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Abstract

We present Wan-Move, a simple and scalable framework that brings motion control
to video generative models. Existing motion-controllable methods typically suffer
from coarse control granularity and limited scalability, leaving their outputs insuffi-
cient for practical use. We narrow this gap by achieving precise and high-quality
motion control. Our core idea is to directly make the original condition features
motion-aware for guiding video synthesis. To this end, we first represent object
motions with dense point trajectories, allowing fine-grained control over the scene.
We then project these trajectories into latent space and propagate the first frame’s
features along each trajectory, producing an aligned spatiotemporal feature map that
tells how each scene element should move. This feature map serves as the updated
latent condition, which is naturally integrated into the off-the-shelf image-to-video
model, e.g., Wan-I2V-14B, as motion guidance without any architecture change.
It removes the need for auxiliary motion encoders and makes fine-tuning base
models easily scalable. Through scaled training, Wan-Move generates 5-second,
480p videos whose motion controllability rivals Kling 1.5 Pro’s commercial Mo-
tion Brush, as indicated by user studies. To support comprehensive evaluation,
we further design MoveBench, a rigorously curated benchmark featuring diverse
content categories and hybrid-verified annotations. It is distinguished by larger data
volume, longer video durations, and high-quality motion annotations. Extensive
experiments on MoveBench and the public dataset consistently show Wan-Move’s
superior motion quality. Code, models, and benchmark data are made available.

1 Introduction

Motion lies at the heart of video generation as it fundamentally transforms static images into dynamic
visual narratives. Recognizing its importance, both the research community [1, 2, 3] and commercial
players [4, 5, 6] have devoted considerable effort to controlling motion in video generative models.

The essence of motion control lies in injecting a motion guidance signal into the video generation
process. Thus, the two key choices are (i) how to represent the guidance signal and (ii) how to integrate
it into the generator. First, existing motion guidance representations can be broadly classified into
sparse and dense types. Sparse representations include bounding boxes [7, 8] and segmentation
masks [1, 9, 10]. Although these signals can steer an object’s global movement, they fail to control
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Figure 1: Wan-Move is a image-to-video generation framework that supports diverse motion control
applications. The generated samples (832×480p, 5s) exhibits high visual fidelity and accurate motion.

local motions. In contrast, dense representations, such as pixel-wise optical flow [2, 11, 12, 3]
and point trajectories [13, 14], offer more fine-grained control ability. Yet, optical flow requires an
additional model for flow estimation during inference, which adds cumulative errors across frames
and hampers scalability. While point trajectories are easy to specify during inference, each track
is only a single-pixel thread and lacks surrounding spatial context. This makes it hard to align
textures and motion patterns across neighboring regions. Second, to inject the guidance signal into
generative models, a range of motion encoders have been designed [14, 15, 1, 13, 16, 17], with
ControlNet [18] being a popular way to fuse motion cues. However, all of these pipelines introduce
extra motion-aware modules, which may degrade the motion signal during processing and make it
harder to fine-tune the video-generation backbone at scale.

To tackle these challenges, we present Wan-Move, a novel motion-control framework that builds
on the existing image-to-video (I2V) generation model without adding auxiliary motion-processing
modules. Our core idea is to inject motion information by directly editing the image condition
features. We turn it into an updated latent guide that conveys both appearance and motion throughout
video generation. Thanks to this simple and effective design, Wan-Move delivers high-quality motion
control and scales easily by fine-tuning the powerful I2V backbone.

Specifically, we represent motion trajectories using point tracks [13] as they capture fine-grained local
and global movement. Unlike prior work [13] that embeds point trajectories into latent features, we
transfer each trajectory from pixel space into latent coordinates. As I2V generation aims to animate
the first frame, we guide this process by copying the first-frame feature at each tracked position to
its corresponding location in later frames along the latent trajectory. Each copied feature preserves
rich context, thus the propagated signal drives more natural local motion, as verified in Sec. 5.3.
Moreover, since motion guidance is injected by editing the image condition features, we add no extra
modules. As a result, Wan-Move can plug straight into the I2V backbone, such as Wan-I2V-14B [19],
and support scalable fine-tuning with fast convergence. Fig. 1 shows that Wan-Move generates high-
fidelity video clips (832×480p, 5s) with precise motion control, enabling a diverse set of applications,
as illustrated in Sec. 5.4. To our best knowledge, it is the first research model (to be open-sourced) to
match the visual quality of commercial products such as Kling 1.5 Pro’s Motion Brush [4].
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To set a rigorous, comprehensive evaluation for motion-control methods, we introduce a free-license
benchmark termed MoveBench. Compared with existing benchmarks [20, 21, 22] that offer fewer
clips, shorter durations, and incomplete motion annotations, MoveBench provides more data, greater
diversity, and reliable motion annotations (Fig. 5). Concretely, we design a curation pipeline to
categorize the video library into 54 content categories, 10-25 videos each, giving rise to over 1000
cases to ensure a broad scenario coverage. All video clips maintain a 5-second duration to facilitate
evaluation of long-range dynamics. Every clip is paired with detailed motion annotations for single
or multiple objects. They include both precise point trajectories and sparse segmentation masks to fit
a wide range of motion-control models. We ensure annotation quality by developing an interactive
labeling pipeline. It combines human labeling with SAM [23] predictions, marrying annotation
precision with automated scalability. In summary, our contributions are as follows:

• We propose Wan-Move for motion control in image-to-video generation. Unlike prior
approaches that require motion encoding, it injects the motion guidance by editing condition
features, adding no new modules and allowing the easy fine-tuning of base models at scale.

• We introduce MoveBench, a comprehensive and well-curated benchmark to assess motion
control. A hybrid human+SAM labeling pipeline ensures annotation quality.

