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ABSTRACT

Machine unlearning enables to remove the contribution of a set of data points
from a trained model. In a distributed setting, where a server orchestrates train-
ing using data available at a set of remote users, unlearning is essential to cope
with the possible presence of malicious users. Existing distributed unlearning
algorithms require the server to store all model updates observed in training, lead-
ing to immense storage overhead for preserving the ability to unlearn. In this
work we study lossy compression schemes for facilitating distributed server-side
unlearning with limited memory footprint. We identify suitable lossy compres-
sion mechanisms based on random lattice coding and sparsification. For a fam-
ily of stochastic compression schemes encompassing probabilistic and subtractive
dithered quantization, we derive an upper bound on the difference between the de-
sired model that is trained from scratch and the model unlearned from lossy com-
pressed stored updates. Our bound outperforms the state-of-the-art known bounds
for non-compressed decentralized server-side unlearning, even when lossy com-
pression is incorporated. We further provide a numerical study, shows that suited
lossy compression can enable distributed unlearning with notably reduced mem-
ory footprint at the server while preserving the utility of the unlearned model.

1 INTRODUCTION

Deep learning usually requires large volumes of training data to result with high-performance mod-
els. While data is often abundantly available in the ’big data’ era Jordan & Mitchell (2015), the
source of the data might raise privacy or ownership concerns Liu et al. (2021), among which is the
GDPR right to be forgotten (RTBF) Voigt & Von dem Bussche (2017), as well as security concerns,
as adversaries can maliciously modify the training (poisoning or backdoors attacks) or test data (eva-
sion attacks) Pitropakis et al. (2019). To address those, the paradigm of machine unlearning aims to
selectively remove the influence of certain data points from a trained model, with neither retraining
it from scratch nor impacting its original performance and predictive power Bourtoule et al. (2021).

In distributed learning systems, such as federated learning (FL) Zhang et al. (2021), where training
is done on edge devices without data sharing, the ability to unlearn is often essential, particularly
as users may be identified as adversaries after having already contributed to the learning proce-
dure Nguyen et al. (2022). Nonetheless, the fact that the data whose contribution is to be removed is
not often available makes unlearning in distributed settings more complex compared to conventional
centralized setups Fraboni et al. (2024); Huynh et al. (2024); Tao et al. (2024). As a result, unlearn-
ing in distributed settings, e.g., federated unlearning (FU), relies on discarding historical parameter
updates of the removed user. Accordingly, the server which orchestrates the learning procedure has
to store all past contributions of all clients in order to have the ability to unlearn when required Gao
et al. (2024). This induces a notable limitation, requiring excessive and possibly prohibitive over-
head for storing a large number of highly parameterized updates for each user.

The goal of this work is to alleviate the storage burden introduced in server-side unlearning using
lossy source coding tools. To do so, we have the server not saving the users’ sent model updates,
but alternatively a lossy compressed versions, notably reducing its memory footprint. We compre-
hensively explore lossy compression techniques, based on (probabilistic) lattice quantization and
sparsifcation, identified as suitable for server-side unlearning. The effect of their induced distor-
tion on the unlearned model is further analytically and experimentally analyzed using conventional
metrics in unlearning literature. It is then revealed that while integrating proper compression into un-
learning significantly relieve the server’s storage load, it does not change the asymptotic behaviour
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of the unlearned model, while effectively removing the influence of the unlearned user. Our main
contributions are summarized as follows:

• We study lossy compression in a distributed (federated) unlearning framework, and identify
the main considerations to mitigate the memory footprint accumulated over the learning
procedure. We are, to the best of our knowledge, the first work that systematically examines
the theoretical and numerical aspects of compressed distributed machine unlearning.

• We provide a theoretical analysis for gradient descent based distributed learning. We de-
rive an upper bound on the commonly adopted proximity to the optimal train-from-scratch
model of server-side unlearning, under a family of lossy compression mechanisms.

• We show that in the asymptotic regime, for growing amount of gradient descent iterations, if
the learning rates gradually decay; then the compressed unlearned model does not diverge.
Our characterization specializes also non-compressed distributed unlearning, and improves
the state-of-the-art asymptotic behaviour of the bound presented in Huynh et al. (2024).

• All compression mechanisms are quantitatively validated in a FU experimental setup, eval-
uated using an established backdoor attack. There, it is demonstrated that lossy compres-
sion significantly lowers the memory footprint of unlearning, with only a minor degradation
in accuracy and while preserving the ability to defend against malicious users attack.

2 RELATED WORK

Server-Side Unlearning. Distributed unlearning frameworks are categorized based on the identity
of the users participating in the unlearning procedure Liu et al. (2023). Server-side unlearning, also
termed passive unlearning, is the challenging setting in which only the server, who originally or-
chestrated the distributed learning procedure, participates in unlearning. Such scenarios correspond
to, e.g., late detection of a malicious user, possibly after learning is concluded Wang et al. (2023).

Server-side unlearning typically depends on the utilization of stored historical data as gradients,
global models, and contribution information. In FedRecovery Zhang et al. (2023), in addition to
retaining the clients historical data, the server also quantifies their contributions based on gradient
residuals. Upon an unlearning request, the server removes the unlearned user past contributions
through a fine-tuning process. A more efficient version is then suggested by Crab Jiang et al. (2024),
which uses only selective historical information and further assists a less-maliciously-degraded his-
torical model than the initial one. The recovery process can be improved by introducing constraints,
e.g., a penalty term based on projected gradients Fu et al. (2024); Shao et al. (2024); randomly ini-
tialized degradation models Zhao et al. (2023); estimated skew Huynh et al. (2024); and retraining
based on the change of sampling probability Tao et al. (2024). In VeriFi Gao et al. (2024), the target
client collaborates with the server and marks his data to verify the unlearning. As means to preserve
performance despite the target client contribution elimination, knowledge distillation was shown to
facilitate information transfer from the trained model to the unlearned one Wu et al. (2022; 2023).

