
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DISTRIBUTED UNLEARNING WITH LOSSY COMPRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Machine unlearning enables to remove the contribution of a set of data points
from a trained model. In a distributed setting, where a server orchestrates train-
ing using data available at a set of remote users, unlearning is essential to cope
with the possible presence of malicious users. Existing distributed unlearning
algorithms require the server to store all model updates observed in training, lead-
ing to immense storage overhead for preserving the ability to unlearn. In this
work we study lossy compression schemes for facilitating distributed server-side
unlearning with limited memory footprint. We identify suitable lossy compres-
sion mechanisms based on random lattice coding and sparsification. For a fam-
ily of stochastic compression schemes encompassing probabilistic and subtractive
dithered quantization, we derive an upper bound on the difference between the de-
sired model that is trained from scratch and the model unlearned from lossy com-
pressed stored updates. Our bound outperforms the state-of-the-art known bounds
for non-compressed decentralized server-side unlearning, even when lossy com-
pression is incorporated. We further provide a numerical study, shows that suited
lossy compression can enable distributed unlearning with notably reduced mem-
ory footprint at the server while preserving the utility of the unlearned model.

1 INTRODUCTION

Deep learning usually requires large volumes of training data to result with high-performance mod-
els. While data is often abundantly available in the ’big data’ era Jordan & Mitchell (2015), the
source of the data might raise privacy or ownership concerns Liu et al. (2021), among which is the
GDPR right to be forgotten (RTBF) Voigt & Von dem Bussche (2017), as well as security concerns,
as adversaries can maliciously modify the training (poisoning or backdoors attacks) or test data (eva-
sion attacks) Pitropakis et al. (2019). To address those, the paradigm of machine unlearning aims to
selectively remove the influence of certain data points from a trained model, with neither retraining
it from scratch nor impacting its original performance and predictive power Bourtoule et al. (2021).

In distributed learning systems, such as federated learning (FL) Zhang et al. (2021), where training
is done on edge devices without data sharing, the ability to unlearn is often essential, particularly
as users may be identified as adversaries after having already contributed to the learning proce-
dure Nguyen et al. (2022). Nonetheless, the fact that the data whose contribution is to be removed is
not often available makes unlearning in distributed settings more complex compared to conventional
centralized setups Fraboni et al. (2024); Huynh et al. (2024); Tao et al. (2024). As a result, unlearn-
ing in distributed settings, e.g., federated unlearning (FU), relies on discarding historical parameter
updates of the removed user. Accordingly, the server which orchestrates the learning procedure has
to store all past contributions of all clients in order to have the ability to unlearn when required Gao
et al. (2024). This induces a notable limitation, requiring excessive and possibly prohibitive over-
head for storing a large number of highly parameterized updates for each user.

The goal of this work is to alleviate the storage burden introduced in server-side unlearning using
lossy source coding tools. To do so, we have the server not saving the users’ sent model updates,
but alternatively a lossy compressed versions, notably reducing its memory footprint. We compre-
hensively explore lossy compression techniques, based on (probabilistic) lattice quantization and
sparsifcation, identified as suitable for server-side unlearning. The effect of their induced distor-
tion on the unlearned model is further analytically and experimentally analyzed using conventional
metrics in unlearning literature. It is then revealed that while integrating proper compression into un-
learning significantly relieve the server’s storage load, it does not change the asymptotic behaviour

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

of the unlearned model, while effectively removing the influence of the unlearned user. Our main
contributions are summarized as follows:

• We study lossy compression in a distributed (federated) unlearning framework, and identify
the main considerations to mitigate the memory footprint accumulated over the learning
procedure. We are, to the best of our knowledge, the first work that systematically examines
the theoretical and numerical aspects of compressed distributed machine unlearning.

• We provide a theoretical analysis for gradient descent based distributed learning. We de-
rive an upper bound on the commonly adopted proximity to the optimal train-from-scratch
model of server-side unlearning, under a family of lossy compression mechanisms.

• We show that in the asymptotic regime, for growing amount of gradient descent iterations, if
the learning rates gradually decay; then the compressed unlearned model does not diverge.
Our characterization specializes also non-compressed distributed unlearning, and improves
the state-of-the-art asymptotic behaviour of the bound presented in Huynh et al. (2024).

• All compression mechanisms are quantitatively validated in a FU experimental setup, eval-
uated using an established backdoor attack. There, it is demonstrated that lossy compres-
sion significantly lowers the memory footprint of unlearning, with only a minor degradation
in accuracy and while preserving the ability to defend against malicious users attack.

2 RELATED WORK

Server-Side Unlearning. Distributed unlearning frameworks are categorized based on the identity
of the users participating in the unlearning procedure Liu et al. (2023). Server-side unlearning, also
termed passive unlearning, is the challenging setting in which only the server, who originally or-
chestrated the distributed learning procedure, participates in unlearning. Such scenarios correspond
to, e.g., late detection of a malicious user, possibly after learning is concluded Wang et al. (2023).

Server-side unlearning typically depends on the utilization of stored historical data as gradients,
global models, and contribution information. In FedRecovery Zhang et al. (2023), in addition to
retaining the clients historical data, the server also quantifies their contributions based on gradient
residuals. Upon an unlearning request, the server removes the unlearned user past contributions
through a fine-tuning process. A more efficient version is then suggested by Crab Jiang et al. (2024),
which uses only selective historical information and further assists a less-maliciously-degraded his-
torical model than the initial one. The recovery process can be improved by introducing constraints,
e.g., a penalty term based on projected gradients Fu et al. (2024); Shao et al. (2024); randomly ini-
tialized degradation models Zhao et al. (2023); estimated skew Huynh et al. (2024); and retraining
based on the change of sampling probability Tao et al. (2024). In VeriFi Gao et al. (2024), the target
client collaborates with the server and marks his data to verify the unlearning. As means to preserve
performance despite the target client contribution elimination, knowledge distillation was shown to
facilitate information transfer from the trained model to the unlearned one Wu et al. (2022; 2023).

Distributed Learning with Lossy Compression. While lossy compression techniques are still
unexplored for distributed unlearning, various schemes have been considered for distributed training,
particularly in the aim of alleviating uplink communication bottlenecks Chen et al. (2020); Li et al.
(2020). Among which are sub-sampling or sparsification Lin et al. (2017); Hardy et al. (2017); Aji &
Heafield (2017); Konečnỳ et al. (2016); Stich et al. (2018); and probabilistic scalar Wen et al. (2017);
Alistarh et al. (2017); Horvóth et al. (2022); Reisizadeh et al. (2020); Horváth et al. (2023) or vector
quantization Lang et al. (2023a;b); Azimi-Abarghouyi & Varshney (2024). Lossy compression, as
opposed to its lossless counterpart, inevitably induces distortion, yet enables substantial memory
savings Polyanskiy & Wu (2014). Nevertheless, the random distortion induced by probabilistic
lossy compression can be rendered to have a negligible effect on the learning procedure Alistarh
et al. (2017); Shlezinger et al. (2020). Inspired by that, we seek for lossy compression methods that
notably reduce memory footprint in server side unlearning while retaining model accuracy.