• Extensive experiments on MoveBench and public datasets show that Wan-Move supports
diverse motion-control tasks and delivers commercial-grade results with scaled training.

2 Related Work

Video generation models. Video diffusion models [24] pioneer the extension of denoising diffusion
probabilistic models (DDPMs) to video generation through a 3D U-Net architecture. Subsequent
advancements, such as Imagen Video [25] and Phenaki [26], enhance this framework to produce
longer and higher-resolution sequences. Nevertheless, these CNN-based approaches [27, 28, 29] face
limitations in capturing long-range spatiotemporal dependencies. Transformer-based architectures [30,
31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46] overcome this bottleneck and greatly
improve training scalability. Recent innovations, including CogVideoX [47] and HunyuanVideo [6],
further validate the efficacy of spatio-temporal attention mechanisms for coherent video synthesis.
Notably, Wan [19] introduces an efficient framework for both text-to-video and image-to-video
generation, setting a new standard for open-source video models. Our Wan-Move, introduces how to
leverage latent trajectory guidance to enable motion control upon the image-to-video diffusion model,
enabling precise motion control while preserving visual fidelity.

Motion-controllable video generation. To adapt pretrained video generation models for motion-
controllable synthesis, training-free methods [48, 49, 50, 51] optimize input noisy latents or manip-
ulate attention mechanisms, enabling zero-shot control. However, these approaches often exhibit
performance degradation when controlling fine-grained or multi-object motion. In contrast, fine-
tuning based methods [52, 2, 15, 1, 3, 14, 20, 53, 16, 54, 55, 56, 10, 12, 57, 58, 59] leverage diverse
motion signals and introduce various techniques to integrate them into the base model. While these
methods significantly enhance output quality, they typically require auxiliary encoders or fusion
modules, complicating the model architecture and limiting training scalability. Among these studies,
the most relevant to our work is Motion Prompting [13], as both employ point trajectories to represent
motion guidance. However, we differ in two key aspects. First, Motion Prompting [13] encodes point
tracks via random embeddings in pixel space, where the guidance is pixel-level threads that lack
surrounding context to offer local control. We express point trajectories in latent space using the
image feature, providing rich local information and finer control. Second, Motion Prompting [13]
integrates motion guidance through a separate ControlNet [18], whereas we directly use the pretrained
base model without architectural modifications, which facilitates its scalable fine-tuning. Sec. 5.3
provides quantitative and qualitative evidence of our advantages.

For more specific robotic scenarios, works [60, 61] rely on pretrained DINOv2 features [62] to
transfer object representations across frames for motion control in generated videos, yet both delivers
DINOv2’s limitation in representing motion signals. DINOv2 excels at high-level semantic encoding
but lacks fine-grained object details. Thus, GEM [1] employs additional identity embeddings to
distinguish objects and train an ObjectNet to bridge the domain gap between DINOv2 and the UNet’s
feature space. Moreover, the 14 patch size in DINOv2 may restrict the granularity of the proposed
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Figure 2: (a) To inject motion guidance, we transfer point trajectories from videos to latent space,
then replicate the first frame feature into subsequent zero-padded frames along each latent trajectory.
(b) Wan-Move is trained upon an existing image-to-video generation model (e.g., work [19, 29]), with
an efficient latent feature replication step (as in (a)) to update the condition feature. The CLIP [65]
image encoder and umT5 [66] text encoder from the base model are omitted for simplicity.

control. In contrast, our approach mitigates these limitations by employing native VAE in I2V
foundation models without relying on any auxiliary modules (e.g., identity embeddings).

Benchmark for motion-controllable video generation. Most motion-controllable work evaluates on
small, task-specific datasets, which are typically ad hoc, limited in scope, or insufficient for evaluating
long-range dynamics and multi-object interactions. For example, datasets such as DAVIS [21] and
VIPSeg [22] have been repurposed for trajectory control methods, yet their short clip durations and
sparse annotations make them inadequate for assessing long-term consistency or complex interactions.
While MagicBench [20] expands to 600 video clips, it categorizes samples solely by object count
and relies on automatically generated labels from noisy pipelines, limiting the annotation precision.
To address these limitations, we introduce MoveBench, a comprehensive benchmark for motion-
controllable video generation. It includes carefully selected 1018 videos with extensive annotations,
long-range dynamics, and 54 well-classified content patterns.

3 Method

3.1 Preliminary

Video diffusion models [24, 19, 6, 63] apply Gaussian noise to clean data during the forward process
and learn a reverse process to denoise and generate videos. To reduce computational costs, the
denoising network typically operates on latent video representations obtained from a pretrained
VAE [64]. Given an input video V ∈ R(1+T )×H×W×3, the encoder E compresses both the temporal
and spatial dimensions with compression ratios ft (temporal) and fs (spatial), while expanding the
channel dimension to C, yielding x = E(V) ∈ R(1+ T

ft
)× H

fs
×W

fs
×C . The decoder D then reconstructs

the video from the latent representation as V̂ = D(x).

Our work focuses on motion-controllable image-to-video (I2V) generation, where models are required
to generate motion-coherent videos based on the input first-frame image and motion trajectories.
While the first frame will be encoded into the condition feature zimage by the VAE, motion trajectories,
which can be represented in diverse formats, remain in pixel space. Thus, the key challenge lies in
effectively encoding motion trajectories into the condition feature zmotion and injecting it into the
generative model. To avoid the signal degradation and training difficulties associated with additional
motion encoder and fusion modules, we aim to develop a motion-control framework that leverages
existing I2V models without architectural modifications, as detailed below.

