a mixture-of-depths architecture with clustering.

3 PRELIMINARIES

3.1 VEHICLE ROUTING PROBLEMS

Formally, VRP is modeled on a complete graph G = (V,E), where V = V0 ∪ Vc includes a depot
node V0 and customer nodes Vc = {v1, . . . , vn}. Each node vi ∈ V is associated with 2D coordinate
xi ∈ [0, 1]2. Edge set E connects all node pairs, with each edge (i, j) ∈ E associated with cost
cij , measured by the Euclidean distance. Each customer node vi ∈ Vc has a non-negative demand
di ≥ 0, while the depot has zero demand. A VRP solution τ consists of a set of routes, each
executed by a vehicle, that collectively visit all customers exactly once while satisfying task-specific
constraints. The objective is to minimize total cost: minτ∈Φ c(τ), where c(τ) =

∑
r∈τ

∑
(i,j)∈r cij ,

Φ denotes the set of feasible solutions, and r represents a route assigned to a vehicle.

VRP tasks are defined by applying different sets of practical constraints (see Figure 1) to reflect
diverse real-world operational requirements. This paper focuses on six basic constraints from recent
studies (Berto et al., 2024; Zhou et al., 2024a). 1) Capacity (C): Each vehicle has a maximum
capacity Q, i.e. the total demand of customers along any route must not exceed Q. 2) Open Route
(O): Vehicles are allowed to end their routes at the last customer instead of returning to the depot.
3) Backhaul (B): Customers are divided into linehaul nodes that require goods from the depot
(delivery demand di) and backhaul nodes that need goods to return to the depot (pickup demand
pi). Vehicles serve both on a single route, but all linehaul deliveries must precede backhaul pickups.
4) Duration Limit (L): Each route is subject to a maximum duration or distance limit L, ensuring
balanced workloads and operational feasibility. 5) Time Window (TW): Each customer ni has a
time window [ei, li] and service duration si. Service must start within [ei, li]. Early arrivals must
wait, and service is not allowed after li. Additionally, all vehicles must return to the depot before a
global time limit Tmax. 6) Mixed Backhauls (MB): Unlike backhaul, MB relaxes the strict linehaul-
before-backhaul priority, allowing flexible sequences.

Each basic constraint can exist individually or in combination, resulting in a rich set of VRP tasks.
Their interplay introduces significant task diversity, requiring flexible and generalizable methods.
More details on the VRP configurations and data generation process are provided in Appendix A.

3.2 NEURAL CONSTRUCTION METHODS

Neural construction methods represent a cutting-edge approach to solving VRPs, using deep re-
inforcement learning to construct solutions in an autoregressive manner, eliminating the need for
precomputed labels or handcrafted heuristics. Typically, such methods adopt a deep neural network
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θ with an encoder-decoder architecture to parameterize a stochastic policy. The encoder processes
static VRP features (e.g., node coordinates and demands) to produce node embeddings. At each
step, the decoder integrates these embeddings with dynamic context (e.g., remaining vehicle capac-
ity, current route length) to output a probability distribution over unvisited nodes, from which the
next node is sampled. This process repeats until all customers have been visited, forming a com-
plete solution. The solution construction is modeled as a Markov Decision Process, where state
consists of the instance and current partial solution, and the action comprises the set of selectable
nodes. Given a graph G, the policy network θ specifies the probability of a solution τ , expressed
autoregressively as pθ(τ |G) =

∏T
t=1 pθ(at|st), where at and st are the action and state at step t,

respectively. T is the total number of decoding steps. The reward is defined as the negative cost of
tour τ , i.e., r(τ) = −c(τ). The task loss Lp is defined as the expected total cost. The policy is op-
timized via REINFORCE with a shared baseline b(G), defined as the average reward over multiple
sampled trajectories per instance (Kwon et al., 2020). The policy gradient is estimated as:

∇θLp(θ|G) = Epθ(τ |G) [(r(τ)− b(G))∇θ log pθ(τ |G)] . (1)

4 METHODOLOGY

This section presents the proposed combination-of-experts with knowledge sharing (CoEKS), which
is tailored for cross-task generalization for VRPs with basic constraints and their combinations. The
overall model structure is shown in Figure 2, where CoEKS is employed in the encoder (see Ap-
pendix B for details). CoEKS addresses this challenge through two complementary components:
1) a combination-of-experts (CoE) model that learns specialized knowledge and enables adaptive
combinations of constraint-specific experts to handle diverse VRP tasks; and 2) a multi-view knowl-
edge sharing strategy that enhances the model’s learning of transferable general knowledge across
different constraints, thereby improving cross-task generalization for VRPs.

4.1 COE MODEL

The CoE model extends the transformer-based architecture by introducing expert and combiner
modules in the encoder. Each expert specializes in a basic constraint and adaptively aggregate their
expertise through combiners, enabling efficient handling of VRPs with combinations of constraints.

Constraint-specific expert. In a standard transformer block, the FFN processes node embeddings
to capture complex relationships. CoEKS replace the FFN into a pool of constraint-specific experts
(i.e., FFNs), where each expert (for j ∈ E = {C,O,B,L, TW}) specializes in a specific constraint:
capacity (EC), open route (EO), backhaul (EB), duration limit (EL), and time window (ETW ). For
a given VRP instance with constraint set CS ⊆ E , only the corresponding experts are activated, with
outputs defined as:

OE
j (h) =

{
Ej(h), if j ∈ CS,
0, otherwise, (2)

where Ej(h) = FFNj(h) ∈ Rd is the output of the j-th expert, and h ∈ Rd is the input embedding.
Since the capacity C is a fundamental constraint underlying all VRP tasks, a shared expert mech-
anism (Dai et al., 2024) is employed, where the expert EC is always activated as a shared expert
corresponding to CVRP. This design ensures universal problem-solving capability while facilitating
expert specialization.

Combiner. To adaptively the combine outputs of activated experts, we introduce a combiner for each
expert Ej , parameterized by Wj ∈ R1×d. The raw values of activated combiners are sj(h) = Wj ·
h, j ∈ CS, and then weights corresponding to the experts are calculated by softmax normalization:

Sj(h) =
exp(sj(h))∑

k∈CS exp(sk(h))
, j ∈ CS, (3)

with Sk(h) = 0 for inactive experts (k /∈ CS). Therefore, the final output of CoE can be obtained
by a weighted combination of active experts:

O(h) =
∑
j∈CS

Ej(h) · Sj(h). (4)
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Figure 2: Workflow of the cross-task VRP method with CoEKS: Sampling an OVRP instance from
the training set (gray parts indicate inactive constraints), the encoder generates node embeddings,
and the decoder constructs a feasible solution. CoEKS output is determined by the activated experts
and combiners, with mutual distillation (MD) among the activated experts. The trained policy then
generalizes to OOD tasks. Add represents residual connections and Norm denotes normalization.

4.2 MULTI-VIEW KNOWLEDGE SHARING STRATEGY

The CoE model effectively specializes experts in distinct constraints, serving as a foundation for han-
dling diverse VRP tasks. To complement this, a multi-view knowledge sharing strategy is proposed
to enhance the model’s learning of transferable knowledge across different constraints, thereby im-
proving OOD generalization. This strategy operates in two views: expert-view and combiner-view.

Expert-view knowledge sharing. To broaden the expert vision and strengthen their comprehen-
sive understanding of VRPs, we introduce mutual distillation (MD), where active experts exchange
knowledge to capture shared patterns across constraints. Unlike traditional knowledge distillation,
which transfers knowledge from a teacher to a student model, MD encourages peer-to-peer learning
among experts (Xie et al., 2024). An auxiliary loss Lmd is incorporated to facilitate this process.
The overall loss function is defined as follows, where Lp denotes the primary loss of the task, and α
controls the distillation strength.

L = Lp + α · Lmd, (5)

Lmd is calculated as:

Lmd =


0, K = 1,

MSE(E1(h), E2(h)), K = 2,
1
K

∑K
i=1 MSE(Ei(h), Eavg(h)), K > 2,

(6)

where K is the number of active experts, Ei(h) ∈ Rd is the output of the i-th expert, Eavg(h) =
1
K

∑K
i=1 Ei(h) is a virtual expert averaging active expert outputs, and MSE is the mean squared

error. For K = 1 (i.e., CVRP with only EC), Lmd = 0. The virtual expert simplifies computation
for K > 2 by reducing the complexity from O(K2) (pairwise comparisons) to O(K), while still
guiding experts toward a consensus by minimizing the variance of their outputs.

To realize the trade-off between specialized and general knowledge, MD is employed in the lower
encoder layer (e.g., the first layer). This design choice is inspired by the property that lower lay-
ers in neural networks tend to capture general features, while higher layers focus on task-specific
knowledge (Long et al., 2017). By localizing knowledge sharing to these early representations, our
method promotes the exchange of broadly useful information among experts without causing a ho-
mogenization of their expertise. The similarity of expert representations in the lower encoder layers
is empirically validated via the t-SNE analysis in Appendix F.2.

Combiner-view knowledge sharing. To further enhance generalization to unseen constraint combi-
nations, we introduce a combiner-view knowledge sharing mechanism. Specifically, a shared trans-
formation layer fs is applied to the input embedding h before it reaches the combiners introduced
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in Section 4.1. Therefore, fs can inject cross-task knowledge for all combiners, enabling them to
make informed weighting decisions across diverse VRP tasks. Given the importance of nonlinearity
in modeling complex functions, we introduce nonlinearity to improve the representation of fs. For
simplicity, fs is implemented as a low-rank multilayer perceptron (MLP) with a residual connection:

fs(h) = W2 · ReLU(W1 · h) + h, (7)

where W1 ∈ Rd×r and W2 ∈ Rr×d are weight matrices forming a bottleneck structure with r ≪ d,
enhancing parameter efficiency while preserving expressiveness. The final output of CoEKS is:

OCoEKS(h) =
∑
j∈CS

Ej(h) · Sj(fs(h)). (8)

4.3 INFERENCE FOR CONSTRAINT COMBINATIONS AND ADAPTATION TO NEW CONSTRAINTS

During inference, CoEKS addresses diverse VRPs by activating experts corresponding to specific
constraint combinations, as illustrated in Figure 2. It achieves zero-shot OOD generalization for
unseen combinations by flexibly combining constraint-specific experts. When encountering unseen
basic constraints, new experts are plugged into the trained model and fine-tuned in isolation, with all
existing parameters frozen to prevent catastrophic forgetting. This design maintains acquired knowl-
edge and enables continuous rapid adaptation to new constraints, facilitating scalable deployment.

