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Abstract001

We study continued training and supervised002
fine-tuning (SFT) of a language model (LM) to003
make effective use of long-context information.004
We first establish a reliable evaluation protocol005
to guide model development—instead of per-006
plexity or simple needle-in-a-haystack (NIAH)007
tests, we use a broad set of long-context down-008
stream tasks, and we evaluate models after009
SFT as this better reveals long-context abili-010
ties. Supported by our robust evaluations, we011
run thorough experiments to decide the data012
mix for continued pre-training, the instruction013
tuning dataset, and many other design choices014
such as position extrapolation. We find that015
(1) code repositories and books are excellent016
sources of long data, but it is crucial to com-017
bine them with high-quality short-context data;018
(2) training with a sequence length beyond019
the evaluation length boosts long-context per-020
formance; (3) for SFT, using only short in-021
struction datasets yields strong performance on022
long-context tasks. Our final model, ProLong-023
8B, which is initialized from Llama-3 and024
trained on 40B tokens, demonstrates state-of-025
the-art long-context performance among sim-026
ilarly sized models at a length of 128K. Pro-027
Long outperforms Llama-3.1-8B-Instruct on028
the majority of long-context tasks despite using029
only 5% as many tokens during long-context030
training. Additionally, ProLong can effectively031
process up to 512K tokens, one of the longest032
context windows of publicly available LMs.1033

1 Introduction034

The ability of language models (LMs) to process ex-035

tremely long inputs (e.g., 128K tokens) has enabled036

new applications, such as book summarization or037

learning new tasks on the fly from many examples.038

However, adapting LMs to process long contexts039

is challenging from an infrastructure and data per-040

1We will open-source our training code, data, and model
checkpoints upon acceptance.

spective, and many design decisions are not well 041

understood by open-source practitioners. 042

While many works have focused on extending 043

the context length of pre-trained LMs with minimal 044

training (Chen et al., 2023; Peng et al., 2024, inter 045

alia), Fu et al. (2024) show that the above methods 046

fail to solve even the simple needle-in-a-haystack 047

(NIAH; Kamradt, 2024) task and that it is neces- 048

sary to continue LLM training on billions of tokens 049

of long documents to learn this task robustly. Fron- 050

tier open-source models, such as Llama-3.1 (Dubey 051

et al., 2024) and Jamba (Lenz et al., 2024), also 052

employ a long-context continued training stage, 053

followed by supervised fine-tuning (SFT) on in- 054

struction data. We adopt the same setting and study 055

continued training and SFT of a pre-trained LM for 056

effective long-context use. 057

We first establish a reliable evaluation protocol 058

to provide a meaningful signal for model devel- 059

opment (§2). Most existing works rely on either 060

perplexity or NIAH (Kamradt, 2024) for ablating 061

training recipes. We demonstrate that neither is 062

robust for guiding the development and opt for a 063

broad range of downstream applications from HEL- 064

MET (Yen et al., 2025). Importantly, we conduct 065

our evaluations after performing SFT, even for all 066

our ablation runs. We observe that, on some long- 067

context tasks, performance gains only emerge after 068

SFT, which means that best design choices can dif- 069

fer before and after SFT. We also check if the base 070

model’s short-context performance is preserved. 071

Guided by the above evaluation, we run compre- 072

hensive experiments with Llama-3-8B (8K original 073

context window; Dubey et al., 2024) to study each 074

component of long-context continued training: 075

• Data engineering (§3): We find that using code 076

repositories and long books as long-context data 077

and mixing them with high-quality short-context 078

data is crucial for both long-context performance 079

and retaining the short-context capabilities. 080
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• Scaling the data and the length (§4): We scale081

up the training to 20B tokens at a 64K training082

length and 20B tokens at a 512K training length.083

Surprisingly, training on contexts longer than the084

evaluation length yields additional benefits.085

• Supervised fine-tuning (§5): We find that SFT086

with standard, short-context instruction datasets087

is sufficient for achieving good performance.088

Contrary to previous study, long synthetic instruc-089

tion data does not further boost the performance.090

Our final model, ProLong, achieves the best091

performance at a 128K context length among 10B-092

parameter models, while taking only 5% of the data093

budget compared to Llama-3.1’s long-context train-094

ing (Dubey et al., 2024). ProLong has a maximum095

context length of 512K tokens, making it one of096

the longest-context LMs available.2097

2 Guiding Model Development With098

Comprehensive Evaluations099

A pre-requisite for training a strong LM is having100

a robust evaluation suite that can guide model de-101

velopment while tracking its utility in real-world102

applications. We first make the decision to use103

HELMET (Yen et al., 2025) as our evaluation suite,104

as it is one of the most comprehensive long-context105

benchmarks. For fast iteration, we only use a subset106

of HELMET tasks for model development:107

• Recall: Given a JSON file with random key-108

values pairs, retrieve the value for a key.109

• RAG: Answer a question given retrieved110

Wikipedia documents (NQ, HotPotQA, PopQA).111

• Re-ranking: Produce top-10 rankings from a112

shuffled list of documents (MSMARCO).113

• ICL: Learn classification tasks from many in-114

context examples, where the #classes ranges115

from 6 to 151; average of 5 datasets (TREC116

coarse/fine, NLU, Banking77, Clinc-150).117

• QA: Answer a question given a full-length book118

(NarrativeQA).119

• Summarization: Summarize long legal docu-120

ments (Multi-LexSum).121

We evaluate the final model’s generalization us-122

ing the remaining HELMET tasks, which were123

not involved in its development, and also report124

2Throughout the paper, we use binary prefixes K= 210,
M=220, and B=230.
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Figure 1: Improvements on some long-context tasks
are only observed when evaluating after a supervised
fine-tuning (SFT) phase. The models are trained on the
pre-training data mix by Fu et al. (2024). We report the
mean and standard deviations over two training runs.

the final performance on other long-context bench- 125

marks such as RULER (Hsieh et al., 2024) and 126

∞Bench (Zhang et al., 2024a) in §D.8. 127

In Appendix B, we discuss our reasons for choos- 128

ing HELMET in detail. We also showcase why 129

perplexity, a popular metric in prior work, is not 130

indicative in long-context development. If not oth- 131

erwise specified, we average the performance for 132

each category over all datasets and over evaluation 133

lengths of 32K and 64K; for the final long-context 134

score, we macro-average all categories. 135

2.1 Evaluating after supervised fine-tuning 136

Supervised fine-tuning (SFT; Ouyang et al., 2022) 137

is an additional training stage that fine-tunes the 138

model on a small amount of natural-language in- 139

structions and corresponding responses; it enables 140

a base LM to address user queries in a chat format 141

and has become a standard step for producing fron- 142

tier LMs. Here, we consider the difference between 143

evaluating a model before or after SFT. 144

In preliminary experiments, we continue training 145

Llama-3-8B-Base on 5B-token subsets from the 146

data mix by Fu et al. (2024). The mix is based on 147

SlimPajama (Soboleva et al., 2023) and upsamples 148

long documents to constitute 70% of tokens, while 149

retaining the original domain proportions. Then we 150

conduct SFT on several intermediate checkpoints 151

with UltraChat (Ding et al., 2023). 152

We show results of two HELMET tasks before 153

and after SFT in Figure 1. Long-context evalu- 154

ation shows clearer signals when it is conducted 155

after SFT—SFT shows that the model continues 156

to improve with more training tokens on RAG and 157

re-ranking, while the improvement is less clear 158

or does not exist when evaluated before SFT. In 159

§B.1, we also show that SFT enables evaluation on 160
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Data #Tokens

Code Repos 98.8B
SP/Books 33.2B
SP/CC 15.3B
SP/Arxiv 5.2B
SP/GitHub 2.8B
SP/Wiki 0.1B
SP/StackEx <0.1B
SP/C4 <0.1B

Table 1: Long text doc-
uments (≥64K tokens)
by data sources.

Long Data (60%)
Long-Context Short-Context

Recall RAG Re-rank ICL QA Summ. Avg. Avg.