Distributed Learning with Lossy Compression. While lossy compression techniques are still
unexplored for distributed unlearning, various schemes have been considered for distributed training,
particularly in the aim of alleviating uplink communication bottlenecks Chen et al. (2020); Li et al.
(2020). Among which are sub-sampling or sparsification Lin et al. (2017); Hardy et al. (2017); Aji &
Heafield (2017); Konečnỳ et al. (2016); Stich et al. (2018); and probabilistic scalar Wen et al. (2017);
Alistarh et al. (2017); Horvóth et al. (2022); Reisizadeh et al. (2020); Horváth et al. (2023) or vector
quantization Lang et al. (2023a;b); Azimi-Abarghouyi & Varshney (2024). Lossy compression, as
opposed to its lossless counterpart, inevitably induces distortion, yet enables substantial memory
savings Polyanskiy & Wu (2014). Nevertheless, the random distortion induced by probabilistic
lossy compression can be rendered to have a negligible effect on the learning procedure Alistarh
et al. (2017); Shlezinger et al. (2020). Inspired by that, we seek for lossy compression methods that
notably reduce memory footprint in server side unlearning while retaining model accuracy.

3 SYSTEM MODEL

Distributed Learning. We consider a server training a model with parameters w ∈ Rm us-
ing data available at U users, indexed by u ∈ [U ] := {1, . . . , U}. Let Lu(w) denote the uth
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user empirical risk, the desired model is defined to be the minimizer of their average, that is
argminw

{
1
U

∑U
u=1 Lu(w)

}
. Unlike conventional centralized learning, the datasets {Du} are not

shared with the server due to, e.g., privacy considerations, and thus the learning is federated Kairouz
et al. (2021), operates in rounds. For every round t, the server distributes the global model wt to the
users. Each user locally performs several training iterations using its local Du, via, e.g., stochastic
gradient descent (SGD), to update wt into wu

t ; and shares with the server the model update, i.e.,
hu
t := wu

t − wt. The server in turn collects the model updates from all participating users and
aggregates McMahan et al. (2017) them into an updated global model via

wt+1 := wt +
1

U

U∑
u=1

hu
t , (1)

where w0 is the vector of initial weights. For simplicity, equation 1 is formulated with all users
participating in each round, which straightforwardly extends to partial user participation McMahan
et al. (2017). The updated global model is again distributed to the users, and the learning procedure
continues until convergence is reached. The above steps are summarized as algorithm 1.

Algorithm 1: FL at round t

1 users side:
2 do in parallel for u ∈ {1, . . . , U}
3 Update wt into wu

t via, e.g.,
several training iterations;

4 Send to server hu
t = wu

t −wt;

5 server side:
6 Update wt via equation 1;
7 Distribute wt+1 to all local users;
8 return Updated global model, wt+1;

Algorithm 2: FL + unlearning at round t

1 initialization: w0, t;
2 for j ∈ {0, . . . , t} do
3 Set wj+1 via Algorithm 1;
4 server side:
5 Store {hu

j }Uu=1;

6 server side:
7 if unlearning for user ũ then
8 Compute w′

t+1 via equation 3;
9 return Unlearned model w′

t+1;

10 return Updated global model, wt+1;

Distributed Unlearning. Distributed unlearning extends the distributed learning framework to en-
sure the RTBF of its users upon request, as well as the ability detach maliciously injected backdoors
once revealed. The goal of unlearning here is to erase the contributions of a user (or a group of
users) while preserving the performance of the model acquired using the remaining clients Roman-
dini et al. (2024). To formulate this, consider a distributed learning procedure that iterated over t > 1
rounds up to the arrival of the unlearning request regarding the ũth user, 1 ≤ ũ ≤ U . The desired
unlearned model, coined the train-from-scratch model, is the one obtained by naively retraining the
global model using all users except for the omitted user ũ Liu et al. (2023), i.e., by iterating over

w⋆
t+1 = w⋆

t +
1

U − 1

U∑
u=1,u̸=ũ

h⋆,u
t , h⋆,u

t := w⋆,u
t −w⋆

t ; w⋆
0 = w0. (2)

As elaborated in section 2, retraining from scratch is often infeasible. Most existing FU works relax
it by balancing between partially retraining the local models and the subtraction of the unlearned
user past updates, as both wt+1,w

⋆
t+1 rely of accumulating model updates, according to equations

1 and 2, respectively. When focusing on unlearning carried out solely on the server-side, without
users’ retraining, a generic unlearning rule is based on the one proposed in Huynh et al. (2024):

w′
t+1 = wt+1 +

t∑
j=0

(1 + α)t−jδ′j , δ′j :=
1

U

 1

U − 1

U∑
u=1,u ̸=ũ

hu
j − hũ

j

 . (3)

In equation 3, α is a pre-determined skewness parameter, and δ′j represents the local update skew
induced by client ũ in round j. The overall procedure, carrying out t training rounds followed by
server-side unlearning of user ũ, is outlined as Algorithm 2.