5 EXPERIMENTS

In this section, extensive experiments are conducted on 48 VRP tasks. All experiments are carried
out on an NVIDIA RTX 3090 GPU and an AMD Ryzen 5 3600. Our code and data are publicly
available at https://anonymous.4open.science/r/CoEKS-B0D9/.

We aim to answer the following research questions: Q1. Does CoEKS achieve superior ID and
OOD generalization for tasks with unseen constraint combinations? Q2. Can CoEKS show superior
scalability in OOD tasks with new constraints? Q3. Is universal CoEKS consistently effective across
different backbones? Q4. How effective is the knowledge sharing strategy in CoEKS?

Baselines. 1) Traditional methods. Two heuristic solvers are employed in this study: the state-of-
the-art PyVRP (Wouda et al., 2024) and Google OR-Tools (Furnon & Perron, 2023). Both methods
use a single CPU core to solve each instance. For node sizes n = 50 and n = 100, the time
limits are 10 and 20 seconds. 2) Neural methods. Recent representative cross-task VRP methods are
considered, including POMO-MTL (Liu et al., 2024b), RF-TE (Berto et al., 2024), MVMoE (Zhou
et al., 2024a), CaDA (Li et al., 2025a), and ReLD-MoEL (Huang et al., 2025). RF-TE and ReLD-
MoEL are the strongest variants reported in RouteFinder (Berto et al., 2024) and ReLD (Huang et al.,
2025). CoEKS is implemented on the SOTA ReLD backbone (see Appendix B for more details).

Training. Our settings mostly follow RouteFinder (Berto et al., 2024). Each model is trained for
300 epochs, with each epoch containing 100K VRP instances. The Adam optimizer is used with
a learning rate of 3 × 10−4 and batch sizes are set to 256 and 128 for n = 50 and n = 100,
respectively. The learning rate is multiplied by 0.1 at epochs 270 and 295. Our training task set
is similar to MVMoE, including CVRP, OVRP, VRPB, VRPL, VRPTW, OVRPTW, and OVRPL
(see Appendix C.1 for further discussion). CoEKS adopts the mixed batch training and reward
regularization scheme from RouteFinder, with the distillation strength α set to 0.01. MD is employed
in the first encoder layer. For all neural methods, the rest of the settings follow their original papers.

Inference & Metrics. For all neural methods, a greedy rollout with ×8 instance augmentation (Zhou
et al., 2024a) is employed. The test set is obtained through random sampling, with 1000 instances
per VRP task to reduce the impact of randomness. We show the average results of the tests, including
the objective value (total cost), the gap to the best traditional solver, and the total test time.

(Q1) Generalization for ID and OOD VRPs. Table 1 presents the results on ID tasks. Across
different problem scales, CoEKS outperforms all neural methods on ID average gap (ID Avg.) and
achieves the smallest gaps in 10 out of 14 cases. To evaluate their zero-shot OOD generalization
performance, all methods are examined on 9 VRP tasks with unseen constraint combinations. As
shown in Table 2, CoEKS consistently achieves the best performance, demonstrating its ability to
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Table 1: Performance on 1K test instances of ID VRP tasks.
Method n = 50 n = 100 Method n = 50 n = 100

Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time
C

V
R

P
HGS-PyVRP# 10.372 * 10.4m 15.628 * 20.8m

V
R

PT
W

HGS-PyVRP# 16.031 * 10.4m 25.423 * 20.8m
OR-Tools# 10.572 1.907% 10.4m 16.280 4.178% 20.8m OR-Tools# 16.089 0.347% 10.4m 25.814 1.506% 20.8m
POMO-MTL 10.502 1.257% 1s 15.875 1.617% 7s POMO-MTL 16.428 2.471% 1s 26.487 4.173% 7s
MVMoE 10.482 1.059% 2s 15.841 1.399% 9s MVMoE 16.439 2.550% 2s 26.472 4.113% 9s
RF-TE 10.497 1.213% 1s 15.829 1.327% 6s RF-TE 16.390 2.237% 1s 26.283 3.363% 7s
CaDA 10.491 1.148% 3s 15.822 1.277% 11s CaDA 16.297 1.651% 2s 26.119 2.721% 12s
ReLD-MoEL 10.467 0.920% 2s 15.797 1.116% 9s ReLD-MoEL 16.414 2.386% 2s 26.388 3.782% 9s
CoEKS 10.464 0.891% 2s 15.787 1.057% 9s CoEKS 16.361 2.050% 2s 26.300 3.433% 9s

O
V

R
P

HGS-PyVRP# 6.507 * 10.4m 9.725 * 20.8m

V
R

PL

HGS-PyVRP# 10.587 * 10.4m 15.766 * 20.8m
OR-Tools# 6.553 0.686% 10.4m 9.995 2.732% 20.8m OR-Tools# 10.570 2.343% 10.4m 16.466 5.302% 20.8m
POMO-MTL 6.706 3.025% 1s 10.173 4.592% 6s POMO-MTL 10.756 1.550% 1s 16.090 2.059% 7s
MVMoE 6.685 2.697% 2s 10.138 4.226% 8s MVMoE 10.736 1.362% 2s 16.053 1.822% 9s
RF-TE 6.678 2.595% 1s 10.097 3.813% 6s RF-TE 10.742 1.434% 1s 16.017 1.606% 6s
CaDA 6.683 2.668% 2s 10.105 3.882% 11s CaDA 10.729 1.317% 2s 16.014 1.584% 11s
ReLD-MoEL 6.661 2.343% 2s 10.073 3.559% 9s ReLD-MoEL 10.713 1.153% 2s 15.998 1.482% 9s
CoEKS 6.648 2.138% 2s 10.046 3.290% 8s CoEKS 10.712 1.152% 2s 15.997 1.476% 9s

V
R

PB

HGS-PyVRP# 9.687 * 10.4m 14.377 * 20.8m

O
V

R
PT

W

HGS-PyVRP# 10.510 * 10.4m 16.926 * 20.8m
OR-Tools# 9.802 1.159% 10.4m 14.933 3.853% 20.8m OR-Tools# 10.519 0.078% 10.4m 17.027 0.583% 20.8m
POMO-MTL 9.995 3.177% 1s 14.989 4.279% 7s POMO-MTL 10.691 1.700% 2s 17.500 3.367% 7s
MVMoE 9.966 2.867% 2s 14.952 4.025% 9s MVMoE 10.696 1.747% 2s 17.485 3.278% 10s
RF-TE 9.984 3.050% 1s 14.926 3.838% 6s RF-TE 10.675 1.542% 1s 17.363 2.555% 7s
CaDA 9.965 2.860% 2s 14.906 3.699% 11s CaDA 10.626 1.084% 3s 17.267 1.990% 13s
ReLD-MoEL 9.936 2.557% 2s 14.877 3.496% 9s ReLD-MoEL 10.682 1.613% 2s 17.429 2.945% 10s
CoEKS 9.930 2.497% 2s 14.854 3.338% 9s CoEKS 10.659 1.393% 2s 17.376 2.633% 10s

O
V

R
PL

HGS-PyVRP# 6.507 * 10.4m 9.724 * 20.8m

(I
D

A
vg

.)

HGS-PyVRP# 10.029 * 10.4m 15.367 * 20.8m
OR-Tools# 6.552 0.668% 10.4m 10.001 2.791% 20.8m OR-Tools# 10.094 1.574% 10.4m 15.788 2.992% 20.8m
POMO-MTL 6.709 3.070% 1s 10.177 4.625% 6s POMO-MTL 10.255 2.321% 1s 15.899 3.530% 7s
MVMoE 6.687 2.737% 2s 10.140 4.244% 9s MVMoE 10.242 2.146% 2s 15.869 3.301% 9s
RF-TE 6.678 2.606% 1s 10.096 3.803% 6s RF-TE 10.235 2.097% 1s 15.802 2.901% 6s
CaDA 6.684 2.685% 2s 10.106 3.900% 11s CaDA 10.211 1.916% 2s 15.763 2.722% 11s
ReLD-MoEL 6.661 2.341% 2s 10.075 3.583% 9s ReLD-MoEL 10.219 1.902% 2s 15.805 2.852% 9s
CoEKS 6.648 2.135% 2s 10.047 3.298% 9s CoEKS 10.203 1.751% 2s 15.773 2.646% 9s

(ID Avg.): Average performance across ID VRP tasks. bold: Best results among learning-based methods. #: Results are adopted from Berto
et al. (2024) for the convenience of comparison. *: Best traditional method, taken as the baseline for gap calculation.

effectively handle unseen constraint combinations by adaptively combining experts. For n = 50
and n = 100, CoEKS outperforms all other neural methods in the overall OOD average gap (OOD
Avg.), with relative improvements of at least 18.3% and 13%, respectively. Moreover, compared
with the traditional solvers, CoEKS achieves competitive results with substantially lower solving
time, offering notable efficiency for practical applications. All neural methods are also tested on
the OOD large-scale real-world instances of the CVRPLIB benchmark dataset (n > 500), where
CoEKS consistently delivers superior generalization results (see Appendix D).

(Q2) Scalability for adaptation to unseen constraints by plugging in new experts. An unseen
constraint MB is considered in VRP tasks, following the challenging setting in RouteFinder. Co-
EKS plugs a new MB-specific expert into the trained model and only fine-tunes this expert. Lin
et al. (2024) introduce task-specific adapter layers (AL) for fine-tuning. RouteFinder proposes
efficient adaptation layers (EAL) (Berto et al., 2024), which extend the weight matrix with zero-
padding to support new constraints. We compare: 1) AL-based methods, including RF-TE-AL and
ReLD-MoEL-AL; 2) EAL-based methods, including RF-TE-EAL and ReLD-MoEL-EAL; 3) two
variants of our method. CoEKS+, where the new expert and combiner are randomly initialized;
and CoEKSc+, which reuses shared modules (Ec and Sc) for initialization to accelerate learning,
inspired by Jiang et al. (2024a). For simplicity, our variants both use EAL to adapt to new constraint
attributes. Aligning with RouteFinder, fine-tuning is conducted for 10 epochs with 10K instances
per epoch on tasks including VRPMB and VRPMBTW (see Appendix C.2 for more discussions).