CommonCrawl 84.1 53.3 28.1 67.5 35.2 37.0 50.9 66.5
ArXiv 90.3 51.8 28.0 68.0 33.7 36.7 51.4 67.5
Books 94.9 53.9 30.7 72.2 33.2 37.7 53.8 65.5
Code Repos 99.2 53.8 29.0 61.2 34.7 36.2 52.3 65.9
Books/Repos/ArXiv 1:1:1 98.3 53.9 29.4 66.9 35.5 35.5 53.3 66.9
Books/Repos 1:1 96.0 54.9 29.4 73.9 35.7 37.9 54.6 65.5

Table 2: Impact of different long data sources, while keeping the 40% short data component
fixed. Code repositories particularly helps recall, while books are more effective on re-
ranking, ICL, and summarization. Mixing the two achieves the overall best performance.

realistic applications like QA and summarization,161

which require instruction following capabilities and162

would otherwise fail completely. Therefore, unless163

otherwise specified, we report the long-context per-164

formance after SFT.165

We justify our design choices for supervised fine-166

tuning in §5, where we explore different datasets167

and the use of synthetic long instruction data.168

2.2 Checking that short-context performance169

is preserved170

Long-context abilities should not come at the ex-171

pense of short-context performance, particularly172

since short-context evaluations cover a wider range173

of capabilities, e.g., world knowledge, common-174

sense, and mathematical reasoning. However,175

short-context evaluation has largely been neglected176

by previous long-context research. We report on 5177

tasks from the the Open LLM Leaderboard (Beech-178

ing et al., 2023): HellaSwag (Zellers et al., 2019),179

MMLU (Hendrycks et al., 2021), ARC-challenge180

(Clark et al., 2018), WinoGrande (Sakaguchi et al.,181

2021), and GSM8K (Cobbe et al., 2021). We eval-182

uate short-context performance before SFT, as this183

allows for a direct comparison to the base model184

which was used as the initialization for the long-185

context training. We provide evidence in §B.2 of186

previous long-context approaches’ degraded per-187

formance on short-context tasks, underscoring the188

need for keeping short-context evaluations.189

3 Long-Context Data Curation190

The quality and composition of training data has191

been found to be the most important factor for192

LM pre-training (Penedo et al., 2023; Wettig et al.,193

2024; Li et al., 2024a) and is therefore a primary194

focus of our study. To make data decisions, we195

perform ablation experiments: we continue to train196

Llama-3-8B-Base for 5B tokens with a maximum197

length of 64K tokens and evaluate according to §2.198

See §C.3 for more details of our ablation setting. 199

We aim to boost the long-context task perfor- 200

mance while preserving the short-context perfor- 201

mance of the original model. Starting from the 202

intuition that the data should be a mixture of long 203

and short documents, we study these choices sepa- 204

rately. In our ablations, the long data is comprised 205

of single-document chunks of 64K tokens, whereas 206

for the short data, we construct batches by packing 207

documents until we reach 64K tokens per sequence. 208

3.1 Code repositories and books are good 209

sources of long-context data 210

SlimPajama. We analyze the quantity of long data 211

in SlimPajama (SP; Soboleva et al., 2023). Table 1 212

shows that books account for the majority of long- 213

context tokens. When inspecting the long data 214

in CommonCrawl (CC), we observe that though 215

varied in quality, it also contains some book-like 216

content, which future work could identify via data 217

selection methods. 218

Code repositories. While only few files from 219

GitHub reach a very long length, we construct 220

an abundant source of long-context data from the 221

Stack (Kocetkov et al., 2023) by concatenating all 222

files from a repo to form a single document. Unlike 223

Guo et al. (2024), we do not order the files based 224

on dependencies, and hence increase the distance 225

between dependent files and reduce recency bias. 226

Data mixture. We train models with 60% of long- 227

context data and 40% of our ShortMix (§3.3). Ta- 228

ble 2 shows that using code repositories alone per- 229

forms the best on stress-test recall tasks. Mean- 230

while, books are more broadly beneficial for in- 231

context learning, summarization and re-ranking. 232

An equal mix of books and code repositories 233

achieves the best overall performance. Note that 234

short-context task performance remains consistent 235

due to our high-quality short data mix. 236
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Figure 2: Impact of short/long data ratio. All models are trained on books/repos long data and our ShortMix for 5B
tokens. More long data initially improves long-context performance, but then becomes impairing. More long data
also consistently degrades the short-context performance.

Components %

FineWeb 25
FineWeb-Edu 25
Wikipedia 10
Tulu-v2 10
StackExchange 10
ArXiv 10
OpenWebMath 10

Table 3: Our ShortMix.

Short Data (40%)
Long-Context Short-Context

Avg. HellaS. MMLU ARC-c WG GSM8K Avg.

Original model (Llama-3-8B) - 82.1 66.5 59.4 77.1 44.7 66.0

SlimPajama 52.9 81.2 63.0 58.5 76.2 41.9 64.2
FineWeb-Edu 53.0 81.0 62.6 57.7 74.4 39.4 63.0
DCLM-Baseline 52.0 82.0 65.6 59.6 77.4 39.4 64.8
ProLong ShortMix 54.6 81.6 65.3 58.0 76.2 46.6 65.5

Table 4: Impact of different short data sources. The long-context performance is the
average of 6 categories at the lengths of 32K and 64K.

3.2 Training only on long data hurts237

long-context performance238

The ratio between short/long data is another crucial239

factor for downstream performance. Prior work240

either trains only on long data (Peng et al., 2024)241

or adds some short training data (Yen et al., 2024;242

Fu et al., 2024). However, we are the first to sys-243

tematically study the impact of short/long ratio.244

Figure 2 shows that short task performance245

monotonically decreases as the long data increases.246

The trends for long-context vary by tasks and are247

further complicated by SFT: On tasks like recall248

and RAG, the performance before SFT prefers high249

proportions of long data, while the performance af-250

ter SFT drastically deteriorates with more long data.251

We hypothesize that specializing the model only on252

long data makes it a poor initialization for generic253

SFT—highlighting the importance of evaluating254

checkpoints after SFT (§2.1). While some long-255

context tasks benefit from more long data consis-256

tently (ICL) or show no clear pattern (re-ranking),257

the best average performance is achieved at 60%258

long data and 40% short data.259

3.3 Choosing a high-quality short-context mix260

is important261

It is difficult to preserve the strong short-context262

performance of the base model after long-context263

training (§B.2). We adopt our best long-context set- 264

tings (Book/repo data and 60% long/40% short) 265

and study the impact of different short-context 266

training mixes. We experiment with SlimPajama 267

(Soboleva et al., 2023), FineWeb-Edu (Penedo 268

et al., 2024), DCLM-Baseline (Li et al., 2024a), 269

and our own ProLong ShortMix. Our ShortMix is 270

inspired by the “stage 2 training” in MiniCPM (Hu 271

et al., 2024a) and Dolma-1.7 (Soldaini et al., 2024), 272

which use more knowledge-intensive, downstream- 273

related data at the end of pre-training. Table 3 274

shows the composition of our ShortMix.3 275

Table 4 demonstrates that the short data compo- 276

nent has a substantial impact on both short-context 277

and long-context downstream performance. Our 278

curated ShortMix outperforms other short data 279

sources on both short and long-context tasks and 280

our data domains are particularly important for re- 281

taining Llama-3-8B’s performance on mathemat- 282

ical reasoning. Surprisingly, we find that fine- 283

tuning only using FineWeb-Edu—a dataset that 284

is curated to help with knowledge-intensive tasks 285

like MMLU—performs poorly as a short-context 286

component, and we combine it with more diverse 287

data sources in our ShortMix. DCLM-Baseline 288

3Since we do not truncate documents in the short data
component unnecessarily, it includes a small percentage of
documents longer than 8K. See Table 13 in the appendix for
the dataset length statistics.
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Figure 3: Performance (avg. of 32K and 64K) of our ProLong model throughout training.

