
SAM Decoding: Speculative Decoding via Suffix Automaton

Anonymous ACL submission

Abstract
Speculative decoding (SD) has been demon-001
strated as an effective technique for lossless002
LLM inference acceleration. Retrieval-based003
SD methods, one kind of model-free method,004
have yielded promising speedup, but they often005
rely on single retrieval resources, inefficient re-006
trieval methods, and are constrained to certain007
tasks. This paper presents a novel retrieval-008
based speculative decoding method that adapts009
suffix automaton (SAM) for efficient and ac-010
curate draft generation by utilizing the gener-011
ating text sequence and static text corpus. Un-012
like existing n-gram matching methods, SAM-013
Decoding finds the exact longest suffix match,014
achieving an average time complexity of O(1)015
per generation step of SAM update and suf-016
fix retrieval. It can also integrate with existing017
methods, adaptively selecting a draft genera-018
tion strategy based on match length to general-019
ize to broader domains. Extensive experiments020
on Spec-Bench show that our method is 18%+021
faster than other retrieval-based SD methods.022
Additionally, when combined with advanced023
EAGLE-2, it provides an additional speedup024
of 3.28% – 11.13% across various-sized LLM025
backbones. Our code is available at our anony-026
mous repository.027

1 Introduction028

The Transformer-based Large Language Models029

(LLMs) (Brown et al., 2020; Dubey et al., 2024;030

Yang et al., 2024) have demonstrated remarkable031

abilities and are extensively adopted in numerous032

domains. The scaling law drives LLMs to become033

deeper, reaching hundreds of billions of parameters,034

which makes them inefficient for generating text035

in a token-by-token autoregressive manner. Spec-036

ulative decoding (SD) methods (Leviathan et al.,037

2023; Cai et al., 2024) seek to tackle this problem038

by quickly generating multiple draft tokens and sub-039

sequently concurrently verifying them with LLMs.040

These methods can decrease inference latency sub-041

stantially while maintaining decoding accuracy.042

vicuna-7B vicuna-13B vicuna-33B
0

20

40

60

80

100

120

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

62.0

34.3

13.7

80.5

45.3

17.6

74.6

44.1

19.4

95.6

51.5

21.4

111.3

67.6

30.5

120.1

70.3

31.5

PLD
SAM-Decoding
Token Recycling
SAM-Decoding[T]
EAGLE-2
SAM-Decoding[E2]

Figure 1: Throughput of Vicuna-7B, Vicuna-13B,
Vicuna-33B on MT-Bench with A6000 GPU using PLD,
Token Recycling, EAGLE-2, and SAM-Decoding vari-
ant, where SAM-Decoding is our proposed method.

Most speculative methods can be categorized 043

into generation-based methods. For these meth- 044

ods, one or more small-sized draft models need 045

to be carefully chosen and trained. For exam- 046

ple, Medusa (Cai et al., 2024) utilizes multiple 047

decoding heads to generate multiple future tokens 048

while EAGLE-2 (Li et al., 2024b) leverages shal- 049

low Transformer layers to predict the next last hid- 050

den states and corresponding decoding tokens. To- 051

ken cycling (Luo et al., 2024) is a special case of 052

generation-based methods that dynamically main- 053

tain the posterior distribution of each token, re- 054

sulting in a model-free generative approach. Al- 055

though these methods achieve impressive speedup, 056

they often fail to generate long draft tokens due to 057

drafting overhead or decaying prediction accuracy. 058

Retrieval-based speculative decoding methods, a 059

major type of model-free method, aim to remedy 060

this issue by generating draft tokens from the exist- 061

ing text corpus or the current text sequence. 062

However, current retrieval-based methods have 063

notable limitations. Firstly, diverse retrieval 064

sources contribute to the efficiency of retrieval- 065

1

https://anonymous.4open.science/r/SAM-Decoding-E371
https://anonymous.4open.science/r/SAM-Decoding-E371
https://anonymous.4open.science/r/SAM-Decoding-E371

based SD methods, but existing methods typically066

rely on a single retrieval source: PLD (Saxena,067

2023) focuses on current text while REST (He068

et al., 2024) uses a static text corpus. Secondly, re-069

stricted by n-gram matching, the retrieval methods070

used in existing methods have limitations in effi-071

ciency and accuracy. As an example, PLD finds n-072

gram matching from the current text sequence via073

brute force, it has poor theoretical computational074

complexity and limited applicability to larger text075

corpus. Thirdly, the limited integration between076

retrieval-based and generation-based methods re-077

stricts their inference speed. For instance, PLD is078

capable of producing highly effective drafts in a079

few positions but performs poorly in others. On080

the other hand, generation-based methods, such as081

Token Recycling and EAGLE-2, are able to gen-082

erate quality drafts across most positions. Conse-083

quently, integrating retrieval-based methods with084

generation-based approaches has the potential to085

further enhance their inference speed.086

To address limitations in previous retrieval-based087

methods, this paper introduces SAM-Decoding, an088

innovative speculative decoding technique based089

on suffix automaton. (1) To enhance the coverage090

of the retrieved corpus, we utilize both the gener-091

ating text sequence and the static text corpus as092

retrieved sources. (2) To improve the retrieval effi-093

ciency and accuracy, we adapt a suffix automaton094

(SAM) to solve the longest suffix match problem,095

which yields more accurate match positions and096

exact match lengths compared to n-gram match-097

ing. As for retrieval efficiency, the average time098

complexity of SAM update and suffix retrieval is099

O(1) by capturing relationships between adjacent100

suffixes. (3) To combine the retrieval-based method101

and the generation-based method, we adaptively102

select either the retrieval method or the generation103

method to provide drafts at each position based on104

the match length of the automaton, which can better105

utilize the advantages of retrieval-based methods106

and generation-based methods.107

Specifically, SAM-Decoding creates both a dy-108

namic suffix automaton for the generating text se-109

quence and a static suffix automaton for the text110

corpus. The nodes of the suffix automaton repre-111

sent substrings in the text sequence and text corpus.112

The earliest position of each substring is recorded113

in each node. During generation, we can directly114

retrieve drafts from the automaton using the match115

position and the match length. After each gen-116

eration step, for the static automaton, the match117

C
B

B

C

B

A
B C

C

next

CB,
BCB,
ABCB

CBC,
BCBC,
ABCBCABCAB

C,BCB
A

link

Figure 2: The suffix automaton corresponding to the
string “ABCBC”.

position is updated, while for the dynamic automa- 118

ton, its structure and the match position are updated 119

simultaneously. The primary contributions of this 120

work are as follows. 121

• We introduce a model-free, retrieval-based 122

SD method leveraging the suffix automaton, 123

which incorporates multiple retrieval sources and 124

achieves higher efficiency compared to existing 125

approaches. 126

• We propose integrating retrieval-based meth- 127

ods with generation-based methods by utiliz- 128

ing the match length of the automaton from re- 129

trieval methods, enabling better exploitation of 130

the strengths of both approaches. 131

• Extensive evaluations demonstrate the compet- 132

itive performance of our method across tasks. 133

On Spec-Bench, SAM-Decoding achieves 18%+ 134

faster than previous retrieval-based speculative 135

decoding methods (e.g., PLD, REST, etc.). When 136

combined with EAGLE-2 (Li et al., 2024b), as 137

shown in Figure 1, our method outperforms the 138

state-of-the-art, delivering an additional 3.28% 139

– 11.13% speedup on MT-Bench w.r.t. various 140

LLM backbones. 141

2 Background 142

2.1 Suffix Automaton 143

Suffix Automaton is an efficient data structure for 144

representing the substring index of a given string, 145

which allows fast substring retrieval. The time 146

complexity of constructing a suffix automaton is 147

O(L), where L is the length of the string and it can 148

be constructed incrementally. 149

As shown in Figure 2, a suffix automaton con- 150

tains a series of nodes and two types of edges, ex- 151

tension edges (next) and suffix link edges (link). 152

A node in the automaton corresponds to all sub- 153

strings that have the same ending position in the 154

2

ABCBCABCBC

… … B C … … … … B CDEFGH

B
C

CC B

B

C

B

A
B C

C
Build

Build

① Drafting

Static SAM Dynamic SAMText Corpus

Generated Text

S-SAM: BCDEF

D-SAM: DEFGH

 CDEFGAuxiliary:
Select

DEFGH

DEFGH DEF② Verify

Accepted Tokens

③ Update
… B C D E F

… B C
B

C

C

Update D-SAM

D

D

…

Generated Draft Update text

match
position

match
position

Figure 3: Overview of SAM-Decoding’s workflow. In each round of generation, the suffix automaton matches
the suffixes of the generating text and retrieves the draft from the text corpus and the generated text respectively
according to the matching position. Our method can be combined with an auxiliary SD algorithm (Auxiliary) to
deal with the scenarios where the retrieval is not applicable. We select the best draft from the three candidate drafts
based on the match length, and then the drafts are verified by the LLM for accepted tokens. Using these accepted
tokens, we finally extend the dynamic SAM and generate text for the next round of generation.