As shown in Table 3, our methods consistently outperforms all baselines, where CoEKSc+ exploits
the knowledge of shared modules in CoE and performs best. This demonstrates that CoEKS has su-
perior scalability in adapting to a new constraint by flexibly plugging in a new expert and combiner.
This advantage is further amplified in OOD tasks with more constraints, where the extended model
capability allows CoEKS to better handle complex generalization challenges (see Appendix F.3 for
further validation on scalability to new Multi-Depot (MD) constraint).

(Q3) Universality across backbone models. we implement CoEKS on both the classic
POMO (Kwon et al., 2020) and the SOTA ReLD (Huang et al., 2025) backbones. The POMO-
based methods include POMO-MTL (Liu et al., 2024b), RF-TE (Berto et al., 2024), MVMoE (Zhou
et al., 2024a), and our POMO-CoEKS. The ReLD-based methods include ReLD-MTL, ReLD-RF,
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Table 2: Performance on 1K test instances of OOD VRP tasks.
Method n = 50 n = 100 Method n = 50 n = 100

Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time
O

V
R

PB

HGS-PyVRP# 6.898 * 10.4m 10.335 * 20.8m

V
R

PB
L

HGS-PyVRP# 10.186 * 10.4m 14.779 * 20.8m
OR-Tools# 6.928 0.412% 10.4m 10.577 2.315% 20.8m OR-Tools# 10.331 1.390% 10.4m 15.426 4.338% 20.8m
POMO-MTL 7.447 7.886% 1s 12.091 16.926% 7s POMO-MTL 10.743 5.284% 1s 15.875 7.246% 7s
MVMoE 7.371 6.797% 2s 11.720 13.305% 9s MVMoE 10.709 4.936% 2s 15.792 6.699% 9s
RF-TE 7.378 6.900% 1s 11.840 14.520% 7s RF-TE 10.777 5.685% 1s 17.011 15.149% 6s
CaDA 7.701 11.549% 2s 11.796 14.074% 12s CaDA 10.794 5.705% 2s 15.883 7.399% 12s
ReLD-MoEL 7.335 6.272% 2s 11.446 10.691% 10s ReLD-MoEL 10.621 4.130% 2s 15.639 5.694% 9s
CoEKS 7.241 4.913% 2s 11.251 8.811% 10s CoEKS 10.650 4.387% 2s 15.636 5.691% 9s

V
R

PB
T

W

HGS-PyVRP# 18.292 * 10.4m 29.467 * 20.8m

V
R

PL
T

W

HGS-PyVRP# 16.356 * 10.4m 25.757 * 20.8m
OR-Tools# 18.366 0.383% 10.4m 29.945 1.597% 20.8m OR-Tools# 16.441 0.499% 10.4m 26.259 1.899% 20.8m
POMO-MTL 19.105 4.409% 1s 31.419 6.592% 8s POMO-MTL 16.864 3.057% 1s 27.041 4.929% 7s
MVMoE 18.976 3.717% 2s 31.441 6.675% 10s MVMoE 16.868 3.088% 2s 26.996 4.765% 10s
RF-TE 19.029 4.011% 1s 31.383 6.479% 7s RF-TE 16.865 3.069% 1s 27.055 4.983% 7s
CaDA 19.118 4.491% 3s 31.568 7.117% 13s CaDA 16.780 2.514% 2s 26.853 4.194% 13s
ReLD-MoEL 18.994 3.821% 2s 31.218 5.920% 10s ReLD-MoEL 16.951 3.599% 2s 27.222 5.663% 10s
CoEKS 18.882 3.210% 2s 31.168 5.746% 10s CoEKS 16.847 2.949% 2s 26.891 4.355% 10s

O
V

R
PB

L

HGS-PyVRP# 6.899 * 10.4m 10.335 * 20.8m

O
V

R
PB

T
W

HGS-PyVRP# 11.669 * 10.4m 19.156 * 20.8m
OR-Tools# 6.927 0.386% 10.4m 10.582 2.363% 20.8m OR-Tools# 11.682 0.109% 10.4m 19.303 0.757% 20.8m
POMO-MTL 7.451 7.937% 1s 12.135 17.341% 7s POMO-MTL 12.094 3.596% 1s 20.255 5.690% 8s
MVMoE 7.440 7.778% 2s 11.823 14.289% 10s MVMoE 12.027 3.038% 2s 20.270 5.759% 11s
RF-TE 7.638 10.632% 1s 11.876 14.864% 6s RF-TE 12.088 3.548% 1s 20.314 5.986% 8s
CaDA 7.699 11.505% 2s 11.791 14.024% 12s CaDA 12.143 4.005% 3s 20.401 6.430% 13s
ReLD-MoEL 7.344 6.380% 2s 11.427 10.506% 10s ReLD-MoEL 12.039 3.125% 2s 20.159 5.192% 11s
CoEKS 7.230 4.747% 2s 11.245 8.755% 9s CoEKS 11.972 2.566% 2s 20.114 4.957% 10s

O
V

R
PL

T
W

HGS-PyVRP# 10.51 * 10.4m 16.926 * 20.8m

V
R

PB
LT

W

HGS-PyVRP# 18.361 * 10.4m 29.026 * 20.8m
OR-Tools# 10.497 0.114% 10.4m 17.023 0.728% 20.8m OR-Tools# 18.422 0.332% 10.4m 29.830 2.770% 20.8m
POMO-MTL 10.695 1.735% 1s 17.508 3.415% 7s POMO-MTL 19.482 4.746% 1s 31.940 7.081% 7s
MVMoE 10.725 2.015% 2s 17.489 3.300% 10s MVMoE 19.361 4.119% 2s 31.996 7.286% 10s
RF-TE 10.706 1.837% 1s 17.500 3.363% 7s RF-TE 19.410 4.379% 1s 31.936 7.089% 7s
CaDA 10.627 1.097% 2s 17.273 2.027% 13s CaDA 19.472 4.713% 3s 32.447 8.832% 14s
ReLD-MoEL 10.702 1.791% 2s 17.462 3.144% 10s ReLD-MoEL 19.563 5.212% 2s 32.222 8.056% 11s
CoEKS 10.681 1.603% 2s 17.402 2.785% 10s CoEKS 19.283 3.714% 2s 31.738 6.423% 10s

O
V

R
PB

LT
W

HGS-PyVRP# 11.668 * 10.4m 19.156 * 20.8m

(O
O

D
A

vg
.)

HGS-PyVRP# 12.315 * 10.4m 19.437 * 20.8m
OR-Tools# 11.681 0.106% 10.4m 19.305 0.767% 20.8m OR-Tools# 12.364 0.415% 10.4m 19.806 1.948% 20.8m
POMO-MTL 12.101 3.659% 1s 20.287 5.854% 8s POMO-MTL 12.887 4.701% 1s 20.950 8.341% 8s
MVMoE 12.100 3.655% 2s 20.306 5.949% 10s MVMoE 12.842 4.349% 2s 20.870 7.559% 10s
RF-TE 12.063 3.342% 1s 20.291 5.887% 7s RF-TE 12.884 4.823% 1s 21.023 8.702% 7s
CaDA 12.129 3.889% 3s 20.356 6.206% 13s CaDA 12.940 5.496% 2s 20.930 7.812% 13s
ReLD-MoEL 12.082 3.490% 2s 20.266 5.747% 11s ReLD-MoEL 12.848 4.202% 2s 20.784 6.735% 11s
CoEKS 11.999 2.797% 2s 20.158 5.186% 10s CoEKS 12.754 3.432% 2s 20.623 5.857% 10s

(OOD Avg.): Average performance across OOD VRP tasks. bold: Best results among learning-based methods. #: Results are adopted from
Berto et al. (2024) for the convenience of comparison. *: Best traditional method, taken as the baseline for gap calculation.

Table 3: Fine-tuning on VRPMB and VRPMBTW at n=50.

Method
VRPMB OVRPMB VRPMBL VRPMBTW OVRPMBL OVRPMBTW VRPMBLTW OVRPMBLTW

Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap

HGS-PyVRP 9.09 * 6.11 * 16.31 * 9.49 * 6.11 * 10.47 * 16.01 * 10.47 *
RF-TE-AL 11.31 24.69% 9.03 47.92% 22.32 137.22% 19.20 20.32% 13.75 125.04% 14.22 36.37% 19.95 22.81% 14.48 38.90%
RF-TE-EAL 9.25 1.76% 6.38 4.42% 9.73 2.54% 16.36 2.16% 6.39 4.48% 10.71 2.24% 16.80 2.97% 10.88 3.81%
ReLD-MoEL-AL 10.65 17.26% 8.45 38.47% 11.37 19.91% 18.18 13.65% 8.61 41.06% 12.88 23.25% 18.84 15.65% 13.04 24.78%
ReLD-MoEL-EAL 9.32 2.59% 6.43 5.09% 9.71 2.35% 16.38 2.30% 6.43 5.17% 10.67 1.88% 16.93 3.80% 10.70 2.14%
CoEKS+ 9.24 1.61% 6.37 4.19% 9.71 2.23% 16.33 1.92% 6.35 3.84% 10.64 1.57% 16.80 2.97% 10.66 1.75%
CoEKS+c 9.23 1.56% 6.33 3.52% 9.70 2.12% 16.33 1.97% 6.33 3.48% 10.65 1.62% 16.79 2.92% 10.66 1.74%

ReLD-MoEL (Huang et al., 2025), and our ReLD-CoEKS (i.e., the original CoEKS implementa-
tion). MVMoE and ReLD-MoEL retain the MoE modules in their original decoders. Experiments
are conducted on n = 50, and all new methods are trained using the original settings of their corre-
sponding baselines. As illustrated in Figures 3 (a-b), CoEKS consistently delivers the best average
gap on both ID and OOD tasks under both backbone models. These results highlight the universality
and consistent superiority of CoEKS.

(Q4) Effectiveness of knowledge sharing strategy. This section investigates the impact of the
proposed multi-view knowledge sharing strategy. Ablation experiments are conducted on 16 VRP
tasks with n = 50, under consistent training settings. The SOTA ReLD-MoEL serves as the baseline
for comparison. Specifically, three ablated variants are examined: without (w/o) MD, w/o shared
transformation layer, and w/o both. Figures 3 (c-d) show the average gap for all variants on ID
and OOD instances. It demonstrates that the multi-view knowledge sharing strategy significantly
enhances model performance, particularly in OOD generalization. The results verify that multi-
view knowledge sharing contributes to the learning of transferable knowledge across constraints.
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(a) Verification of universality
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(c) Ablation study on CoEKS
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(d) Ablation study on CoEKS

Figure 3: Left two panels: universality tests both (a) ID and (b) OOD tasks. Right two panels:
ablation Study both (c) ID and (d) OOD tasks.

w/o MD{1}
{1~2}

{1~3}
{1~4}

{1~5}
{1~6}

1.74
1.76
1.78
1.80
1.82
1.84
1.86
1.88

(I
D

.) 
Av

er
ag

e 
G

ap
 (%

)

(a) Position of MD
w/o MD{1}

{1~2}
{1~3}

{1~4}
{1~5}

{1~6}
3.42
3.50
3.58
3.66
3.74
3.82
3.90
3.98

(O
O

D
.) 