Max Seq. Length Recall RAG Re-rank ICL

ProLong 64K training (20B) 96.5 52.7 22.8 70.6
+4B 64K training 95.0 56.4 28.0 78.8
+4B 512K training 98.5 56.9 32.9 79.2

Table 5: Impact of training models on different sequence
lengths. All the results are evaluated at a sequence
length of 64K. We see that training at a maximum length
beyond the evaluation context window consistently im-
proves the long-context performance.

performs well on all short-context tasks except for289

GSM8K. This can likely be improved by combin-290

ing with math-related datasets, but as we added the291

DCLM-baseline ablation at the conclusion of the292

project, we leave this exploration to future work.293

Comparison to prior efforts. To confirm the ef-294

fectiveness of our long-context data curation, we295

conduct a head-to-head comparison with the pre-296

vious work by Fu et al. (2024) in §D.6. Our data297

mix significantly surpasses Fu et al. (2024) in both298

long-context and short-context tasks, underscoring299

the efficacy of ProLong.300

4 Scaling the Size and Length of the301

Training Data302

Training for more steps is well-known to improve303

downstream tasks in regular pre-training, but lit-304

tle analysis has been done in the context of long-305

context continued training. We incorporate the306

lessons from our ablation experiments and arrive307

at the ProLong recipe, which we describe in detail308

in §6. Notably, we scale up the training budget to309

longer sequences (up to 512K) and more tokens310

(20B tokens at a maximum sequence length of 64K311

and an additional 20B tokens at 512K). We reset312

the learning rate schedule and increase the RoPE313

frequency base when switching from 64K to 512K314

context lengths. In this section, we analyze the315

impact of these decisions.316

Increasing the number of steps helps. In Figure 3,317

we plot the downstream performance of interme- 318

diate checkpoints of our 40B-token runs. While 319

the long-context performance fluctuates throughout 320

training, we observe positive trends on recall, RAG, 321

re-ranking, and summarization. For short-context 322

tasks, we observe the average performance initially 323

drops from the initialization, but gradually recov- 324

ers. Performance again drops when switching from 325

64K to 512K sequence length, but also recovers 326

with additional training. 327

Increasing the training length beyond the eval- 328

uation length helps. One might assume that we 329

should train long-context models on the maximum 330

sequence length that we want the model to sup- 331

port. Many works emphasize extrapolation to even 332

longer sequences at inference time (Press et al., 333

2022; Xiao et al., 2024b,a; Yen et al., 2024; Chen 334

et al., 2023). In contrast, we observe that training 335

on a longer sequence length (512K tokens) substan- 336

tially improves the long-context performance at a 337

shorter evaluation length (64K tokens). 338

We establish this by initializing with a model 339

that was trained for 20B tokens at 64K and either 340

(1) continuing training at 64K, or (2) switching to 341

the 512K training. We use the same hyperparam- 342

eters and data mixtures in either experiment. We 343

evaluate a checkpoint after 4B training tokens at a 344

evaluation length of 64K. Comparing the two runs 345

in Table 5, we see consistent gains from switching 346

to the 512K training length.4 347

What is the benefit of training on longer se- 348

quences than used during evaluation? Here is our 349

hypothesis: Assume that in order to solve a cer- 350

tain task (e.g., recall), a model has to be trained on 351

examples of dependencies that span a distance of 352

precisely d tokens, i.e., there is no generalization 353

between dependencies of different lengths. Also 354

assume that these dependencies are equally likely 355

4While we demonstrate the benefit of longer data, we note
that training with longer sequences is more expensive, and
may therefore not be the computationally optimal choice.
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to occur at any position in a sequence. Then, a356

document of length nd will have (n − 1)(d − 1)357

more dependencies of distance d than n documents358

of length d. While these assumptions do not hold359

in practice, this simplified model still provides in-360

tuition for our empirical findings.361

5 Supervised Fine-Tuning for362

Long-Context LMs363

In this section, we study how to best enable long-364

context language models to follow instructions.365

We focus on supervised fine-tuning on instruction366

datasets (Ouyang et al., 2022) and leave reinforce-367

ment learning and preference optimization for fu-368

ture work.369

All our experiments in this section use the Pro-370

Long base model, which was trained for 40B to-371

kens at a maximum sequence length of 512K. In372

comparison, open-source instruction data are very373

short, e.g., UltraChat (Ding et al., 2023) conver-374

sations have 1.2K tokens on average and 4.1K to-375

kens maximum. To bridge this gap, several prior376

works (Xiong et al., 2023; Dubey et al., 2024;377

Xiong et al., 2024) have proposed to generate long-378

context instruction data synthetically.379

We consider three popular SFT datasets—380

UltraChat (Ding et al., 2023), Tulu-v2 (Ivison et al.,381

2023), ShareGPT5—and three sources of synthetic382

data which closely resemble the strategy from383

Dubey et al. (2024): For synthetic QA, we prompt384

Llama-3-8B-Instruct to generate a question-and-385

answer pair given a random chunk from a long386

document; we reuse the QA pairs for synthetic387

RAG but we present a random list of chunks from388

the document to mimic retrieved passages; for syn-389

thetic summarization, we generate summaries for390

long books via recursive summarization (Wu et al.,391

2021). For all synthetic data, we write several392

templates, which we sample at random to increase393

diversity. More details can be found in §C.4. We al-394

ways use a combination of 40% synthetic QA, 30%395

synthetic RAG, and 30% synthetic summarization396

in our synthetic instruction dataset. The hyperpa-397

rameters for the instruction tuning experiments can398

be found in Table 9.399

Short-context instruction data yields strong400

long-context results. We first establish that Ul-401

traChat outperforms Tulu-v2 and ShareGPT in Ta-402

ble 22. We therefore use UltraChat when studying403

5https://huggingface.co/datasets/RyokoAI/
ShareGPT52K.

% Syn Recall† RAG Re-rank ICL QA† Summ.† Avg.

0% 65.7 58.1 38.5 80.3 49.7 42.1 55.7
1% 61.5 57.0 38.3 80.8 45.3 41.5 54.1
3% 62.0 56.4 37.9 80.6 44.8 39.5 53.5

10% 70.3 55.5 36.1 80.6 41.7 39.4 53.9
50% 45.8 48.8 18.8 70.5 42.3 33.3 43.3

Table 6: Effect of different ratios of synthetic SFT
data (mixed with UltraChat). We report the 32K-and-
64K-averaged performance except tasks marked with †,
which are evaluated at 512K for stress testing. The num-
ber of percentage is based on #tokens, not #samples.

the ratio of synthetic long-context instruction data 404

in Table 6. Surprisingly, we find that adding syn- 405

thetic data does not improve the performance on 406

these long-context tasks, and adding even as lit- 407

tle as 1% synthetic data hurts the performance in 408

our setting. We also verify that this phenomenon 409

persists even when we use a more powerful data 410

generator, such as Llama-3-70B (§D.5). Based on 411

this observation, we use only short-context Ultra- 412

Chat data for SFT of our final ProLong model. 413

Why do our conclusions about synthetic data 414

differ from previous work? We offer the follow- 415

ing hypotheses: (1) Previous work like Xiong et al. 416

(2024); Bai et al. (2024a) may have insufficient 417

long-context training and the synthetic data acts 418

as additional long-context training data. (2) Our 419

instruction dataset is much smaller compared to the 420

private instruction data used for Llama-3.1 (Dubey 421

et al., 2024)—it is possible that when using an 422

extensive short instruction dataset, mixing in syn- 423

thetic long data avoids the model from degenerating 424

on long-context tasks. 425

6 The ProLong Model: Recipe and 426

Results 427

6.1 Final recipe 428

We summarize the training recipe for ProLong in 429

Table 9. Our final model starts from the Llama-3- 430

8B-Instruct model and is trained on 64K sequence 431

length for 20B tokens. It is then further trained on 432

512K sequence length for 20B tokens (ProLong 433

base), which we achieve using sequence paral- 434

lelism (Li et al., 2023). We obtain the final ProLong 435

model via SFT on UltraChat. One small difference 436

on the data mixture between our ablations and the 437

final model is that we mix in 3% high-quality text- 438

books (Chevalier et al., 2024), as book-like data are 439

shown to be beneficial for long-context (§3.1) and 440

textbooks are highly educational. This also slightly 441

changes the proportions of ShortMix. You can find 442

6
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Model Max Len. Recall RAG ICL Re-rank QA Summ. Cite Avg.