3.2 Latent Trajectory Guidance

To enable video generation conditioned on the first frame, an effective approach of popular I2V
models [19, 29] concatenates the latent noise xt and the first-frame condition feature zimage along
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the channel dimension. zimage is obtained by encoding the first frame I along with zero-padded
subsequent frames 0T×H×W×C using a pretrained VAE encoder E :

zimage = E (concat [I,0T×H×W×3]) ∈ R(1+ T
ft

)× H
fs

×W
fs

×C . (1)

For motion guidance representation, we adopt point trajectories, following prior studies [13, 14],
as they provide fine-grained control and capture both local and global motion. Formally, a point
trajectory of length 1 + T can be represented as p ∈ R(1+T )×2, where p[n] = (xn, yn) specifies
the trajectory location in the n-th frame in the pixel space. Existing methods often employ auxiliary
modules to encode and integrate trajectories into the backbone. Yet, this approach may degrade
motion signals during motion encoding. In addition, training extra modules increases the complexity
of fine-tuning the base model at scale. This raises a key question: Can we inject pixel-space motion
guidance without auxiliary modules?

Intuitively, I2V generation aims to animate the first frame, while motion trajectories specify object
positions in each subsequent frame. Given the translation equivariance of VAE models, latent features
at corresponding trajectory positions should closely resemble those in the first frame. Motivated by
this, we propose encoding trajectories directly into latent space via spatial mapping, eliminating the
need for an extra motion encoder:

p̃[n] =


p[n]
fs

if n = 0,∑n·ft
i=(n−1)·ft+1

p[i]

ft·fs 1 ≤ n ≤ T
ft
,

(2)

The latent trajectory position at the first frame is derived by spatial mapping, while for subsequent
frames, it is averaged over each consecutive ft frames. This deterministically transforms pixel-space
trajectories into latent space. To inject the obtained latent trajectories, we extract the latent features
of the first frame at the initial trajectory point p̃[0] and replicate them across subsequent frames
according to p̃, leveraging the translation equivariance of latent features, as shown in Fig. 2 (a):

zimage [n, p̃[n, 0], p̃[n, 1], :] = zimage [0, p̃[0, 0], p̃[0, 1], :] for n = 1, . . . ,
T

ft
. (3)

Here, zimage[t, h, w, :] denotes the feature vector at temporal index t, height h, and width w. This
operation efficiently injects motion guidance into the condition feature by updating zimage, eliminating
the need for explicit motion condition features and injection modules. An overview of the Wan-
Move generation framework is presented in Fig. 2(b). When multiple visible point trajectories
coincide at a given spatiotemporal position, we randomly select one trajectory’s corresponding
first-frame feature.

3.3 Training and Inference

Training data. We curate a high-quality training dataset, which undergoes rigorous two-stage filtering
to ensure both visual quality and motion consistency. First, we manually annotate the visual quality of
1,000 samples and use them to train an expert scoring model for initial quality assessment. To further
enhance temporal coherence, we introduce a motion quality filtering stage. Specifically, for each
video, we extract SigLIP [67] features from the first frame and compute the mean SigLIP features
for the remaining frames. The cosine similarity between these features serves as our stability metric.
Based on empirical analysis of 10,000 samples, we establish a threshold to retain only videos where
the content remains consistent with the initial frame. This two-stage pipeline produces a final dataset
of 2 million high-quality 720p videos with strong visual quality and motion coherence. Additional
details on the training data sources are provided in the supplementary material.

Modeling training. Based on our training dataset, we use CoTracker [68] to track the trajectories
of a dense 32×32 grid of points. For each training iteration, we sample k trajectories from a
mixed distribution: with 5% probability, no trajectory is used (k = 0); with 95% probability, k
is uniformly sampled from 1 to 200. Notably, we retain a 5% probability of dropping motion
conditions, which effectively preserves the model’s original image-to-video generation capability.
For the selected trajectories, we extract the first-frame features and replicate them to subsequent
zero-padded frames, as formalized by Eq. (3). Since CoTracker distinguishes between visible and
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Figure 3: Construction pipeline of MoveBench to obtain high-quality samples with rich annotations.

Figure 4: Balanced sample number per class.

Benchmark
Videos       Frames    Video categorization Mask track       Point track

Statistics Trajectory annotations

DAVIS                   50           35-100                                                                                                           

VIPSeg (val)        343              24

MagicBench       600              49

MoveBench      1018         81     

Figure 5: Comparison with related benchmarks.

occluded point trajectories, we perform feature replication only along the visible trajectories. During
training, the model parameters θ is initialized from the I2V model [19] and fine-tuned to predict the
vector field vt(xt) that transports samples from the noise distribution to the data distribution [69]:

LFM(θ) = Et,xt,c
[
∥vθ(xt, t, c)− vt(xt)∥2

]
, (4)

where c denotes the union of the generation condition.

Inference with Wan-Move. The inference process closely resembles the original I2V model, with
an additional latent feature replication operation. Specifically, Wan-Move conditions generation on
three inputs: (1) a text prompt, (2) an input image as the first frame, and (3) sparse or dense point
trajectories for motion control. Pretrained umT5 [66] and CLIP [65] models are employed to encode
global context from the text prompt and first frame, respectively. The resulting image embedding
zglobal and text embeddings ztext are then injected into the DiT backbone via decoupled cross-
attention [18]. Additionally, a VAE is used to extract the first-frame condition feature zimage, which
will be injected through latent feature replication (as detailed in Sec. 3.2). Classifier-free guidance
is applied to enhance alignment with conditional information. Formally, let unconditional vector
field vuncond= vθ(xt, t, zimage, zglobal), and conditional vector field vcond=vθ(xt, t, zimage, zglobal, ztext).
The guided vector field ṽθ(xt, t, zimage, zglobal, ztext) is a weighted combination of the conditional and
unconditional outputs, with the guidance scale w:

ṽθ(xt, t, zimage, zglobal, ztext) = vuncond + w(vcond − vuncond) (5)

4 MoveBench

Current benchmarks for motion-controllable video generation suffer from small scale, short duration,
and lack precise, comprehensive motion annotations, thus introducing bias and limiting granularity. To
address these gaps, we introduce MoveBench, a high-quality benchmark with 1018 videos (480×832
resolution, 5-second duration), designed for comprehensive evaluation of motion-controllable gener-
ation, as illustrated in Fig. 3-5. The evaluation videos are selected from Pexels [70], a large-scale,
high-quality dataset containing about 400K videos, all released under a free license.