Av
er

ag
e 

G
ap

 (%
)

(b) Position of MD

0
0.001

0.005
0.01

0.05 0.1 0.5 1 10
1.74

1.76

1.78

1.80

1.82

1.84

1.86

(I
D

.) 
Av

er
ag

e 
G

ap
 (%

)

(c) Distillation strength
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(d) Distillation strength

Figure 4: Left two panels: effect of MD position on (a) ID and (b) OOD performance. The horizontal
axis is the encoder layer number. Right two panels: effect of MD strength on (c) ID and (d) OOD
performance. The x-axis is the weight α.

Position of MD. The effect of mutual distillation (MD) among experts at different encoder layers is
studied. Starting from a CoEKS variant w/o MD, the MD mechanism is gradually introduced from
lower to higher encoder layers, until enabled throughout. As shown in Figures 4 (a-b), incorporating
MD is generally beneficial for ID generalization unless applied to all layers. This suggests that
moderate expert collaboration may promote their comprehensive understanding of the training task.
For OOD generalization, improvements are observed only when MD is applied to the lower layers.
The findings imply that deeper layers encode more task-specific patterns. Applying MD on these
layers may lead to homogenization of knowledge specialized in constraints, thus preventing model
generalization to new VRPs with unseen constraint combinations. These results validate our choice
of applying MD only at the first encoder layer, which achieves a good balance between expert
interaction and specialization. Distillation Strength. We further assess the impact of the distillation
coefficient α by measuring average gaps on both ID and OOD tasks. Figures 4 (c-d) show that
a properly chosen α enhances overall performance. However, when α increases beyond a certain
threshold, the experts tend to produce overly similar outputs, resulting in no performance gains. This
supports our use of α = 0.01 as a simple and effective setting.

6 CONCLUSION

This paper presents CoEKS, a novel model that leverages the structural characteristic of VRPs to
address cross-task challenges. CoEKS integrates two complementary components: a combination-
of-experts architecture that adaptively combines constraint-specific experts for diverse VRPs, and a
multi-view knowledge sharing strategy that automatically learns transferable knowledge to enhance
cross-task generalization. In addition, new experts can be seamlessly plugged into the trained model
to handle unseen constraints. Extensive evaluations on 24 VRP tasks demonstrate that CoEKS
achieves SOTA performance on ID tasks and yields even greater gains on OOD scenarios, includ-
ing unseen constraint combinations and new constraints. Furthermore, CoEKS exhibits consistent
superiority across backbone models, highlighting its universality.

A current limitation is that handling more constraints inevitably increases the number of parame-
ters. However, this trade-off is natural, since more complex problems with more constraints demand
stronger model capability. A promising future direction is to explore more efficient expert-sharing
mechanisms enabling a single expert to serve multiple similar constraints, or more efficient param-
eterization strategies to scale model capability.
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Tierney, and Jinkyoo Park. Routefinder: Towards foundation models for vehicle routing problems.
In ICML 2024 Workshop on Foundation Models in the Wild, 2024.

Jieyi Bi, Yining Ma, Jiahai Wang, Zhiguang Cao, Jinbiao Chen, Yuan Sun, and Yeow Meng Chee.
Learning generalizable models for vehicle routing problems via knowledge distillation. In Ad-
vances in Neural Information Processing Systems, volume 35, pp. 31226–31238, 2022.

Jieyi Bi, Yining Ma, Jianan Zhou, Wen Song, Zhiguang Cao, Yaoxin Wu, and Jie Zhang. Learning
to handle complex constraints for vehicle routing problems. In Advances in Neural Information
Processing Systems, volume 37, pp. 93479–93509, 2024.

Aigerim Bogyrbayeva, Meraryslan Meraliyev, Taukekhan Mustakhov, and Bissenbay Dauletbayev.
Machine learning to solve vehicle routing problems: A survey. IEEE Transactions on Intelligent
Transportation Systems, 25(6):4754–4772, 2024.

Jinbiao Chen, Jiahai Wang, Zizhen Zhang, Zhiguang Cao, Te Ye, and Siyuan Chen. Efficient meta
neural heuristic for multi-objective combinatorial optimization. In Advances in Neural Informa-
tion Processing Systems, volume 36, pp. 56825–56837, 2023a.

Jinbiao Chen, Zizhen Zhang, Zhiguang Cao, Yaoxin Wu, Yining Ma, Te Ye, and Jiahai Wang. Neural
multi-objective combinatorial optimization with diversity enhancement. In Advances in Neural
Information Processing Systems, pp. 39176–39188, 2023b.

Jinbiao Chen, Zhiguang Cao, Jiahai Wang, Yaoxin Wu, Hanzhang Qin, Zizhen Zhang, and Yue-Jiao
Gong. Rethinking neural multi-objective combinatorial optimization via neat weight embedding.
In The Thirteenth International Conference on Learning Representations, 2025a.

Jinbiao Chen, Jiahai Wang, Zhiguang Cao, and Yaoxin Wu. Neural multi-objective combinatorial
optimization via graph-image multimodal fusion. In The Thirteenth International Conference on
Learning Representations, 2025b.

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Yu Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-
of-experts language models. In Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 1280–1297, 2024.

Darko Drakulic, Sofia Michel, and Jean-Marc Andreoli. Goal: A generalist combinatorial opti-
mization agent learner. In The Thirteenth International Conference on Learning Representations,
2024.

Han Fang, Zhihao Song, Paul Weng, and Yutong Ban. Invit: A generalizable routing problem solver
with invariant nested view transformer. In International Conference on Machine Learning, pp.
12973–12992, 2024.

Weigang Fu, Jiawei Li, Zhe Liao, and Yaoming Fu. A bi-objective optimization approach for
scheduling electric ground-handling vehicles in an airport. Complex & Intelligent Systems, 11
(4):1–27, 2025.

Vincent Furnon and Laurent Perron. Or-tools routing library, 2023. URL https://
developers.google.com/optimization/routing.

Yong Liang Goh, Zhiguang Cao, Yining Ma, Yanfei Dong, Mohammed Haroon Dupty, and Wee Sun
Lee. Hierarchical neural constructive solver for real-world tsp scenarios. In Proceedings of the
30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 884–895, 2024.

Yong Liang Goh, Yining Ma, Jianan Zhou, Zhiguang Cao, Mohammed Haroon Dupty, and Wee Sun
Lee. Shield: Multi-task multi-distribution vehicle routing solver with sparsity & hierarchy in
efficiently layered decoder. In International Conference on Machine Learning, 2025.

10

https://developers.google.com/optimization/routing
https://developers.google.com/optimization/routing


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Nasimeh Heydaribeni, Xinrui Zhan, Ruisi Zhang, Tina Eliassi-Rad, and Farinaz Koushanfar. Dis-
tributed constrained combinatorial optimization leveraging hypergraph neural networks. Nature
Machine Intelligence, 6(6):664–672, 2024.

Qingchun Hou, Jingwei Yang, Yiqiang Su, Xiaoqing Wang, and Yuming Deng. Generalize learned
heuristics to solve large-scale vehicle routing problems in real-time. In The Eleventh International
Conference on Learning Representations, 2023.

Ziwei Huang, Jianan Zhou, Zhiguang Cao, and Yixin Xu. Rethinking light decoder-based solvers
for vehicle routing problems. In The Thirteenth International Conference on Learning Represen-
tations, 2025.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de Las Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
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Combination-of-Experts with Knowledge Sharing for
Cross-Task Vehicle Routing Problems (Appendix)

A DETAILS OF VRPS

This section provides details on the 6 basic constraints described in Section 3.1. By combining these
constraints with the base CVRP task, a total of 48 VRP tasks are constructed. CoEKS is evaluated
on 16 of these tasks as introduced in MVMoE (Zhou et al., 2024a). To further assess the scalability
of the model to new constraints, scalability experiments are conducted on the remaining 32 VRP
tasks with Mixed Backhauls or Multi-Depots or both (see Table A), following RouteFinder (Berto
et al., 2024). The data generation process for VRP tasks is detailed below.

Node Coordinates. The single depot and all customer nodes are uniformly sampled within the unit
square [0, 1]2.

Capacity (C). Following RouteFinder and MVMoE, the vehicle capacity C is set to 40 for n = 50
and 50 for n = 100. For customer i, the linehaul demand di is sampled from the integer set
{1, 2, . . . , 9}.

Backhaul (B). 20% of customers are randomly selected to sample their backhaul demand from the
integer set {1, 2, . . . , 9}, while the rest are set to 0. For the selected customers, the linehaul demand
is set to 0. As a result, each customer has only one type of demand.

For non-backhaul instances, all backhaul demands are set to 0. Before passing into the model, all
linehaul and backhaul demands are normalized by vehicle capacity C to [0, 1].

Duration Limit (L). This constraint imposes a maximum route length L per vehicle. Following
RouteFinder, L is sampled from U(2max(c0i), 3.0), where c0i is the distance from the depot to
customer i.

Time Window (TW). Following RouteFinder, the time window and service time for customer i are
generated through a multi-step process to ensure feasibility and diversity:

1. Service time: Sample service time si ∼ U [0.15, 0.18].
2. Window length: Sample time window length ∆ti ∼ U [0.18, 0.2].

3. Upper bound: Calculate the upper bound for start time as ui =
Tmax−si−∆ti

c0i
− 1, where

Tmax is the maximum allowed duration for a route.
4. Start time: Set the start time ei = (1 + (ui − 1) · ri) · c0i, where ri ∼ U(0, 1).
5. End time: Compute the end time li = ei +∆ti.

For the depot node, the time window is fixed to [0, Tmax] and the service time is set to 0. In addition,
the vehicle speed is 1.0.

Open Route (O). The O constraint alters the route structure, allowing vehicles to finish at any
customer node instead of returning to the depot. It is implemented by setting a binary indicator o =
1, without additional data. When combined with other constraints, feasibility checks are adjusted
dynamically:

• With L, the route length is computed without the return-to-depot distance.
• With TW, arrival time calculations omit the depot return segment.
• With C, B, or MB, the constraint logic remains unchanged, while the depot return require-

ment is removed.