ProLong (8B) 512K 98.8 63.2 86.5 22.5 43.9 29.2 1.4 49.4
MegaBeam-Mistral (7B) 512K 89.6 57.0 86.2 14.7 37.3 28.9 4.0 45.4
Meta-Llama-3.1 (8B) 128K 95.2 59.5 83.9 14.0 43.2 27.0 2.9 46.5
Qwen2 (7B) 128K 38.2 45.0 77.5 3.6 36.8 6.8 2.3 30.0
Phi-3-small (7B) 128K 22.3 33.8 79.6 1.9 27.5 6.6 3.0 24.9
Mistral-Nemo (12B) 128K 14.6 40.0 84.0 0.0 22.5 18.5 0.5 25.7

Jamba-1.5-Mini (12B/52B) 256K 90.0 57.3 91.0 14.6 54.2 18.1 3.1 46.9
Meta-Llama-3.1 (70B) 128K 90.7 56.2 81.4 24.5 56.3 31.6 7.5 49.7
Claude-3.5-Sonnet 200K 94.7 38.1 61.0 7.2 12.6 36.6 18.7 38.4
Gemini-1.5-Pro 2M 91.0 71.1 79.4 59.7 59.6 46.4 43.6 64.4
GPT-4o 128K 99.9 70.2 86.3 50.0 59.3 43.2 44.3 64.8

Table 7: Our main evaluation results on HELMET (Yen et al., 2025) at 128K context length. For all models, we use
the corresponding instruction version. ProLong is the best performing 10B-scale LMs. The complete set of results
can be found in §E. Results on RULER and ∞Bench can be found in §D.8.

more details about our data processing (§C.1) and443

the training stack (§C.2) in the appendix.444

In the following, we elaborate on several care-445

fully ablated design choices in our recipe.446

RoPE frequency base tuning. We find that447

changing the RoPE (Su et al., 2021) frequency448

base to achieve position extrapolation (Xiong449

et al., 2023; emozilla, 2023) significantly improves450

long-context performance, even with a significant451

amount of training. §D.1 shows our ablation on the452

best RoPE base to use. While the original Llama453

models use 105, we use a base of 8 × 106 for the454

64K setting and 1.28× 108 for the 512K setting.455

Disabling cross-document attention. Ding et al.456

(2024a) show that masking out attention across457

document boundaries improve model performance458

and this was also used during Llama-3 pre-training459

(Dubey et al., 2024). In §D.2, we show that dis-460

abling cross-document attention in continued train-461

ing benefits both the short and long-context per-462

formance. Disabling cross-document attention can463

also result in higher training throughput, which we464

describe in more detail in §C.2.465

Starting from Llama-3-8B-Instruct. While we466

conduct all our long-context ablations with the base467

model of Llama-3-8B, we use Llama-3-8B-Instruct468

as the initialization for the final ProLong model.469

§D.3 shows that using Llama-3-8B-Instruct slightly470

improving the long-context performance and sig-471

nificantly enhances the short-context performance.472

6.2 ProLong performance473

We first verify that ProLong preserves the base474

model’s short-context performance in §D.7. We475

then present the final HELMET evaluation results476

of ProLong in Table 7. We use all available HEL-477

MET tasks here and please refer to Yen et al. (2025) 478

for more details. We compare to a number of 479

frontier long-context LMs, namely MegaBeam6, 480

Llama-3.1 (Dubey et al., 2024), Qwen2 (Yang 481

et al., 2024a), Phi-3 (Abdin et al., 2024), Mistral- 482

Nemo7, Jamba-1.5 (Lenz et al., 2024), Claude-3.5- 483

Sonnet (Anthropic, 2024), Gemini-1.5 (Reid et al., 484

2024), and GPT-4o (Achiam et al., 2023). 485

ProLong outperforms all 10B-scale models on 486

our long-context evaluation. Notably, ProLong out- 487

performs Llama-3.1-8B-Instruct while only using 488

5% of its long-context data budget (40B vs. 800B 489

tokens). We showcase the strength of ProLong 490

with qualitative QA examples in Table 27. We 491

also evaluate ProLong on more long-context bench- 492

marks, namely RULER (Hsieh et al., 2024) and 493

∞Bench (Zhang et al., 2024a) in §D.8, which fur- 494

ther verify the strenght of ProLong. 495

Besides general long-context benchmarks, we 496

also assess our models using NoCha (Karpinska 497

et al., 2024)—a claim verification dataset on 67 498

recently published English fictional books. We 499

chose this dataset because (1) it minimizes the data 500

contamination problem as all the books are unlikely 501

to exist in the model pre-training data; (2) all the 502

claims are written by human readers and require 503

global reasoning. Each test instance contains two 504

contradictory claims, and the models must correctly 505

judge both to pass. 506

Table 8 demonstrates the NoCha evaluation re- 507

sults. Among 10B-scale models, ProLong achieves 508

the best accuracy on the extremely long test in- 509

stances (>180K); on test instances <75K tokens, 510

ProLong significantly outperforms other models 511

6https://huggingface.co/aws-prototyping/
MegaBeam-Mistral-7B-512k.

7https://huggingface.co/mistralai/
Mistral-Nemo-Instruct-2407.
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Model Max Len. <75K 75K-127K 127K-180K >180K

ProLong (8B) 512K 28.4 17.0 13.1 20.3
MegaBeam-Mistral (7B) 512K 19.8 18.3 17.5 15.6
Meta-Llama-3.1 (8B) 128K 17.3 16.4 0.0 0.0
Mistral-Nemo (12B) 128K 13.6 0.4 0.0 0.0

Jamba-1.5-Mini (12B/52B) 256K 27.2 28.0 24.4 6.2
Meta-Llama-3.1 (70B) 128K 42.0 25.0 0.0 0.0
Gemini-1.5-Pro 2M 24.7 38.8 35.3 46.9
GPT-4o 128K 55.6 58.4 0.0 0.0

Table 8: Results on the NoCha benchmark (Karpinska et al., 2024).8 ProLong is the only model that achieves
above-random performance in the <75K category and it consistently beats Llama-3.1. Different from the original
NoCha leaderboard, we report the average accuracy over all test instances without filtering the test examples based
on the model’s context window lengths.

and is the only model that is better than ran-512

dom guessing (25%). This further showcases the513

strength of our training recipe.514

7 Related Work515

Adapting existing LMs for long contexts. Many516

works explore extending the LM context windows517

with minimal training, either by position extrapo-518

lation (Chen et al., 2023; Peng et al., 2024; Chen519

et al., 2024; Ding et al., 2024b; Liu et al., 2024a;520

Zhang et al., 2024b; Zhu et al., 2024; Zhao et al.,521

2024; Wu et al., 2024; Hu et al., 2024b) or manip-522

ulating the attention patterns (Chen et al., 2024;523

Xiao et al., 2024b,a; Bertsch et al., 2023; Jin et al.,524

2024). Yoshida et al. (2020); Choromanski et al.525

(2021); Chevalier et al. (2023) instead explore the526

idea of compressing the long contexts into shorter527

forms. However, Fu et al. (2024); Lu et al. (2024)528

show that using full attention, applying simple po-529

sition extrapolation, and fine-tuning the model on530

long documents reach much stronger results.531

Llama 3.1 (Dubey et al., 2024) and532

Jamba (Lieber et al., 2024) achieve long-context533

capabilities by adding a long-context continued534

training stage between standard pre-training and535

supervised fine-tuning, which is the setting we536

follow. Fu et al. (2024) study the data engineering537

for this setting and argue that 0.5B tokens of538

domain-balanced, length-upsampled data is539

sufficient for acquiring the long-context recall540

ability—which we show is not sufficient if a more541

holistic evaluation is taken. Xiong et al. (2023);542

Dubey et al. (2024); Lieber et al. (2024); Xiong543

et al. (2024); An et al. (2024b); Bai et al. (2024a)544

also adopt synthetically-generated long data in the545

SFT stage; however, we find that using standard,546

short-context instruction data achieves the best547

long-context results in our setting.548

Efficient long-context architectures. There have 549

been many efforts in designing more efficient archi- 550

tectures, for example, linear attention/RNNs (Gu 551

and Dao, 2023; Dao and Gu, 2024; Ma et al., 2022; 552

Sun et al., 2023; Peng et al., 2023; Yang et al., 553

2024b), and alternative attention architectures (Ru- 554

bin and Berant, 2023; Sun et al., 2024; Yen et al., 555

2024). However, they often require training from 556

scratch and many have the inherent limitations in 557

terms of long-context recall (Jelassi et al., 2024; 558

Arora et al., 2024). Recent works explore hybrid 559

models (Waleffe et al., 2024; Lieber et al., 2024)) or 560

distilling existing LMs into hybrid models (Wang 561

et al., 2024) and show promising results. 562

Long-context evaluation. Many benchmarks have 563

been proposed for long-context evaluation (Sha- 564

ham et al., 2023; Hsieh et al., 2024; Krishna et al., 565

2023; Zhang et al., 2024a; An et al., 2024a; Bai 566

et al., 2024b) There are works studying particu- 567

lar aspects of long-context LMs as well, such as 568

positional bias (Liu et al., 2024b), in-context learn- 569

ing (Bertsch et al., 2024; Li et al., 2024b), and 570

book-length summarization (Kim et al., 2024). In 571

this work, we follow Yen et al. (2025) for its diverse 572

application coverage and reliable evaluations. 573

8 Conclusion 574

We study the problem of given a short-context pre- 575

trained LM, how to most effectively continually 576

pre-train and SFT the model to be long-context. 577

We conduct thorough ablations on each component 578

and many of our findings contradict existing prac- 579

tices or beliefs. We use all the findings to produce 580

ProLong, a new state-of-the-art long-context LM. 581

We release all our code, data, and models publicly 582

and hope that our findings will boost research and 583

applications of long-context LMs. 584

8



Limitations585

Although we aim to ablate the major components586

of our training recipe, due to resource limitations,587

we cannot exhaust all aspects, such as the optimiza-588

tion hyperparameters and additional data mixtures.589

We also limit ourselves to the 10B-scale regime and590

the Llama-3 models, which may limit the generaliz-591

ability of our findings and recipe. Another concern592

is that we are overfitting to the tasks chosen for593

model development—however, we do not directly594

train on those datasets and guiding model develop-595

ment with benchmark tasks has become a common596

practice in pre-trained LM development. We also597

show that our final recipe and model perform well598

on additional evaluation datasets, such as NoCha.599
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A Final Recipe 1212