MoveBench combines algorithmic curation with human expertise to ensure diverse, representative,
and precisely annotated motion data. Compared to prior works, it offers three key features: (i) High
quality. We curate videos through a rigorous four-stage pipeline, as illustrated in Fig. 3(a). We
first utilize the expert scoring model obtained from Sec. 3.3 to score videos based on visual quality,
filtering out low-quality content. Then, the selected videos are cropped to 480p and uniformly sampled
to 81 frames to ensure temporal consistency. Finally, videos are clustered into 54 content categories
and we manually select the 15-25 most representative examples for each category, balancing diversity
and quality (Fig. 4). (ii) Precise annotations. As shown in Fig. 5, we provide both point and mask
annotations, so that methods using mask guidance signals can also be evaluated using our benchmark.
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Table 1: Performance comparisons on MoveBench and DAVIS. Wan-Move consistently yields
substantial improvements in both visual fidelity and motion quality across all metrics.

Method MoveBench DAVIS

FID↓ FVD↓ PSNR↑ SSIM↑ EPE↓ FID↓ FVD↓ PSNR↑ SSIM↑ EPE↓
ImageConductor [53] 34.5 424.0 13.4 0.49 15.6 54.2 513.6 11.6 0.47 14.8
LeviTor [16] 18.1 98.8 15.6 0.54 3.4 22.0 115.4 13.3 0.51 3.7
Tora [14] 22.5 100.4 15.7 0.55 3.3 25.9 129.2 13.7 0.49 3.5
MagicMotion [20] 17.5 96.7 14.9 0.56 3.2 24.2 113.4 12.8 0.53 3.5
Wan-Move (Ours) 12.2 83.5 17.8 0.64 2.6 14.7 94.3 16.5 0.61 2.5

Text prompt
In a bedroom, a woman is sitting on the bed using a laptop. Next 
to her stands a man wearing a VR headset, holding a gun-shaped 
controller in each hand while playing a game. 

LeviTor

Kling 1.5 Pro

Text prompt
A close-up shot shows a person using an electric planer to 
smooth a wooden board. Both of his hands are gripping the 
planer. As the planer moves, wood shavings fly off the board.

Wan-Move

Kling 1.5 Pro

Image Conductor

LeviTor

Image Conductor

Wan-Move

Figure 6: Qualitative comparisons between Wan-Move and recent approaches, including both
academic methods [53, 16] and commercial solutions [4]. Motions that deviate from the specified
trajectories and major visual artifacts are marked with red dots and boxes, respectively.

To precisely annotate motion regions, we design an interactive annotation interface as shown in
Fig. 3. Annotators click on a target region in the first frame, prompting SAM [23] to generate an
initial mask. When the mask exceeds the desired area, annotators add negative points to exclude
irrelevant regions. This is critical for isolating articulated motions or small objects in cluttered scenes.
After annotation, each video contains at least one point indicating a representative motion, with 192
videos additionally including multiple-object motion trajectories. (iii) Detailed captions. We use
Gemini [71] to generate dense descriptions covering objects, actions, and camera dynamics. Unlike
segmentation datasets like DAVIS [21], our captions are tailored for video generation tasks.

5 Experiment

5.1 Experimental Setup

Wan-Move is implemented on top of Wan-I2V-14B [19], a state-of-the-art image-to-video (I2V)
generation model. As described in Sec. 3.3, we fine-tune Wan-Move on a high-quality dataset
consisting of 2M high-quality videos. Only the DiT backbone is trainable, while the image and text
encoders remain frozen. During inference, we use a classifier-free guidance scale w of 5.0 unless
otherwise specified. Detailed training configurations are provided in the supplementary material.

To quantitatively evaluate the fidelity of generated videos, we compute standard video quality metrics
including FID [72], FVD [73], PSNR, and SSIM [74]. To assess motion accuracy, we measure the L2
distance between ground truth tracks and those estimated from generated videos, following [13] in
denoting this metric as end-point error (EPE). All evaluations are performed at a resolution of 480p.

5.2 Main Results

Single-object motion control. We present an extensive comparison between Wan-Move and recent
motion-controllable video generation methods [53, 16, 14, 20, 4]. Quantitative results on MoveBench
and the public DAVIS [21] are shown in Table 1. Qualitative visualizations are presented in Fig. 6.
Unlike other methods that rely on point tracks for motion guidance, MagicMotion [20] takes as input
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Figure 7: Qualitative comparisons with MagicMotion [20], controlling motions using sparse signals
(i.e., bounding boxes) as input. Motions that break the guidance are marked with red dots.

Table 2: MoveBench multi-object motion results.
Method FID↓ FVD↓ PSNR↑ SSIM↑ EPE↓
ImageConductor 77.5 764.5 13.9 0.51 9.8
Tora 53.2 350.0 14.5 0.54 3.5
Wan-Move (Ours) 28.8 226.3 16.7 0.62 2.2

Table 3: Our win rates in 2AFC human study.

