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ABSTRACT

A major limitation of contemporary large language models (LLMs) is their sig-
nificant performance degradation when processing long contexts, primarily due to
self-attention dilution and context window limitations. Recent work on retrieval-
augmented LLMs has shown that integrating formation and retrieval of human-
inspired episodic memory (a form of associative memory) into Transformers, via
an architecture termed EM-LLM, enables pre-trained models to process up to 10M
tokens while consistently outperforming their full-context versions using only a
fraction of the computational resources. A crucial feature of EM-LLM is the
segmentation of the model’s KV-cache into human-like events based on token-
level surprise. However, this approach overlooks the hierarchical nature of human
episodic memory, which exhibits nested timescale organization across multiple
levels of abstraction. Here, we introduce two novel head-level event segmenta-
tion methods that leverage the inherent hierarchical processing in Transformer
layers, combining similarity-based boundary detection with coordinated event hi-
erarchies. Our experiments suggest that these structures are not only likely to
improve retrieval performance but also show patterns consistent with the nested
event hierarchies observed in human cognition, providing both practical advances
in LLM capabilities and insights into memory organization across artificial and
biological systems.

1 INTRODUCTION

Modern pre-trained large language models (LLMs) based on the Transformer architecture (Vaswani
et al., 2017) rely on their context window to provide domain-specific, contextual information at
inference time. However, such models struggle when the context necessary for accurate inference
gets too long (Liu et al., 2024). Text lengths beyond the maximum context window during train-
ing (Kazemnejad et al., 2024), as well as attention dilution (Tworkowski et al., 2023; Ye et al., 2024)
are common culprits for such decreases in performance.

Recent works have tackled these issues by developing two main retrieval-based approaches. The
first approach, retrieval-augmented generation (RAG: Lewis et al. 2020; Gao et al. 2024), enhances
the context by retrieving relevant information from the larger body of text. The second approach
involves retrieving previously computed key-value (KV) pairs within the corresponding attention
head (Wu et al., 2022; Tworkowski et al., 2023; Bertsch et al., 2023). Such methods have since
been extended by grouping KV pairs into separate segments at token-level and then retrieved as
continuous blocks of tokens in the attention heads (Xiao et al., 2024; Fountas et al., 2025).

One such approach, EM-LLM (Fountas et al., 2025), achieves state-of-the-art performance by dy-
namically segmenting KV blocks using surprise (measured as token-level prior surprisal), inspired
by human episodic memory 1 and event cognition. However, because this approach relies on next-
token prediction, it is limited to token-level event segmentation. While this successfully mirrors

1As a key associative memory system, episodic memory binds contextual details over time into events.
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how the human brain segments continuous experience into discrete episodic events (Clewett et al.,
2019; Zacks, 2020) at points of high surprise (Zacks et al., 2007; 2011; Roseboom et al., 2019;
Sinclair et al., 2021; Fountas et al., 2022; 2025), it lacks the hierarchical, nested-timescale struc-
ture observed in human event segmentation (Baldassano et al., 2017). Such structure is crucial for
generative models’ performance in other domains (Zakharov et al., 2022b;a; Saxena et al., 2021).

The layers and attention heads of Transformers naturally organize information hierarchically: they
are known to focus on distinct linguistic features and semantics (Clark et al., 2019; Voita et al.,
2019), with attention sparsity increasing in higher layers (Zhang et al., 2023). This hierarchical
organization is reflected in memory access patterns as well— Fountas et al. (2025) found that each
layer in EM-LLM retrieved different events from the others. These insights suggest that Transform-
ers learn to process information in a focused, hierarchical manner, motivating the need for memory
structures that preserve this organization. We therefore propose two novel methods for head-level
event segmentation to this end.

An event is retrieved based on the similarity of its representative key with the current query. Thus,
higher similarity between event keys is likely to mean higher similarity with the current query once
retrieved, and hence higher attention scores. This intuition is supported by Fountas et al. (2025),
who found that both humans and their surprise-based segmentation method produce events with sig-
nificantly higher within-event key similarity compared to fixed and random segmentation. Building
on these insights, our proposed segmentation methods directly measure the similarity between a new
key and the current event’s keys, ending the event when this similarity falls below a threshold.

Our experiments demonstrate that our head-level event segmentation methods closely align with
both surprise-based segmentation and human-perceived events. Moreover, the hierarchical structure
we observe across layers and heads mirrors theories of human event cognition. Overall, our results
motivate our methods promising for improving KV-Retrieval performance, and provide a computa-
tional framework for studying parallels between human memory processes and LLMs.