Problem Definition. To be able to unlearn via equation 3, the server must store all past local updates
for all users during training Cao et al. (2023); i.e., storing {hu

j } for 1 ≤ u ≤ U and 0 ≤ j ≤ t .

3
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Assuming each of the m model parameters is represented using b bits (e.g., b = 64 for a standard
64-bit floating point), FU involves storing U · t sequences of m · b bits. This induces a substantial
burden for highly parameterized models (large m) trained over many rounds (large t) with data from
numerous users (large U ).

To mitigate this overhead, we aim to develop a FU framework, allowing compact storage of {hu
j }

by the server while minimally affecting its ability to unlearn. To formulate this mathematically,
we are interested in lossy compression mechanisms Q : Rm 7→ Rm operating with a pre-defined
compression rate R ≤ b (i.e., any entry of Q(hu

j ) is stored using R bits), such that the model
obtained via server-side unlearning with the compressed model updates {Q(hu

j )}, matches the train-
from-scratch model. Since the server is unlikely to have prior knowledge of the model parameters
distribution, we are interested in methods which are universal. Such schemes can be formulated as
mappings of the model updates hu

j into Q(hu
j ) stored by the server, while meeting requirements

R1 The lossy compression function is identical for all users and along time. This requirement
significantly simplifies FU implementation.

R2 The scheme Q(·) must be invariant to the distribution of hu
j .

4 COMPRESSED DISTRIBUTED UNLEARNING

In this section we present candidate lossy compression techniques for achieving distributed unlearn-
ing with limited server-side memory footprint. We commence by formulating suitable lossy source
coding approaches, after which we theoretically analyze their deviation from the optimal model.

4.1 LOSSY SOURCE CODING TECHNIQUES

Evidently, requirements R1-R2 can be satisfied by any lossy source code that is invariant to the
distribution of the model updates. A lossy source code is formulated as Polyanskiy & Wu (2014):
Definition 4.1 (Lossy Source Code). A lossy source code Q(·) with compression rate R, input size
L, input alphabet XL, and output alphabet X̂L, consists of:

1. An encoder e: XL 7→ {0, . . . , 2LR − 1} := I which maps the input into a discrete index.

2. A decoder d: I 7→ X̂L which maps each i ∈ I into a codeword qi ∈ X̂L.

For an input x ∈ XL, the output of the code, x̂ ∈ X̂L, is written as Q(x) = d(e(x)) = x̂.

The performance of a lossy source code is characterized using its rate R and distortion, the latter
commonly being the mean-squared error (MSE), i.e., 1

LE
[
∥x − x̂∥2

]
. The encoder and decoder

mappings are used to formulate the compressed FU rule, such that equation 3 becomes

w′′
t+1 = wt+1 +

t∑
j=0

(1 + α)t−jδ′′j , δ′′j :=
1

U

 1

U − 1

U∑
u=1,u ̸=ũ

Q(hu
j )−Q(hũ

j )

 . (4)

In accordance, FU in Algorithm 2 is reformulated into compressed FU in Algorithm 3.

While definition 4.1 is relatively general, we next focus on two family of lossy source codes, pre-
viously considered for FL in the context of communication efficiency Chen et al. (2021). These
include codes that (i) limit the volume of model updates by quantization, i.e., discretizing the up-
dates such that they are expressed using a small number of bits Bernstein et al. (2018); Wen et al.
(2017); Alistarh et al. (2017); Reisizadeh et al. (2020); and (ii) save only part of the model updates
by sparsification Konečnỳ et al. (2016); Lin et al. (2017); Hardy et al. (2017); Aji & Heafield (2017);
Alistarh et al. (2018); Han et al. (2020). The considered mechanisms are summarized in Table 1.

4.1.1 QUANTIZATION

Any lossy source code can be viewed as quantization Gray & Neuhoff (1998). However, the term
quantizers typically refers to lossy source codes that operate block-wise, dividing an m-dimensional
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vector h into ⌈m
L ⌉ blocks of size L, and encoding each block with the same code. When L = 1,

the lossy source code implements scalar quantization, and L > 1 is termed vector quantization.
While quantizers can be optimized to achieve improved rate-distortion tradeoff by tuning the code
based on the input distribution, we are particularly interested in quantizers that are invariant of such
distribution, and are therefore universal, meeting R2.

Lattice Quantization. A generic approach for universally choosing L-dimensional codewords is to
realize them as the points of a lattice Zamir (2014). A truncated lattice is a set of points P := {Gz :
z ∈ ZL, ∥Gz∥ < γ}, where G is an L× L non-singular matrix and γ is a truncated sphere radios.
A lattice quantizer QP(·) maps each x ∈ RL into its nearest lattice point, i.e.,

QP(x) = argmin
l∈P

∥x− l∥. (5)

In general, the basic cell shape of a lattice can take different forms, such as hexagons for two-
dimensional hexagonal lattices. When G = ∆ · IL×L for some ∆ > 0, QP(·) realizes a scalar
uniform quantizer per entry. The rate of QP(·) is R = 1

L log2(|P|), for |P| being the cardinality of
P . The overall number of bits required for storing an update vector h ∈ Rm is thus m ·R bits.