Table 9 shows the final recipe for ProLong. 1213

Continued Long-context Training

Data 30% code repos, 30% books, 3% textbooks, 37% ShortMix

ShortMix: 27% FineWeb-Edu, 27% FineWeb,
11% Tulu-v2, 11% StackExchange,
8% Wikipedia, 8% OpenWebMath, 8% ArXiv

Length
Curriculum

Stage 1 (64K): Code repos, books, and textbooks at length 64K

Stage 2 (512K): Code repos: 50% at length 512K, 50% at length 64K
Books: 17% at length 512K, 83% at length 64K
Textbooks at length 512K

Steps Stage 1: 20B tokens (2.2K H100 hours), Stage 2: 20B tokens (12.2K H100 hours)

Model Initialization: Llama-3-8B-Instruct (original RoPE base freq. 5× 105)
RoPE: Stage 1: 8× 106, Stage 2: 1.28× 108

Attention: Full attention with cross-document attention masking

Optim. AdamW (weight decay = 0.1, β1 = 0.9, β2 = 0.95)
LR: 1e− 5 with 10% warmup and cosine decay to 1e− 6, each stage
Batch size: 4M tokens for stage 1, 8M tokens for stage 2

Supervised Fine-tuning (SFT)

Data UltraChat

Steps 1B tokens

Optim. AdamW (weight decay = 0.1, β1 = 0.9, β2 = 0.95)
LR = 2e− 5 (cosine decay to 2e− 6), warmup = 5%
Batch size = 4M tokens

Table 9: The training recipe for ProLong.

B Evaluation 1214

Category Metrics Tasks and Datasets

Recall SubEM Given a randomly-generated long JSON file and a key, retrieve the corresponding
value (Liu et al., 2024b).

RAG SubEM Given a question and many retrieved Wikipedia documents (shuffled), answer the
question (Liu et al., 2024b). Datasets: NaturalQuestion (Kwiatkowski et al., 2019),
HotpotQA (Yang et al., 2018), and PopQA (Mallen et al., 2023).

Re-rank nDCG@10 Given a query and many retrieved documents (shuffled), re-rank the top-10 docu-
ments. Datasets: MSMARCO (Bajaj et al., 2016).

ICL Accuracy Datasets selected from Bertsch et al. (2024): TREC coarse, TREC fine (Hovy et al.,
2001), NLU (Liu et al., 2021), Banking77 (Casanueva et al., 2020), and Clinc-150
(Larson et al., 2019).

QA GPT-4o score Given a book, answer the question. Datasets (# tokens): NarrativeQA (medium:
73K; max: 518K; Kočiský et al., 2018).

Summ. GPT-4o score Summarize a given legal document. Datasets (# tokens): Multi-LexSum (medium:
90K; max: 5M; Shen et al., 2022)

Table 10: The details for our long-context evaluation following HELMET (Yen et al., 2025).

Table 10 shows all the datasets we used in our ablations from HELMET (Yen et al., 2025). Note that 1215

we did not use all the datasets from HELMET for efficiency reasons and we also do not want to overfit 1216

to HELMET. We highlight some of the evaluation protocol improvements that HELMET implemented 1217

compared to previous benchmarks here: 1218

15



• Sufficient context lengths and fine-grained control. HELMET can evaluate models at a context1219

length of 128K tokens and beyond. The evaluation protocol also allows for reporting results at different1220

lengths, giving developers fine-trained controls for different needs of long contexts.1221

• Better synthetic recall tasks. As shown in HELMET, needle-in-a-haystack (Kamradt, 2024) is mostly1222

saturated because of its simplicity—the model only needs to find a needle in some irrelevant context.1223

We instead use the more challenging JSON KV task, first proposed in Liu et al. (2024b) and included1224

in HELMET, where the model is required to find the corresponding value to a given key among a large1225

JSON file.1226

• Using class-balanced demonstrations and abstract labels for ICL. To disentangle models’ ability1227

of learning from demonstrations from their pre-training bias of the task or the dataset label distribu-1228

tion (Pan et al., 2023), HELMET samples the same number of demonstrations for each class and uses1229

number labels (1, 2, ...) instead of natural-language labels (e.g., location, description, ...).1230

• Model-based evaluation for long-context QA and summarization. Instead of using traditional1231

metrics like ROUGE (which has shown to be poorly indicative of the real model performance: Deutsch1232

and Roth, 2021; Deutsch et al., 2022; Goyal et al., 2023; Chang et al., 2024), HELMET uses model-1233

based evaluations to compare the reference answer and the model output. For QA, HELMET uses1234

GPT-4o to score the model output given the question and the reference answer at a 0-3 scale. For1235

summarization, HELMET takes a similar approach as Zhang and Bansal (2021); Gao et al. (2023): it1236

first uses GPT-4o to decompose the reference summary into atomic claims; then it uses GPT-4o to1237

check whether each reference atomic claim is covered by the model output (recall) and whether each1238

sentence in the model output is covered by the reference summary (precision). Yen et al. (2025) show1239

that the model-based evaluation correlates with human perceptions significantly better than traditional1240

metrics.1241

HELMET vs. other benchmarks. We showcase the importance of a robust evaluation suite in Table 11.1242

As a predecessor of our work, Fu et al. (2024) only consider needle-in-a-haystack (NIAH) and perplexity1243

during model development; evaluations on 3 tasks from HELMET reveal major short-comings of their1244

models despite perfect NIAH scores. We also see how NIAH and even the HELMET recall task become1245

saturated for strong models (Llama-3.1-8B vs. 70B) while other task categories continue to detect1246

differences in their long-context abilities.1247

HELMET

Models NIAH Recall RAG Re-rank

Fu et al. (2024) 100 95.8 52.1 23.1

Llama-3.1-8B 100 99.4 56.3 37.0
Llama-3.1-70B 100 100 62.1 49.2

Table 11: HELMET offers a more holistic long-context evaluation. We reproduce Fu et al. (2024) on Llama-3-8B
with SFT. We report the instruct Llama versions.

Why not perplexity? Besides synthetic recall tasks, many previous works rely on perplexity (PPL) for1248

evaluating long-context extensions of LMs (Chen et al., 2023; Fu et al., 2024; Lu et al., 2024), which1249

is commonly measured on the PG19 books dataset (Rae et al., 2020). We use the ablation experiment1250

from §3.2 to showcase why perplexity is not an indicative metric for developing long-context models.1251

The experiment studies how the ratio of long documents affects the performance. We report both our1252

evaluation and the perplexity measured on the last 32K tokens of 64K-length documents from PG19. As1253

shown in Figure 4, while using more long data continues to improve PPL, it is clear that using 100% long1254

data significantly hurts downstream long-context performance.1255

8https://github.com/marzenakrp/nocha. NoCha has a private test set and all evaluation is done by the NoCha authors.
Hence, we report models from Table 7 that are also on the NoCha leaderboard.
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Figure 4: Making design decisions based on perplexity (PPL) is not optimal for long-context downstream tasks.

B.1 Evaluating after supervised fine-tuning 1256

Figure 5 demonstrates the full results of evaluation before and after SFT on HELMET. Please refer to 1257

§2.1 for experiment details. 1258
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Figure 5: Improvements on RAG and re-ranking tasks are only observed when evaluating models after a supervised
fine-tuning (SFT) phase on instruction data. The models are trained on the pre-training data mix by Fu et al. (2024).
We report the mean and standard deviations over two training runs.

