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Abstract

Test-time adaptation aims to adapt to realistic en-
vironments in an online manner by learning dur-
ing test time. Entropy minimization has emerged
as a principal strategy for test-time adaptation
due to its efficiency and adaptability. Neverthe-
less, it remains underexplored in continual test-
time adaptation, where stability is more impor-
tant. We observe that the entropy minimization
method often suffers from model collapse, where
the model converges to predicting a single class
for all images due to a trivial solution. We pro-
pose ranked entropy minimization to mitigate
the stability problem of the entropy minimiza-
tion method and extend its applicability to con-
tinuous scenarios. Our approach explicitly struc-
tures the prediction difficulty through a progres-
sive masking strategy. Specifically, it gradually
aligns the model’s probability distributions across
different levels of prediction difficulty while pre-
serving the rank order of entropy. The pro-
posed method is extensively evaluated across var-
ious benchmarks, demonstrating its effectiveness
through empirical results. Our code is available
at https://github.com/pilsHan/rem

1. Introduction
The real world is non-i.i.d., which demands real-time adap-
tation of AI applications. Deep learning models have
achieved remarkable progress in recent years; however,
performance degradation caused by distribution shifts be-
tween different domains limits the generalization capabili-
ties (Shimodaira, 2000). Test-time adaptation (TTA) (Wang
et al., 2021) has emerged as a practical approach to address
non-stationary environmental changes by enabling models
trained on source domain to adapt in an online manner to
unlabeled target data during the test-time.
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Figure 1. Our Intuition. We explicitly raise the prediction diffi-
culty of the input images through the masking strategy. Based on
the intuition that increased difficulty decreases prediction accuracy
and increases entropy, we attempt to maintain a rank ordering of
entropy while improving consistency from original to masked pre-
dictions. Our approach addresses the problem of model collapse
in entropy minimization methods in a simple yet efficient way.

Continual test-time adaptation (CTTA) (Wang et al., 2022)
addresses the issue of error accumulation in long-sequence
domains. It mitigates the forgetting problem under contin-
uous environmental changes and sequentially adapts to a
stream of data, facilitating the practical deployment of TTA.
Recent studies on CTTA can be broadly categorized into two
major approaches: entropy minimization (EM) (Wang et al.,
2021; Niu et al., 2022; Zhang et al., 2025) and consistency
regularization (CR) (Wang et al., 2022; Liu et al., 2024b;a).
The EM approach minimizes the entropy of predictions and
offers computational efficiency but suffers from instability
due to the risk of trivial solutions, where predictions collapse
into a single class. In contrast, the CR approach employs a
teacher-student framework (Tarvainen & Valpola, 2017), up-
dating the model conservatively to ensure stability but incurs
high computational costs. As a result, there is a trade-off
between efficiency and stability in these approaches.

Motivation. Our approach stems from the intuitive observa-
tion that a model’s predictions for an explicitly information-
degraded image are inaccurate and have high entropy com-
pared to its predictions for a complete image (as illustrated
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Figure 2. Observation on model collapse in the entropy minimization approach. (a) Under the CTTA scenario, the EM approach
(Tent) undergoes significant performance degradation at a critical point (adaptation order T3, Impulse noise). (b) This phenomenon occurs
because the model learns constant representations that do not depend on input images, leading to a collapse in prediction diversity. This is
evidenced by class probabilities converging to a single point when visualized in a polar coordinate system. Our proposed method (REM)
mitigates model collapse and maintains prediction diversity.

in Figure 1). Motivated by Zeno’s Achilles and the tor-
toise paradox (Huggett, 2002), this paper aims to prevent
abrupt entropy reduction by gradually advancing the orig-
inal predictions while reducing the gaps in explicit rank
relationships. Here, an original prediction is represented by
the tortoise, maintaining its leading position over masked
prediction in the ranking relationship and learning through
rank regularization. In contrast, masked prediction is analo-
gous to Achilles, aiming to catch up with original prediction
by learning through consistency regularization.