(Probabilistic) Dithered Lattice Quantization. The quantized representation in equation 5 and its
error e := Q(x) − x are deterministically determined by the input x. Nonetheless, by leveraging
a random dither vector d, QP(·) can be extended into a probabilistic form via dithered quantization
(DQ), yielding QDQ

P (·), and subtractive DQ (SDQ), yielding QSDQ
P (·), respectively; defined as

QDQ
P (x) := QP(x+ d), (6a) QSDQ

P (x) := QP(x+ d)− d. (6b)

Proper selection of d can transform the quantization error e into a form of noise that is uncorrelated
with the input Gray & Stockham (1993). One such setting is when d is uniformly distributed over
the basic lattice cell, which is the set of points in RL that are closer to 0 than to any other lattice
point, defined as P0 := {x : ∥x∥ < ∥x− p∥ ∀p ∈ P\{0}}. Then, the quantization error is made
independent of the quantized values, as stated in the following theorem Zamir & Feder (1996):
Theorem 4.1. When d is uniformly distributed over P0 and x lies within the lattice support, i.e.,
Pr(∥x∥ ≤ γ) = 1, then e = QSDQ

P (x)− x is uniformly distributed over P0 and independent of x.

When Theorem 4.1 holds, the error is clearly unbiased, as E[e|x] = 0, and has a bounded variance,
as E[∥e∥2|x] = E[∥d∥2]. A similar result with higher error can be obtained with DQ, as stated in
the following theorem Kirac & Vaidyanathan (1996):
Theorem 4.2. When d is the sum of two mutually independent random vectors, each uniformly dis-
tributed over P0, and x lies within the lattice support, i.e., Pr(∥x∥ ≤ γ) = 1, then e = QDQ

P (x)−x
satisfies E[e|x] = 0 and E[∥e∥2|x] = 3

2E[∥d∥
2].

In compressed server-side unlearning, all forms of lattice quantization use log2(|P|) for storing
every L-sized sub-vector of each model update. Nevertheless, SDQ also requires the server to store
the dither signal d, as it is used in decoding. This requirement can be alleviated via pseudo-random
methods, obtaining random quantities realizations not by storing them directly, but rather by storing
a single seed Shlezinger et al. (2020), such that its excessive storage is made negligible.

4.1.2 SPARSIFICATION

Sparsification is a form of lossy compression that discards a subset of its input. To formulate its
operation, we focus on two k-sparse vectors operators, stated in Stich et al. (2018):

Definition 4.2 (Sparsifier). For a given k ∈ [m], denote by Ωk =
(
[m]
k

)
the set of all

k-element subsets of [m]. Define ω
u.a.r∼ Ωk, and π to be a permutation of [m], sat-

isfying (|x|)π(j) ≥ (|x|)π(j+1), for j ∈ [m − 1]. Then, for x ∈ Rm, the mapping
spark(·) : Rm 7→ Rm, such that spar ∈ {top, rand}, is given for each i ∈ [m] by,

(topk(x))i :=

{
(x)π(i), if i ≤ k,

0, otherwise,
(7a) (randk(x))i :=

{
(x)i, if i ∈ ω,

0, otherwise,
(7b)
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Algorithm 3: FL + compressed unlearning
1 initialization: w0, t;
2 for j ∈ {0, . . . , t} do
3 Set wj+1 via Algorithm 1;
4 server side:
5 Store {e

(
hu
j

)
}Uu=1;

6 server side:
7 if unlearning for user ũ then
8 Decode all updates {d

(
e
(
hu
j

))
};

9 Compute w′′
t+1 via equation 4;

10 return Unlearned model w′′
t+1;

11 return Updated global model, wt+1;

Method Def. Required memory
for each hu

t ∈ Rm
Stored
seed

Lattice Q. 5
⌈m
L ⌉ log2(|P|)

✗
DQ 6a ✗

SDQ 6b ✓
topk 7a k · b+m ✗ (✓*)
randk 7b k · b ✓

Table 1: Covered lossy source coding techniques.
✓* denotes that a seed is stored if random projec-
tions are used.

By Definition 4.2, for any x ∈ Rm, topk(x) ∈ Rm selects the top k largest elements of x (in terms
of their absolute value) with corresponding indices, while randk(x) ∈ Rm uniformly at random
selects k elements from x. In both cases, the remaining m − k elements are set to zero Shi et al.
(2019). k is often defined as a rounded percent of m, i.e., k = ⌈ζ · m⌉ for 0 < ζ < 1. In order
to encode topk(x), the server stores the k non-zero elements in full-precision. In decoding, an
additional bit per entry is needed to identify which elements are set to zero. Therefore, assuming
b-bit floating point representation, encoding requires R = k

m · b + 1 bits per sample. For randk(·),
where the sparsified indices do not depend on the input, one can potentially re-realize the random
pattern ω in decoding using a pre-stored seed, similarly to SDQ, hence results in rate R = k

m · b.
Sparsification via random projections. Sparsifiers are often employed in combination with ran-
dom projections Konečnỳ et al. (2016). Here, the input is first randomly projected using a stochastic
unitary matrix before being sparsified. Decoding then consists of reconstructing the sparse vector
and consequently multipling by the inverse projection. Formally, for a random unitary matrix U and
a sparsifier spark(·) in Definition 4.2, equation 7 changes into spark(x) 7→ UT spark(Ux). It is
motivated as means to recover the input’s most information before eliminating most of its entries.
Unitary projection does not induce further computational overhead in calculating its inverse. While
decoding requires access to U, the fact that it is random and does not depend on the input indicates
that it can be reconstructed by storing a seed rather than a full matrix for each model update.