B.2 Checking that short-context performance is preserved 1259

Previous techniques deteriorate short-context performance. We show in Table 12 that both training- 1260

free position extrapolation, as well as fine-tuning with an existing long data mixture (Fu et al., 2024) do 1261

not preserve the strong performance of Llama-3-8B on standard short-context tasks. This highlights the 1262

importance of including short-context evaluation in long-context model development and motivates us to 1263

find data sources which retain the initial model’s strong short-context performance. 1264

HSwag MMLU ARC-c WG GSM8K

Llama-3-8B 82.1 66.5 59.4 77.1 44.7
+ PE 81.5 64.7 58.1 75.5 40.1
+ SlimPajama 81.0 63.1 57.8 75.1 40.6

Table 12: Applying position extrapolation (PE) to Llama-3-8B by changing the RoPE frequency base (§D.1)
or fine-tuning it on a long-context SlimPajama mixture (Fu et al., 2024; Soboleva et al., 2023) deteriorates the
performance of this top-shelf pre-trained LM on short-context tasks.

C Experiment Details 1265

C.1 Data processing 1266

Data sources. We list all the data sources we have explored in our ablations and main experiments here: 1267

the Stack (Kocetkov et al., 2023), SlimPajama (Together, 2023; Soboleva et al., 2023), FineWeb (we use 1268

the 2023-50 snapshot), FineWeb-Edu (we use a random sample) (Penedo et al., 2024), Tulu-v2 (Ivison 1269

et al., 2023), OpenWebMath (Paster et al., 2024), textbooks (Chevalier et al., 2024), and Dolma (Soldaini 1270
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et al., 2024). The Books, StackExchange, and ArXiv data are from SlimPajama. The Wikipedia data are1271

from Dolma.1272

Data filtering and packing. For the short training data and the SFT data, we randomly sample and1273

concatenate the documents or conversations into 64K chunks. The last document for each chunk is1274

truncated. The truncated part is used as the beginning for the next chunk for the short training data but is1275

discarded for the SFT data. For the long-context training data, we filter out the documents that are shorter1276

than 64K; we do the same for the 512K setting, while making sure that the 64K documents packed to1277

512K length are distinct from the 512K documents.1278

Final data mixture. For 512K length, we use a mix of 64K and 512K long data. For the ratio of1279

64K/512K data, we choose 50%/50% for code and 83%/17%, which are roughly chosen according to1280

the natural availability of very long data, i.e., there are relatively fewer books of length 512K than code1281

repositories. One benefit of retaining 64K-long documents is that we can process these without sequence1282

parallelism and the associated communication overhead. We use a slightly different long data mixture1283

in our ablations (Table 3) and our main ProLong experiment (Table 9). For the final model, we mix 3%1284

textbooks into the long-context training data. The textbooks are open-source resources from libretexts.org,1285

collected and made available by Chevalier et al. (2024). We pre-process the data by concatenating chapters1286

from the same text books, as well as books from the same subject areas. This results in extremely long1287

sequences which we pack into contexts of either 64K or 512K tokens. Though we do not have an ablation1288

for adding this data due to limited resources, we believe that it should have a slight positive effect to the1289

final model performance as textbooks are highly educational long-context data.1290

>4K >8K >16K >32K

FineWeb 1.4 0.3 0.1 0.0
FineWeb-Edu 2.8 0.8 0.2 0.0
Wikipedia 1.6 0.4 0.0 0.0
Tulu-v2 0.0 0.0 0.0 0.0
StackExchange 0.6 0.1 0.0 0.0
ArXiv 85.7 64.0 30.3 7.6
OpenWebMath 11.1 4.3 1.2 0.3

ShortMix 10.9 7.2 3.2 0.8

SlimPajama 11.3 7.4 4.9 3.2
FineWeb-Edu 2.8 0.8 0.2 0.0
DCLM-Baseline 4.9 1.7 0.4 0.1

Table 13: % Proportion of long documents for the short data components used in Table 4. These statistics are
computed after packing and truncation and therefore correspond to the document lengths as seen by the model. We
highlight that the proportion of documents beyond 32K is below 1% for ShortMix.

C.2 Implementation details1291

Technical stack. We use various open-source packages and tools for the ProLong training and evaluation.1292

We use PyTorch (Paszke et al., 2019) and Hugging Face transformers (Wolf et al., 2020) for the model1293

training. We use mosaic-streaming (Mosaic ML, 2022) for loading and mixing the data and FlashAttention1294

2 (Dao, 2024) for efficient attention implementation. We implement sequence parallelism based on1295

DeepSpeed-Ulysses (Jacobs et al., 2023) across groups of 8 GPUs on the same node. We only perform1296

distributed attention if it is necessary, i.e., only on sequences of 512K length. For long-context evaluation,1297

we use HELMET (Yen et al., 2025) and for short-context evaluation, we use lm-eval-harness (Gao et al.,1298

2021).1299

Attention and batching. Since we do document masking in attention (§6), we use the variable-length1300

attention implementation from FlashAttention 2 (Dao, 2024) to speed up long-context training: for1301

sequences that are concatenations of multiple short documents, instead of computing the full attention1302

with masking, we instead compute the attention for each individual document. Since the complexity of1303

18



attention is quadratic to the sequence length, this improves the training speed. However, the improvement 1304

is negligible in a distributed training setting with FSDP, since GPUs processing short sequence batches 1305

have to wait on other GPUs processing long sequences. We therefore implement a smart batching 1306

algorithm: In our setting, a gradient step usually consists of multiple gradient accumulation steps, where 1307

each device processes a smaller minibatch. We sort all the minibatches per training step by the sum of 1308

the squared lengths of documents in the sequence. This leads to more balanced sequence lengths across 1309

the GPUs and effective speedups, as can be seen in Table 14, without affecting the gradient updates or 1310

loss during training. However, the efficiency gains are diminished when training with more GPUs, as this 1311

reduces the number of gradient accumulation steps. 1312

Throughput
(tokens/s/GPU)

64K full attention 2770

Variable-length attention 2780(+0.4%)

+ Minibatch reordering 3095(+11.7%)

Table 14: Throughput per device of our ablation runs from Table 20, when training with 8 Nvidia H100 GPUs with
FSDP. Our strategy of reordering minibatches is important for realizing the speed benefits from variable-length
attention.

Token-averaged loss. We found that in the SFT stage, the distribution of the training tokens (in SFT, 1313

the tokens from the instructions are masked out and the models are only trained on the responses) on 1314

each GPU device can be extremely imbalanced, especially when there is synthetic data (most tokens in 1315

a synthetic data instance are from the instruction). Conventional all-reduce loss in distributed training 1316

averages over the sequences instead of valid tokens, which skews the optimization and also our control 1317

over the domain proportions. Instead, we change the all-reduce loss to be the average over all valid 1318

training tokens. (Bai et al., 2024a) implements their SFT loss in a similar way. 1319

C.3 The ablation setting 1320

For all our ablations, unless specified, we train the base model of Llama-3-8B (instead of Instruct) on a 1321

64K sequence length for 5B tokens, with the same hyperparameters as specified in Table 9. We choose this 1322

context length, as it is the highest power of 2 value for which we can train without sequence parallelism. 1323

By default, we use the same training data as the 64K ProLong setting, except that we remove the textbooks 1324

and use the ShortMix proportions in Table 3. For SFT, we use the same settings as specified in Table 9. 1325

C.4 Generating synthetic SFT data 1326

We prompt Llama-3-8B-Instruct to generate the synthetic data and Table 15 shows the prompt we used for 1327

generating the synthetic QA data for books. We also write predefined templates and randomly sample 1328

one for each synthetic instance to increase the diversity, and Table 16 provides some examples. Table 17 1329

shows an example of the generated synthetic data. 1330

D More Ablations 1331

D.1 Position extrapolation 1332

Xiong et al. (2023); emozilla (2023) show that changing the RoPE frequency base to a larger value 1333

in continual long-context pre-training or in inference time can improve the long-context performance. 1334

emozilla (2023) suggests that one should scale the frequency base by a factor of t
d

d−2 , where t is the ratio 1335

between the target sequence length and the original LM length, and d is the attention head dimension. 1336

We conduct ablation studies, at both 64K (same as our standard ablation setting as specified in §C.3) 1337

and 512K (starting from ProLong-64K and training with the 512K data mixture for 5B tokens) sequence 1338

lengths, on what frequency bases we should use. Table 18 and Table 19 show the results. We first see that 1339

using the original 500,000 frequency base from Llama-3 leads to significant performance degradation. 1340

While dynamic NTK suggests 4×106, we find that further scaling it to 8×106 leads to better performance. 1341
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Given the following snippet of a book, ask a relevant question and provide the answer. The
question and the answer should follow the following rules:

(1) The question should be specific enough that it can only be answered with the snippet. The
question should also be interesting and intellectual enough that a curious reader of the book
would ask about it.
(2) The question and the answer should be comprehensible given just the whole book without
highlighting the snippet. With that being said, the question should NOT refer to the snippet
directly (e.g., do NOT say things like "Question: given the conversation in the snippet, what
..."). The answer also should not mention "the snippet . . . " explicitly (assuming that the
snippet is never provided), but it can copy the snippet content as a reference when answering the
question.
(3) The answer should be concise but also should provide references to the book when needed. For
example, “Wellington Yueh betrayed the Atreides, as the book mentioned, ’...’".