Observation. Figure 2 shows the phenomenon of model
collapse in EM. Model collapse means that the EM approach
converges to a prediction for a constant class by a trivial
solution, resulting in the model to produce a nonsensical
prediction. This issue corresponds to mode collapse in
GAN (Goodfellow et al., 2014) and complete collapse (Hua
et al., 2021) in self-supervised learning (SSL) within the
CTTA. Model collapse occurs because the EM objective
function is minimized even when the model consistently
predicts a single class, regardless of the input. Since EM
lacks stability to address the forgetting problem, it maintains
performance by using a low learning rate. However, this
leads to limitations in both adaptability and robustness.

Based on this observation, we propose a Ranked Entropy
Minimization (REM). Specifically, we exploit the self-
attention structure of ViT (Dosovitskiy et al., 2021) to mask
patches with a high likelihood of containing objects (Bolya
et al., 2023; Son et al., 2024). The principal idea is to ex-
plicitly enhance the prediction complexity of a sample by
masking objects that domain invariant features. Building a
mask chain that sequentially obscures more patches based
on the masking ratio transforms unpredictable prediction

tendencies into a ranked predictable one. For taking advan-
tage of the ranked structure, we provide two interrelated
methods. (1) First, we apply a consistency loss by ensuring
that predictions with a higher masking ratio are similar to
those with a lower masking ratio, thereby not only indirectly
reducing prediction entropy but also enabling the model
to learn contextual information from masked regions. (2)
Second, we introduce a ranking loss that ensures the entropy
of predictions with a lower masking ratio remains lower
than that of predictions with a higher masking ratio. This ap-
proach not only models uncertainty but also reduces entropy
by incorporating object-specific information, preventing pre-
dictions from being biased toward background information.
The main benefit of our method lies in achieving the joint
goals of stability and adaptability while maintaining the ef-
ficiency of EM approaches with a single model and without
requiring additional models.

2. Related Work
2.1. Test-Time Adaptation

The concept of optimizing during test time to adapt to target
domains was proposed in Test-Time Training (TTT) (Sun
et al., 2020). However, TTT relies on the use of source data
and training loss, which may not generalize well to practi-
cal applications. To address these limitations, Tent (Wang
et al., 2021) proposed the concept of Fully TTA, which
enables online adaptation to unlabeled target data without
requiring access to source data. In this context, TTA fo-
cuses on efficiency, typically by updating the normalization
layers (Gong et al., 2022) or adjusting predictions without
training the model parameters to improve computational
efficiency. (Iwasawa & Matsuo, 2021; Boudiaf et al., 2022).
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Entropy minimization approaches (Wang et al., 2021; Niu
et al., 2022; 2023; Lee et al., 2024; Zhang et al., 2025)
are evolving as a primary solution for TTA. Among those,
EATA (Niu et al., 2022) introduces sample filtering for un-
certain predictions and regularization method to enhance
stability. Furthermore, SAR (Niu et al., 2023) observes
the phenomenon of model collapse by trivial solutions, and
proposes adaptation to flat minima and filtering of large gra-
dient samples. Building on these approaches, DeYO (Lee
et al., 2024) presents a criteria for additional sample selec-
tion through image rearrangement, and COME (Zhang et al.,
2025) proposes a conservative entropy minimization method
to address the overconfidence problem.

2.2. Continual Test-Time Adaptation

Advancing from single-domain adaptation, CTTA (Wang
et al., 2022; Brahma & Rai, 2023; Döbler et al., 2023;
Liu et al., 2024b;a) emphasizes the requirement for adapt-
ing to continuous domain shifts, thereby extending the
practicality of TTA. This paradigm promotes rethinking
the conventional protocol by encouraging a deeper focus
on stability. CoTTA (Wang et al., 2022) addresses catas-
trophic forgetting by introducing a consistency loss be-
tween the base model and weight-averaged model, while
employing stochastic restoration of parameters based on
the source model. PETAL (Brahma & Rai, 2023) intro-
duces a probabilistic framework for CTTA and a parameter
restoration method leveraging the Fisher Information Ma-
trix. ViDA (Liu et al., 2024b) presents a trade-off between
stability and plasticity by designing an adapter that explic-
itly separates domain-invariant features and domain-specific
features. Continual-MAE (Liu et al., 2024a) measures pixel
uncertainty through Monte Carlo (MC) dropout to distin-
guish object presence and enhances the representation of
domain-invariant properties using a masked autoencoder.