4.2 THEORETICAL EVALUATION1

The induced distortion of lossy compression is inevitably incorporated into the unlearned model. To
characterize this effect on the unlearned model performance in terms of forgetting capabilities, we
use the conventional metric in unlearning literature Wang et al. (2024); Wu et al. (2020); Cao et al.
(2023) of L2-norm proximity to the train-from-scratch model, namely, ∥w⋆

t+1 −w′′
t+1∥.

Assumptions. In our analysis we further adopt the following assumptions for ∀t ≥ 0, u ∈ [U ]:

AS1 Local training follows gradient decent, i.e., wu
t := wt − ηt∇Lu(wt); where ηt > 0 is the

learning rate. Unlearning is realized using equation 4 with skewness α = 0.
AS2 The norm of gradients is uniformly bounded, i.e., ∥∇Lu(wt)∥ ≤ M .
AS3 The distortions induced by the lossy source code, {eut := Q(hu

t ) − hu
t }, are independent

in time (t) and between users (u), and hold E[eut |hu
t ] = 0; E[∥eut ∥2|hu

t ] = σ2.

AS1 focuses our analysis on a basic form of distributed learning, utilizing full gradient decent, and
specializing a generic server-side unlearning obtained by subtracting the unlearned user past gradi-
ents. AS2 is commonly adopted in distributed learning convergence studies Li et al. (2019); Stich
(2018); Koloskova et al. (2019), and hold for, e.g., L2-norm regularized linear regression and logistic
regression objective functions. AS3 is satisfied by different forms of probabilistic lossy compression,

1Proofs are deferred to the Appendix and appear in section A.1.
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such as SDQ (Theorem 4.1) and DQ (Theorem 4.2). It is assumed here as the ability to represent dis-
tortion as additive noise notably facilitates analyzing its impact on the unlearning procedure, where
aggregation in equation 4 results in this additive noise term effectively approaching its mean value of
zero by the law of large numbers. Still, in our experimental study reported in section 5 we consider
a broader range of lossy compression methods, including ones not necessarily holding AS3.

Analysis. The stochatsicty of the distortion (AS3) implies that the compressed unlearned model w′′
t

is a random vector. Thus, we fist formulate the first- and second-moments of the compression error:
Lemma 4.1. Assuming AS1 and AS3 hold, given {Lu(wt)}u,t, w′′

t+1 in equation 4 is an unbiased
estimator of the non-compressed w′

t+1 in equation 3, i.e., E
[
w′′

t+1 −w′
t+1

]
= 0; with variance

E
[∥∥w′′

t+1 −w′
t+1

∥∥2] =
σ2

U − 1

t∑
j=0

η2j . (8)

Using Lemma 4.1, we next derive an upper bound on the expected deviation from the desired model:
Theorem 4.3. If AS1-AS3 hold, then given {Lu(wt)}u,t, the expected proximity of the train-from-
scratch model w⋆

t+1 to the compressed unlearned one w′′
t+1 in equations 2 and 4, respectively, obeys

E
[∥∥w⋆

t+1 −w′′
t+1

∥∥2] ≤ G2(t) +
σ2

U − 1

t∑
j=0

η2j , G(t) := 2M

t∑
j=0

ηj . (9)

Theorem 4.3 characterizes the distortion induced by compressing the gradients used to form the
unlearned model. This distortion, though, does not explicitly depend on the number of used bits,
which is encapsulated in the second order moment of the used source code. It is further implied that
Algorithm 3 does not guarantee decaying distance from the desired train-from-scratch model as the
number of global iterations t grow. This result is not surprising, as raised from the construction of the
unlearned model in either equation 3 or equation 4, noticing that the remaining users past gradients
{Lu(wt)}u̸=ũ,t still encapsulate information about the ũth user via {wt}t in equation 1. However,
the deviation can be made to converge as t → ∞. Specifically, when the learning rate ηt is carefully
chosen to gradually decay over time, as highly adopted in other studies of distributed optimization
Li et al. (2019); Stich (2018); Koloskova et al. (2019), we obtain the following theorem:
Theorem 4.4. When the learning rate is set as ηt = 1

(t+ν)λ
for t ≥ 0; ν > 0; and λ > 1, then there

exists Ḡ < ∞ such that lim
t→∞

G2(t) = Ḡ and lim
t→∞

E
[∥∥w⋆

t+1 −w′′
t+1

∥∥2] ≤ Ḡ+ σ2

U−1

(
1
ν + π2

6

)
.

Non-Compressed Analysis. While the above results are derived for distributed unlearning with
lossy compression, it also specializes non-compressed distributed unlearning as a special case.
Specifically, by setting Q(h) ≡ h, we have w′′

t+1 realizes its non-compressed counterpart w′
t+1,

while AS3 is satisfied as the distortion is the all-zero vector with probability one. In this case, we
obtain a distinct bound on server-side unlearning for distributed gradient descent based learning:
Corollary 4.1. When AS1-AS2 hold, the L2-norm proximity of the unlearned model w′

t+1 in equa-
tion 3 to the train-from-scratch one w⋆

t+1 in equation 2 is given by∥∥w⋆
t+1 −w′

t+1

∥∥ ≤ G(t), (10)

where G(t) is given in equation 9 and is finite for t → ∞ if ηt = 1
(t+ν)λ

for t ≥ 0; ν > 0; λ > 1.