2 METHODS

2.1 SURPRISE-BASED SEGMENTATION

EM-LLM’s definition of surprise acts as a measure of prediction error at the token level. Fountas
et al. (2025) demonstrated EM-LLM’s capacity to segment events similarly to humans using sur-
prise, improving both event modularity (within-event key similarity) and task performance when
compared to its fixed segmentation counterpart. We will therefore look to compare our own meth-
ods to this baseline surprise-based segmentation method. In Bayesian terms, surprise is quantified
by the surprisal (negative log-likelihood) of observing the current, ground-truth token given the pre-
vious tokens in an autoregressive model. A token xt is considered to fall outside of the current event
if its surprise value exceeds a threshold T :

− logP (xt|x1, . . . , xt−1; θ) > TSur with TSur = µt−τ :t + γσt−τ :t (1)

where µt−τ :t, σ2
t−τ :t are the mean and variance of surprise over a window τ , and γ a scaling factor.

2.2 GAUSSIAN EVENTS

For key-based, head-level event segmentation, we model events as coherent clusters in key space.
Specifically, we introduce a head-specific Gaussian representation of single events based on the event
keys of the attention head. We therefore obtain a multivariate Gaussian distribution parametrised by
the mean (k

h
) and covariance (Σh) of the corresponding keys for each attention head h. We can

then evaluate the probability of a new key corresponding to such an event.

In order to enable online detection of events, we implement efficient updates to the event’s Gaussian
representation in each head h using the multivariate Gaussian update rule. For each new key kh

t , we
evaluate its probability of belonging to the current event. If this is too low, we end the current event
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where nh
t is the number of keys contained within this event. In practice, we use a diagonal Gaussian

to avoid having a singular covariance matrix when nh
t is smaller than the head dimension dk.

2.3 K-SIMILARITY

Updating a multivariate Gaussian and calculating a probability for every head in the model, for
every new key in a sequence, is computationally very expensive. Alternatively, our second proposed
method leverages the highly-optimised matrix multiplication capabilities of modern deep learning
libraries to compute a similar segmentation method based on key similarity. We will refer to this
method as K-Similarity.

This method takes the dot product of a new key with the mean key of the current event, as a measure
for the similarity of such a key with that event. We then apply a similar threshold on this signal as
in Eq. 1 but only over the event keys, to take into account the mean and variance within the current
event. Combining notation from equations 1 and 2, we define K-Similarity as:

(k
h

t−1)
Tkh

t > TSim with TSim = µt0:t + γσt0:t (3)

µt0:t =
1

t− t0

t∑
i=t0+1

(k
h

i−1)
Tkh

i (4)

where t0 is the start of the current event, µt0:t and σ2
t0:t are the mean and variance of the dot product

for each key in that event (Eq. 4), and γ is a scaling factor. We overload notation for µ and σ but
they are separate from those described in Eq. 1.

2.4 EXPERIMENTS

We begin by assessing whether our proposed segmentation methods can effectively replace surprise-
based segmentation at the sequence level. Success at this level would suggest comparable perfor-
mance when applied to individual heads. To evaluate sequence-level performance, we aggregate
signals across all attention heads by averaging the Gaussian probabilities and key similarity dot
products, then apply thresholding to these averaged values. Subsequently, we analyse the emer-
gence of hierarchical patterns when such methods are applied independently to individual attention
heads, enabling head-specific event segmentation.

For consistency, we will look to initially replicate the analysis in Fountas et al. (2025) for our com-
parison with EM-LLMs’ surprise, as well as human-perceived events. We therefore evaluate on the
human-annotated podcasts (two podcasts, 5 − 7k tokens long) based on human data obtained from
previous studies (Kumar et al., 2023; Michelmann et al., 2021; Lositsky et al., 2016), as well as the
long-context benchmarks PG-19 (Rae et al., 2020) and Long-Bench (Bai et al., 2023) in order to
confirm our results on larger datasets.

We naturally also adopt their metrics for a direct comparison. Namely, we use Wasserstein dis-
tance (Panaretos & Zemel, 2019) to compare the relative positions of events between human anno-
tations, surprise-based segmentation, and our own proposed methods. We use modularity (Newman
& Girvan, 2004) to measure the impact of our methods on the similarity of keys within events.
The threshold parameter for our own methods is set such that the number of sequence-level events
matches that of surprise-based segmentations for comparison with humans, as well as random and
fixed methods, as described in Fountas et al. (2025).