Method Motion
accuracy

Motion
quality

Visual
quality

LeviTor 98.2 98.0 98.8
Tora 96.2 93.8 98.4
MagicMotion 89.4 96.4 98.2
Kling 1.5 Pro 47.8 53.4 50.2

Table 4: Ablation on motion guidance strategies.
Motion guidance FID↓ FVD↓ PSNR↑ SSIM↑ EPE↓
Pixel replication 17.3 91.0 15.3 0.56 3.7
Random track embedding 15.4 89.2 16.1 0.59 2.7
Latent feature replication 12.2 83.5 17.8 0.64 2.6

Table 5: Ablation on condition fusion strategies.
Cond. fusion FID↓ FVD↓ EPE↓ Latency (s)

ControlNet 12.4 84.6 2.5 987 (+225)

Concat. (Ours) 12.2 83.5 2.6 765 (+3)

sparse masks and bounding boxes. Since boxes can be directly derived from segmentation masks,
they are inherently compatible with MoveBench that covering mask annotations. Hence, we also
conduct comparisons using box-based inputs in Fig. 7. Among these methods, ImageConductor [53]
exhibits poor performance in both image and motion quality, which can be attributed to its reliance
on direct pixel-level trajectory injection, where single-pixel features lack sufficient semantic and
texture information. The remaining methods report similar EPE (3.2–3.4), despite differing motion
guidance approaches: Levitor [16] and MagicMotion [20] utilize the complex ControlNet [18], while
Tora [14] adopts the lightweight adaLN [30]. Notably, our method achieves the best motion control
performance (lowest EPE) and video quality (highest PSNR and SSIM) through latent trajectory
replication without introducing additional parameters. This underscores the effectiveness of our latent
trajectory guidance in adhering to motion constraints. Consistent results on the DAVIS dataset further
validate the robustness of our approach.

Multi-object motion control. As MoveBench includes 192 cases with annotated multi-object motion,
we further evaluate Wan-Move against baselines [53, 14] on this challenging setting, as presented in
Table 2. Our method achieves significantly lower FVD and reduced EPE compared to other methods,
highlighting its precise adherence to motion constraints in more complex scenarios.

Human study. We conduct a two-alternative forced-choice (2AFC) human evaluation comparing
Wan-Move with SOTA approaches [14, 4, 16, 20]. Each method generated 50 conditioned samples,
which are evaluated by 20 participants. The results, presented in Table 3, report Wan-Move’s
win rates across three metrics: motion accuracy, motion quality, and visual quality. Compared to
Tora [14], Wan-Move achieves win rates exceeding 96% in all categories. When evaluated against the
commercial model Kling 1.5 Pro, our method demonstrates competitive performance, with superior
win rates in motion quality. This narrows the gap between research-oriented and commercial models.
5.3 Ablation Study
Trajectory guidance strategy. We investigate the impact of motion guidance strategies on video

Input first frame Pixel replication Random track embed. Latent feat. replication

Figure 8: Visualization of various guidance strategies.

quality and motion consistency. Quantitative
and qualitative results as presented in Table 4
and Fig. 8, respectively. Pixel replication
applies pixel-level copy-paste along the orig-
inal trajectory, followed by VAE encoding.
Yet, since single-pixel features contain lim-
ited semantic and texture information, the
resulting motion control is weak, as reflected
by a high EPE value of 3.7 and generation

8



Table 6: Ablation on maximum number of point
trajectories (see Sec. 3.3) during training.

Number FID↓ FVD↓ PSNR↑ SSIM↑ EPE↓
N = 10 12.8 86.6 17.6 0.62 3.3
N = 100 12.9 84.7 17.7 0.65 2.7
N = 200 12.2 83.5 17.8 0.64 2.6
N = 500 13.3 83.9 17.6 0.63 3.0
N = 1024 13.4 83.7 17.2 0.61 3.9

Table 7: Ablation on actual number of point
trajectories during inference.

Number FID↓ FVD↓ PSNR↑ SSIM↑ EPE↓
N = 0 12.8 87.9 17.9 0.64 12.4
N = 1 12.2 83.5 17.8 0.64 2.6
N = 16 10.6 78.3 18.2 0.67 2.2
N = 512 7.7 51.0 20.3 0.75 1.5
N = 1024 6.2 45.2 21.9 0.79 1.1

Table 8: Ablation on different I2V backbones and training data
scale. Wan-Move attains better results under the same setting.
Method Backbone Data scale FID↓ FVD↓ PSNR↑ SSIM↑ EPE↓
MagicMotion CogVideoX-5B 23K 17.5 96.7 14.9 0.56 3.2
Wan-Move-Cog-23K CogVideoX-5B 23K 16.0 92.3 16.8 0.59 2.8
Tora CogVideoX-5B 630K 22.5 100.4 15.7 0.55 3.3
Wan-Move-Cog-630K CogVideoX-5B 630K 14.1 87.3 17.2 0.61 2.8
Wan-Move Wan2.1-I2V-14B 2000K 12.2 83.5 17.8 0.64 2.6

Table 9: Large-motion and out-
of-distribution-motion subset.

Subset Method FID↓ FVD↓ EPE↓

Large
Tora 29.1 126.3 4.3
MagicMotion 24.6 119.3 4.1
Wan-Move 14.5 86.6 3.0

OOD
Tora 28.9 120.2 4.0
MagicMotion 23.5 115.7 3.9
Wan-Move 13.5 86.0 2.8

failures (see Fig. 8). The random track embedding approach, originally proposed for pixel space
representations [13], is adapted to assign randomly initialized embeddings in latent space for injecting
motion guidance. While effective for rigid single-region control, this approach fails to incorporate
contextual information from surrounding regions, resulting in suboptimal video quality (lower PSNR
and SSIM) and stiff motion near tracked points. For example, the hand moves, but surrounding bread
remains static in Fig. 8. In contrast, our proposed latent feature replication method achieves superior
video quality (highest PSNR of 17.8) and precise motion control (lowest EPE of 2.6).