*** Start of the snippet ***

{sampled snippet}

*** End of the snippet ***

Before generating the question and the answer, first reason about what this snippet is about. In
your generation, stick to the following format:

Reasoning: this snippet is about ...
Question: ...
Answer: ...

Table 15: Prompts for generating synthetic QA data.

Example question prompts for synthetic QA data

Given the document, please answer the question.
Here is a piece of text; answer the following question based on it.
Please answer the question using the provided content.
Based on the given passage, respond to the question.
Read the snippet and answer the question that follows.
Using the provided text, answer the following question.

Example templates for combining questions, answers, and contexts for synthetic QA data

{prompt}\n\n{documents}\n\nQuestion: {question}
{prompt}\n\n==== document starts ====\n{documents}\n==== document ends ====\n\nQuestion:
{question}
{prompt}\n\n{documents}\n\n{question}
{prompt} Question: {question}\n\n{documents}
{prompt} {question}\n\n{documents}
{prompt}\n\n{question}\n\n{documents}

Table 16: Examples for question prompts and templates used for generating diverse synthetic QA data. We sample
one question prompt and one template each time and combine them with the documents and the generated QA pairs
to form a synthetic training example.

Similar, we see that when scaling the 64K model to 512K, while dynamic NTK suggests a 64 × 1061342

frequency base, much larger frequency bases (128× 106 and 256× 106) lead to better performance. We1343

use 8× 106 for 64K and 128× 106 for 512K for our final ProLong models.1344

D.2 Document masks1345

We experiment whether to use document masks in attention in Table 20. Standard training concatenates1346

multiple short documents into a single sequence (in our case, a 64K sequence), uses a special token to1347

separate documents, and performs full attention over the whole sequence. When the document masks are1348

used, we do not allow the attention to cross the document boundaries. We find that using document masks1349

in continual long-context training leads to both better long-context results and short-context performance.1350

For all our other ablations and the main experiment, we use document masks.1351
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Prompt

Using the provided passage, answer the following question. What kind of job application did
Eudora Welty submit to The New Yorker in 1933?

{Letters of Note: Correspondence Deserving of a Wider Audience}

Response

Eudora Welty submitted a job application to The New Yorker in 1933, offering to write reviews of
picture galleries and 15¢ movies, and expressing her ability to drum up an opinion after
voracious reading, with a willingness to work from daylight to dark and even draw like Mr.
Thurber if needed.

Table 17: An example of our synthetic data. The generated question and answer are fluent and faithful to the original
book. One can refer to the content of the letter here to check the answer’s correctness.

RoPE Base
(×106)

Long-Context Short-Context

Recall RAG Re-rank ICL QA Summ. Avg. Avg.

0.5 25.8 37.0 4.4 73.8 17.5 16.3 29.1 65.0
4.0 81.3 47.8 18.2 76.5 31.8 36.3 48.7 65.3
8.0 96.0 54.9 29.4 73.9 35.7 37.9 54.6 65.5

Table 18: Ablation study on RoPE frequency base at a maximum training length of 64K. Dynamic NTK (emozilla,
2023) roughly suggests to use 4m as the frequency base.

RoPE Base
(×106)

Long-Context Short-Context

Recall RAG Re-rank ICL QA Summ. Avg. Avg.

64 98.8 57.8 30.4 82.2 38.2 38.3 57.6 68.3
128 98.8 57.4 30.7 80.0 40.4 38.8 57.7 68.6
256 98.8 56.8 33.8 79.8 37.9 39.7 57.8 68.4

Table 19: Ablation study on RoPE frequency base at a maximum training length of 512K. Dynamic NTK (emozilla,
2023) roughly suggests to use 64× 106 as the frequency base.

Attention
Long-Context Short-Context

Recall RAG Re-rank ICL QA Summ. Avg. Avg.

No doc masks 97.4 53.6 20.4 76.6 37.2 36.3 53.6 64.9
Document masks 96.0 54.9 29.4 73.9 35.7 37.9 54.6 65.5

Table 20: Impact of using document masks in attention.

D.3 Initialization 1352

We use the base model for Llama-3-8B as the initialization for all our ablations to make sure the findings 1353

are generalizable and are not confounded by the Llama instruction tuning. However, for our final ProLong 1354

model, we use Llama-3-8B-Instruct as the initialization to achieve the best performance. We see in Table 21 1355

(using the ablation setting from §C.3) that using Llama-3-8B-Instruct as the initialization achieves slightly 1356

better long-context performance and much stronger short-context performance. 1357

Base Model
Long-Context Short-Context

Avg. HellaS. MMLU ARC-c WG GSM8K Avg.

Llama-3-8B-Base 54.6 81.6 65.3 58.0 76.2 46.6 65.5
Llama-3-8B-Instruct 55.0 80.8 66.1 58.5 75.6 57.7 67.7

Table 21: Differences of using the base Llama-3-8B model vs. Llama-3-8B-Instruct.
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D.4 Instruction-tuning datasets1358

Initialized from the ProLong base model, we experiment with different public, short-context SFT datasets.1359

All runs use the same SFT hyperparameters as specified in Table 9. Table 22 shows that using UltraChat1360

leads to the best overall results. Note that this does not necessarily mean that UltraChat is the best SFT1361

dataset for all base models or applications.1362

SFT Data
Long-Context

Recall† RAG Re-rank ICL QA† Summ.† Avg.

UltraChat 65.7 58.1 38.5 80.3 49.7 42.1 55.7
Tulu v2 61.5 45.4 25.1 81.8 40.4 40.3 49.1

ShareGPT 40.5 47.5 26.7 79.6 42.7 34.4 45.2

Table 22: Ablations on using different short-context SFT datasets. We report the 32K-and-64K-averaged perfor-
mance except tasks marked with †, which are evaluated at 512K for stress testing.

D.5 Synthetic data with a stronger data generator1363

We observe that mixing in synthetic data generated by Llama-3-8B-Instruct does not help with the long-1364

context performance. To ensure that this is not due to the low quality of the synthetic data, we also1365

experiment with a stronger data generator, Llama-3-70B-Instruct. We demonstrate the results in Table 231366

and verify that using a stronger data generator does not change the conclusion.1367

% Synthetic Data JsonKV† RAG Re-rank ICL QA† Summ.† Avg.

0% 65.7 58.1 38.5 80.3 49.7 42.1 55.7
1% (from 8B) 61.5 57.0 38.3 80.8 45.3 41.5 54.1
1% (from 70B) 64.7 57.3 37.4 78.4 47.0 40.8 54.2
3% (from 8B) 62.0 56.4 37.9 80.6 44.8 39.5 53.5
3% (from 70B) 65.7 57.4 38.0 80.1 48.7 42.5 55.4
10% (from 8B) 70.3 55.5 36.1 80.6 41.7 39.4 53.9
10% (from 70B) 66.3 57.0 33.4 81.2 45.3 38.4 53.6
50% (from 8B) 45.8 48.8 18.8 70.5 42.3 33.3 43.3
50% (from 70B) 55.8 53.9 23.5 74.1 50.7 39.9 49.7

Table 23: Effect of different ratios of synthetic SFT data (mixed with UltraChat). We report the 32K-and-64K-
averaged performance except tasks marked with †, which are evaluated at 512K for stress testing. The number of
percentage is based on #tokens, not #samples. “(8B)” and “(70B)” indicate that the synthetic data are generated by
Llama-3-8B-Instruct or Llama-3-70B-Instruct. Even though using synthetic data from a stronger model leads to
slightly better performance than using a weaker model, only using short-context SFT data still achieves the best
result in our setting.