3 SYSTEM MODEL

Distributed Learning. We consider a server training a model with parameters w ∈ Rm us-
ing data available at U users, indexed by u ∈ [U] := {1, . . . , U}. Let Lu(w) denote the uth

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

user empirical risk, the desired model is defined to be the minimizer of their average, that is
argminw

{
1
U

∑U
u=1 Lu(w)

}
. Unlike conventional centralized learning, the datasets {Du} are not

shared with the server due to, e.g., privacy considerations, and thus the learning is federated Kairouz
et al. (2021), operates in rounds. For every round t, the server distributes the global model wt to the
users. Each user locally performs several training iterations using its local Du, via, e.g., stochastic
gradient descent (SGD), to update wt into wu

t ; and shares with the server the model update, i.e.,
hu
t := wu

t − wt. The server in turn collects the model updates from all participating users and
aggregates McMahan et al. (2017) them into an updated global model via

wt+1 := wt +
1

U

U∑
u=1

hu
t , (1)

where w0 is the vector of initial weights. For simplicity, equation 1 is formulated with all users
participating in each round, which straightforwardly extends to partial user participation McMahan
et al. (2017). The updated global model is again distributed to the users, and the learning procedure
continues until convergence is reached. The above steps are summarized as algorithm 1.

Algorithm 1: FL at round t

1 users side:
2 do in parallel for u ∈ {1, . . . , U}
3 Update wt into wu

t via, e.g.,
several training iterations;

4 Send to server hu
t = wu

t −wt;

5 server side:
6 Update wt via equation 1;
7 Distribute wt+1 to all local users;
8 return Updated global model, wt+1;

Algorithm 2: FL + unlearning at round t

1 initialization: w0, t;
2 for j ∈ {0, . . . , t} do
3 Set wj+1 via Algorithm 1;
4 server side:
5 Store {hu

j }Uu=1;

6 server side:
7 if unlearning for user ũ then
8 Compute w′

t+1 via equation 3;
9 return Unlearned model w′

t+1;

10 return Updated global model, wt+1;

Distributed Unlearning. Distributed unlearning extends the distributed learning framework to en-
sure the RTBF of its users upon request, as well as the ability detach maliciously injected backdoors
once revealed. The goal of unlearning here is to erase the contributions of a user (or a group of
users) while preserving the performance of the model acquired using the remaining clients Roman-
dini et al. (2024). To formulate this, consider a distributed learning procedure that iterated over t > 1
rounds up to the arrival of the unlearning request regarding the ũth user, 1 ≤ ũ ≤ U . The desired
unlearned model, coined the train-from-scratch model, is the one obtained by naively retraining the
global model using all users except for the omitted user ũ Liu et al. (2023), i.e., by iterating over

w⋆
t+1 = w⋆

t +
1

U − 1

U∑
u=1,u̸=ũ

h⋆,u
t , h⋆,u

t := w⋆,u
t −w⋆

t ; w⋆
0 = w0. (2)

As elaborated in section 2, retraining from scratch is often infeasible. Most existing FU works relax
it by balancing between partially retraining the local models and the subtraction of the unlearned
user past updates, as both wt+1,w

⋆
t+1 rely of accumulating model updates, according to equations

1 and 2, respectively. When focusing on unlearning carried out solely on the server-side, without
users’ retraining, a generic unlearning rule is based on the one proposed in Huynh et al. (2024):

w′
t+1 = wt+1 +

t∑
j=0

(1 + α)t−jδ′j , δ′j :=
1

U

 1

U − 1

U∑
u=1,u ̸=ũ

hu
j − hũ

j

 . (3)

In equation 3, α is a pre-determined skewness parameter, and δ′j represents the local update skew
induced by client ũ in round j. The overall procedure, carrying out t training rounds followed by
server-side unlearning of user ũ, is outlined as Algorithm 2.

Problem Definition. To be able to unlearn via equation 3, the server must store all past local updates
for all users during training Cao et al. (2023); i.e., storing {hu

j } for 1 ≤ u ≤ U and 0 ≤ j ≤ t .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Assuming each of the m model parameters is represented using b bits (e.g., b = 64 for a standard
64-bit floating point), FU involves storing U · t sequences of m · b bits. This induces a substantial
burden for highly parameterized models (large m) trained over many rounds (large t) with data from
numerous users (large U).

To mitigate this overhead, we aim to develop a FU framework, allowing compact storage of {hu
j }

by the server while minimally affecting its ability to unlearn. To formulate this mathematically,
we are interested in lossy compression mechanisms Q : Rm 7→ Rm operating with a pre-defined
compression rate R ≤ b (i.e., any entry of Q(hu

j) is stored using R bits), such that the model
obtained via server-side unlearning with the compressed model updates {Q(hu

j)}, matches the train-
from-scratch model. Since the server is unlikely to have prior knowledge of the model parameters
distribution, we are interested in methods which are universal. Such schemes can be formulated as
mappings of the model updates hu

j into Q(hu
j) stored by the server, while meeting requirements

R1 The lossy compression function is identical for all users and along time. This requirement
significantly simplifies FU implementation.

R2 The scheme Q(·) must be invariant to the distribution of hu
j .

4 COMPRESSED DISTRIBUTED UNLEARNING

In this section we present candidate lossy compression techniques for achieving distributed unlearn-
ing with limited server-side memory footprint. We commence by formulating suitable lossy source
coding approaches, after which we theoretically analyze their deviation from the optimal model.

4.1 LOSSY SOURCE CODING TECHNIQUES

Evidently, requirements R1-R2 can be satisfied by any lossy source code that is invariant to the
distribution of the model updates. A lossy source code is formulated as Polyanskiy & Wu (2014):
Definition 4.1 (Lossy Source Code). A lossy source code Q(·) with compression rate R, input size
L, input alphabet XL, and output alphabet X̂L, consists of:

1. An encoder e: XL 7→ {0, . . . , 2LR − 1} := I which maps the input into a discrete index.

2. A decoder d: I 7→ X̂L which maps each i ∈ I into a codeword qi ∈ X̂L.

For an input x ∈ XL, the output of the code, x̂ ∈ X̂L, is written as Q(x) = d(e(x)) = x̂.

The performance of a lossy source code is characterized using its rate R and distortion, the latter
commonly being the mean-squared error (MSE), i.e., 1

LE
[
∥x − x̂∥2

]
. The encoder and decoder

mappings are used to formulate the compressed FU rule, such that equation 3 becomes

w′′
t+1 = wt+1 +

t∑
j=0

(1 + α)t−jδ′′j , δ′′j :=
1

U

 1

U − 1

U∑
u=1,u ̸=ũ

Q(hu
j)−Q(hũ

j)

 . (4)

In accordance, FU in Algorithm 2 is reformulated into compressed FU in Algorithm 3.