string. Meanwhile, extension edges are standard155

edges that represent a possible extension of the156

current substring by appending a new token. In157

contrast, suffix link edges create a path that allows158

the automaton to quickly jump to states represent-159

ing shorter suffixes of the current substring.160

Based on the two types of transfer edges, for a161

progressively generated token sequence, we can162

find the longest suffix that matches the sequence163

in a suffix automaton at each generation step with164

an average O(1) time complexity. To better under-165

stand the matching process, it can be viewed as166

starting from the root node and then transitioning167

based on tokens generated by the LLM. The final168

node reached represents the matching result.169

2.2 Speculative Decoding170

Given the model input x = (x1, x2, . . . , xt), an171

LLM generates a new token xt+1 at each gener-172

ation step autoregressively. The key idea of173

speculative decoding is to utilize a lightweight174

draft model to generate multiple candidate to-175

kens quickly, i.e., xdraft = (xt+1, xt+2, . . . , xt+n),176

and then the target LLM simultaneously evaluates177

these candidates and accept those aligned with178

the output distribution of the LLM, i.e., xaccept =179

(xt+1, xt+2, . . . , xt+m), where n and m denote the180

size of the draft and the number of accepted tokens.181

In the above, we assume that the draft is a se- 182

quence of tokens. Recent works proposed to ver- 183

ify a candidate token tree via a tree mask in the 184

attention module to make the target LLM simulta- 185

neously evaluate multiple branches of this token 186

tree, thereby increasing the acceptance length of 187

the draft model. 188

3 SAM-Decoding 189

In this section, we introduce our proposed method, 190

SAM-Decoding. SAM-Decoding is a retrieval- 191

based speculative decoding method designed to 192

address three key limitations in existing retrieval- 193

based speculative methods: (1) The use of insuf- 194

ficient retrieval sources. (2) The employment of 195

inefficient retrieval methods and restrictions on n- 196

gram matching lengths. (3) Lack of integration 197

with generation-based methods 198

To tackle the first two limitations, SAM- 199

Decoding leverages suffix automaton on diverse 200

text sources, which significantly enhances the cov- 201

erage of retrieved corpus and the efficiency of 202

the retrieval process while allowing for flexible 203

matching lengths (Section 3.1, 3.2, and 3.3). In 204

what follows, we detail how SAM-Decoding can 205

be integrated with generation-based methods (Sec- 206

tion 3.4). By utilizing the precise matching in- 207

formation provided by the suffix automaton, our 208

3

method not only overcomes the third limitation but209

also ensures consistent performance improvements210

across a wide range of tasks. The workflow of211

SAM-Decoding is shown in Figure 3.212

3.1 Suffix Automaton Construction213

To cover comprehensive retrieval sources, SAM-214

Decoding builds suffix automaton (SAM) by uti-215

lizing the generating text sequence and static text216

corpus. Thus, we construct two types of suffix217

automatons: a dynamic suffix automaton and a218

static suffix automaton.219

For the generating text sequence, we create and220

expand a dynamic suffix automaton incrementally221

as generation progresses and perform text matching222

concurrently. At each node of the dynamic suffix223

automaton, we record the earliest position of all224

substrings corresponding to that node in the refer-225

ence string, termed as min_endpos, which allows226

us to efficiently locate the previous ending posi-227

tion of the matched longest suffix. Hereafter, the228

subsequent tokens after the matched suffix can be229

regarded as potential drafts.230

For the static text corpus, we pre-build a static231

suffix automaton offline, which is used for text232

matching during inference. At each node of the233

static suffix automaton, we compute the top-k suc-234

cessor tokens of each node, termed as topk_succ,235

and subsequently use them to construct tree-236

structured drafts. Although computing the succes-237

sor token requires additional computation, this can238

be done offline, eliminating the need to account for239

this time overhead in real-time processing.240

A suffix automaton can be constructed in lin-241

ear time using Blumer’s algorithm (Blumer et al.,242

1984). Since the suffix automaton is designed for a243

single text, to this end, for static suffix automation,244

we concatenate multiple strings in the corpus by us-245

ing special symbols like an End-of-Sentence (EOS)246

token and then construct a static suffix automaton247

for this concatenated string. The construction pro-248

cess of the suffix automaton is detailed in Appendix249

A.1.250

3.2 Drafting with Suffix Automaton251

Let S denote the suffix automaton, T denote its252

associated reference text, and x = (x1, x2, . . . , xt)253

denote the current text sequence. The state within254

the suffix automaton corresponding to the sequence255

x is denoted as st (including match position and256

match length). The initial state s0 corresponds to257

the root node of the suffix automaton. As shown258

in Algorithm 1, in each round of generation, the 259

transition to the next state is performed based on 260

the newly generated token xt+1 and the current 261

state st: 262

st+1 = Transfer(S, xt+1, st). 263

Then, for dynamic suffix automaton, we extract 264

n consecutive tokens from the reference text T to 265

form a draft, using the min_endpos value stored 266

in the node corresponding to state st+1, termed as 267

pt+1. Then the draft dt+1 is defined as: 268

dt+1 = T [pt+1 : pt+1 + n], 269

where dt+1 represents the generated draft and n 270

denotes the length of the draft. 271

And for static suffix automaton, we construct a 272

tree-structured draft by Prim’s algorithm based on 273

top-k successors, as detailed in Appendix A.4, 274

dt+1 = Prim(S, st+1, xt+1). 275

We use different draft generation strategies for 276

dynamic suffix automaton and static suffix automa- 277

ton, this is due to the dynamic automaton prefer- 278

ring to generate high quality drafts at few posi- 279

tions, while the static automaton prefers to gener- 280

ate average-quality drafts at most positions, so we 281

use sequence-structured drafts for the dynamic au- 282

tomaton to enhance max accept length, while uses 283

tree-structured drafts for the static automaton to 284

enhance average accept length. 285

We track the match length (denoted as l) to de- 286

termine whether to use the static suffix automaton 287

or the dynamic suffix automaton. Specifically, let 288

l1 and l2 be the matching lengths of the static and 289

dynamic automata, respectively. We use the draft 290

from the static automaton if l1 > l2 + lbias, other- 291

wise, we use the draft from the dynamic automaton, 292

where lbias is a predefined constant. 293

3.3 Update of Suffix Automaton 294

After the draft is generated, we verify it using the 295

LLM and accept the correct tokens, denoted as 296

xaccept = (xt+1, xt+2, . . . , xt+m). We then up- 297

date the match state and suffix automaton based 298

on these accepted tokens. For the dynamic suffix 299

automaton, we transfer the match state and update 300

the automaton simultaneously. Let St denote the 301

dynamic suffix automaton for the generated text 302

4

Algorithm 1 State Transfer of Suffix Automaton
1: function Transfer
2: Input: suffix automaton S, next token t,

current state s, current matching length l
3: while s ̸= S.root and t /∈ s.next do
4: s, l = s.link, s.link.length
5: end while
6: if t ∈ s.next then
7: s, l = s.next[t], l + 1
8: else
9: l = 0