Beyond not Forgetting. The recent state-of-the-art CTTA
methods achieve stability and mitigate performance degra-
dation by adopting teacher-student frameworks or param-
eter restoration from the source model. However, these
approaches often neglect efficiency constraints, leading to
excessive computational costs and memory overhead. This
inefficiency contradicts the goal of TTA, which is to enable
real-time adaptation under resource constraints. To address
this issue and realign the framework with its intended pur-
pose, protocols that account for computational time con-
straints (Alfarra et al., 2024) and label delays (Csaba et al.,
2024) have been proposed. We argue that efficiency in
CTTA requires renewed attention and propose leveraging
insights from pioneering approaches in TTA to improve
both stability and computational efficiency. In this study,
we integrate the strengths of EM and CR approaches to bal-
ance efficiency and stability. Detailed efficiency analysis is
provided in Section 4.4.

3. Ranked Entropy Minimization
In this section, we introduce the CTTA setup and the trivial
solution from the EM, then explain the proposed REM. Our
method consists of a mask chaining strategy and two loss
functions for CR and EM. Masked consistency loss ensures
consistency from predictions with a lower masking ratio to
those with a higher masking ratio, while entropy ranking
loss enforces a ranking constraint from predictions with a
higher masking ratio to those with a lower masking ratio.

3.1. Preliminaries

In CTTA setup, a target model ft is trained in an online
manner, starting from a source model fs. The model adapts
to sequential target domain data xτ

t , where each domain
is represented in order by τ ∈ {1, 2, . . . }. The evaluation
protocol involves calculating the cumulative error based
on the model’s predictions p̂τt = ft(x

τ
t ), while the model

adapts to the target domains during test time using xτ
t . The

main difference between TTA and CTTA lies in whether the
model is reset to the source model when a domain changes.
In CTTA, the model is not reset, which makes the issue of
catastrophic forgetting more significant.

The EM method applies gradient descent using entropy
S(p̂t) = −

∑C
c=1 p̂t,c log p̂t,c over the total number of

classes C as the objective function. Consequently, the gra-
dient of S(p̂t) with respect to the parameter θ is as follows:

∂S(p̂t)
∂θt

= −
C∑
i=1

(log p̂t,c + 1) p̂t,c(1− p̂t,c)
∂zt,c
∂θt

, (1)

where zt,c represents the logit for class c before applying
the softmax function, i.e., p̂t,c =

exp(zt,c)∑C
i=1 exp(zt,i)

. The trivial

solution for ∂S(p̂t)
∂θt

= 0 arises under the following cases:
(Case 1) Uniformly distributed probability (p̂t,c =

1
C ), and

(Case 2) Perfectly confident predictions (p̂t,c ∈ {0, 1}). In
this case, since the initial source model’s prediction distri-
bution is not uniform, the likelihood of achieving a trivial
solution due to a uniform distribution under entropy mini-
mization is low. However, it is possible for a singular class
to result in perfectly confident predictions, which is experi-
mentally observed in Figure 2.

3.2. Explicit Mask Chaining

Conventional CTTA methods point out that augmentation
policies may not be valid for dramatic domain shifts and
decide whether to apply augmentation through prediction
confidence (Wang et al., 2022). However, these methods fail
to model the impact of augmentation policies on model pre-
dictions, resulting in inefficiencies caused by the application
of diverse augmentations. In order to model the predictions,
we propose Explicit Mask Chaining, which incrementally
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Figure 3. Empirical study according to masking ratio. We report
the changes in error and entropy as the masking ratio increases.
Both entropy and error exhibit a monotone increasing trend with
respect to the masking ratio, and we observe that linearity becomes
more pronounced, especially in regions with lower masking ratios.

masks content containing domain-invariant information for
augmentation. To this end, we focus on the self-attention
structure of ViT for efficient object masking. Exploiting the
self-attention structure allows us to cluster content by simi-
larity between intermediate tokens (Bolya et al., 2023), as
well as compute an attention score for an attention head (Son
et al., 2024). Following pioneering research, we define an
attention score A as follows:

A =

H∑
h=1

Softmax

(
Qh,clsKh,img

⊤
√
d

)
, (2)

where H is the number of heads in the multi-head attention,
Qh,cls and Kh,img are query for class token and key for
image token of the h-th attention head, respectively. d
denotes the dimension of each attention head.