While definition 4.1 is relatively general, we next focus on two family of lossy source codes, pre-
viously considered for FL in the context of communication efficiency Chen et al. (2021). These
include codes that (i) limit the volume of model updates by quantization, i.e., discretizing the up-
dates such that they are expressed using a small number of bits Bernstein et al. (2018); Wen et al.
(2017); Alistarh et al. (2017); Reisizadeh et al. (2020); and (ii) save only part of the model updates
by sparsification Konečnỳ et al. (2016); Lin et al. (2017); Hardy et al. (2017); Aji & Heafield (2017);
Alistarh et al. (2018); Han et al. (2020). The considered mechanisms are summarized in Table 1.

4.1.1 QUANTIZATION

Any lossy source code can be viewed as quantization Gray & Neuhoff (1998). However, the term
quantizers typically refers to lossy source codes that operate block-wise, dividing an m-dimensional

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

vector h into ⌈m
L ⌉ blocks of size L, and encoding each block with the same code. When L = 1,

the lossy source code implements scalar quantization, and L > 1 is termed vector quantization.
While quantizers can be optimized to achieve improved rate-distortion tradeoff by tuning the code
based on the input distribution, we are particularly interested in quantizers that are invariant of such
distribution, and are therefore universal, meeting R2.

Lattice Quantization. A generic approach for universally choosing L-dimensional codewords is to
realize them as the points of a lattice Zamir (2014). A truncated lattice is a set of points P := {Gz :
z ∈ ZL, ∥Gz∥ < γ}, where G is an L× L non-singular matrix and γ is a truncated sphere radios.
A lattice quantizer QP(·) maps each x ∈ RL into its nearest lattice point, i.e.,

QP(x) = argmin
l∈P

∥x− l∥. (5)

In general, the basic cell shape of a lattice can take different forms, such as hexagons for two-
dimensional hexagonal lattices. When G = ∆ · IL×L for some ∆ > 0, QP(·) realizes a scalar
uniform quantizer per entry. The rate of QP(·) is R = 1

L log2(|P|), for |P| being the cardinality of
P . The overall number of bits required for storing an update vector h ∈ Rm is thus m ·R bits.

(Probabilistic) Dithered Lattice Quantization. The quantized representation in equation 5 and its
error e := Q(x) − x are deterministically determined by the input x. Nonetheless, by leveraging
a random dither vector d, QP(·) can be extended into a probabilistic form via dithered quantization
(DQ), yielding QDQ

P (·), and subtractive DQ (SDQ), yielding QSDQ
P (·), respectively; defined as

QDQ
P (x) := QP(x+ d), (6a) QSDQ

P (x) := QP(x+ d)− d. (6b)

Proper selection of d can transform the quantization error e into a form of noise that is uncorrelated
with the input Gray & Stockham (1993). One such setting is when d is uniformly distributed over
the basic lattice cell, which is the set of points in RL that are closer to 0 than to any other lattice
point, defined as P0 := {x : ∥x∥ < ∥x− p∥ ∀p ∈ P\{0}}. Then, the quantization error is made
independent of the quantized values, as stated in the following theorem Zamir & Feder (1996):
Theorem 4.1. When d is uniformly distributed over P0 and x lies within the lattice support, i.e.,
Pr(∥x∥ ≤ γ) = 1, then e = QSDQ

P (x)− x is uniformly distributed over P0 and independent of x.

When Theorem 4.1 holds, the error is clearly unbiased, as E[e|x] = 0, and has a bounded variance,
as E[∥e∥2|x] = E[∥d∥2]. A similar result with higher error can be obtained with DQ, as stated in
the following theorem Kirac & Vaidyanathan (1996):
Theorem 4.2. When d is the sum of two mutually independent random vectors, each uniformly dis-
tributed over P0, and x lies within the lattice support, i.e., Pr(∥x∥ ≤ γ) = 1, then e = QDQ

P (x)−x
satisfies E[e|x] = 0 and E[∥e∥2|x] = 3

2E[∥d∥
2].

In compressed server-side unlearning, all forms of lattice quantization use log2(|P|) for storing
every L-sized sub-vector of each model update. Nevertheless, SDQ also requires the server to store
the dither signal d, as it is used in decoding. This requirement can be alleviated via pseudo-random
methods, obtaining random quantities realizations not by storing them directly, but rather by storing
a single seed Shlezinger et al. (2020), such that its excessive storage is made negligible.

4.1.2 SPARSIFICATION

Sparsification is a form of lossy compression that discards a subset of its input. To formulate its
operation, we focus on two k-sparse vectors operators, stated in Stich et al. (2018):

Definition 4.2 (Sparsifier). For a given k ∈ [m], denote by Ωk =
(
[m]
k

)
the set of all

k-element subsets of [m]. Define ω
u.a.r∼ Ωk, and π to be a permutation of [m], sat-

isfying (|x|)π(j) ≥ (|x|)π(j+1), for j ∈ [m − 1]. Then, for x ∈ Rm, the mapping
spark(·) : Rm 7→ Rm, such that spar ∈ {top, rand}, is given for each i ∈ [m] by,

(topk(x))i :=

{
(x)π(i), if i ≤ k,

0, otherwise,
(7a) (randk(x))i :=

{
(x)i, if i ∈ ω,

0, otherwise,
(7b)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 3: FL + compressed unlearning
1 initialization: w0, t;
2 for j ∈ {0, . . . , t} do
3 Set wj+1 via Algorithm 1;
4 server side:
5 Store {e

(
hu
j

)
}Uu=1;

6 server side:
7 if unlearning for user ũ then
8 Decode all updates {d

(
e
(
hu
j

))
};

9 Compute w′′
t+1 via equation 4;

10 return Unlearned model w′′
t+1;

11 return Updated global model, wt+1;

Method Def. Required memory
for each hu

t ∈ Rm
Stored
seed

Lattice Q. 5
⌈m
L ⌉ log2(|P|)

✗
DQ 6a ✗

SDQ 6b ✓
topk 7a k · b+m ✗ (✓*)
randk 7b k · b ✓

Table 1: Covered lossy source coding techniques.
✓* denotes that a seed is stored if random projec-
tions are used.

By Definition 4.2, for any x ∈ Rm, topk(x) ∈ Rm selects the top k largest elements of x (in terms
of their absolute value) with corresponding indices, while randk(x) ∈ Rm uniformly at random
selects k elements from x. In both cases, the remaining m − k elements are set to zero Shi et al.
(2019). k is often defined as a rounded percent of m, i.e., k = ⌈ζ · m⌉ for 0 < ζ < 1. In order
to encode topk(x), the server stores the k non-zero elements in full-precision. In decoding, an
additional bit per entry is needed to identify which elements are set to zero. Therefore, assuming
b-bit floating point representation, encoding requires R = k

m · b + 1 bits per sample. For randk(·),
where the sparsified indices do not depend on the input, one can potentially re-realize the random
pattern ω in decoding using a pre-stored seed, similarly to SDQ, hence results in rate R = k

m · b.
Sparsification via random projections. Sparsifiers are often employed in combination with ran-
dom projections Konečnỳ et al. (2016). Here, the input is first randomly projected using a stochastic
unitary matrix before being sparsified. Decoding then consists of reconstructing the sparse vector
and consequently multipling by the inverse projection. Formally, for a random unitary matrix U and
a sparsifier spark(·) in Definition 4.2, equation 7 changes into spark(x) 7→ UT spark(Ux). It is
motivated as means to recover the input’s most information before eliminating most of its entries.
Unitary projection does not induce further computational overhead in calculating its inverse. While
decoding requires access to U, the fact that it is random and does not depend on the input indicates
that it can be reconstructed by storing a seed rather than a full matrix for each model update.