Corollary 4.1 shows that, when combined with gradient descent for proper step-size setting, one
can obtain convergent deviation from the desired model, as opposed to a generic divergent bound
in Huynh et al. (2024). Contrasting it with Theorem 4.3 indicates that while the memory footprint
of server side unlearning can significantly be relieved by the incorporation of lossy source coding,
its excessive deviation decays not only with σ (i.e., the quantization resolution), but also with the
number of users U . This follows since, compared with Theorem 4.4, when t → ∞, the excessive
deviation due to compression is quantified to be not larger than σ2

U−1

(
1
ν + π2

6

)
.
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5 NUMERICAL EXPERIMENTS2

We next experimentally evaluate server-side unlearning with different forms of lossy compression.
We utilize the unlearning procedure based on equation 3 with skewness parameter α = 0.07 Huynh
et al. (2024), comparing non-compressed unlearning to lossy compressed unlearning.

Setting. We evaluate compressed FU using two image classification datasets of MNIST and CIFAR-
10. For each, we train a CNN composed of two convolutional layers and two fully-connected ones;
with intermediate ReLU activations, max-pooling and normalization layers. The data distributed
across U = 25 users in both IID and non-IID scenarios. The former equally partitions the data
among clients, while the latter simulates label imbalance via the widely used Dirichlet distribution
Dir(β) Li et al. (2022), having β flexibly determines the imbalance level (smaller value leads to
a higher unbalancedness). FL is globally iterated over 90 rounds, each with 10 randomly chosen
clients locally utilizing SGD for 10 epochs.

Unlearning Evaluation. Unlearning request arrives at t = 90, due to the discovery of a participated
malicious user that realized a backdoor attack during training. We employ the established edge-case
backdoor Wang et al. (2020), where an adversary edge device intentionally uses wrong labels for a
specific set of data points to mislead the server on seemingly easy inputs that are, though, unlikely
to be part of the training (or test) data. This is illustrated in Fig. 1, where a digit ′7′ is labeled as
′1′ for MNIST; and an airplane is labeled as ’truck’ for CIFAR-10. The unlearned model is then
constructed at the server according to equation 4. Its performance is quantified via (i) accuracy
on the primary task test-set; and (ii) accuracy on the backdoor task test-set, comprised of samples
distribute similarly to those used by the attacker in training. Both preferably being as high, and
low, respectively, as possible, with the latter being high indicates that the unlearned model is still
backdoored Wang et al. (2024).

Baselines. We comparatively assess the performance of nine schemes, encompassing the lossy
source codes covered in section 4.1. The three reference baselines are vanilla FL, i.e., the con-
verged model wt+1 of the FL training in equation 1; retrain, denoting the desired train-from-scratch
model w⋆

t+1 in equation 2; and non-compressed FU, which uses the unlearned model w′
t+1 obtained

via equation 3. These are compared to the compressed unlearned model w′′
t+1 obtained via equa-

tion 4 using QP , L = l; QSDQ
P , L = l; topk; and randk. Each is respectively realizing Q = QP

in equation 5; Q = QSDQ
P in equation 6b; Q = topk in equation 7a; and Q = randk in equation 7b.

For the quantizers, l ∈ {1, 2} and the lattice P is the standard hexagonal lattice. For sparsification,
the sparsity level k achieves the same rate as that of quantization based on Table 11.

Results. We begin with the MNIST IID scenario, and inspect the excess distortion in the recovered
model induced by integrating lossy source codes into distributed server-side unlearning, compared to
non-compressed unlearning; versus the compression rate. To that aim, for a given rate, Fig. 2 depicts
the averaged model signal-to-noise ratio (SNR) for non-compressed and compressed unlearning,
given by SNR = 10 log10 (Var(w

′
t) /Var(w

′
t −w′′

t )) [dB] (higher is better). Fig. 2 evidences, as
also discussed in section 4.2, that the random nature of SDQ is a contributing factor, so as leveraging
multivariate over scalar compression, having QSDQ

P , L = 2 performs the best of all quantizers.
Predictably, in all baselines the SNR increases with rate, and saturates for the quantizers. Such a
situation is attributed with an overloaded quantizer, implying that its error is dominated by the inputs
residing outside of its dynamic range (support), thus further increment of its resolution (rate) does
not improve its performance from some point on. Whereas randk appears to be the worst-performer,
topk is the best one for relatively high compression rates, as it is invariant to the input’s support.

Next, Fig. 3 illustrates the evaluation of all baselines on the backdoor task test-set (lower is better),
for different compression rates. As expected, vanilla FL and retrain obtain the worst and best results,
being entirely affected and non-affected by the attacker participated in training, respectively. Non-
compressed FU is shown to be the second-best, accurately discarding the malicious user influence.
The compression counterparts show that quantizers yield improved unlearning over sparsifiers in
all examined rates. In particular, the accuracy of non-compressed FU is degraded by about 2% for
R ≈ 4, where for each user and FL iteration, any of the m model updates is stored using b bits for

2Additional numerical studies appear in section A.2.
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Figure 1: MNIST and CIFAR-10 Backdoors.
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rate [bits/sample].

the former and ⌈m
2 ⌉×4 for the latter. As a result, considering, e.g., a standard double-precision with

b = 64, non-compressed FU memory footprint is 32× higher than one that realizes QSDQ
P , L = 2.