Mixed Backhauls (MB) The demand configuration follows the same setup as the backhaul con-
straint. For instances involving MB, a binary flag µ is set to 1 and 0 otherwise. This flag is used to
distinguish between instances with and without the MB constraint.
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Table 4: 48 VRP tasks with 7 constraints. 32 VRP tasks with Mixed Backhauls or Multi-Depots or
both are used to evaluate model’s scalability in adapting to unseen constraints.

VRP task Capacity (C) Open Route (O) Backhaul (B) Mixed Backhauls (MB) Duration Limit (L) Time Window (TW) Multi-Depot (MD)

CVRP ✓
OVRP ✓ ✓
VRPB ✓ ✓
VRPL ✓ ✓
VRPTW ✓ ✓
OVRPTW ✓ ✓ ✓
OVRPL ✓ ✓ ✓
OVRPB ✓ ✓ ✓
VRPBL ✓ ✓ ✓
VRPBTW ✓ ✓ ✓
VRPLTW ✓ ✓ ✓
OVRPBL ✓ ✓ ✓ ✓
OVRPBTW ✓ ✓ ✓ ✓
OVRPLTW ✓ ✓ ✓ ✓
VRPBLTW ✓ ✓ ✓ ✓
OVRPBLTW ✓ ✓ ✓ ✓ ✓
VRPMB ✓ ✓ ✓
OVRPMB ✓ ✓ ✓ ✓
VRPMBL ✓ ✓ ✓ ✓
VRPMBTW ✓ ✓ ✓ ✓
OVRPMBL ✓ ✓ ✓ ✓ ✓
OVRPMBTW ✓ ✓ ✓ ✓ ✓
VRPMBLTW ✓ ✓ ✓ ✓ ✓
OVRPMBLTW ✓ ✓ ✓ ✓ ✓ ✓
MDCVRP ✓ ✓
MDOVRP ✓ ✓ ✓
MDVRPB ✓ ✓ ✓
MDVRPL ✓ ✓ ✓
MDVRPTW ✓ ✓ ✓
MDOVRPTW ✓ ✓ ✓ ✓
MDOVRPL ✓ ✓ ✓ ✓
MDOVRPB ✓ ✓ ✓ ✓
MDVRPBL ✓ ✓ ✓ ✓
MDVRPBTW ✓ ✓ ✓ ✓
MDVRPLTW ✓ ✓ ✓ ✓
MDOVRPBL ✓ ✓ ✓ ✓ ✓
MDOVRPBTW ✓ ✓ ✓ ✓ ✓
MDOVRPLTW ✓ ✓ ✓ ✓ ✓
MDVRPBLTW ✓ ✓ ✓ ✓ ✓
MDOVRPBLTW ✓ ✓ ✓ ✓ ✓ ✓
MDVRPMB ✓ ✓ ✓ ✓
MDOVRPMB ✓ ✓ ✓ ✓ ✓
MDVRPMBL ✓ ✓ ✓ ✓ ✓
MDVRPMBTW ✓ ✓ ✓ ✓ ✓
MDOVRPMBL ✓ ✓ ✓ ✓ ✓ ✓
MDOVRPMBTW ✓ ✓ ✓ ✓ ✓ ✓
MDVRPMBLTW ✓ ✓ ✓ ✓ ✓ ✓
MDOVRPMBLTW ✓ ✓ ✓ ✓ ✓ ✓ ✓

Multi-Depots (M-D) (We use the hyphenated abbreviation M-D to distinguish it from Mutual Dis-
tillation, MD). The single-depot setting is extended to a multi-depot configuration. Vehicles may
start from any depot but must return to the depot they depart from. Appendix F.3 reports results on
24 variants with the M-D constraint. Following RouteFinder, the number of depots is fixed to three.

B DETAILED ARCHITECTURE OF COEKS

B.1 ENCODER

The encoder transforms static node features into embeddings for various VRP tasks. For the i-th
(i ∈ {1, . . . , n}) customer node, the static feature is defined as Fi = {xi, yi, di, pi, ei, li, si}, where
xi, yi represent coordinates, di, pi denote linehaul and backhaul requirements, ei, li specify the time
window, and si indicates service time. The depot node F0 = {x0, y0, µ}, where µ is a binary flag
indicating the presence of mixed backhaul. These features are projected into an initial embedding
h0 ∈ R(n+1)×d through linear layers:

h0 = Concat(Ws1F0,Ws2F1,Ws2F2, . . . ,Ws2Fn). (9)
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Ws1 ∈ R3×d and Ws2 ∈ R7×d are learnable parameter matrices, where d = 128. N (N = 6)
encoder layers process h0 to produce the final embeddings hN . Each encoder layer comprises
two components: a multi-head attention (MHA) layer followed by a feedforward network (FFN)
layer. Both are integrated with residual connections and instance normalization (IN) to stabilize
training (Vaswani et al., 2017). Formally, for the ℓ-th layer (ℓ ∈ [0, N − 1]):

h̃i
ℓ
= IN(hℓ

i + MHA(hℓ
i , h

ℓ
i , h

ℓ
i)), (10)

hℓ+1
i = IN(h̃ℓ

i + FFN(h̃ℓ
i)). (11)

Multi-head attention (MHA). The MHA mechanism employs A (A = 8) attention heads to com-
pute diverse node interactions in parallel. Their outputs are then aggregated into a unified represen-
tation. For an input embedding hℓ

i ∈ Rd, each head a ∈ {1, 2, . . . , A} computes query (Q), key
(K), and value (V ) vectors:

Qℓ,a
i = W a

Qh
ℓ
i , Kℓ,a

i = W a
Khℓ

i , V ℓ,a
i = W a

V h
ℓ
i , (12)

where W a
Q,W

a
K ,W a

V ∈ Rdk×d are learnable parameter matrices, and dk = d/A = 16. These
projections are computed for all nodes i ∈ {0, 1, . . . , n}, with node 0 as the depot. The compatibility
between nodes i and j ∈ {0, 1, . . . , n} is measured via scaled dot-product attention, followed by a
softmax:

uℓ,a
ij = Softmax

(
(Qℓ,a

i )TKℓ,a
j√

d

)
. (13)

A weighted sum over the value vectors is then computed for each head:

zℓ,ai =

n∑
j=0

uℓ,a
ij V ℓ,a

j . (14)

The outputs from heads are concatenated. Finally, a linear transformation is applied to obtain the
output of the i-th node in the MHA layer:

MHA(hℓ
i , h

ℓ
i , h

ℓ
i) = Concat(zℓ,1i , zℓ,2i , . . . , zℓ,Ai )WO, (15)

where WO ∈ Rd×d is a learnable parameter matrix.

Feedforward network (FFN). The FFN layer contains two linear layers with a ReLU activation:

FFN(h̃ℓ
i) = W ℓ

F1
· ReLU(W ℓ

F2
h̃ℓ
i), (16)

where W ℓ
F1

∈ Rdf×d and W ℓ
F2

∈ Rd×df are learnable parameter matrices, and df = 512 denotes
the hidden dimension. In our framework, each FFN layer in each encoder layer is replaced with
a CoEKS layer, comprising k FFNs {FFN1, ...,FFNk}. k = 5 aligns with the number of VRP
constraints considered in our experiments. It can be flexibly extended to adapt new constraints.
According to Eq. (8), Eq. (11) can be rewritten as:

hℓ+1
i = IN(h̃ℓ

i +
∑
j∈CS

FFNj(h̃
ℓ
i) · Sj(fs(h̃

ℓ
i))). (17)

where CS is the set of constraints activated for the current instance, Sj(·) represents the j-th acti-
vated combiner function, and fs(·) is the shared transformation layer.

B.2 DECODER

The decoder constructs solutions by sequentially selecting nodes based on static embeddings hN

(produced by the encoder) and dynamic features Dt = {ct, tt, dt, ot, bt}, where ct, tt, dt, ot, bt rep-
resent the remaining linehaul capacity, current time, current route length, binary open route indicator
and remaining backhaul capacity, respectively. At decoding step t, the context embedding is com-
puted as hc

t = Wc · Concat(hN
t−1,Dt), where Wc ∈ Rd×(d+5) is a learnable parameter matrix and

hN
t−1 denotes the node embedding visited at step t − 1. The context embedding is then updated via

the MHA layer and the identity mapping function (IDT) (Huang et al., 2025):

hc′
t = MHA(hc

t , h
N , hN ) + IDT(hc

t). (18)
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In MHA, hc
t is used to compute queries, and hN is used to compute keys and values:

Qc,a = W c,a
Q ht

c, Kc,a = W c,a
K hN , V c,a = W c,a

V hN , (19)

where W c,a
Q ∈ Rdk×(d+5), W c,a

K ,W c,a
V ∈ Rdk×d are learnable parameter matrices of the a-th

attention head. Then, the output of the MHA layer is obtained by Eqs. (13)-(15). The IDT function
explicitly injects context information into hc′

t , complementing the attention-based update,

IDT(hc
t) = hN

t−1 +W IDTDt, (20)

where W IDT ∈ Rd×5 is a learnable parameter matrix. hc′
t is passed through an FFN layer (see Eq. 16)

with a residual connection to generate the query qct . The logits for all nodes are then computed as:

sit =

C · tanh
(
(qct )

ThN
i√

d

)
, if i ∈ Ft

−∞, otherwise
(21)

where C = 10 is a clipping hyperparameter that bounds the logits to promote exploration. Ft

represents the set of feasible nodes at step t, defined by task-specific constraints. Finally, the node
selection probability is computed using softmax over the logits.

C TRAINING AND FINE-TUNING DATASETS

C.1 TRAINING DATASET

The training task set (see Section 5) follows the configuration in MVMoE (Zhou et al., 2024a),
covering CVRP, OVRP, VRPB, VRPL, VRPTW, and OVRPTW tasks. In addition, we include the
OVRPL task, which is motivated by two key reasons: (1) More complex instance generation. In-
stead of applying a fixed duration limit L as in prior work (Liu et al., 2024b; Zhou et al., 2024a;
Huang et al., 2025), we adopt a sampling-based strategy (Berto et al., 2024) to generate L, resulting
in more diverse and challenging instances. (2) Complex interaction between constraints O and L.
During training, the VRP tasks involving O and L constraints consistently degrade generalization
performance (see validation curves in Figure 5). This instability arises from complex interaction be-
tween the two constraints: O enlarges the solution space by removing the depot-return requirement,
while L restricts it with strict route-length bounds, resulting in convergence difficulties. To address
this, the OVRPL task is included in the training set and all models are retrained to ensure a fair and
consistent comparison.