Condition fusion strategy. We compare different motion condition approaches, namely Control-
Net [18] and direct concatenation (our approach). The results are presented in Table 5. Notably,
simple concatenation of motion conditions with input noise achieves performance comparable to
ControlNet in motion-controllable generation. Yet, ControlNet introduces significant additional
modules, substantially increasing inference latency by 225 seconds over the original I2V model.
In contrast, Wan-Move preserves the base model architecture and only adds a one-time trajectory
extraction process, increasing just 3-second inference time.

Number of point trajectories during training. Table 6 evaluates the impact of the maximum number
of point tracks (N ) during training. As N increases from 10 to 200, the model’s motion-following
capability improves progressively, evidenced by the decreasing EPE. The optimal performance,
in terms of both structural similarity (SSIM) and EPE, is achieved at N=200. However, further
increasing the number of point tracks leads to a rise in EPE. This can be attributed to the mismatch
between the dense point tracks in the training and the sparse point tracks during evaluation.

On a wooden table, a piece of brown burlap is unfolded, revealing a bouquet placed on pink 
paper. The bouquet consists of layers of purple flowers, pink flowers, and white blossoms.

A group of ants is busily moving in and out of the nest. Their bodies display alternating 
patterns of brown and black.

Figure 9: I2V results of Wan-Move (no point tracks).

Number of point tracks during inference.
Table 12 ablates the performance of Wan-
Move across varying numbers of point trac-
jectories over MoveBench. As the number
of tracks increases, EPE drops significantly,
indicating better motion guidance and en-
hanced temporal coherence. When reaching
the maximum number of point trajectories
extracted by CoTracker, Wan-Move achieves
the lowest EPE of 1.1. Though it is trained
with at most 200 tracks, the model shows
strong generalization capability. Notably,
naive I2V inference (with no point tracks) yields PSNR and SSIM scores comparable to motion-
controlled generation, confirming that our model strongly retains its inherent I2V quality. Naive I2V
samples generated by Wan-Move are presented in Fig. 9.

Backbones and data scale. In pursuit of the best generation quality, we initially train Wan-Move with
a large-scale dataset and a strong backbone. To ensure a fair comparison with the leading approaches
MagicMotion and Tora, we align Wan-Move’s backbone and training data scale with them. This
yields two variants, i.e., Wan-Move-Cog-23K and Wan-Move-Cog-630K, which are trained on
23K and 630K data samples respectively, using CogVideoX1.5-5B-I2V [47] as backbone. The
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detailed comparison on MoveBench is shown in Table 8. Under the same backbone and data scale,
Wan-Move still outperforms these two powerful methods.

Evaluation on large-motion and out-of-distribution motion scenarios. To further verify the
model generalizability, we curate subsets from MoveBench containing high-amplitude and out-of-
distribution motion control cases. For each video, its motion amplitude score is computed as the
average of the top 2% largest optical flow values extracted by RAFT [75]. The top 20% highest-score
videos are selected as large-motion videos. Besides, we manually curate 50 uncommon motion cases
as out-of-distribution subset, including complex foreground–background interactions, objects moving
out of frame, and rare camera motions. Evaluation results on these challenging examples are shown
in Table 9. Notably, Wan-Move consistently outperforms two leading baselines, with performance
gaps further widening under these difficult condition. In addition, Wan-Move’s performance only
marginally drops compared to its results on the full benchmark, demonstrating its robustness.

5.4 Motion Control Applications
As point trajectories can flexibly represent various types of motion, Wan-Move supports a wide range
of motion control applications, as showcased in Fig. 1. First, rows 1–2 show object control using
single or multiple point trajectories. For camera control (row 3), we can either drag background
elements directly or follow the approach of work [13]. The latter estimates a point cloud from a
monocular depth predictor [76], projects it along a camera pose trajectory, and applies z-buffering
to obtain camera-aligned 2D trajectories. Following work [13], we perform primitive-level control
by rotating a virtual sphere to generate projected 2D trajectories for globe motion (row 4). In row 5,
we enable motion transfer by applying trajectories extracted from one video to update the condition
features of a different image. Row 6 shows 3D rotation control by estimating depth-based positions,
applying a rotation, and projecting the results to 2D. We refer readers to the supplementary file for
more visualizations and full videos.

6 Conclusion and Discussion

We propose Wan-Move, a simple and scalable framework for precise motion control in video
generation. It represents motion with point trajectories and transfers them into latent coordinates
through spatial mapping, requiring no extra motion encoder. We then inject trajectory guidance into
first-frame condition features via latent feature replication, achieving effective motion control without
architectural changes. For rigorous evaluation, we further present MoveBench, a comprehensive
and well-curated benchmark featuring diverse content categories with hybrid-verified annotations.
Extensive experiments on MoveBench and public datasets show that Wan-Move generates high-
quality, long-duration (5s, 480p) videos with motion controllability on par with commercial tools like
Kling 1.5 Pro’s Motion Brush. We believe our open-sourced solution offers an efficient path to scale
motion-controllable video generation and will empower a wide range of creators.