Finally, Table 2 summarizes the performance of all baselines for both IID and non-IID cases in each
MNIST and CIFAR-10 datasets, respectively experimented with β = 2, 1 and rate R = 2.8, 2.3.
Table 2 provides complementary evaluation to Fig. 3, as it also reports the accuracy on the primary
task (higher is better). The inferior performance of the quantizers compared to the non-compressed
alternative in the backdoor task visualized in Fig. 3 is here translated into an improved accuracy on
the main task; yet less distinctive to a particular lossy source code to perform best. This, in turn,
gives rise to the existence of a trade-off between memory footprint, accuracy on the primary task,
and backdoor resiliency once (compressed) unlearning is carried out using (equation 4) equation 3.

MNIST CIFAR-10
IID non-IID IID non-IID

Method Main Attack Main Attack Main Attack Main Attack
vanilla FL 99.15 75.53 99.12 52.10 71.48 32.83 66.49 28.30

non-compressed FU 96.07 0.27 96.30 0.0 53.89 2.64 30.39 1.89
QP , L = 1 98.58 3.99 98.1 1.47 62.93 3.96 45.45 1.32

QSDQ
P , L = 1 98.57 3.72 98.0 0.63 62.82 3.77 44.77 1.13
QP , L = 2 98.52 3.72 98.09 1.05 62.6 3.58 45.19 1.32

QSDQ
P , L = 2 98.51 3.19 97.93 0.42 62.27 3.58 44.20 0.94
topk 98.26 23.40 98.22 12.61 64.50 17.36 41.41 28.11
randk 98.18 70.48 99.13 47.69 71.59 32.07 66.45 26.60

Table 2: Main task (↑) and backdoor attack task (↓) test-set accuracy [%].

6 CONCLUSIONS

In this work, we studied decentralized server-side unlearning with lossy source coding incorporated
in the process. We investigated its effect on the unlearned model performance from both theoretical
and experimental perspectives. From an experimental point of view, our numerical evaluations
reveal that compressed FU with notable storage reduction, e.g., 32× lower memory footprint at
the server, preserves the ability to unlearn. On the theoretical side; we prove that under common
assumptions, the distance between the compressed unlearned model to the desired one is bounded.
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Our bound improves upon the best known guarantees, asserting that the growth rate of this distance
is at most exponential with the number of FL iterations. However, as shown in recent not-limited-
to-server FU works, in some scenarios the decentralized unlearned model may actually converge to
the optimal one, and therefore our theoretical analysis may be a first important step towards a proof
of convergence for server-side unlearning. We leave it as a main open question for future study.

Beyond extending our theoretical analysis, many interesting research directions are left for future
work. For example, while our analysis considers basic gradient-based learning, one can potentially
extend its findings to other forms of learning algorithms. Other important aspects to study concern
the joint usage of sparsification and quantization; as well as unifying lossy and lossless compression,
where the latter is known to provide further performance benefits from the underlying characteristics
of the digital representations. Finally, prospective direction would try to mitigate the overloaded
quantizers numerically evidenced in section 5 by designing them Shlezinger et al. (2019) or their
associated lattices Lang et al. (2024) in a learning-oriented rather than a distortion-oriented manner.
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A APPENDIX

A.1 DEFERRED PROOFS

A.1.1 PROOF OF LEMMA 4.1

To prove Lemma 4.1, first note that iterating over equation 1 results in

wt+1 = wt +
1

U

U∑
u=1

hu
t = w0 +

t∑
j=0

1

U

U∑
u=1

hu
j . (A.1.1)
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Now, observing equation 3,

w′
t+1 = wt+1 +

t∑
j=0

(1 + α)T−1−jδj

(a)
= w0 +

t∑
j=0

1

U

U∑
u=1

hu
j +

t∑
j=0

(1 + α)T−1−j 1

U

 1

U − 1

U∑
u=1
u̸=ũ

hu
j − hũ

j


(b)
= w0 +

1

U − 1

t∑
j=0

U∑
u=1
u̸=ũ

hu
j = w0 +

1

U − 1

t∑
j=0

U∑
u=1
u̸=ũ

(wu
t −wt)

(c)
= w0 −

t∑
j=0

ηj
1

U − 1

U∑
u=1
u̸=ũ

∇Lu(wj), (A.1.2)

here (a) follows by equation A.1.1 and the definition of δj in equation 3; and (b), (c) are true from
AS1, as α = 0 and wu

t := wt − ηt∇Lu(wt), respectively. w′′
t+1 in equation 4 similarly changes,

and

w′′
t+1 −w′

t+1 = w0 −
t∑

j=0

ηj
1

U − 1

U∑
u=1
u̸=ũ

Q (∇Lu(wj))−

w0 −
t∑

j=0

ηj
1

U − 1

U∑
u=1
u̸=ũ

∇Lu(wj)


=

t∑
j=0

ηj
1

U − 1

U∑
u=1
u ̸=ũ

(Q (∇Lu(wj))−∇Lu(wj)) =

t∑
j=0

ηj
1

U − 1

U∑
u=1
u ̸=ũ

eju.

According to Lemma 4.1, {Lu(wt)}u,t are given, and therefore, due to AS3, ∀t, u E [etu] = 0 and
E
[
∥etu∥2

]
= σ2, which implies that E

[
w′′

t+1 −w′
t+1

]
= 0. As for the second moment, since AS3

states that ∀t, u {etu} are independent, we desirably obtain

E
[∥∥w′′

t+1 −w′
t+1

∥∥2] = E


∥∥∥∥∥∥∥

t∑
j=0

ηj
1

U − 1

U∑
u=1
u̸=ũ

eju

∥∥∥∥∥∥∥
2 =

t∑
j=0

η2j
1

(U − 1)2

U∑
u=1
u ̸=ũ

E
[∥∥eju∥∥2]

=
σ2

U − 1

t∑
j=0

η2j .