C.2 FINE-TUNING DATASET

This section explains the rationale for including the VRPMB and VRPMBTW tasks in the fine-
tuning task set. Initially, all methods are fine-tuned solely on the VRPMB task, treating the remain-
ing VRP tasks with MB as out-of-distribution (OOD) generalization targets. As shown in Figure 6,
the generalization performance of VRP tasks involving both TW and MB degrades significantly.
The results may arise from the spatio-temporal conflict between the flexible routing requirements
of MB and the strict deadlines imposed by TW. To mitigate this, VRPMBTW is added to the fine-
tuning task set. As a result, our method consistently improves performance across all tasks, whereas
RF-TE and ReLD-MoEL exhibit convergence failures on several tasks. These findings underscore
the challenges of adapting to unseen constraints and demonstrate the superior scalability of CoEKS.

D CVRPLIB BENCHMARK

All neural methods are evaluated on the CVRPLIB benchmark dataset. Each model is trained on
uniformly distributed instances with n = 100. Additionally, the original POMO model (Kwon
et al., 2020) trained on a single task is also reported. The evaluation primarily focuses on large-scale
datasets (n > 500) in the classic Set-X (Uchoa et al., 2017), following the setup in MVMoE (Zhou
et al., 2024a) and RouteFinder (Berto et al., 2024). While the CaDA paper (Li et al., 2025a) reports
competitive average performance on smaller instances (100–200 nodes), our results reveal severe
generalization issues when scaled to real-world large-scale instances, a scenario not explored in
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Figure 5: The validation curves of ReLD-MoEL trained without (w/o) OVRPL and with (w.)
OVRPL on n = 50.

its study. In contrast, CoEKS achieves the best OOD generalization, surpassing the state-of-the-
art ReLD-MoEL (Huang et al., 2025). The performance gains become more pronounced as the
problem size increases. Notably, the single-task training method (i.e., POMO) demonstrates limited
generalization ability on diverse real-world benchmarks, potentially due to overfitting the uniform
training distribution. Conversely, cross-task training substantially enhances model generalization.

E EFFECTS OF DIFFERENT TRAINING SETS

To further investigate the impact of CoEKS under different training datasets, we consider incorpo-
rating all possible combinations of basic constraints into the training set for VRP tasks, reflecting
RouteFinder’s philosophy of establishing a foundational model for VRPs (Berto et al., 2024). To
ensure a fair comparison, all methods are trained under the same settings.

E.1 TRAINING ON 16 VRP TASKS

The ID generalization results are reported in Table 6, where task types of the test set are identical to
the training set. Among the neural methods, CoEKS delivers the best overall performance. CaDA
shows strength on TW-constrained tasks but struggles to maintain competitive performance on the
remaining variants. In contrast, CoEKS consistently achieves top ranks across all tasks, highlighting
its superior ability to balance diverse VRP variants within a unified model. These results represent
an in-distribution (ID) scenario, as all constraint combinations are included in the training set.

Beyond this ID setting, CoEKS significantly outperforms CaDA in the OOD scenario (see Table 2),
which underscores its potential as a foundation model capable of generalizing to unseen tasks. In ad-
dition, CaDA exhibits particularly poor performance on OOD large-scale instances, whereas CoEKS
consistently demonstrates superior efficacy across these challenging scenarios (see Appendix D).

E.2 FINE-TUNING ON ALL VRP TASKS WITH MB

To evaluate scalability to new constraints, we previously fine-tuned CoEKS on a small set of tasks
with new constraints and evaluated generalization to all tasks. Building on this, we further con-
sider fine-tuning on all VRP tasks with new constraints, aligning with RouteFinder. Following this
setup, all methods are fine-tuned on all VRP tasks with MB. The results are presented in Table 7,
where CoEKS consistently demonstrates superior performance across all tasks. Furthermore, the
relative gap with comparative methods widens, suggesting that the new expert can further refine
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Figure 6: The validation curves of CoEKS, RF-TE, and ReLD-MoEL trained without (w/o)
VRPMBTW and with (w.) VRPMBTW on n = 50.

itself through interaction with diverse experts. This highlights CoEKS’s exceptional scalability to
adapt a new constraint.

F ADDITIONAL EMPIRICAL RESULTS

F.1 COMPARISON WITH MOE

Difference from MoE. 1) Semantically grounded routing: MoE architectures typically use learned
gating to select top-k experts per node embedding, lacking semantic alignment or cross-task reuse.
In contrast, CoEKS better leverages prior knowledge to combine experts, which is both interpretable
and efficient. 2) Broader expert vision: Gating mechanism of MOE-based methods (Zhou et al.,
2024a; Huang et al., 2025) restricts expert vision to a narrow node subset, which weakens experts’
cognition of task-level knowledge. In contrast, CoEKS effectively learns constraint-level knowledge
through dedicated experts and understand task-level knowledge via combination of experts. 3) Sta-

6
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Table 5: Results on large-scale CVRPLIB instances. # Results are adopted from MVMoE(Zhou
et al., 2024a), with the model trained on a single task.

Set-X POMO# RF-TE POMO-MTL MVMoE CaDA ReLD-MoEL CoEKS

Instance Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap

X-n502-k39 75617 9.232% 72098 4.149% 84021 21.372% 81611 17.891% 218153 209.970% 73073 5.557% 73947 6.820%

X-n513-k21 30518 26.102% 30330 25.325% 29022 19.921% 27368 13.086% 213145 780.728% 27063 11.826% 27124 12.078%

X-n524-k153 201877 30.586% 168473 8.978% 173838 12.449% 174427 12.830% 177913 15.085% 174430 12.832% 174325 12.764%

X-n536-k96 106073 11.837% 102320 7.880% 106851 12.657% 105167 10.882% 148424 56.489% 102548 8.121% 103497 9.121%

X-n548-k50 103093 18.908% 102078 17.737% 102217 17.897% 107767 24.299% 297326 242.937% 99121 14.326% 103115 18.933%

X-n561-k42 49370 15.575% 49632 16.188% 48553 13.662% 47759 11.803% 272324 537.507% 47022 10.078% 46838 9.647%
X-n573-k30 83545 64.871% 55296 9.123% 60870 20.123% 66531 31.295% 174353 244.075% 57249 12.977% 54699 7.945%
X-n586-k159 229887 20.792% 208397 9.501% 211421 11.089% 214247 12.574% 221559 16.416% 206793 8.658% 205612 8.037%
X-n599-k92 150572 38.839% 117226 8.091% 122028 12.519% 126915 17.025% 235055 116.738% 116463 7.388% 116547 7.465%

X-n613-k62 68451 14.976% 68066 14.329% 82141 37.971% 67944 14.124% 323944 444.124% 67272 12.996% 66050 10.943%
X-n627-k43 84434 35.825% 69046 11.071% 70923 14.090% 70572 13.526% 211287 239.886% 68141 9.615% 67571 8.698%
X-n641-k35 75573 18.672% 73071 14.740% 72378 13.652% 70445 10.616% 725504 895.002% 69360 8.913% 68650 7.798%
X-n655-k131 127211 19.134% 112355 5.221% 123144 15.325% 126352 18.329% 220787 106.768% 120650 12.989% 113905 6.673%

X-n670-k130 208079 42.197% 167786 14.661% 167131 14.214% 168834 15.377% 256929 75.580% 169163 15.602% 167007 14.129%
X-n685-k75 79482 16.534% 77681 13.893% 99452 45.813% 78080 14.478% 340737 399.578% 78090 14.493% 76402 12.018%
X-n701-k44 97843 19.433% 92541 12.961% 90283 10.205% 89840 9.664% 672868 721.342% 87883 7.275% 87862 7.249%
X-n716-k35 51381 18.463% 50333 16.047% 49420 13.942% 50218 15.782% 354414 717.130% 47981 10.624% 47793 10.191%
X-n733-k159 159098 16.823% 162059 18.997% 184714 35.633% 153087 12.409% 348617 155.984% 153884 12.995% 150508 10.516%
X-n749-k98 87786 13.611% 85623 10.812% 88493 14.526% 86961 12.543% 254573 229.463% 86380 11.791% 84974 9.972%
X-n766-k71 135464 18.395% 132819 16.083% 127674 11.587% 129107 12.839% 642498 461.541% 126139 10.245% 125801 9.950%
X-n783-k48 90289 24.733% 86445 19.422% 84220 16.348% 82163 13.507% 734534 914.746% 80269 10.890% 79444 9.751%
X-n801-k40 124278 69.536% 92149 25.696% 96438 31.546% 88091 20.161% 947629 1192.615% 85315 16.374% 86477 17.959%

X-n819-k171 193451 22.344% 187863 18.810% 188537 19.236% 187714 18.715% 413039 161.217% 175282 10.853% 173464 9.703%
X-n837-k142 237884 22.787% 209629 8.203% 218437 12.749% 223912 15.575% 423693 118.695% 210889 8.853% 208673 7.709%
X-n856-k95 152528 71.447% 99082 11.372% 157894 77.479% 175074 96.790% 482910 442.809% 100320 12.763% 98740 10.987%
X-n876-k59 119764 20.609% 109566 10.339% 110488 11.268% 115516 16.331% 725504 630.626% 106631 7.384% 106684 7.437%

X-n895-k37 70245 30.421% 67995 26.244% 67527 25.375% 64649 20.032% 855272 1487.954% 62172 15.433% 61740 14.631%
X-n916-k207 399372 21.324% 354011 7.544% 382125 16.084% 372237 13.080% 579389 76.010% 355853 8.103% 352206 6.995%
X-n936-k151 237625 79.049% 164931 24.275% 193030 45.447% 160648 21.047% 431829 225.381% 160460 20.906% 158551 19.467%
X-n957-k87 130850 53.104% 110516 29.311% 108401 26.837% 127388 49.053% 557244 552.014% 101629 18.913% 103700 21.336%

X-n979-k58 147687 24.132% 133825 12.481% 134759 13.266% 132546 11.406% 928266 680.213% 129738 9.046% 129074 8.487%
X-n1001-k43 100399 38.759% 92837 28.308% 89098 23.140% 86107 19.006% 1155487 1496.969% 81081 12.060% 80458 11.199%

Avg. Gap 29.66% 14.931% 21.482% 19.252% 457.675% 11.590% 10.832%

ble utilization and load balancing: Existing MOE-based methods (Zhou et al., 2024a; Huang et al.,
2025) typically rely on gating mechanisms to route data to experts, which may lead to load balancing
issues. In contrast, CoEKS explicitly activates experts based on task constraints, ensuring more sta-
ble and balanced expert utilization. 4) Scalability via plugging in new experts: New constraints can
be handled by adding and fine-tuning a dedicated expert without modifying the rest of the trained
model, as validated in Section 5 (Q2). This structural modularity offers practical advantages over
MOE-based methods.