4.2 THEORETICAL EVALUATION1

The induced distortion of lossy compression is inevitably incorporated into the unlearned model. To
characterize this effect on the unlearned model performance in terms of forgetting capabilities, we
use the conventional metric in unlearning literature Wang et al. (2024); Wu et al. (2020); Cao et al.
(2023) of L2-norm proximity to the train-from-scratch model, namely, ∥w⋆

t+1 −w′′
t+1∥.

Assumptions. In our analysis we further adopt the following assumptions for ∀t ≥ 0, u ∈ [U]:

AS1 Local training follows gradient decent, i.e., wu
t := wt − ηt∇Lu(wt); where ηt > 0 is the

learning rate. Unlearning is realized using equation 4 with skewness α = 0.
AS2 The norm of gradients is uniformly bounded, i.e., ∥∇Lu(wt)∥ ≤ M .
AS3 The distortions induced by the lossy source code, {eut := Q(hu

t) − hu
t }, are independent

in time (t) and between users (u), and hold E[eut |hu
t] = 0; E[∥eut ∥2|hu

t] = σ2.

AS1 focuses our analysis on a basic form of distributed learning, utilizing full gradient decent, and
specializing a generic server-side unlearning obtained by subtracting the unlearned user past gradi-
ents. AS2 is commonly adopted in distributed learning convergence studies Li et al. (2019); Stich
(2018); Koloskova et al. (2019), and hold for, e.g., L2-norm regularized linear regression and logistic
regression objective functions. AS3 is satisfied by different forms of probabilistic lossy compression,

1Proofs are deferred to the Appendix and appear in section A.1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

such as SDQ (Theorem 4.1) and DQ (Theorem 4.2). It is assumed here as the ability to represent dis-
tortion as additive noise notably facilitates analyzing its impact on the unlearning procedure, where
aggregation in equation 4 results in this additive noise term effectively approaching its mean value of
zero by the law of large numbers. Still, in our experimental study reported in section 5 we consider
a broader range of lossy compression methods, including ones not necessarily holding AS3.

Analysis. The stochatsicty of the distortion (AS3) implies that the compressed unlearned model w′′
t

is a random vector. Thus, we fist formulate the first- and second-moments of the compression error:
Lemma 4.1. Assuming AS1 and AS3 hold, given {Lu(wt)}u,t, w′′

t+1 in equation 4 is an unbiased
estimator of the non-compressed w′

t+1 in equation 3, i.e., E
[
w′′

t+1 −w′
t+1

]
= 0; with variance

E
[∥∥w′′

t+1 −w′
t+1

∥∥2] =
σ2

U − 1

t∑
j=0

η2j . (8)

Using Lemma 4.1, we next derive an upper bound on the expected deviation from the desired model:
Theorem 4.3. If AS1-AS3 hold, then given {Lu(wt)}u,t, the expected proximity of the train-from-
scratch model w⋆

t+1 to the compressed unlearned one w′′
t+1 in equations 2 and 4, respectively, obeys

E
[∥∥w⋆

t+1 −w′′
t+1

∥∥2] ≤ G2(t) +
σ2

U − 1

t∑
j=0

η2j , G(t) := 2M

t∑
j=0

ηj . (9)

Theorem 4.3 characterizes the distortion induced by compressing the gradients used to form the
unlearned model. This distortion, though, does not explicitly depend on the number of used bits,
which is encapsulated in the second order moment of the used source code. It is further implied that
Algorithm 3 does not guarantee decaying distance from the desired train-from-scratch model as the
number of global iterations t grow. This result is not surprising, as raised from the construction of the
unlearned model in either equation 3 or equation 4, noticing that the remaining users past gradients
{Lu(wt)}u̸=ũ,t still encapsulate information about the ũth user via {wt}t in equation 1. However,
the deviation can be made to converge as t → ∞. Specifically, when the learning rate ηt is carefully
chosen to gradually decay over time, as highly adopted in other studies of distributed optimization
Li et al. (2019); Stich (2018); Koloskova et al. (2019), we obtain the following theorem:
Theorem 4.4. When the learning rate is set as ηt = 1

(t+ν)λ
for t ≥ 0; ν > 0; and λ > 1, then there

exists Ḡ < ∞ such that lim
t→∞

G2(t) = Ḡ and lim
t→∞

E
[∥∥w⋆

t+1 −w′′
t+1

∥∥2] ≤ Ḡ+ σ2

U−1

(
1
ν + π2

6

)
.

Non-Compressed Analysis. While the above results are derived for distributed unlearning with
lossy compression, it also specializes non-compressed distributed unlearning as a special case.
Specifically, by setting Q(h) ≡ h, we have w′′

t+1 realizes its non-compressed counterpart w′
t+1,

while AS3 is satisfied as the distortion is the all-zero vector with probability one. In this case, we
obtain a distinct bound on server-side unlearning for distributed gradient descent based learning:
Corollary 4.1. When AS1-AS2 hold, the L2-norm proximity of the unlearned model w′

t+1 in equa-
tion 3 to the train-from-scratch one w⋆

t+1 in equation 2 is given by∥∥w⋆
t+1 −w′

t+1

∥∥ ≤ G(t), (10)

where G(t) is given in equation 9 and is finite for t → ∞ if ηt = 1
(t+ν)λ

for t ≥ 0; ν > 0; λ > 1.

Corollary 4.1 shows that, when combined with gradient descent for proper step-size setting, one
can obtain convergent deviation from the desired model, as opposed to a generic divergent bound
in Huynh et al. (2024). Contrasting it with Theorem 4.3 indicates that while the memory footprint
of server side unlearning can significantly be relieved by the incorporation of lossy source coding,
its excessive deviation decays not only with σ (i.e., the quantization resolution), but also with the
number of users U . This follows since, compared with Theorem 4.4, when t → ∞, the excessive
deviation due to compression is quantified to be not larger than σ2

U−1

(
1
ν + π2

6

)
.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5 NUMERICAL EXPERIMENTS2

We next experimentally evaluate server-side unlearning with different forms of lossy compression.
We utilize the unlearning procedure based on equation 3 with skewness parameter α = 0.07 Huynh
et al. (2024), comparing non-compressed unlearning to lossy compressed unlearning.

Setting. We evaluate compressed FU using two image classification datasets of MNIST and CIFAR-
10. For each, we train a CNN composed of two convolutional layers and two fully-connected ones;
with intermediate ReLU activations, max-pooling and normalization layers. The data distributed
across U = 25 users in both IID and non-IID scenarios. The former equally partitions the data
among clients, while the latter simulates label imbalance via the widely used Dirichlet distribution
Dir(β) Li et al. (2022), having β flexibly determines the imbalance level (smaller value leads to
a higher unbalancedness). FL is globally iterated over 90 rounds, each with 10 randomly chosen
clients locally utilizing SGD for 10 epochs.