3 RESULTS

3.1 SEQUENCE-LEVEL SEGMENTATION

The correlation between event boundary positions of Gaussian and K-Similarity segmentations at
sequence-level with that of humans is shown in Table 1. Although surprise is still closest to hu-
mans, both Gaussian and K-Similarity methods achieve relatively similar scores, especially when
compared to random and fixed segmentations. As surprise is closest to humans, we use this method
as the baseline for comparison on longer benchmarks, where human annotations of event positions
are unavailable (Table 2). Note that we limit this part of the analysis to K-Similarity only due to the
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Table 1: Measuring Wasserstein distance with humans (lower = better) over the human-annotated
podcasts dataset using LLaMA-3-8B-Instruct.

Podcast Surprise K-Similarity Gaussian Random Fixed
Monkey 0.02 0.02 0.05 0.11 0.22
Tunnel 0.01 0.04 0.04 0.10 0.22

Table 2: Measuring Wasserstein distance with surprise (lower = better) over longer texts and bench-
marks using LLaMA-3-8B-Instruct.

Dataset K-Similarity Random Fixed
PG-19 (test+val) 0.03 0.10 0.24
Long-Bench 0.04 0.13 0.31

significantly higher computational cost of the Gaussian method. The results in these longer bench-
marks are consistent with those observed in the podcasts dataset, with K-Similarity achieving signif-
icantly smaller Wasserstein distance with surprise than both random and fixed segmentation meth-
ods. Our analysis reveals that the Gaussian method achieves the highest modularity score among

Table 3: Measuring Modularity of segmented events (higher = better) over the human-annotated
podcasts dataset (ratio with fixed segmentation) using LLaMA-3-8B-Instruct.

Podcast Surprise K-Similarity Gaussian Human Random (Fixed)
Monkey 1.32 1.49 2.04 1.32 1.05 1.00
Tunnel 1.20 1.19 1.30 1.45 1.01 1.00

all approaches (Tab. 3), followed by humans and K-Similarity, while surprise-based segmentation
shows slightly lower modularity. This superior modularity in our key-based methods is expected,
as they explicitly segment events based on key similarity. Notably, both methods accomplish this
segmentation online, with K-Similarity offering particularly efficient computation.

Overall, both proposed methods replicate the key characteristics of EM-LLM’s surprise-based seg-
mentation, indicating their potential to enhance downstream task performance. The Gaussian-based
method demonstrates superior modularity (up to 2.04× fixed segmentation), while K-Similarity
achieves stronger correlation with both human segmentation patterns and surprise-based approaches
while reducing computational complexity by eliminating expensive covariance calculations.

3.2 HEAD-LEVEL SEGMENTATION

When segmenting events at head-level, we observe a hierarchical structure (indicated primarily by
the variation in average event counts per layer, see Fig. 1 Left) where later layers form more numer-
ous, shorter events than earlier layers, creating nested timescales across the model. Also, most layers
show a non-negligible standard deviation in this number across attention heads. This further mo-
tivates the potential of head-level segmentations in segmenting more meaningful events to be later
retrieved for each head. Interestingly, we note that these events appear to move closer to humans and
surprise as we move up the model layers, with an especially big improvement up to layer 5. These
results are further confirmed on the longer summarisation tasks of the Long-Bench dataset (Fig. 2).
However, we observe greater variation in later layers for both plots. This is further accentuated in
certain tasks (see Appendix A.1), with GovReport and QMSum closely matching Figure 1, while
MultiNews and SAMSum show more variation in later layers.

4 DISCUSSION

Our results show that both new approaches for event segmentation in attention heads are promising
alternatives to token-level surprise-based segmentation methods for LLMs using KV-Retrieval. The
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Figure 1: Visualisation of head-level K-Similarity segmentation properties averaged over the pod-
casts dataset, using LLaMA-3-8B-Instruct. Left: Average number of events found in the sequence
(normalised) per head for each layer of the model. Right: Average Wasserstein distance between
K-Similarity vs. humans and surprise per head, for each layer of the model. Standard deviation is
measured across the heads of each layer in both figures.
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Figure 2: Same metrics and visualisations as Fig. 1 for Long-Bench’s summarisation tasks (GovRe-
port, QMSum, MultiNews, SAMSum). Wasserstein distance is measured against surprise only here
as human event annotations are unavailable. See Appendix A.1 for individual task plots.

large differences across layers and heads in the number of events suggest that head-level segmen-
tation captures functionally meaningful variations in temporal structure. This aligns with Fountas
et al. (2025), who found that EM-LLM improved performance over RAG, even when both methods
retrieved from the same surprise-based events. They attributed a large part of this improvement to
EM-LLM’s layer-wise retrieval approach, compared to RAG’s single retrieval step at the input level.
Our findings suggest that further tailoring retrieved events to specific attention heads could enhance
this advantage by leveraging the distinct temporal patterns each head learns to recognize.