Parameter efficiency analysis compared with MoE methods: When compared with MoE-based
methods (e.g., ReLD-MoEL (Huang et al., 2025)), CoEKS shares the same decoder architecture,
but CoEKS’s encoder has one additional expert. To validate CoEKS’s parameter efficiency, we use
five experts in ReLD-MoEL-E5, resulting in a total of 4.6 million parameters, which matches that of
CoEKS. During training, CoEKS activates an average of two experts, aligning with ReLD-MoEL-E5
that activates the top-2 experts. During inference, the number of activated experts in ReLD-MoEL-
E5 is dynamically adjusted based on task constraints to maintain consistent parameter usage with
CoEKS. The results are presented in Tables 8 and 9. Given the same total and activated parameters,
CoEKS consistently outperforms ReLD-MoEL-E5 across all tasks, in both ID and OOD scenarios.
This underscores that CoEKS achieves superior parameter efficiency through its model architecture.

F.2 T-SNE VISUALIZATION ANALYSIS

To gain insights into how the experts in CoEKS learn and specialize, we visualize their embedding
tokens using t-distributed Stochastic Neighbor Embedding (t-SNE). We performed t-SNE analysis
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Table 6: Performance on 1K test instances of 16 VRPs (the training set includes all 16 VRPs).
Method n = 50 n = 100 Method n = 50 n = 100

Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time
C

V
R

P

HGS-PyVRP# 10.372 * 10.4m 15.628 * 20.8m

V
R

PT
W

HGS-PyVRP# 16.031 * 10.4m 25.423 * 20.8m
OR-Tools# 10.572 1.907% 10.4m 16.280 4.178% 20.8m OR-Tools# 16.089 0.347% 10.4m 25.814 1.506% 20.8m
POMO-MTL 10.520 1.429% 1s 15.910 1.844% 7s POMO-MTL 16.421 2.432% 1s 26.417 3.896% 7s
MVMOE 10.501 1.240% 2s 15.880 1.641% 9s MVMOE 16.397 2.287% 2s 26.389 3.780% 9s
RF-TE 10.509 1.330% 1s 15.861 1.533% 7s RF-TE 16.362 2.060% 1s 26.267 3.304% 7s
CaDA 10.505 1.281% 3s 15.856 1.489% 11s CaDA 16.291 1.611% 2s 26.078 2.560% 12s
ReLD-MoEL 10.482 1.062% 2s 15.832 1.340% 9s ReLD-MoEL 16.381 2.171% 2s 26.320 3.515% 9s
CoEKS 10.477 1.017% 2s 15.816 1.242% 9s CoEKS 16.332 1.873% 2s 26.209 3.070% 9s

O
V

PR

HGS-PyVRP# 6.507 * 10.4m 9.725 * 20.8m

V
R

PL

HGS-PyVRP# 10.587 * 10.4m 15.766 * 20.8m
OR-Tools# 6.553 0.686% 10.4m 9.995 2.732% 20.8m OR-Tools# 10.570 2.343% 10.4m 16.466 5.302% 20.8m
POMO-MTL 6.716 3.185% 1s 10.193 4.786% 6s POMO-MTL 10.774 1.722% 1s 16.132 2.324% 6s
MVMOE 6.702 2.967% 2s 10.164 4.490% 9s MVMOE 10.749 1.491% 2s 16.088 2.047% 9s
RF-TE 6.687 2.731% 1s 10.119 4.031% 6s RF-TE 10.750 1.514% 1s 16.057 1.865% 6s
CaDA 6.684 2.679% 2s 10.116 3.987% 12s CaDA 10.745 1.465% 2s 16.043 1.768% 11s
ReLD-MoEL 6.679 2.616% 2s 10.101 3.851% 9s ReLD-MoEL 10.728 1.303% 2s 16.032 1.695% 9s
CoEKS 6.667 2.424% 2s 10.073 3.562% 8s CoEKS 10.724 1.266% 2s 16.023 1.644% 9s

V
R

PB

HGS-PyVRP# 9.687 * 10.4m 14.377 * 20.8m

O
V

R
PT

W

HGS-PyVRP# 10.510 * 10.4m 16.926 * 20.8m
OR-Tools# 9.802 1.159% 10.4m 14.933 3.853% 20.8m OR-Tools# 10.519 0.078% 10.4m 17.027 0.583% 20.8m
POMO-MTL 10.032 3.556% 1s 15.054 4.725% 6s POMO-MTL 10.673 1.526% 1s 17.418 2.880% 7s
MVMOE 10.008 3.298% 2s 15.012 4.432% 8s MVMOE 10.671 1.511% 2s 17.429 2.946% 10s
RF-TE 9.986 3.083% 1s 14.934 3.891% 6s RF-TE 10.654 1.350% 1s 17.333 2.377% 7s
CaDA 9.978 2.987% 2s 14.932 3.873% 11s CaDA 10.622 1.041% 2s 17.230 1.772% 12s
ReLD-MoEL 9.967 2.875% 2s 14.921 3.799% 9s ReLD-MoEL 10.658 1.391% 2s 17.368 2.593% 10s
CoEKS 9.948 2.674% 2s 14.884 3.546% 9s CoEKS 10.638 1.192% 2s 17.313 2.263% 10s

V
R

PB
L

HGS-PyVRP# 10.186 * 10.4m 14.779 * 20.8m

V
R

PB
LT

W

HGS-PyVRP# 18.361 * 10.4m 29.026 * 20.8m
OR-Tools# 10.331 1.390% 10.4m 15.426 4.338% 20.8m OR-Tools# 18.422 0.332% 10.4m 29.830 2.770% 20.8m
POMO-MTL 10.675 4.733% 1s 15.688 6.103% 7s POMO-MTL 19.001 2.186% 1s 30.934 3.740% 7s
MVMOE 10.632 4.309% 2s 15.621 5.643% 9s MVMOE 18.981 2.083% 2s 30.905 3.648% 10s
RF-TE 10.584 3.856% 1s 15.515 4.950% 7s RF-TE 18.942 1.885% 1s 30.719 3.026% 7s
CaDA 10.569 3.708% 2s 15.506 4.872% 11s CaDA 18.858 1.432% 2s 30.531 2.393% 13s
ReLD-MoEL 10.567 3.675% 2s 15.498 4.828% 9s ReLD-MoEL 18.959 1.966% 2s 30.800 3.299% 10s
CoEKS 10.546 3.480% 2s 15.466 4.621% 9s CoEKS 18.913 1.728% 2s 30.680 2.896% 10s

V
R

PB
T

W

HGS-PyVRP# 18.292 * 10.4m 29.467 * 20.8m

V
R

PL
T

W

HGS-PyVRP# 16.356 * 10.4m 25.757 * 20.8m
OR-Tools# 18.366 0.383% 10.4m 29.945 1.597% 20.8m OR-Tools# 16.441 0.499% 10.4m 26.259 1.899% 20.8m
POMO-MTL 18.647 1.915% 1s 30.447 3.324% 7s POMO-MTL 16.833 2.886% 1s 26.895 4.379% 7s
MVMOE 18.637 1.863% 2s 30.439 3.292% 10s MVMOE 16.804 2.712% 2s 26.858 4.234% 9s
RF-TE 18.604 1.685% 1s 30.265 2.702% 7s RF-TE 16.751 2.389% 1s 26.717 3.690% 7s
CaDA 18.519 1.227% 2s 30.080 2.064% 12s CaDA 16.682 1.964% 2s 26.525 2.945% 13s
ReLD-MoEL 18.611 1.725% 2s 30.349 2.986% 10s ReLD-MoEL 16.767 2.496% 2s 26.768 3.894% 10s
CoEKS 18.567 1.489% 2s 30.213 2.523% 10s CoEKS 16.737 2.298% 2s 26.673 3.517% 10s

O
V

R
PB

HGS-PyVRP# 6.898 * 10.4m 10.335 * 20.8m

O
V

R
PB

L

HGS-PyVRP# 6.899 * 10.4m 10.335 * 20.8m
OR-Tools# 6.928 0.412% 10.4m 10.577 2.315% 20.8m OR-Tools# 6.927 0.386% 10.4m 10.582 2.363% 20.8m
POMO-MTL 7.106 2.989% 1s 10.852 4.973% 7s POMO-MTL 7.111 3.046% 1s 10.863 5.081% 7s
MVMOE 7.086 2.696% 2s 10.825 4.707% 9s MVMOE 7.096 2.818% 2s 10.832 4.778% 9s
RF-TE 7.075 2.538% 1s 10.769 4.179% 6s RF-TE 7.079 2.580% 1s 10.772 4.207% 7s
CaDA 7.062 2.341% 2s 10.745 3.941% 12s CaDA 7.064 2.362% 2s 10.748 3.962% 11s
ReLD-MoEL 7.064 2.375% 2s 10.754 4.034% 9s ReLD-MoEL 7.063 2.354% 2s 10.750 3.990% 9s
CoEKS 7.048 2.139% 2s 10.710 3.611% 9s CoEKS 7.050 2.155% 2s 10.711 3.616% 9s

O
V

R
PB

LT
W

HGS-PyVRP# 11.668 * 10.4m 19.156 * 20.8m

O
V

R
PB

T
W

HGS-PyVRP# 11.669 * 10.4m 19.156 * 20.8m
OR-Tools# 11.681 0.106% 10.4m 19.305 0.767% 20.8m OR-Tools# 11.682 0.109% 10.4m 19.303 0.757% 20.8m
POMO-MTL 11.823 1.304% 1s 19.635 2.482% 7s POMO-MTL 11.821 1.293% 1s 19.631 2.464% 7s
MVMOE 11.815 1.244% 2s 19.657 2.603% 10s MVMOE 11.814 1.231% 2s 19.654 2.587% 10s
RF-TE 11.804 1.145% 1s 19.552 2.049% 7s RF-TE 11.804 1.140% 1s 19.551 2.045% 8s
CaDA 11.767 0.832% 3s 19.434 1.430% 13s CaDA 11.766 0.828% 3s 19.435 1.432% 13s
ReLD-MoEL 11.807 1.170% 2s 19.586 2.228% 11s ReLD-MoEL 11.808 1.177% 2s 19.586 2.230% 11s
CoEKS 11.789 1.024% 2s 19.541 1.990% 10s CoEKS 11.791 1.033% 2s 19.539 1.980% 10s