10: end if
11: Output: next state s, next match length l
12: end function

(x1, x2, . . . , xt). The process is as follows:303

st+i = Transfer(St+i−1, st+i−1, xt+i),304

St+i = Expand(St+i−1, xt+i),305

i ∈ {1, 2, ...,m},306

For the static suffix automaton, we transfer to new307

states without updating the automation:308

st+i = Transfer(S, st+i−1, xt+i), i ∈ {1, 2, ...,m}.309

The process of transfer is detailed in Algorithm 1310

and the process of updating the suffix automaton is311

detailed in Appendix A.1.312

Using amortized analysis, we can prove that the313

average complexity of state transfer is O(1), where314

L is the length of the current generated text (C.f.315

proof in Appendix A.5). Existing methods like316

PLD uses a brute-force search for n-gram matches,317

resulting in a time complexity of O(n2L). REST318

also employs n-grams but searches using suffix ar-319

rays, leading to a time complexity of O(n2 logC).320

Here, n is the predefined maximum matching321

length, L is the length of the current text, and C322

is the size of the static corpus. Therefore, our pro-323

posed SAM-Decoding has a lower time complexity324

and can find the exact longest suffix match without325

any limit on matching length, making it faster and326

more accurate for draft generation.327

3.4 Generation-based Method Integration328

The retrieval-based speculative decoding methods329

excel at generating drafts from the corpus or the330

current text sequence effectively. If it fails to pro-331

duce a satisfactory draft, other speculative decod-332

ing techniques can be employed to generate more333

diverse drafts. To combine different types of drafts,334

a straightforward idea is that the length of the suf- 335

fix match can indicate the confidence of the draft 336

produced by the automaton, where long matches 337

imply that more tokens are likely to be acceptable. 338

To implement this, we concurrently use an auxil- 339

iary speculative decoding technique alongside the 340

suffix automaton. During each generation step, 341

we adaptively select the drafts offered by the au- 342

tomaton or the auxiliary SD method based on the 343

match length of the generated text within the au- 344

tomaton. For the auxiliary SD method, we set a 345

fixed virtual match length lthreshold. In our study, 346

we consider two auxiliary cutting-edge specula- 347

tive decoding methods: the model-free Token Re- 348

cycling and the model-based EAGLE-2. Among 349

them, Token Recycling maintains an adjacency list 350

of the top-k probable next tokens for each token. 351

It builds a draft tree using breadth-first search and 352

continuously updates the list based on the latest 353

tokens. EAGLE-2, on the other hand, leverages 354

a Transformer decoder layer to jointly predict the 355

last hidden states of the LLM and the next token 356

autoregressively. 357

4 Experiments 358

In this section, we first introduce our experimental 359

setup, then present the experimental results, and 360

finally present the ablation experiments. 361

Models and Tasks. We conducted experiments on 362

Vicuna-7B-v1.3 (Zheng et al., 2023). We evaluated 363

SAM-Decoding on Spec-Bench (Xia et al., 2024), 364

HumanEval (Chen et al., 2021), and HARGID (Ka- 365

malloo et al., 2023). Spec-Bench is a comprehen- 366

sive benchmark designed for assessing SD meth- 367

ods across diverse scenarios. It is based on six 368

commonly used datasets, MT-Bench (Zheng et al., 369

2023), WMT14 DE-EN, CNN/Daily Mail (Nalla- 370

pati et al., 2016), Natural Question (Kwiatkowski 371

et al., 2019), GSM8K (Cobbe et al., 2021), and 372

DPR (Karpukhin et al., 2020), including six as- 373

pects: Multi-turn Conversation (MT), Translation 374

(Trans), Summarization (Sum), Question Answer- 375

ing (QA), Mathematical Reasoning (Math), and 376

Retrieval-augmented Generation (RAG). In addi- 377

tion, HumanEval, and HARGID are used to evalu- 378

ate the speed of SD methods in the Code Genera- 379

tion task and Context Q&A task, respectively. 380

Baselines. We considered the following base- 381

line methods, including the model-based method 382

EAGLE-2 (Li et al., 2024b), the model-free method 383

5

Method
Spec-Bench HumanEval HAGRID

#MAT Tokens/s Speedup #MAT Tokens/s Speedup #MAT Tokens/s Speedup

Lookahead 1.63 44.37 1.20× 1.76 30.81 1.54× 1.46 23.58 1.32×

REST 1.63 51.34 1.38× 1.85 34.60 1.74× 1.53 24.91 1.39×

PIA 2.08 55.45 1.47× 2.62 65.49 1.68× 2.43 66.65 1.95×

PLD 1.75 59.02 1.56× 1.65 59.04 1.52× 2.03 44.11 1.29×

SAM-Decoding 2.30 69.37 1.84× 2.64 88.91 2.29× 2.44 76.72 2.24×

Token Recycling 2.83 69.65 1.84× 2.78 75.44 1.94× 2.88 66.17 1.93×

SAM-Decoding[T] 3.03 85.73 2.27× 2.94 95.08 2.45× 3.23 87.93 2.57×

EAGLE-2 4.36 90.14 2.38× 5.13 125.77 3.24× 4.15 82.61 2.41×

SAM-Decoding[E2] 4.62 97.56 2.58× 4.95 130.28 3.35× 4.75 96.60 2.81×

Table 1: Inference efficiency of different methods on Spec-Bench, HumanEval, and HAGRID, where each method
was compared with the autoregressive decoding method provided in its environment.

Trans

MT

Sum

QA

Math

RAG

1.22×

0.95× 2.07×

1.29×

2.44×

1.22×

1.62×

1.07×
1.91×

1.38×

1.81×

1.13×

Lookahead
REST

PIA
PLD

SAM-Decoding

Figure 4: Speedup of SAM-Decoding
compared to retrieval-based SD base-
lines on Spec-Bench.

Trans

MT

Sum

QA

Math

RAG

1.93×

1.61× 3.09×

1.92×

2.95×

1.96×

2.28×

1.71×2.93×

2.16×

2.28×

1.68×

Token Recycling
SAM-Decoding[T]

EAGLE-2 SAM-Decoding[E2]

Figure 5: Speedup of SAM-Decoding combined
with auxiliary SD methods compared to SD base-
lines on Spec-Bench.

Token Recycling (Luo et al., 2024), and the384

retrieval-based methods Lookahead Decoding (Fu385

et al., 2024), PIA (Zhao et al., 2024b), PLD (Sax-386

ena, 2023) and REST (He et al., 2024).387

Metrics. We evaluated speculative decoding meth-388

ods from the following aspects (Li et al., 2024c).389

(1) Mean Number of Accepted Tokens (#MAT):390

The average number of tokens accepted per gener-391

ation step. (2) Throughput (Tokens/s): The av-392

erage number of tokens generated per second. (3)393

Speedup: The wall-time speedup ratio of specula-394

tive decoding methods compared to autoregressive395

generation.396

Experiment Setup. Experiments were run on397

a server with a 20-core CPU and an NVIDIA398

RTX A6000 GPU (48GB). We used PyTorch 2.3.0, 399

Transformers 4.46.1, and CUDA 12.1. Models uti- 400

lized float16 and greedy decoding with a batch 401

size of 1. Hyperparameters lbias and lthreshold 402

were set to 5, but lbias was 0 without auxiliary 403

methods. The draft size was 40 by default and 404

16 for code datasets. Default settings from the 405

original papers were applied for auxiliary specula- 406

tive decoding methods. For SAM-Decoding, we 407

constructed a static suffix automaton based on the 408

Vicuna-7B generation results on datasets Stanford- 409

alpaca, python-code-instruction-18k, and GSM8k. 410

Details of the static SAM construction process 411

and its overhead are shown in Appendices A.2 412

and A.3. To enhance our model, we incorporated 413

two auxiliary approaches: the model-free Token 414

6

EAGLE-2 SAM-Decoding[E2]

Prefill 7.54(1.4%) 7.83(1.6%)

DraftGen 141.92(26.6%) 103.83(21.1%)

Decoding 346.7(62.5%) 326.34(65.7%)

Verification 13.34(2.5%) 32.98(7.0%)

Updating 23.84(4.5%) 17.97(3.7%)

Table 2: Fine-grained comparison of EAGLE-2 and
SAM-Decoding[E2] in HumanEval

Recycling and the model-based EAGLE-2. Here,415

SAM-Decoding[T], and SAM-Decoding[E2] de-416

note the combinations of our base model with To-417

ken Recycling, and EAGLE-2, respectively.418

Experiment Results. Experimental results on419

Spec-Bench, HumanEval and HAGRID when us-420

ing Vicuna-7B-v1.3 are shown in Table 1. It can be421

seen that SAM-Decoding has higher speedups on422

all datasets compared to all the retrieval-based base-423

lines, achieving speedup ratios of 1.84×, 2.29×,424

and 2.24× on each of the three datasets. Combin-425

ing SAM-Decoding with generation-based meth-426

ods can further speed up processing. In the Spec-427

Bench and HAGRID datasets, integrating SAM-428

Decoding improves the inference speed of To-429

ken Recycling and EAGLE-2. For Spec-Bench,430

this enhancement raises the speedup ratios from431

1.84× and 2.38× to 2.27× and 2.58× respec-432

tively. On the HAGRID dataset, the improvement433

is from 1.93× and 2.41× to 2.57× and 2.81×. In434

the HumanEval dataset, the integration of SAM-435

Decoding speedup the Token Recycling, increas-436

ing its speedup ratios from 1.94× to 2.45×. It437

also slightly improves the throughput of the model-438

based EAGLE-2, though decreases the mean ac-439

cepted tokens. We additionally compare EAGLE-440

2 and SAM-Decoding[E2] at a finer granularity.441

The results are shown in Table 2. It can be seen442

that EAGLE-2 incurs a non-negligible time over-443

head when generating drafts, accounting for 26.6%444

of total inference time. In contrast, SAM gener-445

ates drafts more quickly. Thus, although SAM-446

Decoding[E2]’s mean accepted tokens are slightly447

lower than those of EAGLE-2, the overall inference448

speed is faster due to faster draft generation.449

In Figures 4 and 5, we further show the speedup450

of the different methods on each task of Spec-451

Bench. Compared to retrieval-based SD base-452

lines, SAM-Decoding shows better inference speed453

Method
Spec-Bench

#MAT Tokens/s Speedup

PLD 1.75 59.02 1.56×

SAM-Decoding 2.30 69.37 1.84×

w/o Static SAM 1.85 61.93 1.64×

w/o Dynamic SAM 1.63 50.37 1.33×

Table 3: The impact of different draft generation mod-
ules on inference speed.