The human brain is believed to segment continuous experience into discrete episodic events (Clewett
et al., 2019; Zacks, 2020) at points of high surprise (Zacks et al., 2007; 2011; Roseboom et al.,
2019; Sinclair et al., 2021; Fountas et al., 2022; 2025), organizing them into a hierarchical, nested-
timescale structure (Baldassano et al., 2017). While layer-wise retrieval allows EM-LLM to main-
tain some form of hierarchy across layers, our head-level segmentation approach offers parallels to
this biological organization. The substantial variation in event counts between layers, combined with
high variance between attention heads within layers, reveals naturally emerging nested timescales –
though their organization may differ from biological systems due to architectural features like resid-
ual connections. Furthermore, the increased number of events in later layers, resulting in shorter
events, aligns with Zhang et al. (2023)’s observations of increased sparsity in attention scores in
these layers. Although the precise mapping between these model-learned hierarchies and human
cognitive structures remains unclear and warrants investigation, we find that event positions identi-
fied in later layers show the strongest correlation with human-perceived sequence-level events.

In conclusion, our work demonstrates that head-level event segmentation in LLMs offers a promising
direction for improving KV-Retrieval performance. The observed hierarchical structure across layers
and heads aligns with theories of human event cognition, particularly regarding nested timescales.
While the precise relationship between model-detected and human-perceived events requires further
investigation, our findings suggest that later layers capture sequence-level events that correspond
best to human intuitions.

5



REFERENCES

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual,
multitask benchmark for long context understanding. arXiv preprint arXiv:2308.14508, 2023.

Christopher Baldassano, Janice Chen, Asieh Zadbood, Jonathan W Pillow, Uri Hasson, and Ken-
neth A Norman. Discovering event structure in continuous narrative perception and memory.
Neuron, 95(3):709–721, 2017.

Amanda Bertsch, Uri Alon, Graham Neubig, and Matthew R. Gormley. Unlimiformer: Long-range
transformers with unlimited length input. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=lJWUJWLCJo.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. What does BERT look
at? an analysis of BERT‘s attention. In Proceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP, pp. 276–286. Association for Computa-
tional Linguistics, 2019. doi: 10.18653/v1/W19-4828. URL https://aclanthology.
org/W19-4828/.

David Clewett, Sarah DuBrow, and Lila Davachi. Transcending time in the brain: How event mem-
ories are constructed from experience. Hippocampus, 29(3):162–183, 2019.

Zafeirios Fountas, Anastasia Sylaidi, Kyriacos Nikiforou, Anil K. Seth, Murray Shanahan, and War-
rick Roseboom. A Predictive Processing Model of Episodic Memory and Time Perception. Neural
Computation, 34(7):1501–1544, 06 2022. ISSN 0899-7667. doi: 10.1162/neco a 01514. URL
https://doi.org/10.1162/neco_a_01514.

Zafeirios Fountas, Martin Benfeghoul, Adnan Oomerjee, Fenia Christopoulou, Gerasimos Lam-
pouras, Haitham Bou Ammar, and Jun Wang. Human-inspired episodic memory for infinite
context LLMs. In The Thirteenth International Conference on Learning Representations, 2025.
URL https://openreview.net/forum?id=BI2int5SAC.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Qianyu
Guo, Meng Wang, and Haofen Wang. Retrieval-augmented generation for large language models:
A survey, 2024.

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, and Siva
Reddy. The impact of positional encoding on length generalization in transformers. Advances
in Neural Information Processing Systems, 36, 2024.

Manoj Kumar, Ariel Goldstein, Sebastian Michelmann, Jeffrey M Zacks, Uri Hasson, and Ken-
neth A Norman. Bayesian surprise predicts human event segmentation in story listening. Cogni-
tive science, 47(10):e13343, 2023.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
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A APPENDIX

A.1 FURTHER RESULTS
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Figure 3: Visualisation of head-level K-Similarity segmentation properties averaged over examples
from Long-Bench’s summarisation tasks (200 examples each), using LLaMA-3-8B-Instruct. For
each task, the left plot shows the average number of events found in the sequence (normalised)
per head for each layer of the model, while the right plot shows the average Wasserstein distance
between K-Similarity vs. (sequence-level) surprise per head. Standard deviation is measured across
the heads of each layer in all figures.
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