Unlearning Evaluation. Unlearning request arrives at t = 90, due to the discovery of a participated
malicious user that realized a backdoor attack during training. We employ the established edge-case
backdoor Wang et al. (2020), where an adversary edge device intentionally uses wrong labels for a
specific set of data points to mislead the server on seemingly easy inputs that are, though, unlikely
to be part of the training (or test) data. This is illustrated in Fig. 1, where a digit ′7′ is labeled as
′1′ for MNIST; and an airplane is labeled as ’truck’ for CIFAR-10. The unlearned model is then
constructed at the server according to equation 4. Its performance is quantified via (i) accuracy
on the primary task test-set; and (ii) accuracy on the backdoor task test-set, comprised of samples
distribute similarly to those used by the attacker in training. Both preferably being as high, and
low, respectively, as possible, with the latter being high indicates that the unlearned model is still
backdoored Wang et al. (2024).

Baselines. We comparatively assess the performance of nine schemes, encompassing the lossy
source codes covered in section 4.1. The three reference baselines are vanilla FL, i.e., the con-
verged model wt+1 of the FL training in equation 1; retrain, denoting the desired train-from-scratch
model w⋆

t+1 in equation 2; and non-compressed FU, which uses the unlearned model w′
t+1 obtained

via equation 3. These are compared to the compressed unlearned model w′′
t+1 obtained via equa-

tion 4 using QP , L = l; QSDQ
P , L = l; topk; and randk. Each is respectively realizing Q = QP

in equation 5; Q = QSDQ
P in equation 6b; Q = topk in equation 7a; and Q = randk in equation 7b.

For the quantizers, l ∈ {1, 2} and the lattice P is the standard hexagonal lattice. For sparsification,
the sparsity level k achieves the same rate as that of quantization based on Table 11.

Results. We begin with the MNIST IID scenario, and inspect the excess distortion in the recovered
model induced by integrating lossy source codes into distributed server-side unlearning, compared to
non-compressed unlearning; versus the compression rate. To that aim, for a given rate, Fig. 2 depicts
the averaged model signal-to-noise ratio (SNR) for non-compressed and compressed unlearning,
given by SNR = 10 log10 (Var(w

′
t) /Var(w

′
t −w′′

t)) [dB] (higher is better). Fig. 2 evidences, as
also discussed in section 4.2, that the random nature of SDQ is a contributing factor, so as leveraging
multivariate over scalar compression, having QSDQ

P , L = 2 performs the best of all quantizers.
Predictably, in all baselines the SNR increases with rate, and saturates for the quantizers. Such a
situation is attributed with an overloaded quantizer, implying that its error is dominated by the inputs
residing outside of its dynamic range (support), thus further increment of its resolution (rate) does
not improve its performance from some point on. Whereas randk appears to be the worst-performer,
topk is the best one for relatively high compression rates, as it is invariant to the input’s support.

Next, Fig. 3 illustrates the evaluation of all baselines on the backdoor task test-set (lower is better),
for different compression rates. As expected, vanilla FL and retrain obtain the worst and best results,
being entirely affected and non-affected by the attacker participated in training, respectively. Non-
compressed FU is shown to be the second-best, accurately discarding the malicious user influence.
The compression counterparts show that quantizers yield improved unlearning over sparsifiers in
all examined rates. In particular, the accuracy of non-compressed FU is degraded by about 2% for
R ≈ 4, where for each user and FL iteration, any of the m model updates is stored using b bits for

2Additional numerical studies appear in section A.2.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 1: MNIST and CIFAR-10 Backdoors.

52.0

52.5

53.0

53.5

54.0

Q , L=1
QSDQ, L=1
Q , L=2
QSDQ, L=2
topk

2.32 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50

Rate

47.4

47.6

randk

SN
R

Figure 2: SNR (↑) [dB] vs. rate [bits/sample].

65
70
75 vanilla FL

randk

10

20

30
topk

Q , L=1
Q , L=2

2

3

4

5

6

7

8

9

10
Q , L=1
QSDQ, L=1
Q , L=2
QSDQ, L=2

1.58 2.00 2.50 3.00 3.50 4.00 4.50 5.00

Rate
0.00
0.25 non-compresses FU

retrain

B
ac

kd
oo

r
ta

sk
 a

cc
ur

ac
y

Figure 3: Backdoor test-set accuracy (↓)[%] vs.
rate [bits/sample].

the former and ⌈m
2 ⌉×4 for the latter. As a result, considering, e.g., a standard double-precision with

b = 64, non-compressed FU memory footprint is 32× higher than one that realizes QSDQ
P , L = 2.

Finally, Table 2 summarizes the performance of all baselines for both IID and non-IID cases in each
MNIST and CIFAR-10 datasets, respectively experimented with β = 2, 1 and rate R = 2.8, 2.3.
Table 2 provides complementary evaluation to Fig. 3, as it also reports the accuracy on the primary
task (higher is better). The inferior performance of the quantizers compared to the non-compressed
alternative in the backdoor task visualized in Fig. 3 is here translated into an improved accuracy on
the main task; yet less distinctive to a particular lossy source code to perform best. This, in turn,
gives rise to the existence of a trade-off between memory footprint, accuracy on the primary task,
and backdoor resiliency once (compressed) unlearning is carried out using (equation 4) equation 3.

MNIST CIFAR-10
IID non-IID IID non-IID

Method Main Attack Main Attack Main Attack Main Attack
vanilla FL 99.15 75.53 99.12 52.10 71.48 32.83 66.49 28.30

non-compressed FU 96.07 0.27 96.30 0.0 53.89 2.64 30.39 1.89
QP , L = 1 98.58 3.99 98.1 1.47 62.93 3.96 45.45 1.32

QSDQ
P , L = 1 98.57 3.72 98.0 0.63 62.82 3.77 44.77 1.13
QP , L = 2 98.52 3.72 98.09 1.05 62.6 3.58 45.19 1.32

QSDQ
P , L = 2 98.51 3.19 97.93 0.42 62.27 3.58 44.20 0.94
topk 98.26 23.40 98.22 12.61 64.50 17.36 41.41 28.11
randk 98.18 70.48 99.13 47.69 71.59 32.07 66.45 26.60

Table 2: Main task (↑) and backdoor attack task (↓) test-set accuracy [%].

6 CONCLUSIONS

In this work, we studied decentralized server-side unlearning with lossy source coding incorporated
in the process. We investigated its effect on the unlearned model performance from both theoretical
and experimental perspectives. From an experimental point of view, our numerical evaluations
reveal that compressed FU with notable storage reduction, e.g., 32× lower memory footprint at
the server, preserves the ability to unlearn. On the theoretical side; we prove that under common
assumptions, the distance between the compressed unlearned model to the desired one is bounded.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Our bound improves upon the best known guarantees, asserting that the growth rate of this distance
is at most exponential with the number of FL iterations. However, as shown in recent not-limited-
to-server FU works, in some scenarios the decentralized unlearned model may actually converge to
the optimal one, and therefore our theoretical analysis may be a first important step towards a proof
of convergence for server-side unlearning. We leave it as a main open question for future study.