D.6 Comparison to Fu et al. (2024)1368

We show a head-to-head comparison to the data strategy of Fu et al. (2024) in Table 24. We see that under1369

a fair comparison, our data mix significantly outperforms Fu et al. (2024) on both short and long-context1370

tasks. The main difference of the two data strategies is that Fu et al. (2024) proportionally up-sample1371

long documents in each domain with an arbitrary ratio; ProLong uses a mix of short and long documents,1372

where the ratio of the mix and the domains for the long documents are carefully ablated.1373

D.7 Short-context performance after SFT1374

We demonstrate the detailed short-context performance of ProLong after SFT in Table 25.1375

D.8 Evaluation on more benchmarks1376

We also evaluate ProLong on more long-context benchmarks, namely RULER (Hsieh et al., 2024) and1377

∞Bench (Zhang et al., 2024a) in Table 26. As pointed out by Yen et al. (2025), RULER and ∞Bench1378

cannot reliably reflect long-context performance as their domain coverage is narrow and their evaluation1379
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Data
Long-Context (After SFT) Short-Context (Avg.)

Recall RAG Re-rank ICL QA Summ. Avg. Before SFT After SFT

Fu et al. (2024) 95.8 52.1 23.1 72.0 31.0 37.0 51.8 64.1 65.4
Our data mix 96.0 54.9 29.4 73.9 35.7 37.9 54.6 65.5 67.5

Table 24: Comparison between Fu et al. (2024) and our model. For a fair comparison, we use the same initialization
(Llama-3-8B), same amount of data (5B), and same hyperparameters (§C.3). The ProLong data mix significantly
outperforms Fu et al. (2024) on both short and long-context tasks.

Model HellaSwag MMLU ARC-c WinoGrande GSM8K Avg.

Llama-3-8B + Fu et al. (2024) 82.5 63.9 63.6 75.1 42.2 65.4
Llama-3-8B 82.1 66.5 59.4 77.1 44.7 66.0
Llama-3-8B-Instruct + UltraChat 82.1 65.1 64.3 75.5 60.7 69.5
ProLong 82.8 64.6 64.7 76.2 58.9 69.4

Llama-3-8B-Instruct 78.5 67.0 60.8 74.2 68.5 69.8

Table 25: Short-context performance of our model after SFT. We also report a baseline using Llama-3-8B as the
initialization and data from Fu et al. (2024), trained with 5B tokens. ProLong is initialized from Llama-3-8B-Instruct.
“Llama-3-8B-Instruct + UltraChat”: for a more fair comparison to ProLong, we conduct SFT on top of Llama-3-8B-
Instruct with UltraChat. ProLong largely retraines the short-context performance of Llama-3-8B-Instruct except
MMLU and GSM8K. We hypothesize that the close-source instruction tuning data of Llama-3-8B-Instruct is heavily
engineered to improve math and knowledge-intensive tasks, which we do not have access to. ProLong achieves
comparable results to “Llama-3-8B-Instruct + UltraChat”, which further demonstrates that our data mix effective
retains short-context performance.

metrics are noisy—as a result, we see unintuitive trends such as Gemini-1.5-Pro and Llama-3.1 (70B) 1380

perform worse than Llama-3.1 (8B). Regardless, our model still achieves the best performance on ∞Bench 1381

among all 10B-scale models. 1382

Model
RULER ∞Bench

Avg. MC QA Sum Diag Calc Find Number PassKey KV Avg.

ProLong (8B) 71.9 65.1 22.0 19.8 4.5 0.0 27.4 100.0 100.0 92.8 48.0
MegaBeam-Mistral 78.9 53.7 18.5 24.8 12.0 0.0 24.3 99.7 100.0 36.4 41.0
Meta-Llama-3.1 (8B) 81.3 67.2 15.5 26.7 23.0 0.0 33.1 99.5 100.0 55.0 46.7
Qwen2 26.7 39.7 5.2 15.5 8.5 0.0 24.9 76.3 94.6 0.0 29.4
Phi-3-small 72.6 71.6 8.4 24.0 20.0 0.0 31.7 100.0 100.0 19.6 41.7
Mistral-Nemo 22.7 31.9 16.8 14.3 5.5 0.0 1.4 36.6 62.7 0.0 18.8

Jamba-1.5-Mini 87.8 76.0 17.9 0.0 3.5 0.0 31.1 100.0 100.0 45.6 41.6
Meta-Llama-3.1 (70B) 75.8 75.5 23.3 31.3 18.0 0.0 43.1 99.7 100.0 2.6 43.7
GPT-4o-mini 80.8 78.2 19.1 24.8 21.5 0.0 69.7 100.0 100.0 80.4 54.9
GPT-4o 93.3 86.5 26.0 21.5 51.0 0.0 58.9 100.0 100.0 99.8 60.4
Gemini-1.5-Pro 65.3 77.5 27.7 29.0 97.5 0.0 58.0 100.0 100.0 70.4 62.2

Table 26: Results on RULER and ∞Bench at 128K. As pointed out by Yen et al. (2025), RULER and ∞Bench
cannot reliably reflect long-context performance as their domain coverage is narrow and their evaluation metrics
are noisy—as a result, we see unintuitive trends such as Gemini-1.5-Pro and Llama-3.1 (70B) perform worse than
Llama-3.1 (8B). Regardless, our model still achieves the best performance on ∞Bench among all 10B-scale models.

E Full Evaluation Results 1383

We provide all the evaluation results, including specific numbers for each dataset and evaluation length, at 1384

https://shorturl.at/pULbx. 1385

F Examples 1386

Table 27 shows some long-document QA examples with ProLong, Llama-3.1, and GPT-4o. 1387
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Instacart S1 file (300K tokens)

Q: How many shares and at what price
did instacard sell their series G re-
deemable convertible preferred stock
in June 2020 and July 2020?

ProLong: Instacart sold an aggregate of 6,757,893 shares of their ... at a purchase
price of $48.0919 ...

Llama-3.1-8B: The following is a II/5 [collapsed]

GPT-4o: ... The company sold a total of 6,758,000 shares at a price of $48.0919
per share during this period.

Llama-3.1 paper (94K tokens)

Q: During training of the llama3
model, how many unexpected interrup-
tions are caused by hardware related
reasons?

ProLong: Approximately 78% of unexpected ...

Llama-3.1-8B: According to Table 5, approximately 58.7% ...

GPT-4o: ... approximately 78% of unexpected interruptions ...

Q: Is Mark Zuckerberg a contributor
to the paper? ProLong: There is no mention of Mark Zuckerberg as a contributor to the paper.

Llama-3.1-8B: Yes, Mark Zuckerberg is listed as a contributor ...

GPT-4o: Mark Zuckerberg is acknowledged in the paper for ..., but he is not
listed as a core contributor ...

Q: What ratio did the llama 3 team use
to mix synthetic long-context data with
short data in SFT?

ProLong: The llama 3 team used a ratio of 0.1% synthetic ...

Llama-3.1-8B: 0.10%

GPT-4o: The Llama 3 team used a mix ratio of 30% synthetic ...

Q: What benchmark did they evaluate
on for "instruction-following" ability?
Provide references too.

ProLong: They evaluated on IFEval (Zhou et al., 2023) for instruction-following
ability. Reference: Jeffrey Zhou, ... Instruction-following evaluation for large
language models. arXiv preprint ...

Llama-3.1-8B: The benchmark they evaluated on for "instruction-following"
ability is IFEval. Reference: Section 5.2.2, "General Knowledge and Instruction-
Following Benchmarks"

GPT-4o: The benchmark they used to evaluate "instruction- following" ability
is IFEval. This is mentioned in the context of assessing how Direct Preference
Optimization (DPO) ...

Table 27: Long-document QA examples with ProLong (512K), Llama-3.1-8B-Instruct (128K), and GPT-4o (via
the ChatGPT interface). Note that it is very likely that the ChatGPT-version GPT-4o uses a retrieval component
for long documents, hence it can process contexts beyond its 128K context window. We see that ProLong can
answer questions effectively with a 300K document while both Llama-3.1 and GPT-4o fail. On a shorter document
(Llama-3.1 paper), ProLong can understand very technical questions and answer them accurately.
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