The masked image {xm1
, xm2

, · · · , xmN
}, defined for the

top-m proportion of a set A sorted in descending order, has
mask ratios that satisfy the condition 0 ≤ m1 ≤ m2 ≤
· · · ≤ mN ≤ 1. Figure 3 shows the error and entropy
across a range of masking ratios for noise, blur, weather,
and digital corruptions on ImageNetC (Hendrycks & Diet-
terich, 2018). The results empirically confirm that explicit
masking of objects results in lower accuracy and higher
entropy as the masking ratio increases. In conclusion, we
establish an explicit ranking relationship between entropy
and accuracy by employing an incremental masking strategy
for consecutive mask ratio.

3.3. Masked Consistency Loss

Given an explicitly ranked prediction, we aim to make a
high masking rate prediction with relatively low accuracy
similar to a low mask rate prediction with relatively high

accuracy. We define masked consistency loss (MCL) as
follows:

LMCL =

MN∑
i<j

H(ft(xj), sg(ft(xi))), (3)

where H(p, q) denotes the cross-entropy between two prob-
ability distributions p and q, MN = {0,m1,m2, . . . ,mN}
is a set of mask ratios, where N is the number of mask
chains, and sg denotes the stop-gradient operation.

Comparison with EM. Unlike EM, which uses entropy as
a loss function, MCL indirectly reduces prediction entropy
by using the cross-entropy between masked predictions and
either less-masked or unmasked predictions. This is de-
signed to mitigate abrupt entropy changes and overconfident
predictions, leading to the alleviation of model collapse.

Comparison with CR. To generate stable predictions dis-
tinct from the target model, the CR approach requires ad-
ditional teacher models and numerous forward passes for
uncertainty estimation. In contrast, our method eliminates
the need for uncertainty prediction by leveraging an explicit
ranking structure and improves efficiency by generating
diverse predictions via mask chains within a single model.

3.4. Entropy Ranking Loss

Through the reduction of differences in ranked prediction
distributions, MCL is designed to indirectly minimize pre-
diction entropy. However, this may result in slower adap-
tation due to small differences in prediction distributions
or lead to biased predictions toward the background when
learning from images with occluded objects. To comple-
ment MCL and address these issues, we propose the entropy
ranking loss (ERL) as follows:

LERL =

MN∑
i<j

max (0, S(ft(xi))− sg(S(ft(xj))) +m),

(4)

where m is the margin. The purpose of ERL is to main-
tain the principle that the entropy of predictions with a
low masking ratio for objects should be lower than that of
predictions with a high masking ratio. By maintaining an
explicit ranked order, we prevent overconfidence in high
masking ratio predictions, which could lead to bias toward
the background. This follows from prior findings that apply-
ing ranking losses in neural calibration effectively mitigates
overconfidence (Moon et al., 2020; Noh et al., 2023). Addi-
tionally, ERL directly reduces the entropy of samples that
violate the ranked order, thereby promoting faster adapta-
tion and maintaining a structured entropy hierarchy across
different masking ratios.
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Table 1. Classification error rate (%) for ImageNet-to-ImageNetC under CTTA scenario. Mean (%) denotes the average error rate across
15 target domains. Gain (%) represents the relative performance improvement compared to the source model.
Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
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Source (Dosovitskiy et al., 2021) 53.0 51.8 52.1 68.5 78.8 58.5 63.3 49.9 54.2 57.7 26.4 91.4 57.5 38.0 36.2 55.8 0.0
Pseudo-label (Lee, 2013) 45.2 40.4 41.6 51.3 53.9 45.6 47.7 40.4 45.7 93.8 98.5 99.9 99.9 98.9 99.6 61.2 -5.4
Tent (Wang et al., 2021) 52.2 48.9 49.2 65.8 73.0 54.5 58.4 44.0 47.7 50.3 23.9 72.8 55.7 34.4 33.9 51.0 +4.8
CoTTA (Wang et al., 2022) 52.9 51.6 51.4 68.3 78.1 57.1 62.0 48.2 52.7 55.3 25.9 90.0 56.4 36.4 35.2 54.8 +1.0
VDP (Gan et al., 2023) 52.7 51.6 50.1 58.1 70.2 56.1 58.1 42.1 46.1 45.8 23.6 70.4 54.9 34.5 36.1 50.0 +5.8
SAR (Niu et al., 2023) 49.3 43.8 44.9 58.2 60.9 46.1 51.8 41.3 44.1 41.8 23.8 57.2 49.9 32.9 32.7 45.2 +10.6
PETAL (Brahma & Rai, 2023) 52.1 48.2 47.5 66.8 74.0 56.7 59.7 46.8 47.2 52.7 26.4 91.3 50.7 32.3 32.0 52.3 +3.5
ViDA (Liu et al., 2024b) 47.7 42.5 42.9 52.2 56.9 45.5 48.9 38.9 42.7 40.7 24.3 52.8 49.1 33.5 33.1 43.4 +12.4
Continual-MAE (Liu et al., 2024a) 46.3 41.9 42.5 51.4 54.9 43.3 40.7 34.2 35.8 64.3 23.4 60.3 37.5 29.2 31.4 42.5 +13.3
REM (Ours) 43.5 38.1 39.2 53.2 49.0 43.5 42.8 37.5 35.2 35.4 23.2 46.8 41.6 28.9 30.2 39.2 +16.6