Beyond extending our theoretical analysis, many interesting research directions are left for future
work. For example, while our analysis considers basic gradient-based learning, one can potentially
extend its findings to other forms of learning algorithms. Other important aspects to study concern
the joint usage of sparsification and quantization; as well as unifying lossy and lossless compression,
where the latter is known to provide further performance benefits from the underlying characteristics
of the digital representations. Finally, prospective direction would try to mitigate the overloaded
quantizers numerically evidenced in section 5 by designing them Shlezinger et al. (2019) or their
associated lattices Lang et al. (2024) in a learning-oriented rather than a distortion-oriented manner.

REFERENCES

Alham Fikri Aji and Kenneth Heafield. Sparse communication for distributed gradient descent.
arXiv preprint arXiv:1704.05021, 2017.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd:
Communication-efficient sgd via gradient quantization and encoding. Advances in neural in-
formation processing systems, 30, 2017.

Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov, Sarit Khirirat, and Cédric
Renggli. The convergence of sparsified gradient methods. Advances in Neural Information Pro-
cessing Systems, 31, 2018.

Seyed Mohammad Azimi-Abarghouyi and Lav R Varshney. Federated learning via lattice joint
source-channel coding. arXiv preprint arXiv:2403.01023, 2024.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
signsgd: Compressed optimisation for non-convex problems. In International Conference on
Machine Learning, pp. 560–569. PMLR, 2018.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hengrui Jia, Adelin
Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In IEEE Sym-
posium on Security and Privacy (SP), pp. 141–159, 2021.

Xiaoyu Cao, Jinyuan Jia, Zaixi Zhang, and Neil Zhenqiang Gong. Fedrecover: Recovering from
poisoning attacks in federated learning using historical information. In IEEE Symposium on
Security and Privacy (SP), pp. 1366–1383, 2023.

Mingzhe Chen, Zhaohui Yang, Walid Saad, Changchuan Yin, H Vincent Poor, and Shuguang Cui.
A joint learning and communications framework for federated learning over wireless networks.
IEEE transactions on wireless communications, 20(1):269–283, 2020.

Mingzhe Chen, Nir Shlezinger, H Vincent Poor, Yonina C Eldar, and Shuguang Cui.
Communication-efficient federated learning. Proceedings of the National Academy of Sciences,
118(17):e2024789118, 2021.

Yann Fraboni, Martin Van Waerebeke, Kevin Scaman, Richard Vidal, Laetitia Kameni, and Marco
Lorenzi. Sifu: Sequential informed federated unlearning for efficient and provable client unlearn-
ing in federated optimization. In International Conference on Artificial Intelligence and Statistics,
pp. 3457–3465. PMLR, 2024.

Chaohao Fu, Weijia Jia, and Na Ruan. Client-free federated unlearning via training reconstruc-
tion with anchor subspace calibration. In ICASSP 2024-2024 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 9281–9285. IEEE, 2024.

Xiangshan Gao, Xingjun Ma, Jingyi Wang, Youcheng Sun, Bo Li, Shouling Ji, Peng Cheng, and
Jiming Chen. Verifi: Towards verifiable federated unlearning. IEEE Transactions on Dependable
and Secure Computing, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Robert M. Gray and David L. Neuhoff. Quantization. IEEE transactions on information theory, 44
(6):2325–2383, 1998.

Robert M Gray and Thomas G Stockham. Dithered quantizers. IEEE Transactions on Information
Theory, 39(3):805–812, 1993.

Pengchao Han, Shiqiang Wang, and Kin K Leung. Adaptive gradient sparsification for efficient
federated learning: An online learning approach. In 2020 IEEE 40th international conference on
distributed computing systems (ICDCS), pp. 300–310. IEEE, 2020.

Corentin Hardy, Erwan Le Merrer, and Bruno Sericola. Distributed deep learning on edge-devices:
Feasibility via adaptive compression. In 2017 IEEE 16th international symposium on network
computing and applications (NCA), pp. 1–8. IEEE, 2017.

Samuel Horváth, Dmitry Kovalev, Konstantin Mishchenko, Peter Richtárik, and Sebastian Stich.
Stochastic distributed learning with gradient quantization and double-variance reduction. Opti-
mization Methods and Software, 38(1):91–106, 2023.

Samuel Horvóth, Chen-Yu Ho, Ludovit Horvath, Atal Narayan Sahu, Marco Canini, and Peter
Richtárik. Natural compression for distributed deep learning. In Mathematical and Scientific
Machine Learning, pp. 129–141. PMLR, 2022.

Thanh Trung Huynh, Trong Bang Nguyen, Phi Le Nguyen, Thanh Tam Nguyen, Matthias Weidlich,
Quoc Viet Hung Nguyen, and Karl Aberer. Fast-fedul: A training-free federated unlearning with
provable skew resilience. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pp. 55–72. Springer, 2024.

Yu Jiang, Jiyuan Shen, Ziyao Liu, Chee Wei Tan, and Kwok-Yan Lam. Towards efficient and
certified recovery from poisoning attacks in federated learning. arXiv preprint arXiv:2401.08216,
2024.

Michael I Jordan and Tom M Mitchell. Machine learning: Trends, perspectives, and prospects.
Science, 349(6245):255–260, 2015.

Peter Kairouz et al. Advances and open problems in federated learning. Foundations and trends®
in machine learning, 14(1–2):1–210, 2021.

Ahmet Kirac and PP Vaidyanathan. Results on lattice vector quantization with dithering. IEEE
Transactions On Circuits and Systems II: Analog and Digital Signal Processing, 43(12):811–826,
1996.

Anastasia Koloskova, Sebastian Stich, and Martin Jaggi. Decentralized stochastic optimization and
gossip algorithms with compressed communication. In International Conference on Machine
Learning, pp. 3478–3487. PMLR, 2019.

Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Natalie Lang, Elad Sofer, Tomer Shaked, and Nir Shlezinger. Joint privacy enhancement and quan-
tization in federated learning. IEEE Transactions on Signal Processing, 71:295–310, 2023a.

Natalie Lang, Elad Sofer, Nir Shlezinger, Rafael GL D’Oliveira, and Salim El Rouayheb. Cpa:
Compressed private aggregation for scalable federated learning over massive networks. In
ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 1–5. IEEE, 2023b.

Natalie Lang, Itamar Assaf, Omer Bokobza, and Nir Shlezinger. Data-driven lattices for vector
quantization. In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 8080–8084. IEEE, 2024.

Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. Federated learning on non-iid data silos:
An experimental study. In 2022 IEEE 38th international conference on data engineering (ICDE),
pp. 965–978. IEEE, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEE signal processing magazine, 37(3):50–60, 2020.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
fedavg on non-iid data. arXiv preprint arXiv:1907.02189, 2019.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. Deep gradient compression: Re-
ducing the communication bandwidth for distributed training. arXiv preprint arXiv:1712.01887,
2017.

Bo Liu, Ming Ding, Sina Shaham, Wenny Rahayu, Farhad Farokhi, and Zihuai Lin. When machine
learning meets privacy: A survey and outlook. ACM Computing Surveys (CSUR), 54(2):1–36,
2021.