Limitations and broader impacts. Wan-Move uses point trajectories to guide motion, which can be
unreliable when tracks are missing due to occlusion. While we observe that short-term occlusions
can be recovered once the point reappears, showing a degree of generalization, prolonged absence
may lead to loss of control (see Appendix). As with other generative models, Wan-Move carries
dual-use potential. Its ability to produce realistic, controllable videos can benefit creative industries,
education, and simulation, but also risks misuse for generating misleading or harmful content.
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We fully disclose all the experimental information in Section 5.1 and supple-
mentary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The code will be open-sourced upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/

guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not be

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify the training and test details in Section 5.1 and supplementary
material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: For motion-controllable video generation tasks, the error bar is uncommon,
and there is currently no mature error evaluation system in this community.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide training details in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have carefully reviewed the NeurIPS Code of Ethics to ensure that our
submission complies with all regulations.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed broader impacts in Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The pre-trained model used in our paper is an image-to-video model, and the
content of the generated video is specified by the input image. The paper poses no such
risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The models and data used in this paper are open-sourced and authorized.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM


Wan-Move: Motion-controllable Video Generation via
Latent Trajectory Guidance

Supplementary Material

Contents

8 Implementation Details 23

8.1 Training Data Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

8.2 MoveBench Construction Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

8.3 Training and Inference Configuration . . . . . . . . . . . . . . . . . . . . . . . . . 24

9 Additional Experiments 25

9.1 Choice of Feature Replication Strategies under Trajectory Overlap . . . . . . . . . 25

9.2 Choice of Different Training Strategies . . . . . . . . . . . . . . . . . . . . . . . . 25

9.3 Model Performance Under Trajectory Disappearance . . . . . . . . . . . . . . . . 25

9.4 Failure Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

10 Qualitative Visualizations 26

10.1 More Qualitative Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

10.2 More Camera Control Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

10.3 More Motion Transfer Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

10.4 More 3D Rotation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

8 Implementation Details

8.1 Training Data Details

Table 10 presents the composition of the filtered training datasets, which are sourced from
Panda70M [77], Pixabay [78], Pexels [70], and YouTube. YouTube videos are independently
collected for this study. To prevent data leakage, the videos from Pexels are strictly separated from
those in the proposed MoveBench.

All videos for training are captioned using Qwen2.5-VL [79], with the prompt structure illustrated in
Fig. 10. This prompt emphasizes motion and camera attributes while preserving the fundamental
scene descriptions, ensuring that the model semantically understands the context and generates
physically plausible motions. The same captioning prompt is applied to the videos in MoveBench.

8.2 MoveBench Construction Details

Video content clustering. Following the initial filtering stage, we conduct a rigorous content
clustering process to ensure broad scenario coverage in our benchmark. Specifically, we sample
16 frames per filtered video and compute the average of their SigLip [67] features. Using k-means
clustering, we group these features into 54 distinct content categories. Each category label, e.g.,
Tennis, is then automatically captioned using Qwen2.5-VL [79]. Finally, we manually select the
15–25 most representative videos per category to maintain a balance of diversity.

Interactive labeling. Existing models often fail to accurately identify representative motion regions
in videos, as the most prominent motion may not be optimal, and many motions terminate prematurely.
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Table 10: The statistics of the training datasets.

Dataset source Number Captioner

Panda70M [77] 0.56M Qwen2.5-VL

Pixabay [78] 0.42M Qwen2.5-VL

Pexels [70] 0.25M Qwen2.5-VL

YouTube 0.75M Qwen2.5-VL

Figure 10: Prompt for video caption.

Video Caption Prompt
VIDEO_PROMPT = “Please describe the video in a concise and natural paragraph. Your 
description should follow these rules:\n”\
“a) Focus primarily on the motion and behavior of main subjects in the video, such as 
people or animals. Describe their actions in chronological order.\n”\
“b) Briefly describe the appearance and number of these subjects, including details like 
color, size, and orientation.\n”\
“c) Mention spatial relationships between subjects if relevant (e.g., in front of, to the left 
of, etc.).\n”\
“d) You should describe the camera perspective and movement at the end of the 
description, including the shooting angle (e.g., top-down, frontal, side view) and camera 
motion (e.g., pan left, zoom in, dolly out, slight shake), especially if they contribute to the 
perception of motion.\n”\
“e) Briefly describe the background or scene, but keep it minimal unless it's important for 
understanding the motion.\n”\
“f) Do not include text recognition, named characters, or style analysis (e.g., realistic, 
animated), unless they are essential for understanding the motion.\n”\
“Keep your description concise and fluent, ideally within 2–5 sentences. Your description: ”

To specify different objects

Positive point

Negative point

Segmented mask 

To change point type

Figure 11: The interactive annotation interface displays the video (left) and its first frame (right).
Users click green positive points to specify the start point of a motion trajectory, and red negative
points to exclude irrelevant regions if needed. SAM segments the mask of moving objects & regions
for user review. To annotate multiple motion trajectories, users must assign different object IDs.

To facilitate precise annotation of motion regions, we introduce an interactive labeling interface
(Fig. 11) for selecting the initial motion point and its corresponding mask in the first frame. Annotators
begin by selecting a target point in the initial frame, prompting SAM [23] to generate a preliminary
segmentation mask. If the mask extends beyond the desired area, negative points can be added to
exclude irrelevant regions. This method effectively isolates articulated motions or small objects. For
subsequent frames, point trajectories are automatically extracted using CoTracker [68].

8.3 Training and Inference Configuration

As illustrated in Sec. 5.1 of the main paper, we employ Wan-I2V-14B [19] as the base I2V model.
During training, both the DiT and umT5 components of Wan are wrapped with Fully Sharded Data
Parallel (FSDP) [80], with parameters cast to torch.bfloat16 for memory efficiency. The
training employs the AdamW optimizer [81] with a weight decay of 1e-3 and a base learning rate of
5e-6. The first 2,000 steps are used for linear warm-up to enable a smooth transition from the initial
I2V generation (corresponding to 0 point trajectories) to motion-controllable video generation. We
adopt flow matching objective for optimization, where the number of time sampling steps is set to
1,000 during training. To enable large-scale training with long sequences (e.g., 5s video clip), we
adopt the Ulysses sequence parallelism strategy [82] following Wan, setting the sequence parallel
size to 4. We train our model using 64 NVIDIA A100 GPUs, with each GPU processing a quarter of
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Table 11: Impact of feature replication strategies
when multiple motion trajectories overlap.

strategy FID↓ FVD↓ PSNR↑ SSIM↑ EPE↓
Average 13.1 83.4 17,5 0.63 2.7
Random 12.2 83.5 17.8 0.64 2.6

Table 12: Impact of using a dense-to-sampling
training strategy.