A.1.2 PROOF OF THEOREM 4.3

To prove Theorem 4.3, we characterize the intermediate distances to the non-compressed model
w′

t+1 in equation 3 and utilizing Lemma 4.1. Namely,

E
[∥∥w⋆

t+1 −w′′
t+1

∥∥2] = E
[∥∥w⋆

t+1 −w′
t+1

∥∥2]+ E
[∥∥w′

t+1 −w′′
t+1

∥∥2]
+2

〈
w⋆

t+1 −w′
t+1,E

[
w′

t+1 −w′′
t+1

]〉
=

∥∥w⋆
t+1 −w′

t+1

∥∥2 + σ2

U − 1

t∑
j=0

η2j . (A.1.3)

The proof is then concluded by proving the following auxiliary lemma:
Lemma A.1.1. When AS1 and AS2 hold, the distance between the train-from-scratch model w⋆

t+1
in equation 2 and the unlearned one w′

t+1 in equation 3 satisfies

∥∥w⋆
t+1 −w′

t+1

∥∥ ≤ 2M

t∑
j=0

ηj .
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Proof. Under AS1, we use the formulation of w′
t+1 in equation A.1.2, according to which we obtain

similar representation for w⋆
t+1, thus

∥w⋆
t+1 −w′

t+1∥ =

∥∥∥∥∥∥∥w0 −
t∑

j=0

ηj
1

U − 1

U∑
u=1
u ̸=ũ

∇Lu(w
⋆
j )−

w0 −
t∑

j=0

ηj
1

U − 1

U∑
u=1
u ̸=ũ

∇Lu(wj)


∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥
t∑

j=0

ηj
1

U − 1

U∑
u=1
u̸=ũ

(
∇Lu(w

⋆
j )−∇Lu(wj)

)∥∥∥∥∥∥∥
(a)

≤
t∑

j=0

ηj
1

U − 1

U∑
u=1
u ̸=ũ

(∥∥∇Lu(w
⋆
j )
∥∥+ ∥∇Lu(wj)∥

) (b)

≤ 2M

t∑
j=0

ηj ,

where (a) holds by recursively applying the triangle inequality and (b) is true from using AS2 for
every u and j; concluding the proof.

A.1.3 PROOF OF THEOREM 4.4

For t → ∞, G2(t) converges if
∑t

j=0 ηj does. Now, the setting of ηt in Theorem 4.4 implies that
t∑

j=0

ηj =

t∑
j=0

1

(j + ν)λ
≤ 1

ν
+

t∑
j=1

1

jλ
(A.1.4)

where the inequality follows as ν > 0, and additionally, the right-hand-side of equation A.1.4
is summable as λ > 1. To complete the proof we left to show that for t → ∞ it holds that
σ2

U−1

∑t
j=0 η

2
j ≤ σ2

U−1

(
1
ν + π2

6

)
. Using similar arguments,

∞∑
j=0

η2j =

∞∑
j=0

1

(j + ν)2λ
≤ 1

ν
+

∞∑
j=1

1

j2
=

1

ν
+

π2

6
,

as desired.

A.2 ADDITIONAL EXPERIMENTS

This section presents additional experimental results on the MNIST dataset, highlighting the rela-
tionship between the compression rate and the resulted unlearned model ability to maintain high
accuracy on the primary task; studied in the IID scenario. Furthermore, for the non-IID case, we
examine the effect of the data imbalance level β on the performance of the unlearned models in the
backdoor task.

Fig. 4 complements Fig. 3 and Table 2 by illustrating the accuracy of all baselines on the primary task
test-set (higher is better) under varying compression rates. As anticipated, retrain is the best baseline
on the main task, completely not backdoored. Additionally, it is visualized that the unlearned model
obtained for either of the compression methods, except for randk, exhibits a decreased performance
for growing rates. This follows as compressing with higher rate, i.e., an improved resolution, is
attributed with lesser variance and therefore more reliable estimation of the input. In this case the
input is the non-compresses FU model, which itself results in the lowest main task accuracy, in
contract to being the best baseline on the backdoor task, as showed in Fig. 3 and Table 2.

Next, in Fig.5 we evaluate the performance of all baselines on the backdoor task test-set, with
respect to varying values of β, which controls the degree of imbalance (lower values indicate greater
imbalance), while keeping the compression rate R = 2.3 fixed. The top of the figure illustrates
variations in the backdoor accuracy, which result from the fact that the number of backdoor samples
is proportional to the attacker’s local dataset size. Adjusting β alters the number of samples allocated
to each user, thereby influencing the backdoor attack performance on the vanilla FL model. As a
result, we do not expect to observe consistent behaviour across different values of β in terms of
backdoor accuracy. However, we do observe persistent trends across all methods for a fixed β,
keeping the best-to-worst performers order identical to that in Fig.3.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

98.0

98.2

98.4

98.6

98.8

99.0

99.2

vanilla FL
retrain
Q , L=1
QSDQ, L=1
Q , L=2
QSDQ, L=2
topk

randk

1.58 2.00 2.50 3.00 3.50 4.00 4.50 5.00

Rate
95.5

96.0
non-compresses FU

M
ai

n 
ta

sk
 a

cc
ur

ac
y

Figure 4: Main task test-set accuracy (↑)[%] vs.
rate [bits/sample].
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Figure 5: Backdoor test-set accuracy (↓)[%] vs.
β (imbalance level).
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