Ziyao Liu, Yu Jiang, Jiyuan Shen, Minyi Peng, Kwok-Yan Lam, Xingliang Yuan, and Xiaoning Liu.
A survey on federated unlearning: Challenges, methods, and future directions. ACM Computing
Surveys, 2023.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Thanh Tam Nguyen, Thanh Trung Huynh, Phi Le Nguyen, Alan Wee-Chung Liew, Hongzhi Yin,
and Quoc Viet Hung Nguyen. A survey of machine unlearning. arXiv preprint arXiv:2209.02299,
2022.

Nikolaos Pitropakis, Emmanouil Panaousis, Thanassis Giannetsos, Eleftherios Anastasiadis, and
George Loukas. A taxonomy and survey of attacks against machine learning. Computer Science
Review, 34:100199, 2019.

Yury Polyanskiy and Yihong Wu. Lecture notes on information theory. Lecture Notes for ECE563
(UIUC) and, 6(2012-2016):7, 2014.

Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and Ramtin Pedarsani.
Fedpaq: A communication-efficient federated learning method with periodic averaging and quan-
tization. In International conference on artificial intelligence and statistics, pp. 2021–2031.
PMLR, 2020.

Nicolò Romandini, Alessio Mora, Carlo Mazzocca, Rebecca Montanari, and Paolo Bellavista. Fed-
erated unlearning: A survey on methods, design guidelines, and evaluation metrics. arXiv preprint
arXiv:2401.05146, 2024.

Jiaqi Shao, Tao Lin, Xuanyu Cao, and Bing Luo. Federated unlearning: a perspective of stability
and fairness. arXiv preprint arXiv:2402.01276, 2024.

Shaohuai Shi, Xiaowen Chu, Ka Chun Cheung, and Simon See. Understanding top-k sparsification
in distributed deep learning. arXiv preprint arXiv:1911.08772, 2019.

Nir Shlezinger, Yonina C Eldar, and Miguel RD Rodrigues. Hardware-limited task-based quantiza-
tion. IEEE Transactions on Signal Processing, 67(20):5223–5238, 2019.

Nir Shlezinger, Mingzhe Chen, Yonina C Eldar, H Vincent Poor, and Shuguang Cui. UVeQFed:
Universal vector quantization for federated learning. IEEE Transactions on Signal Processing,
69:500–514, 2020.

Sebastian U Stich. Local sgd converges fast and communicates little. arXiv preprint
arXiv:1805.09767, 2018.

Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified SGD with memory.
Advances in neural information processing systems, 31, 2018.

Youming Tao, Cheng-Long Wang, Miao Pan, Dongxiao Yu, Xiuzhen Cheng, and Di Wang. Com-
munication efficient and provable federated unlearning. Proceedings of the VLDB Endowment,
17(5):1119–1131, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Paul Voigt and Axel Von dem Bussche. The eu general data protection regulation (gdpr). A Practical
Guide, 1st Ed., Cham: Springer International Publishing, 10(3152676):10–5555, 2017.

Fei Wang, Baochun Li, and Bo Li. Federated unlearning and its privacy threats. IEEE Network, 38
(2):294–300, 2023.

Hongyi Wang, Kartik Sreenivasan, Shashank Rajput, Harit Vishwakarma, Saurabh Agarwal, Jy-
yong Sohn, Kangwook Lee, and Dimitris Papailiopoulos. Attack of the tails: Yes, you really can
backdoor federated learning. Advances in Neural Information Processing Systems, 33:16070–
16084, 2020.

Weiqi Wang, Zhiyi Tian, and Shui Yu. Machine unlearning: A comprehensive survey. arXiv preprint
arXiv:2405.07406, 2024.

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Terngrad:
Ternary gradients to reduce communication in distributed deep learning. Advances in neural
information processing systems, 30, 2017.

Chen Wu, Sencun Zhu, and Prasenjit Mitra. Federated unlearning with knowledge distillation. arXiv
preprint arXiv:2201.09441, 2022.

Chen Wu, Sencun Zhu, and Prasenjit Mitra. Unlearning backdoor attacks in federated learning. In
ICLR 2023 Workshop on Backdoor Attacks and Defenses in Machine Learning, 2023.

Yinjun Wu, Edgar Dobriban, and Susan Davidson. Deltagrad: Rapid retraining of machine learning
models. In International Conference on Machine Learning, pp. 10355–10366. PMLR, 2020.

Ram Zamir. Lattice Coding for Signals and Networks: A Structured Coding Approach to Quantiza-
tion, Modulation, and Multiuser Information Theory. Cambridge University Press, 2014.

Ram Zamir and Meir Feder. On lattice quantization noise. IEEE Transactions on Information
Theory, 42(4):1152–1159, 1996.

Chen Zhang, Yu Xie, Hang Bai, Bin Yu, Weihong Li, and Yuan Gao. A survey on federated learning.
Knowledge-Based Systems, 216:106775, 2021.

Lefeng Zhang, Tianqing Zhu, Haibin Zhang, Ping Xiong, and Wanlei Zhou. Fedrecovery: Differ-
entially private machine unlearning for federated learning frameworks. IEEE Transactions on
Information Forensics and Security, 2023.

Yian Zhao, Pengfei Wang, Heng Qi, Jianguo Huang, Zongzheng Wei, and Qiang Zhang. Federated
unlearning with momentum degradation. IEEE Internet of Things Journal, 2023.

A APPENDIX

A.1 DEFERRED PROOFS

A.1.1 PROOF OF LEMMA 4.1

To prove Lemma 4.1, first note that iterating over equation 1 results in

wt+1 = wt +
1

U

U∑
u=1

hu
t = w0 +

t∑
j=0

1

U

U∑
u=1

hu
j . (A.1.1)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Now, observing equation 3,

w′
t+1 = wt+1 +

t∑
j=0

(1 + α)T−1−jδj

(a)
= w0 +

t∑
j=0

1

U

U∑
u=1

hu
j +

t∑
j=0

(1 + α)T−1−j 1

U

 1

U − 1

U∑
u=1
u̸=ũ

hu
j − hũ

j


(b)
= w0 +

1

U − 1

t∑
j=0

U∑
u=1
u̸=ũ

hu
j = w0 +

1

U − 1

t∑
j=0

U∑
u=1
u̸=ũ

(wu
t −wt)

(c)
= w0 −

t∑
j=0

ηj
1

U − 1

U∑
u=1
u̸=ũ

∇Lu(wj), (A.1.2)

here (a) follows by equation A.1.1 and the definition of δj in equation 3; and (b), (c) are true from
AS1, as α = 0 and wu

t := wt − ηt∇Lu(wt), respectively. w′′
t+1 in equation 4 similarly changes,

and

w′′
t+1 −w′

t+1 = w0 −
t∑

j=0

ηj
1

U − 1

U∑
u=1
u̸=ũ

Q (∇Lu(wj))−

w0 −
t∑

j=0

ηj
1

U − 1

U∑
u=1
u̸=ũ

∇Lu(wj)


=

t∑
j=0

ηj
1

U − 1

U∑
u=1
u ̸=ũ

(Q (∇Lu(wj))−∇Lu(wj)) =

t∑
j=0

ηj
1

U − 1

U∑
u=1
u ̸=ũ

eju.