Supervised 42.5 36.9 37.1 46.4 44.0 37.4 38.3 34.2 33.1 32.5 21.5 43.3 34.4 26.1 27.5 35.7 +20.1

Table 2. Classification error rate (%) for CIFAR10-to-CIFAR10C under CTTA scenario. Mean (%) denotes the average error rate across
15 target domains. Gain (%) represents the relative performance improvement compared to the source model.
Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
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Source (Dosovitskiy et al., 2021) 60.1 53.2 38.3 19.9 35.5 22.6 18.6 12.1 12.7 22.8 5.3 49.7 23.6 24.7 23.1 28.2 0.0
Pseudo-label (Lee, 2013) 59.8 52.5 37.2 19.8 35.2 21.8 17.6 11.6 12.3 20.7 5.0 41.7 21.5 25.2 22.1 26.9 +1.3
Tent (Wang et al., 2021) 57.7 56.3 29.4 16.2 35.3 16.2 12.4 11.0 11.6 14.9 4.7 22.5 15.9 29.1 19.5 23.5 +4.7
CoTTA (Wang et al., 2022) 58.7 51.3 33.0 20.1 34.8 20 15.2 11.1 11.3 18.5 4.0 34.7 18.8 19.0 17.9 24.6 +3.6
VDP (Gan et al., 2023) 57.5 49.5 31.7 21.3 35.1 19.6 15.1 10.8 10.3 18.1 4.0 27.5 18.4 22.5 19.9 24.1 +4.1
SAR (Niu et al., 2023) 54.1 47.6 38.0 19.9 34.8 22.6 18.6 12.1 12.7 22.8 5.3 39.9 23.6 24.7 23.1 26.6 +1.6
PETAL (Brahma & Rai, 2023) 59.9 52.3 36.1 20.1 34.7 19.4 14.8 11.5 11.2 17.8 4.4 29.6 17.6 19.2 17.3 24.4 +3.8
ViDA (Liu et al., 2024b) 52.9 47.9 19.4 11.4 31.3 13.3 7.6 7.6 9.9 12.5 3.8 26.3 14.4 33.9 18.2 20.7 +7.5
Continual-MAE (Liu et al., 2024a) 30.6 18.9 11.5 10.4 22.5 13.9 9.8 6.6 6.5 8.8 4.0 8.5 12.7 9.2 14.4 12.6 +15.6
REM (Ours) 17.3 12.5 10.3 8.4 17.7 8.4 5.5 6.6 5.6 7.2 3.7 6.4 11.0 7.3 13.0 9.4 +18.8

Supervised 14.6 9.0 6.9 6.1 11.2 6.0 3.7 4.4 3.4 4.9 2.1 3.7 7.5 4.3 8.5 6.4 +21.8

3.5. Total Loss Function

The total loss function LREM is expressed as a linear com-
bination of LMCL in Eq. 3 and LERL in Eq. 4, as follows:

LREM = LMCL + λ · LERL, (5)

where λ is a hyperparameter. We propose Ranked Entropy
Minimization, which integrates the advantages of consis-
tency regularization and entropy minimization within a
ranked structure based on masking ratios.