Strategy FID↓ FVD↓ PSNR↑ SSIM↑ EPE↓
Dense-to-Sampling 12.9 84.2 17.5 0.62 2.6
Sampling 12.2 83.5 17.8 0.64 2.6

Input first frame Generated video

Figure 12: Wan-Move generalizes to continue controlling motion trajectories when they temporarily
disappears. Green circles indicate visible segments, while red circles mark invisible segments, e.g.,
occluded or out-of-frame parts.

the sequence length, for a total of 30,000 steps. During inference, we follow Wan’s sampling scheme
with 50 sampling steps.

9 Additional Experiments

9.1 Choice of Feature Replication Strategies under Trajectory Overlap

We analyze the impact of feature replication strategies in cases of trajectory overlap. The results,
presented in Table 11, demonstrate that randomly selecting a single trajectory’s first-frame feature for
replication when multiple trajectories coincide yields superior video quality and motion control. This
is evidenced by lower FVD and EPE compared to feature averaging. We hypothesize that averaging
features from overlapping trajectories leads to information loss, thereby degrading performance.

9.2 Choice of Different Training Strategies

This subsection evaluates the performance differences between dense-to-sampling and direct sampling
training strategies, as presented in Table 12. Prior work [14, 15, 2, 53] commonly employs a two-stage
dense-to-sampling pipeline, where the first stage uses dense motion trajectories to enhance motion
control followed by sparse trajectories in the second stage. However, we find that our model, trained
with randomly sampling of 1-200 points (as refer to Sec. 3.3 in the main paper), achieves comparable
EPE and lower FVD compared to the two-stage approach. These results demonstrate that our method
provides generalization capability in point trajectory numbers while simplifying the training process.
This generalization ability is also verified in Table 12 of the main paper.

9.3 Model Performance Under Trajectory Disappearance

Fig. 12 illustrates our model’s capability to generate motion-coherent videos when handling temporar-
ily invisible trajectories. The Wan-Move maintains stable generation quality in these challenging
scenarios, which we attribute to both the presence of similar cases in the training data and the model’s
inherent generalization capacity.

9.4 Failure Cases

This subsection analyzes and visualizes three primary failure modes of Wan-Move, as illustrated in
Fig. 13. First, control degradation occurs when motion trajectories remain invisible for extended
durations, causing the model to lose conditional guidance. Second, performance deteriorates in visu-
ally complex scenes with multiple interacting objects in crowded environments. Third, implausible
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Figure 13: Three primary failure modes of Wan-Move. (a) Loss of motion control due to persistent
trajectory disappearance; (b) Visual artifacts in overly complex, crowded environments; and (c)
motion outputs that violate rigorous physical laws.

motion trajectories that violate fundamental physical laws result in out-of-distribution predictions.
Furthermore, erroneous tracking points identified by CoTracker [68] may compound these failure
modes.

10 Qualitative Visualizations

10.1 More Qualitative Comparisons

We present additional qualitative comparisons with state-of-the-art academic [14] and commercial [4]
approaches, as shown in Fig. 14.

10.2 More Camera Control Results

As demonstrated in Fig. 15, Wan-Move enables camera control. This can be accomplished, following
the work [13], by estimating a point cloud using a monocular depth predictor [76], projecting it along
a predefined camera trajectory, and applying z-buffering to derive occlusion flags and camera-aligned
2D trajectories.

10.3 More Motion Transfer Results

This subsection presents dense motion transfer visualizations generated by Wan-Move using dense
point trajectories (1,024 in our implementation). As illustrated in Fig. 16, Wan-Move achieves nearly
identical appearance quality and motion alignment compared to the original videos given dense
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Figure 14: Additional qualitative comparisons with Tora [14] and the commercial model Kling 1.5
Pro [4]. Wan-Move demonstrates superior motion accuracy and visual quality. Major motion control
failures or visual artifacts are denoted with red boxes.

trajectory conditions and the same first frame. Moreover, Wan-Move also enables video editing by
copying the motion while using an additional image editing model to modify the content in the first
frame, maintaining the original video’s motion trajectories, as shown in Fig. 17.

10.4 More 3D Rotation Results

As illustrated in Fig. 18, Wan-Move additionally supports 3D object rotation. This capability is
realized by first estimating depth-based 3D positions, applying a rotational transformation, and then
reprojecting the results into 2D trajectories. These trajectories subsequently serve as conditioning
inputs for our model to rotate the objects in videos.
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Input first frame Generated video

Dolly in

Linear displacement

Linear displacement

Dolly out

Figure 15: Wan-Move enables effective and flexible camera control through different point trajectories,
such as linear displacement, dolly in, and dolly out.

Input first frame Generated video 
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Figure 16: Wan-Move enables accurate video motion copy using dense point trajectories (e.g., 1024
points). The synthesized video preserves high fidelity in both appearance and object-level motion
alignment with the original video, even under complex environmental conditions.
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Edit the first frame: “change the color of the cloth to yellow”
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Edit the first frame: “Transform the image into a Studio Ghibli style”

Figure 17: Wan-Move enables video editing through motion copy and additional image editing
models. It first applies the image editing model (e.g., ControlNet [18], GPT-4o [83]) to modify the
style or content of the first frame, then uses the original video’s motion trajectories to animate the
edited image frame.

Input first frame Generated video

3D rotation

3D rotation

Figure 18: Wan-Move enables object 3D rotation by estimating depth-based positions, applying a
rotation, and projecting the results to 2D.
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