According to Lemma 4.1, {Lu(wt)}u,t are given, and therefore, due to AS3, ∀t, u E [etu] = 0 and
E
[
∥etu∥2

]
= σ2, which implies that E

[
w′′

t+1 −w′
t+1

]
= 0. As for the second moment, since AS3

states that ∀t, u {etu} are independent, we desirably obtain

E
[∥∥w′′

t+1 −w′
t+1

∥∥2] = E


∥∥∥∥∥∥∥

t∑
j=0

ηj
1

U − 1

U∑
u=1
u̸=ũ

eju

∥∥∥∥∥∥∥
2 =

t∑
j=0

η2j
1

(U − 1)2

U∑
u=1
u ̸=ũ

E
[∥∥eju∥∥2]

=
σ2

U − 1

t∑
j=0

η2j .

A.1.2 PROOF OF THEOREM 4.3

To prove Theorem 4.3, we characterize the intermediate distances to the non-compressed model
w′

t+1 in equation 3 and utilizing Lemma 4.1. Namely,

E
[∥∥w⋆

t+1 −w′′
t+1

∥∥2] = E
[∥∥w⋆

t+1 −w′
t+1

∥∥2]+ E
[∥∥w′

t+1 −w′′
t+1

∥∥2]
+2

〈
w⋆

t+1 −w′
t+1,E

[
w′

t+1 −w′′
t+1

]〉
=

∥∥w⋆
t+1 −w′

t+1

∥∥2 + σ2

U − 1

t∑
j=0

η2j . (A.1.3)

The proof is then concluded by proving the following auxiliary lemma:
Lemma A.1.1. When AS1 and AS2 hold, the distance between the train-from-scratch model w⋆

t+1
in equation 2 and the unlearned one w′

t+1 in equation 3 satisfies

∥∥w⋆
t+1 −w′

t+1

∥∥ ≤ 2M

t∑
j=0

ηj .

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Proof. Under AS1, we use the formulation of w′
t+1 in equation A.1.2, according to which we obtain

similar representation for w⋆
t+1, thus

∥w⋆
t+1 −w′

t+1∥ =

∥∥∥∥∥∥∥w0 −
t∑

j=0

ηj
1

U − 1

U∑
u=1
u ̸=ũ

∇Lu(w
⋆
j)−

w0 −
t∑

j=0

ηj
1

U − 1

U∑
u=1
u ̸=ũ

∇Lu(wj)


∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥
t∑

j=0

ηj
1

U − 1

U∑
u=1
u̸=ũ

(
∇Lu(w

⋆
j)−∇Lu(wj)

)∥∥∥∥∥∥∥
(a)

≤
t∑

j=0

ηj
1

U − 1

U∑
u=1
u ̸=ũ

(∥∥∇Lu(w
⋆
j)
∥∥+ ∥∇Lu(wj)∥

) (b)

≤ 2M

t∑
j=0

ηj ,

where (a) holds by recursively applying the triangle inequality and (b) is true from using AS2 for
every u and j; concluding the proof.

A.1.3 PROOF OF THEOREM 4.4

For t → ∞, G2(t) converges if
∑t

j=0 ηj does. Now, the setting of ηt in Theorem 4.4 implies that
t∑

j=0

ηj =

t∑
j=0

1

(j + ν)λ
≤ 1

ν
+

t∑
j=1

1

jλ
(A.1.4)

where the inequality follows as ν > 0, and additionally, the right-hand-side of equation A.1.4
is summable as λ > 1. To complete the proof we left to show that for t → ∞ it holds that
σ2

U−1

∑t
j=0 η

2
j ≤ σ2

U−1

(
1
ν + π2

6

)
. Using similar arguments,

∞∑
j=0

η2j =

∞∑
j=0

1

(j + ν)2λ
≤ 1

ν
+

∞∑
j=1

1

j2
=

1

ν
+

π2

6
,

as desired.

A.2 ADDITIONAL EXPERIMENTS

This section presents additional experimental results on the MNIST dataset, highlighting the rela-
tionship between the compression rate and the resulted unlearned model ability to maintain high
accuracy on the primary task; studied in the IID scenario. Furthermore, for the non-IID case, we
examine the effect of the data imbalance level β on the performance of the unlearned models in the
backdoor task.

Fig. 4 complements Fig. 3 and Table 2 by illustrating the accuracy of all baselines on the primary task
test-set (higher is better) under varying compression rates. As anticipated, retrain is the best baseline
on the main task, completely not backdoored. Additionally, it is visualized that the unlearned model
obtained for either of the compression methods, except for randk, exhibits a decreased performance
for growing rates. This follows as compressing with higher rate, i.e., an improved resolution, is
attributed with lesser variance and therefore more reliable estimation of the input. In this case the
input is the non-compresses FU model, which itself results in the lowest main task accuracy, in
contract to being the best baseline on the backdoor task, as showed in Fig. 3 and Table 2.

Next, in Fig.5 we evaluate the performance of all baselines on the backdoor task test-set, with
respect to varying values of β, which controls the degree of imbalance (lower values indicate greater
imbalance), while keeping the compression rate R = 2.3 fixed. The top of the figure illustrates
variations in the backdoor accuracy, which result from the fact that the number of backdoor samples
is proportional to the attacker’s local dataset size. Adjusting β alters the number of samples allocated
to each user, thereby influencing the backdoor attack performance on the vanilla FL model. As a
result, we do not expect to observe consistent behaviour across different values of β in terms of
backdoor accuracy. However, we do observe persistent trends across all methods for a fixed β,
keeping the best-to-worst performers order identical to that in Fig.3.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

98.0

98.2

98.4

98.6

98.8

99.0

99.2

vanilla FL
retrain
Q , L=1
QSDQ, L=1
Q , L=2
QSDQ, L=2
topk

randk

1.58 2.00 2.50 3.00 3.50 4.00 4.50 5.00

Rate
95.5

96.0
non-compresses FU

M
ai

n
ta

sk
 a

cc
ur

ac
y

Figure 4: Main task test-set accuracy (↑)[%] vs.
rate [bits/sample].

50
60
70 vanilla FL

randk

20

30
topk

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0

1

2

3

4

5

6

7 Q , L=1
QSDQ, L=1
Q , L=2
QSDQ, L=2
non-compresses FU

B
ac

kd
oo

r
ta

sk
 a

cc
ur

ac
y

Figure 5: Backdoor test-set accuracy (↓)[%] vs.
β (imbalance level).

16

	Introduction
	Related Work
	System Model
	Compressed Distributed Unlearning
	Lossy Source Coding Techniques
	Quantization
	Sparsification

	Theoretical EvaluationProofs are deferred to the Appendix and appear in section A.1.

	Numerical ExperimentsAdditional numerical studies appear in section A.2.
	Conclusions
	Appendix
	Deferred Proofs
	Proof of Lemma 4.1
	Proof of Theorem 4.3
	Proof of Theorem 4.4

	Additional Experiments