across all tasks. Meanwhile, SAM-Decoding can 454

effectively improve the inference speed of Token 455

Recyling on each task, as well as the inference 456

speed of EAGLE-2 on MT, SUM, and RAG tasks. 457

Finally, we investigated the impact of different 458

modules within SAM-Decoding on inference speed. 459

SAM-Decoding comprises two draft generation 460

modules: the static suffix automaton and the dy- 461

namic suffix automaton. We measured the infer- 462

ence speed of SAM-Decoding after removing each 463

of these two modules individually. The results are 464

presented in Table 3. From the experimental results, 465

it is clear that each module contributes to the accel- 466

eration of the decoding process. Notably, the dy- 467

namic suffix automaton has a significantly greater 468

impact compared to the static suffix automaton. 469

This suggests that, in many cases, generating drafts 470

from the dynamic context is more effective than 471

retrieving drafts from a pre-existing text corpus. 472

However, although the main improvement comes 473

from dynamic SAM, static SAM also proves effec- 474

tive. When used together, the enhancements are 475

most pronounced, as we select dynamic and static 476

SAM based on the token matching length. Notice 477

that SAM-Decoding is slightly slower than REST 478

when only static SAM is used according to Table 1, 479

which we consider stemming from differences in 480

the static corpus used and the implementation de- 481

tail, and we analyze this in Appendix D. In addition 482

to Vicuna-7B, we also conducted experiments on 483

more models as shown in Figure 1. Please refer to 484

Appendix B for more experimental results. 485

Ablation Experiments. To further understand 486

the contributions of various components of SAM- 487

Decoding and the influence of different hyperpa- 488

rameters on inference speed, we conducted a series 489

of ablation studies. Firstly, we examined the effects 490

of lbias and lthreshold on inference speed through 491

a grid search. These parameters control the pref- 492

erence for generating drafts from the current text 493

7

2
3

4
5

6

lthreshold 2

3

4
5

6

l bia
s

2.0
2.2
2.4

2.6

2.8

3.0

3.2

2.12

2.08

2.16

2.21

2.22

2.27
2.24

2.18

2.16 2.17

2.80

2.88

2.89

2.96

2.93

3.03
2.97

2.97

3.03
2.96

#MAT
Speedup

Figure 6: The speedup and mean accepted toknes of
SAM-Decoding[T] under different lbias and lthreshold.

20 30 40 50 60 70
Draft size (#tokens)

77

78

79

80

81

82

83

84

85

To
ke

ns
/s

82.49
82.97

83.51 83.36 83.06

77.97

Figure 7: The throughput of SAM-Decoding[T] under
different draft size.

over text corpus and the preference for using suffix494

automaton over the auxiliary SD method when cre-495

ating drafts. The findings are summarized in Figure496

6. We observe that both the mean accepted tokens497

(MAT) and the speedup ratio increase with lbias498

and lthreshold before they equal 5 and then begin499

to decrease.. Figure 7 illustrates the throughput of500

SAM-Decoding[T] at varying draft sizes. Increas-501

ing the draft size improves throughput when the502

draft size is less than 40. Above 40, throughput503

began to drop, and at 70, it dropped significantly.504

This is because increasing the draft size below the505

threshold reduces the number of generation rounds,506

thus improving efficiency. However, sizes above507

this threshold do not provide additional benefits,508

but rather strain the GPU compute density, which509

slows down inference. For more ablation experi-510

ment results, please refer to Appendix C.511

5 Related Work512

Speculative decoding is an approach that can sig-513

nificantly speed up large language models (LLMs)514

without compromising the quality of their outputs. 515

The majority of speculative decoding techniques 516

rely on smaller neural networks to create drafts dur- 517

ing the inference process. These techniques are re- 518

ferred to as generation-based speculative decoding 519

methods. Early implementations of model-based 520

speculative decoding, such as those Speculative De- 521

coding (Leviathan et al., 2023), primarily focused 522

on generating draft sequences using pre-existing, 523

smaller-scale LLMs. Subsequently, advancements 524

like Medusa (Cai et al., 2024), SpecInfer (Miao 525

et al., 2024), and EAGLE (Li et al., 2024c,b) in- 526

troduced tree-based speculative methods (Du et al., 527

2024; Ankner et al., 2024; Chen et al., 2024b,a) 528

and began to train additional model with special ar- 529

chitecture tailored for speculative decoding. Token 530

Recycling (Luo et al., 2024), on the other hand, uti- 531

lizes the previously generated token distribution to 532

generate drafts, becoming a specialized generation- 533

based method. Additionally, beyond the additional 534

model, research works also conducted on specu- 535

lative decoding that relies either on the model it- 536

self (Kou et al., 2024; Yi et al., 2024) or on sub- 537

layers within the LLM (Elhoushi et al., 2024; Liu 538

et al., 2024). In contrast to generation-based meth- 539

ods, certain approaches focus on generating drafts 540

through retrieval, utilizing n-gram matching, which 541

we refer to as the retrieval-based method (Zhao 542

et al., 2024a; Li et al., 2024a; Oliaro et al., 2024). 543

Notable among these are Lookahead Decoding (Fu 544

et al., 2024), PIA(Zhao et al., 2024b), PLD (Saxena, 545

2023) and REST (He et al., 2024). 546

6 Conclusion 547

In this work, we propose SAM-Decoding, a spec- 548

ulative decoding method via suffix automatons 549

constructed from both generated text and text cor- 550

pus. SAM-Decoding can efficiently retrieve drafts 551

from retrieval sources, thereby accelerating infer- 552

ence. SAM-Decoding is also designed to seam- 553

lessly integrate with existing SD methods. Conse- 554

quently, in scenarios where retrieval is not feasible, 555

SAM-Decoding can adaptively switch to alterna- 556

tive methods for draft generation. Experimental 557

results demonstrate that SAM-Decoding outper- 558

forms retrieval-based SD baselines. Meanwhile, 559

when combined with state-of-the-art techniques, 560

SAM-Decoding can significantly enhance their per- 561

formance in Multi-turn Conversation, Summariza- 562

tion, Retrieval-augmented Generation, and Context 563

Q&A tasks. 564

8

7 Limitation565

Firstly, when combining SAM-Decoding with566

other types of methods, we use a very heuristic567

approach, i.e., we choose different methods de-568

pending on the match length. This does not fully569

utilize the exact match lengths provided by the suf-570

fix automaton, so subsequently we will try to train571

the classifier to select different decoding methods572

at each generate round.573

Secondly, the performance of retrieval-based574

methods is highly correlated with the usage sce-575

narios, and the existing datasets do not well reflect576

the performance of retrieval-based methods in real577

usage, so in the future, we also need to construct578

datasets that are more compatible with real scenar-579

ios to evaluate the performance of retrieval-based580

methods.581

Finally, we developed the suffix automaton uti-582

lizing Python, which introduced unnecessary re-583

dundancy in its storage and concurrently com-584

promised the efficiency of the automaton. Con-585

sequently, a pivotal direction for future work in-586

volves implementing suffix automaton in more effi-587

cient programming languages to mitigate these is-588

sues. Moreover, alternative data structures such as589

full-text indexes (Ferragina et al., 2007) and com-590

pressed suffix trees (Shareghi et al., 2016) offer591

enhanced memory efficiency compared to suffix592

automaton. Therefore, further investigation into593

whether these structures can facilitate more time-594

and memory-efficient draft retrieval is necessary.595

References596

Zachary Ankner, Rishab Parthasarathy, Aniruddha597
Nrusimha, Christopher Rinard, Jonathan Ragan-598
Kelley, and William Brandon. 2024. Hydra:599
Sequentially-dependent draft heads for medusa de-600
coding. arXiv preprint arXiv:2402.05109.601