O
V

R
PL

HGS-PyVRP# 6.507 * 10.4m 9.724 * 20.8m

O
V

R
PL

T
W

HGS-PyVRP# 10.510 * 10.4m 16.926 * 20.8m
OR-Tools# 6.552 0.668% 10.4m 10.001 2.791% 20.8m OR-Tools# 10.497 0.114% 10.4m 17.023 0.728% 20.8m
POMO-MTL 6.719 3.230% 1s 10.193 4.795% 6s POMO-MTL 10.672 1.520% 1s 17.421 2.896% 7s
MVMOE 6.701 2.949% 2s 10.169 4.544% 9s MVMOE 10.673 1.531% 2s 17.432 2.967% 10s
RF-TE 6.685 2.701% 1s 10.119 4.033% 6s RF-TE 10.655 1.361% 1s 17.331 2.370% 7s
CaDA 6.684 2.679% 2s 10.118 4.007% 12s CaDA 10.622 1.047% 2s 17.230 1.768% 12s
ReLD-MoEL 6.677 2.588% 2s 10.103 3.875% 9s ReLD-MoEL 10.661 1.411% 2s 17.368 2.589% 10s
CoEKS 6.666 2.410% 2s 10.073 3.568% 9s CoEKS 10.639 1.204% 2s 17.319 2.293% 10s

bold: Best results among learning-based methods.
underline: Second-best results among learning-based methods.
#: Results are adopted from Berto et al. (2024) for the convenience of comparison.

on the expert embeddings for the full-constraint task OVRPBLTW. For each expert at each encoder
layer, we sampled 5,000 embedding samples and projected them into a 2D space for visualization.

As illustrated in Figure 7, the t-SNE plots reveal a significant overlap in the embeddings of all
experts, except for the capacity expert (EC), within the lower layers (layer 1). This indicates that the
lower layers capture shared, transferable representations, aligning with our design where knowledge
sharing is applied at the lower layers. The capacity expert (EC), which is active across all VRP
tasks, learns more universal representations, resulting in its distinct and stable representation early
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Table 7: Fine-tuning performance on all VRPs with MB.
Method VRPMB OVRPMB VRPMBL VRPMBTW OVRPMBL OVRPMBTW VRPMBLTW OVRPMBLTW

Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap Cost Gap

HGS-PyVRP 9.09 * 6.11 * 16.31 * 9.49 * 6.11 * 10.47 * 16.01 * 10.47 *
RF-TE-AL 11.74 29.66% 9.44 54.62% 11.27 18.94% 18.46 15.59% 8.58 40.46% 13.27 27.14% 18.88 16.06% 13.29 27.33%
RF-TE-EAL 9.36 2.98% 6.26 2.47% 9.74 2.67% 16.40 2.38% 6.26 2.42% 10.66 1.73% 16.79 2.94% 10.66 1.76%
ReLD-MoEL-AL 10.63 17.07% 8.13 33.15% 11.09 16.99% 18.22 13.88% 8.21 34.49% 12.61 20.60% 18.64 14.39% 12.64 20.93%
ReLD-MoEL-EAL 9.34 2.73% 6.28 2.66% 9.71 2.28% 16.39 2.34% 6.28 2.73% 10.66 1.75% 16.78 2.86% 10.66 1.80%
CoEKS+ 9.25 1.73% 6.21 1.68% 9.68 1.97% 16.35 2.07% 6.22 1.75% 10.63 1.44% 16.74 2.65% 10.64 1.54%
CoEKSc+ 9.24 1.66% 6.20 1.50% 9.66 1.81% 16.35 2.07% 6.21 1.57% 10.63 1.43% 16.73 2.56% 10.63 1.50%

Table 8: Parameter efficiency comparison. (In-distribution tasks (n = 50))
Method\Gap↓ CVRP OVRP VRPB VRPL VRPTW OVRPTW OVRPL (ID Avg.)

ReLD-MoEL-E5 1.086% 2.324% 2.509% 1.180% 2.308% 1.628% 2.465% 2.069%
CoEKS 0.891% 2.138% 2.497% 1.152% 2.050% 1.393% 2.135% 1.751%

Table 9: Parameter efficiency comparison. (Out-of-distribution tasks (n = 50))
Method\Gap↓ OVRPB VRPBL VRPBTW VRPLTW OVRPBL OVRPBTW OVRPLTW VRPBLTW OVRPBLTW (OOD Avg.)

ReLD-MoEL-E5 6.753% 4.323% 3.609% 4.491% 6.738% 2.673% 1.780% 6.262% 3.026% 4.406%
CoEKS 4.913% 4.387% 3.210% 2.949% 4.747% 2.566% 1.603% 3.714% 2.797% 3.432%

in the model. As we move to deeper layers, the clusters become clearly separated, showing that
experts gradually specialize and align with their assigned constraints.

We also visualize the expert embeddings for the variant without the knowledge sharing strategy in
Figure 8. In this case, experts’ representations begin to separate even in the first layer, indicating
early specialization and a lack of transferable knowledge. This confirms that our knowledge sharing
strategy is necessary for building meaningful cross-task representations.

F.3 SCALABILITY TO CONSTRAINT MULTI-DEPOTS

To further verify the scalability of CoEKS to new constraints, we introduced the Multi-Depot (M-D)
tasks, which is an extension of the single-depot tasks. Following the configuration of RouteFinder,
we set the number of depots to 3. In total, we added 24 new VRP tasks, which include:

• 16 tasks that incorporate only the new M-D constraint.

• 8 tasks that combine the new M-D with the new MB constraint.

The experimental results are presented in Tables 10, 11, Table 12and 13, where CoEKS continues to
achieve the best performance under both few-shot fine-tuning and zero-shot generalization. These
findings strongly support our claim that CoEKS is robustly scalable to diverse and previously unseen
constraints.

Table 10: Zero-shot generalization performance (the gap to the best traditional solver) on 24 VRPs
with M-D. These methods do not add new experts and are only allowed to activate experts corre-
sponding to previously known constraints.

Method\Gap↓ MDCVRP MDOVRP MDOVRPB MDOVRPBL MDOVRPBLTW MDOVRPBTW MDOVRPL MDOVRPLTW

RF-EAL 37.514% 29.887% 37.903% 40.128% 38.314% 45.111% 29.934% 34.305%
ReLD-MoEL 39.359% 20.266% 33.504% 32.543% 25.134% 28.718% 20.108% 25.210%
CoEKS 38.174% 15.678% 22.690% 21.883% 21.920% 22.901% 15.616% 20.949%

Method\Gap↓ MDOVRPTW MDVRPB MDVRPBL MDVRPBLTW MDVRPBTW MDVRPL MDVRPLTW MDVRPTW

RF-EAL 40.836% 45.689% 59.955% 42.723% 46.764% 43.181% 39.398% 42.167%
ReLD-MoEL 28.634% 48.687% 47.975% 30.311% 39.094% 39.211% 30.267% 36.833%
CoEKS 21.730% 38.612% 38.188% 27.884% 31.094% 36.288% 26.986% 28.731%
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Figure 7: t-SNE visualization of 5 experts’ latent representations across encoder layers.

Table 11: Zero-shot generalization performance (the gap to the best traditional solver) on 8 VRPs
with MB with M-D. These methods do not add new experts and are only allowed to activate experts
corresponding to previously known constraints.

Method\Gap↓ MDOVRPMB MDOVRPMBL MDOVRPMBLTW MDOVRPMBTW MDVRPMB MDVRPMBL MDVRPMBLTW MDVRPMBTW

RF-EAL 44.410% 44.523% 38.577% 38.608% 58.138% 57.110% 41.310% 41.821%
ReLD-MoEL 47.741% 45.581% 26.322% 29.812% 64.400% 60.381% 31.776% 38.646%
CoEKS 35.186% 33.701% 24.938% 25.365% 53.428% 50.735% 30.900% 32.874%

Table 12: Fine-tuning performance (the gap to the best traditional solver) on 24 VRPs with M-D.
Method\Gap↓ MDCVRP MDOVRP MDOVRPB MDOVRPBL MDOVRPBLTW MDOVRPBTW MDOVRPL MDOVRPLTW

RF-EAL 15.251% 14.250% 18.996% 19.479% 19.841% 19.315% 15.421% 17.977%
ReLD-MoEL 15.235% 13.525% 17.125% 16.933% 11.405% 11.278% 13.333% 10.758%
CoEKS 8.928% 6.491% 7.599% 7.588% 5.324% 5.318% 6.543% 5.038%

Method\Gap↓ MDOVRPTW MDVRPB MDVRPBL MDVRPBLTW MDVRPBTW MDVRPL MDVRPLTW MDVRPTW

RF-EAL 17.300% 21.943% 23.149% 25.549% 24.098% 15.537% 21.952% 20.244%
ReLD-MoEL 10.622% 20.408% 20.572% 15.326% 15.340% 15.315% 14.502% 13.966%
CoEKS 4.978% 12.093% 12.487% 9.532% 9.324% 9.109% 8.970% 8.642%
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Figure 8: t-SNE visualization of 5 experts’ latent representations across encoder layers (without
knowledge sharing strategy)

.

Table 13: Fine-tuning performance (the gap to the best traditional solver) on 8 VRPs with MB with
M-D.

Method\Gap↓ MDOVRPMB MDOVRPMBL MDOVRPMBLTW MDOVRPMBTW MDVRPMB MDVRPMBL MDVRPMBLTW MDVRPMBTW

RF-EAL 16.536% 18.378% 18.301% 17.592% 33.316% 21.222% 21.698% 19.965%
ReLD-MoEL 17.790% 17.543% 11.430% 11.206% 23.673% 22.101% 15.081% 14.417%
CoEKS 6.959% 7.061% 5.250% 5.130% 12.128% 12.032% 9.122% 8.804%

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this research, we employed Large Language Models (LLMs) as a general-purpose tool to assist
with writing polish. These LLMs were utilized to enhance textual clarity without contributing to
research conception or methodological development.
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