4. Experiments
In this section, we extensively explore the effectiveness of
our REM on CTTA protocol (Wang et al., 2022). The analy-
sis includes comparisons with state-of-the-art baselines, ver-
ification of its intended functionality through visualizations,
and an understanding of its working mechanisms through
ablation studies. Additionally, experiments on Online TTA
and Vision-Language Model are provided in Appendix C, D.

4.1. Experimental Setup

Benchmarks. We construct experiments on ImageNet-to-
ImageNetC, CIFAR10-to-CIFAR10C, and CIFAR100-to-

CIFAR100C. The source domains are ImageNet (Deng et al.,
2009) and CIFAR (Krizhevsky et al., 2009), while the corre-
sponding robustness benchmarks (Hendrycks & Dietterich,
2018), ImageNetC, CIFAR10C, and CIFAR100C, are used
as the target domains. The suffix C in these datasets indi-
cates corruption, which includes 15 types of corruptions,
each with 5 levels of severity. Following (Wang et al., 2022;
Liu et al., 2024b;a), we adopt target domains with level 5
severity across all 15 corruption types for sequential do-
mains. We evaluate the classification error rate for each
target domain after adaptation and prediction on target do-
main data streams in an online manner.

Comparison Methods. We compare various types of state-
of-the-art CTTA approaches using the ViT-B/16 (Doso-
vitskiy et al., 2021) pre-trained on the source domain.
These include single model-based methods such as Pseudo-
label (Lee, 2013), Tent (Wang et al., 2021), VDP (Gan
et al., 2023), and SAR (Niu et al., 2023), as well as teacher-
student frameworks, including CoTTA (Wang et al., 2022),
PETAL (Brahma & Rai, 2023), ViDA (Liu et al., 2024b),
and Continual-MAE (Liu et al., 2024a). Additionally, the
supervised results, obtained by training with target labels
using cross-entropy loss, are presented as an upper bound
since target labels are unavailable in TTA.
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Table 3. Classification error rate (%) for CIFAR100-to-CIFAR100C under CTTA scenario. Mean (%) denotes the average error rate across
15 target domains. Gain (%) represents the relative performance improvement compared to the source model.
Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
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Source (Dosovitskiy et al., 2021) 55.0 51.5 26.9 24.0 60.5 29.0 21.4 21.1 25.0 35.2 11.8 34.8 43.2 56.0 35.9 35.4 0.0
Pseudo-label (Lee, 2013) 53.8 48.9 25.4 23.0 58.7 27.3 19.6 20.6 23.4 31.3 11.8 28.4 39.6 52.3 33.9 33.2 +2.2
Tent (Wang et al., 2021) 53.0 47.0 24.6 22.3 58.5 26.5 19.0 21.0 23.0 30.1 11.8 25.2 39.0 47.1 33.3 32.1 +3.3
CoTTA (Wang et al., 2022) 55.0 51.3 25.8 24.1 59.2 28.9 21.4 21.0 24.7 34.9 11.7 31.7 40.4 55.7 35.6 34.8 +0.6
VDP (Gan et al., 2023) 54.8 51.2 25.6 24.2 59.1 28.8 21.2 20.5 23.3 33.8 7.5 11.7 32.0 51.7 35.2 32.0 +3.4
SAR (Niu et al., 2023) 39.4 31.0 19.8 20.9 43.9 22.6 19.1 20.3 20.2 24.3 11.8 22.3 35.2 32.1 30.1 26.2 +9.2
PETAL (Brahma & Rai, 2023) 49.2 38.7 24.1 26.3 38.2 25.4 19.4 21.0 19.3 26.6 15.4 31.8 28.3 26.6 29.5 28.0 +7.4
ViDA (Liu et al., 2024b) 50.1 40.7 22.0 21.2 45.2 21.6 16.5 17.9 16.6 25.6 11.5 29.0 29.6 34.7 27.1 27.3 +8.1
Continual-MAE (Liu et al., 2024a) 48.6 30.7 18.5 21.3 38.4 22.2 17.5 19.3 18.0 24.8 13.1 27.8 31.4 35.5 29.5 26.4 +9.0
REM (Ours) 29.2 25.5 17.0 19.1 35.2 21.2 18.3 19.5 18.7 22.8 15.5 17.6 31.6 26.2 33.0 23.4 +12.0

Supervised 26.2 20.6 13.9 15.9 24.6 15.6 11.8 13.1 12.1 13.6 8.5 9.7 20.2 13.5 21.5 16.1 +19.3

Table 4. Forward transfer analysis on ImageNetC. Results (%) rep-
resent the error rates for unseen and seen domains, harmonic mean.