Anselm Blumer, Janet Blumer, Andrzej Ehrenfeucht,602
David Haussler, and Ross McConnell. 1984. Build-603
ing the minimal dfa for the set of all subwords of a604
word on-line in linear time. In Automata, Languages605
and Programming: 11th Colloquium Antwerp, Bel-606
gium, July 16–20, 1984 11, pages 109–118. Springer.607

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie608
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind609
Neelakantan, Pranav Shyam, Girish Sastry, Amanda610
Askell, Sandhini Agarwal, Ariel Herbert-Voss,611
Gretchen Krueger, Tom Henighan, Rewon Child,612
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,613
Clemens Winter, Christopher Hesse, Mark Chen,614
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin615

Chess, Jack Clark, Christopher Berner, Sam Mc- 616
Candlish, Alec Radford, Ilya Sutskever, and Dario 617
Amodei. 2020. Language models are few-shot learn- 618
ers. Preprint, arXiv:2005.14165. 619

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, 620
Jason D Lee, Deming Chen, and Tri Dao. 2024. 621
Medusa: Simple llm inference acceleration frame- 622
work with multiple decoding heads. arXiv preprint 623
arXiv:2401.10774. 624

Jian Chen, Vashisth Tiwari, Ranajoy Sadhukhan, 625
Zhuoming Chen, Jinyuan Shi, Ian En-Hsu Yen, 626
and Beidi Chen. 2024a. Magicdec: Breaking the 627
latency-throughput tradeoff for long context gen- 628
eration with speculative decoding. arXiv preprint 629
arXiv:2408.11049. 630

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 631
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka- 632
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 633
Greg Brockman, et al. 2021. Evaluating large 634
language models trained on code. arXiv preprint 635
arXiv:2107.03374. 636

Zhuoming Chen, Avner May, Ruslan Svirschevski, 637
Yuhsun Huang, Max Ryabinin, Zhihao Jia, and 638
Beidi Chen. 2024b. Sequoia: Scalable, robust, and 639
hardware-aware speculative decoding. arXiv preprint 640
arXiv:2402.12374. 641

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 642
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 643
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 644
Nakano, et al. 2021. Training verifiers to solve math 645
word problems. arXiv preprint arXiv:2110.14168. 646

Cunxiao Du, Jing Jiang, Xu Yuanchen, Jiawei Wu, 647
Sicheng Yu, Yongqi Li, Shenggui Li, Kai Xu, Liqiang 648
Nie, Zhaopeng Tu, et al. 2024. Glide with a cape: A 649
low-hassle method to accelerate speculative decoding. 650
arXiv preprint arXiv:2402.02082. 651

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 652
Abhishek Kadian, Ahmad Al-Dahle, and Aiesha Let- 653
man et al. 2024. The llama 3 herd of models. 654
Preprint, arXiv:2407.21783. 655

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, 656
Basil Hosmer, Bram Wasti, Liangzhen Lai, Anas 657
Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed 658
Roman, et al. 2024. Layer skip: Enabling early 659
exit inference and self-speculative decoding. arXiv 660
preprint arXiv:2404.16710. 661

Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, and 662
Gonzalo Navarro. 2007. Compressed representations 663
of sequences and full-text indexes. ACM Trans. Al- 664
gorithms, 3(2):20–es. 665

Yichao Fu, Peter Bailis, Ion Stoica, and Hao Zhang. 666
2024. Break the sequential dependency of llm in- 667
ference using lookahead decoding. arXiv preprint 668
arXiv:2402.02057. 669

9

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2407.21783
https://doi.org/10.1145/1240233.1240243
https://doi.org/10.1145/1240233.1240243
https://doi.org/10.1145/1240233.1240243

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason Lee, and670
Di He. 2024. Rest: Retrieval-based speculative de-671
coding. In Proceedings of the 2024 Conference of672
the North American Chapter of the Association for673
Computational Linguistics: Human Language Tech-674
nologies (Volume 1: Long Papers), pages 1582–1595.675

Ehsan Kamalloo, Aref Jafari, Xinyu Zhang, Nan-676
dan Thakur, and Jimmy Lin. 2023. Hagrid:677
A human-llm collaborative dataset for generative678
information-seeking with attribution. arXiv preprint679
arXiv:2307.16883.680

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick681
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and682
Wen-tau Yih. 2020. Dense passage retrieval for683
open-domain question answering. arXiv preprint684
arXiv:2004.04906.685

Siqi Kou, Lanxiang Hu, Zhezhi He, Zhijie Deng, and686
Hao Zhang. 2024. Cllms: Consistency large lan-687
guage models. arXiv preprint arXiv:2403.00835.688

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-689
field, Michael Collins, Ankur Parikh, Chris Alberti,690
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-691
ton Lee, Kristina Toutanova, Llion Jones, Matthew692
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob693
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-694
ral questions: A benchmark for question answering695
research. Transactions of the Association for Compu-696
tational Linguistics, 7:452–466.697

Yaniv Leviathan, Matan Kalman, and Yossi Matias.698
2023. Fast inference from transformers via spec-699
ulative decoding. In International Conference on700
Machine Learning, pages 19274–19286. PMLR.701

Minghan Li, Xilun Chen, Ari Holtzman, Beidi Chen,702
Jimmy Lin, Wen-tau Yih, and Xi Victoria Lin.703
2024a. Nearest neighbor speculative decoding704
for llm generation and attribution. arXiv preprint705
arXiv:2405.19325.706

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang707
Zhang. 2024b. Eagle-2: Faster inference of language708
models with dynamic draft trees. arXiv preprint709
arXiv:2406.16858.710

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang711
Zhang. 2024c. Eagle: Speculative sampling re-712
quires rethinking feature uncertainty. arXiv preprint713
arXiv:2401.15077.714

Jiahao Liu, Qifan Wang, Jingang Wang, and Xunliang715
Cai. 2024. Speculative decoding via early-exiting for716
faster llm inference with thompson sampling control717
mechanism. arXiv preprint arXiv:2406.03853.718

Xianzhen Luo, Yixuan Wang, Qingfu Zhu, Zhiming719
Zhang, Xuanyu Zhang, Qing Yang, Dongliang Xu,720
and Wanxiang Che. 2024. Turning trash into treasure:721
Accelerating inference of large language models with722
token recycling. arXiv preprint arXiv:2408.08696.723

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao 724
Cheng, Zeyu Wang, Zhengxin Zhang, Rae Ying Yee 725
Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. 726
2024. Specinfer: Accelerating large language model 727
serving with tree-based speculative inference and 728
verification. In Proceedings of the 29th ACM Interna- 729
tional Conference on Architectural Support for Pro- 730
gramming Languages and Operating Systems, Vol- 731
ume 3, pages 932–949. 732

Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre, Bing 733
Xiang, et al. 2016. Abstractive text summarization 734
using sequence-to-sequence rnns and beyond. arXiv 735
preprint arXiv:1602.06023. 736

Gabriele Oliaro, Zhihao Jia, Daniel Campos, and Aurick 737
Qiao. 2024. Suffixdecoding: A model-free approach 738
to speeding up large language model inference. arXiv 739
preprint arXiv:2411.04975. 740

Apoorv Saxena. 2023. Prompt lookup decoding. 741

Ehsan Shareghi, Matthias Petri, Gholamreza Haffari, 742
and Trevor Cohn. 2016. Fast, small and exact: 743
Infinite-order language modelling with compressed 744
suffix trees. Transactions of the Association for Com- 745
putational Linguistics, 4:477–490. 746

Heming Xia, Zhe Yang, Qingxiu Dong, Peiyi Wang, 747
Yongqi Li, Tao Ge, Tianyu Liu, Wenjie Li, and 748
Zhifang Sui. 2024. Unlocking efficiency in large 749
language model inference: A comprehensive sur- 750
vey of speculative decoding. arXiv preprint 751
arXiv:2401.07851. 752

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, 753
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan 754
Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2 755
technical report. arXiv preprint arXiv:2407.10671. 756

Hanling Yi, Feng Lin, Hongbin Li, Peiyang Ning, Xi- 757
aotian Yu, and Rong Xiao. 2024. Generation meets 758
verification: Accelerating large language model infer- 759
ence with smart parallel auto-correct decoding. arXiv 760
preprint arXiv:2402.11809. 761

Weilin Zhao, Yuxiang Huang, Xu Han, Chaojun Xiao, 762
Zhiyuan Liu, and Maosong Sun. 2024a. Ouroboros: 763
Speculative decoding with large model enhanced 764
drafting. arXiv preprint arXiv:2402.13720. 765

Yao Zhao, Zhitian Xie, Chen Liang, Chenyi Zhuang, 766
and Jinjie Gu. 2024b. Lookahead: An inference ac- 767
celeration framework for large language model with 768
lossless generation accuracy. In Proceedings of the 769
30th ACM SIGKDD Conference on Knowledge Dis- 770
covery and Data Mining, pages 6344–6355. 771

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan 772
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, 773
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023. 774
Judging llm-as-a-judge with mt-bench and chatbot 775
arena. Advances in Neural Information Processing 776
Systems, 36:46595–46623. 777

10

https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://github.com/apoorvumang/prompt-lookup-decoding/
https://doi.org/10.1162/tacl_a_00112
https://doi.org/10.1162/tacl_a_00112
https://doi.org/10.1162/tacl_a_00112
https://doi.org/10.1162/tacl_a_00112
https://doi.org/10.1162/tacl_a_00112

A Suffix Automaton778

A.1 Construction Process of Suffix Automaton779

Algorithm 2 introduces the construction (Build-780

SAM) and expansion process (Expand) of Suffix781

Automaton, where the INIT_SAM function cre-782

ates a suffix automaton that only contains the root783

node. For the root node, the link attribute value is784

None, the next attribute value is empty, the length785

attribute value is 0, and the min_endpos attribute786

value is 0. Meanwhile, Algorithm 3 shows the con-787

struction process of the top-k successors for each788

node of the static suffix automaton. Each node in789

the algorithm involves the variable, “freq”, which790

represents the frequency of occurrence of the cor-791

responding substring for each node, and can be792

initialized at the time of constructing the suffix au-793

tomaton, i.e., “freq” is initialized to 1 for nodes794

generated by expansion, and “freq” is initialized795

to 0 for nodes generated based on cloning (line796

15 and line 32 in Algorithm 2). For each node,797

the recording of variable ’freq’ is used to estimate798

the probability of generating different successor799

tokens, thus determining the top-k successors.800

A.2 Construction Detail801

To construct static SAM, we converted instructions802

and inputs from the Stanford-Alpaca, Python-Code-803

Instruction-18K, and GSM8K datasets into model804

inputs using Vicuna’s default template, as shown805

in Listing 1. We then generated responses for these806

inputs based on the Vicuna-7B-v1.3 model. Finally,807

the generated corpus—including the template, in-808

structions, inputs, and responses—was used to con-809

struct our static SAM.810

For the instructions and inputs, we selected811

Stanford-Alpaca due to its reputation for being812

lightweight and containing a diverse range of in-813

structions. Since Stanford-Alpaca lacks math and814

coding instructions, we incorporated the Python-815

Code-Instruction-18K and GSM8K datasets to ad-816

dress these gaps.817

For the responses, as the main experiments were818

based on the Vicuna series of models, we gener-819

ated the responses for the instructions and inputs820

using the Vicuna-7B-v1.3 model to ensure align-821

ment with the data distribution of the Vicuna series822

of models.823
824

{825
"description ": "Template used by826

Vicuna.",827
"prompt_input ": "A chat between a828

curious user and an artificial829

Corpus Size #MAT Tokens/s Speedup

100% 2.30 69.37 1.84×

50% 2.24 68.35 1.81×

25% 2.21 67.90 1.80×

0% (w/o static SAM) 1.85 61.93 1.64×

Table 4: Inference speed of SAM-Decoding under dif-
ferent corpus size.

intelligence assistant. The 830
assistant gives helpful , 831
detailed , and polite answers to 832
the user 's questions .\n\nUSER: { 833
instruction }\n\n{input}\n\ 834
nASSISTANT :", 835

"prompt_no_input ": "A chat between a 836
curious user and an artificial 837

intelligence assistant. The 838
assistant gives helpful , 839
detailed , and polite answers to 840
the user 's questions .\n\nUSER: { 841
instruction }\n\nASSISTANT :" 842

} 843844

Listing 1: Vicuna’s default template

A.3 Resources Usage and Effect of Static 845

Corpus 846

The corpus we used to build the static SAM consists 847

of 22,438,527 tokens, and the resulting static SAM 848

takes up 1.5GB of memory. Each token needs 849

approximately 72 bytes of storage space on average. 850

In addition, it takes about 5 minutes to build static 851

SAM and about 2 minutes to load static SAM from 852

disk to memory. 853

Meanwhile, to further demonstrate how the cor- 854

pus size of static SAM affects SAM-Decoding’s 855

inference speed, we tested subsets containing 50% 856

and 25% of the data from our corpus. The results 857

of these experiments are shown in Table 4. These 858

results indicate that incorporating static SAM im- 859

proves SAM-Decoding’s inference speed. How- 860

ever, increasing the corpus size does not signifi- 861

cantly further enhance performance. 862

In summary, currently, the memory costs associ- 863

ated with the corpus are low, while further increas- 864

ing the corpus size does not significantly improve 865

performance. 866

A.4 Drafting Process of Suffix Automaton 867

Algorithm 4 introduces the drafting process based 868

on Prim’s algorithm to find a maximum spanning 869

tree. The insight of the algorithm is to approxi- 870

mate the probability distribution of the token based 871

11

on the frequency and find the draft tree with the872

highest probability based on the maximum span-873

ning tree algorithm. As shown in Algorithm 3,874

for static suffix automaton, we can offline main-875

tain the frequency of occurrence of the correspond-876

ing substring for each node. Then, based on the877

recorded frequency for each node in the automaton,878

we can compute the top-k successor tokens and879

corresponding transition probabilities, where the880

transition probability is computed by dividing the881

frequency of occurrence of the target state by the882

frequency of occurrence of the current state. The883

time complexity of Prim’s algorithm is O(n log n),884

where n denotes the draft size.885

A.5 Time Complexity of Suffix Automaton886

Consider a suffix automaton S with the initial state887

s0, which corresponds to the root node of the au-888

tomaton (representing the empty string). Suppose889

that state s0 undergoes transitions through a se-890

quence of L tokens x = (x1, x2, . . . , xL):891

si = Transfer(S, xi, si−1), i ∈ {1, 2, . . . , L}.892

We aim to demonstrate that the average time893

complexity of each state transition is O(1), while894

the worst-case time complexity is O(L).895

First, let us define the matching length associ-896

ated with the state si as li. Given that each state897

transition can increase the length of the match by898

at most 1, it follows that 0 ≤ li ≤ i. Next, we899

introduce the concept of energy ϕ for each state si,900

defined as ϕ(si) = li. Let ci represent the time cost901

of the transition of the i-th state. We then define902

the amortized cost ĉi as:903

ĉi = ci + ϕ(si)− ϕ(si−1).904

We can now express the total amortized cost over905

all transitions as:906

L∑
i=1

ĉi =
L∑
i=1

(ci + ϕ(si)− ϕ(si−1))907

=
L∑
i=1

ci + ϕ(sL)− ϕ(s0).908

Since ϕ(si) ≥ 0 and ϕ(s0) = 0, it follows that:909

L∑
i=1

ĉi ≥
L∑
i=1

ci.910

Next, we analyze the upper bound of ĉi. Each911

state transition involves moving through the link912

edge zero or more times, followed by a move 913

through the next edge. Transitioning through the 914

link edge incurs a cost of 1 but decreases the poten- 915

tial by at least 1. Conversely, transitioning through 916

the next edge incurs a cost of 1 and increases the 917

potential by 1. Consequently, the amortized cost ĉi 918

is bounded above by 2, leading to: 919

L∑
i=1

ĉi ≤ 2L. 920

Thus, the average time complexity of state tran- 921

sitions is: 922∑L
i=1 ci
L

≤ 2L

L
= 2, 923

which is O(1). In the worst case, a single operation 924

may require up to li transitions through the link 925

edge, followed by one transition through the next 926

edge, resulting in a worst-case time complexity of 927

O(L). 928

B Additional Experiment Results 929

In this section, we first present the results of the 930

experiment on Llama3-8B-instruct, Vicuna-13B- 931

v1.3, and Vicuna-33B-v1.3. 932

Tables 5 and 6 present the speedup ratios of 933

SAM-Decoding compared to baseline methods 934

across the Spec-Bench, HumanEval, and HAGRID 935

datasets, utilizing the Llama3-8B-instruct model. 936

It can be seen that the inference speed of SAM- 937

Decoding outperforms the strongest retrieval-based 938

baseline PLD on all tasks. Meanwhile, SAM- 939

Decoding, when paired with Token Recycling 940

(SAM-Decoding[T]), brings speedups on all tasks. 941

Specifically, SAM-Decoding enhances the speedup 942

ratio of Token Recycling from 1.92×, 1.85×, and 943

1.82× to 2.09×, 2.04×, and 2.12× for Multi- 944

turn Conversation, Summarization, and Retrieval- 945

Augmented Generation tasks, respectively. This 946

improvement raises the overall speedup ratio of 947

token recycling in the Spec-Bench dataset from 948

1.91× to 2.05×. On the HumanEval and HAGRID 949

datasets, SAM-Decoding increases the speedup ra- 950

tio of Token Recycling from 1.99× and 2.17× 951

to 2.16× and 2.30×, respectively. Furthermore, 952

SAM-Decoding also amplifies the performance 953

gains of EAGLE-2 in Multi-turn Conversation, 954

Summarization, Retrieval-augmented Generation, 955

Code Generation and Context Q&A tasks. The 956

speedup ratios were increased from 2.08×, 1.85×, 957

1.87×, 2.37×, and 2.18× to 2.36×, 1.98×, 2.11×, 958

2.54× and 2.35× respectively. 959

12

Model Method MT Trans Sum QA Math RAG #MAT Tokens/s Speedup

Llama3-8B

PLD 1.30× 1.12× 1.41× 1.03× 1.30× 1.53× 1.39 44.26 1.28×

SAM-Decoding 1.59× 1.35× 1.50× 1.35× 1.54× 1.75× 1.72 52.35 1.51×

Token Recycling 1.92× 1.88× 1.85× 1.75× 2.24× 1.82× 2.76 66.42 1.91×

SAM-Decoding[T] 2.09× 1.93× 2.04× 1.82× 2.32× 2.12× 2.63 71.73 2.05×

EAGLE-2 2.08× 1.95× 1.85× 1.80× 2.31× 1.87× 3.90 68.69 1.98×

SAM-Decoding[E2] 2.36× 1.96× 1.98× 1.79× 2.32× 2.11× 3.92 72.47 2.08×

Table 5: Speedup of SAM-Decoding compared to the baselines on Spec-Bench.

Model Method
HumanEval HAGRID

#MAT Tokens/s Speedup #MAT Tokens/s Speedup

Llama3-8B

PLD 1.30 42.39 1.18× 1.50 45.15 1.56×

SAM-Decoding 2.06 64.38 1.79× 1.88 58.40 2.02×

Token Recycling 2.93 71.49 1.99× 2.84 62.77 2.17×

SAM-Decoding[T] 2.77 78.04 2.16× 2.70 66.76 2.30×

EAGLE-2 4.74 85.58 2.37× 3.97 63.30 2.18×

SAM-Decoding[E2] 4.76 91.50 2.54× 3.93 67.94 2.35×

Table 6: Speedup of SAM-Decoding compared to the baselines on HumanEval and HAGRID.

Tables 7, 8, 9 and 10 present the speedup ratios960

of SAM-Decoding compared to baseline methods961

across the Spec-Bench, HumanEval, and HAGRID962

datasets, utilizing the Vicuna-13B-v1.3 and Vicuna-963

33B-v1.3. On both models, SAM-Decoding still964

has inference speed exceeding the retrieval-based965

baseline, while by combining Token Recycling966

and EAGLE-2 also further improves the inference967

speed of the model on the Multi-turn Conversation,968

Summarization, Retrieval-augmented Generation969

and Context Q&A tasks.970

Then, we present additional experiments, in-971

cluding the percentage of inference time of dif-972

ferent modules in the decoding process of SAM-973

Decoding, the percentage of drafts provided by974

different draft modules in SAM-Decoding, and the975

effect of different hyperparameters on the inference976

speed of SAM-Decoding for each task in Spec-977

Bench.978

The inference process of SAM-Decoding is di-979

vided into five stages: prefill, draft generation, de-980

coding, verification, and updating. During the pre-981

fill stage, the model processes the input prompt to982

establish an initial state. In the first draft generation983

stage, a draft is produced based on this initial state.984

The decoding phase consists of further processing985

of the draft by the model, i.e., feeding the draft986

4.2%

65.5%

0.6%

23.4%

6.3%

Prefill (4.2%)
Decoding (65.4%)
Draft Generation (0.6%)
Verification (23.4%)
Updating (6.3%)

Figure 8: The percentage of inference time of different
modules in SAM-Decoding.

into the LLM to obtain sampling results for each 987

position. Next comes verification, where the cor- 988

rect parts of the draft are evaluated based on the 989

information processed during the decoding stage. 990

Finally, the update phase modifies the state of the 991

model based on the valid parts of the draft. Figure 992

8 illustrates the proportion of time each stage con- 993

sumes within the SAM-Decoding[T] process based 994

on Spec-Bench. As shown, the decoding stage 995

13

Model Method MT Trans Sum QA Math RAG #MAT Tokens/s Overall

Vicuna-13B

PLD 1.61× 1.10× 2.36× 1.11× 1.69× 1.80× 1.66 33.89 1.59×

SAM-Decoding 2.08× 1.26× 2.23× 1.53× 2.09× 1.89× 2.19 39.24 1.84×

Token Recycling 2.03× 1.84× 2.07× 1.83× 2.42× 1.84× 2.81 42.74 2.01×

SAM-Decoding[T] 2.36× 1.80× 2.63× 1.83× 2.49× 2.22× 2.91 47.27 2.22×

EAGLE-2 3.10× 2.15× 2.58× 2.38× 3.19× 2.33× 4.42 56.06 2.63×

SAM-Decoding[E2] 3.27× 2.12× 2.89× 2.34× 3.12× 2.54× 4.51 57.88 2.72×

Table 7: Speedup of SAM-Decoding compared to the baselines on Spec-Bench.

Model Method
HumanEval HAGRID

#MAT Tokens/s Speedup #MAT Tokens/s Speedup

Vicuna-13B

PLD 1.54 32.06 1.44× 1.90 43.38 2.15×

SAM-Decoding 2.42 48.92 2.20× 2.21 41.93 2.08×

Token Recycling 2.79 46.03 2.07× 2.90 40.97 2.03×

SAM-Decoding[T] 2.79 50.87 2.28× 2.99 48.33 2.40×

EAGLE-2 5.15 77.85 3.49× 4.24 52.28 2.59×

SAM-Decoding[E2] 5.12 78.96 3.54× 4.41 56.17 2.78×

Table 8: Speedup of SAM-Decoding compared to the baselines on HumanEval and HAGRID.

Token Recycling Dynamic SAM Static SAM0

20

40

60

80

100

Pe
rc

en
ta

ge
(%

)

85.96%

11.59%
2.45%

0

1

2

3

4

5

6

7

8

#M
AT

2.51

6.57

3.39

Percentage
#MAT

Figure 9: The percentage of usage and mean accept
tokens of different draft modules.

takes up the largest portion of time, accounting for996

65.4% of the entire process. This is followed by997

the verification stage, which occupies 23.4% of the998

total time. The updating stage requires 6.3% of the999

time, whereas the draft generation stage contributes1000

only 0.6% to the overall duration. Furthermore, the1001

pre-fill stage comprises 4.2% of the total process-1002

ing time.1003

Figure 9 shows the frequency of usage of differ-1004

ent draft modules of SAM-Decoding[T] on Spec-1005

Bench and the corresponding mean accept tokens.1006

It can be seen that in 85.96% of the cases, due to1007

insufficient matching length, we generate drafts 1008

based on the auxiliary method, corresponding to an 1009

average accept length of 2.51, while in the remain- 1010

ing 11.59% and 2.45% of the cases, the dynamic 1011

suffix automaton and static suffix automaton are 1012

used to generate drafts, corresponding to average 1013

accept lengths of 6.57 and 3.39, respectively. Ta- 1014

ble 12 further shows the frequency of use of dif- 1015

ferent modules in each task and the corresponding 1016

mean accept tokens. 1017

Finally, Table 11 shows the inference speed of 1018

different methods based on Vicuna-7B-v1.3 on 1019

NVIDIA A800 GPU. It can be seen that SAM- 1020

Decoding can still effectively combine Token Re- 1021

cycling and EAGLE-2 to achieve higher inference 1022

speed, which shows the effectiveness of our ap- 1023

proach for different devices. 1024

C Additional Ablation Experiments 1025

In Figures 6 and 7, we illustrated the effect of 1026

lthreshold, lbias, and draft size on the inference 1027

speed of SAM-Decoding[T], and here we further 1028

show the effect of these hyperparameters for each 1029

task in Spec-Bench. The experimental results are 1030

shown in Tables 14 and 15. 1031

14

Model Method MT Trans Sum QA Math RAG #MAT Tokens/s Overall

Vicuna-33B

PLD 1.50× 1.07× 2.06× 1.09× 1.59× 1.51× 1.65 13.33 1.46×

SAM-Decoding 1.91× 1.25× 1.98× 1.48× 1.83× 1.66× 1.97 15.35 1.68×

Token Recycling 2.10× 1.84× 2.19× 1.88× 2.42× 1.92× 2.70 18.80 2.06×

SAM-Decoding[T] 2.31× 1.79× 2.53× 1.90× 2.48× 2.06× 2.68 19.87 2.18×

EAGLE-2 3.29× 2.31× 2.73× 2.51× 3.65× 2.46× 4.06 25.86 2.83×

SAM-Decoding[E2] 3.40× 2.25× 2.93× 2.43× 3.45× 2.54× 4.08 25.91 2.84×

Table 9: Speedup of SAM-Decoding compared to the baselines on Spec-Bench.

Model Method
HumanEval HAGRID

#MAT Tokens/s Speedup #MAT Tokens/s Speedup

Vicuna-33B

PLD 1.58 14.18 1.51× 1.55 15.74 1.80×

SAM-Decoding 2.05 19.08 2.03× 1.90 16.15 1.85×

Token Recycling 2.64 19.64 2.09× 2.71 18.29 2.09×

SAM-Decoding[T] 2.73 22.44 2.39× 2.60 19.74 2.26×

EAGLE-2 3.53 28.18 3.00× 3.84 24.28 2.78×

SAM-Decoding[E2] 3.61 29.56 3.14× 3.82 25.08 2.87×

Table 10: Speedup of SAM-Decoding compared to the baselines on HumanEval and HAGRID.

D Comparison Between REST and1032

SAM-Decoding with only Static SAM1033

In Table 3, we find that SAM-Decoding is slightly1034

slower than REST when only static SAM is used1035

(SAM-Decoding w/o Dynamic SAM) with the1036

same mean accept tokens. We note that REST1037

implements suffix arrays in C, whereas SAM-1038

Decoding implements the SAM in Python. This1039

difference results in a higher average per-operation1040

overhead for SAM compared to suffix arrays,1041

since Python is much slower than C. As a result,1042

SAM-Decoding using only static SAM is currently1043

slightly slower than REST. However, REST uses1044

more corpus than SAM-Decoding. Specifically,1045

the REST utilizes the ShareGPT dataset which1046

is 10 times larger than the dataset employed by1047

SAM-Decoding. Given this disparity, we augment1048

our corpus with 10% of ShareGPT data and sub-1049

sequently evaluate the SAM-Decoding inference1050

speed on this enhanced dataset, which includes1051

38,521,232 tokens and 3 GB of memory for static1052

SAM storage and is 1/5 the size of ShareGPT. Fol-1053

lowing this adjustment, SAM-Decoding demon-1054

strated a mean accept token and inference speed1055

that surpassed that of REST. In addition, it also in-1056

dicates that static the suffix automaton have higher1057

retrieval accuracy compared to the suffix arrays1058

used by REST. The results are shown in Table 13. 1059

15

Model Method MT Trans Sum QA Math RAG #MAT Tokens/s Overall

Vicuna-7B

Token Recycling 2.08× 1.76× 1.97× 1.85× 2.35× 1.76× 2.82 98.39 1.96×

SAM-Decoding[T] 2.62× 1.82× 2.92× 2.09× 2.60× 2.21× 3.02 119.21 2.38×

EAGLE-2 2.66× 1.76× 2.18× 2.03× 2.63× 1.97× 4.34 110.56 2.21×

SAM-Decoding[E2] 3.19× 1.97× 2.86× 2.28× 2.84× 2.32× 4.52 129.36 2.58×

Table 11: Speedup of SAM-Decoding on A800 GPU compared to the baselines on Spec-Bench.

Token Recycling Dynamic SAM Static SAM

Percentage #MAT Percentage #MAT Percentage #MAT

MT 86% 2.43 11% 7.44 3% 3.55

Trans 99% 2.18 1% 2.67 0% NAN

Sum 81% 2.71 19% 8.24 0% NAN

QA 92% 2.27 6% 11.22 2% 3.91

Math 79% 2.86 16% 4.01 5% 3.13

RAG 84% 2.57 13% 4.93 3% 2.93

Table 12: The frequency of use of different modules of SAM-Decoding[T] in each task of Spec-Bench.

Dataset #MAT Tokens/s

REST ShareGPT 1.63 51.34

SAM-Decoding Ours 1.63 50.37

+ ShareGPT(10%) 1.68 51.98

Table 13: Comparison between REST and SAM-
Decoding with only static SAM.

(lthreshold, lbias)

(3, 3) (5, 3) (5, 5) (5, 8) (8, 8)

MT 2.36× 2.44× 2.49× 2.32× 2.39×

Trans 1.51× 1.72× 1.70× 1.57× 1.71×

Sum 2.92× 2.89× 2.94× 2.84× 2.70×

QA 1.79× 1.82× 1.97× 1.79× 1.90×

Math 2.06× 2.19× 2.40× 2.16× 2.36×

RAG 2.11× 2.11× 2.14× 2.08× 2.06×

Table 14: The effect of lthreshold, lbias for each task in
Spec-Bench.

Draft Size

20 40 60

MT 2.48× 2.49× 2.43×

Trans 1.70× 1.70× 1.70×

Sum 2.86× 2.94× 2.93×

QA 1.96× 1.97× 1.96×

Math 2.39× 2.40× 2.31×

RAG 2.13× 2.14× 2.14×

Table 15: The effect of draft size for each task in Spec-
Bench.

16

Algorithm 2 Construction Process of Suffix Au-
tomaton

1: function Expand-State
2: Input: suffix automaton S, link l, next nxt,

length len, position p, frequency f
3: s = S.expand_state() {A constructor}
4: s.link = l
5: s.next = nxt
6: s.length = len
7: s.min_endpos = p
8: s.freq = f
9: Output: new state s

10: end function
11: function Expand
12: Input: suffix automaton S, token t
13: S.max_length = S.max_length + 1
14: l = S.max_length
15: c = Expand-State(S,None, {}, l, l, 1)
16: p = S.last
17: while p ̸= None and t /∈ p.next do
18: p.next[t] = c
19: p = p.link
20: end while
21: if p = None then
22: c.link = S.root
23: else
24: q = p.next[t]
25: if p.length + 1 = q.length then
26: c.link = q
27: else
28: cl = Expand-State(S)
29: cl.link = q.link, cl.next = q.next
30: cl.length = p.length + 1
31: cl.min_endpos = q.min_endpos
32: cl.freq = 0
33: while p ̸= None and p.next[t] = q do
34: p.next[t] = cl
35: p = p.link
36: end while
37: q.link = c.link = cl
38: end if
39: end if
40: S.last = c
41: end function
42: function Build-SAM
43: Input: token sequence s
44: S = INIT_SAM()
45: for t in s do
46: Expand(S, t)
47: end for
48: Output: suffix automaton S
49: end function

Algorithm 3 Construction Process of Top-k Suc-
cessors and Transition Probabilities

1: function dfs
2: Input: state s
3: for tn, sn ∈ s.next do
4: dfs(sn)
5: s.freq = s.freq + sn.freq
6: end for
7: s.topk_succs = TopKfreq(s.next)
8: s.topk_prob = []
9: for tn, sn ∈ s.topk_succ do

10: s.topk_prob.append(sn.freq/s.freq)
11: end for
12: end function
13: function Init_topk
14: Input: suffix automaton S
15: dfs(S.root)
16: end function

Algorithm 4 Drafting via Prim’s Algorithm

1: function Prim
2: Input: suffix automaton S, state s, start

token t
3: q = PriorityQueue()
4: q.push({1.0, s, t})
5: tokens = [], parents = []
6: while q.size() > 0

and d.size() ̸= MAX_SIZE do
7: p, idx, s, t = q.top()
8: q.pop()
9: tokens.append(t)

10: parents.append(idx)
11: for (tn, sn, pn) in

zip(s.topk_succ, s.topk_prob) do
12: pnew = p ∗ pn
13: snew = sn
14: tnew = tn
15: q.push(pnew, len(tokens), snew, tnew)
16: end for
17: end while
18: Output: draft tree (tokens, parents)
19: end function

17

	Introduction
	Background
	Suffix Automaton
	Speculative Decoding

	SAM-Decoding
	Suffix Automaton Construction
	Drafting with Suffix Automaton
	Update of Suffix Automaton
	Generation-based Method Integration

	Experiments
	Related Work
	Conclusion
	Limitation
	Suffix Automaton
	Construction Process of Suffix Automaton
	Construction Detail
	Resources Usage and Effect of Static Corpus
	Drafting Process of Suffix Automaton
	Time Complexity of Suffix Automaton

	Additional Experiment Results
	Additional Ablation Experiments
	Comparison Between REST and SAM-Decoding with only Static SAM