Method
Directly test on unseen domains Unseen Seen Harmonic

bri. contrast elastic pixelate jpeg Mean↓ Mean↓ Mean↓
Source 26.4 91.4 57.5 38.0 36.2 49.9 58.8 54.0
Tent 25.8 91.9 57.0 37.2 35.7 49.5 54.4 51.8
CoTTA 25.3 88.1 55.7 36.4 34.6 48.0 57.8 52.4
ViDA 24.6 68.2 49.8 34.7 34.1 42.3 45.9 44.0
REM (lr=1e-4) 23.9 66.3 47.6 35.9 33.1 41.4 45.4 43.1
REM (lr=1e-3) 24.8 66.9 53.5 40.0 39.4 44.9 42.1 43.5

Supervised 22.5 71.1 55.3 38.2 36.6 44.7 38.2 41.2

Implementation. We implemented the experiments on CI-
FAR10C and CIFAR100C using the open-source Continual-
MAE code and the provided source model weights. For
ImageNetC, the experiments were conducted using the open-
source ViDA code with ImageNet pre-trained weights from
timm (Wightman, 2019). Details for reproducibility and
training regimes are provided in Appendix B.

4.2. Quantitative Results

ImageNet-to-ImageNetC. Table 1 presents the CTTA ex-
perimental results for a source model pre-trained on Ima-
geNet, using each corruption in ImageNetC as the target
domain. The model sequentially adapts to the target do-
mains over time, and we compare the average error for each
domain. Our method improves average performance by
16.6% over the source model and surpasses the previous
state-of-the-art Continual-MAE by 3.3%. Notably, the per-
formance gap to the supervised learning upper bound is only
3.5%, demonstrating the effectiveness of our approach.

CIFAR10-to-CIFAR10C and CIFAR100-to-CIFAR100C.
Table 2 and 3 summarize the experimental results for mod-
els trained on CIFAR10 and CIFAR100 as source domains,
with CIFAR10C and CIFAR100C serving as the respective
target domains. The results reveal consistent performance
improvements on CIFAR10C and CIFAR100C, which are
widely recognized benchmarks for CTTA alongside Ima-

Figure 4. Backward transfer analysis on ImageNetC. We compare
the performance of CTTA approaches on previous domains.

Figure 5. Adaptability analysis
on ImageNetC under Gaussian
noise corruption.

Figure 6. Robustness analysis
with respect to learning rate on
ImageNetC.

geNetC. These findings highlight the robustness and adapt-
ability of our method across diverse datasets.

Forward and Backward Transfer Analysis. We analyze
the performance on both future and past domains during the
CTTA process to investigate the potential temporal effects
of domain adaptation. Table 4 presents the performance on
the 5 unseen domains after training on 10 domains. The
investigation of the impact of test-time adaptation at the cur-
rent time on future performance reveals a trade-off between
adaptability and generalization. Rapid adaptation driven by
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Figure 7. Masked image visualization. We compare the predictions and entropy of REM, Tent, and Source and visualize the results of
our masking strategy. Each column represents images with masking ratios of 0, 10%, and 20% for each method, while each row shows the
true label on the left, along with correct and incorrect predictions and its corresponding entropy values.

Figure 8. Grad CAM visualization. We compare attention maps
to identify the pixels contributing to predictions.

high learning rates achieves the best performance of 42.1%
on Seen domains, while slower adaptation yields the best
performance of 41.4% on Unseen domains. Such a trend is
also observed in Figure 4, which presents the performance
across all domains for the model trained on sequential all
domains. Based on the adaptation order, rapid adaptation
demonstrates low error on domains learned later, while slow
adaptation achieves low error on initial domains.

Discussion. The preceding experiments indicate that achiev-
ing generalized performance across diverse domains does
not necessarily guarantee optimal performance in CTTA.
Distinctive advantage of TTA over domain generalization
lies in its capability to perform domain-specific adaptation
through online learning, which is critical for addressing

Table 5. Efficiency comparison. We provide the number of train-
ing parameters, total time, number of the forward passes (FP) and
models, and error rate (%).

Method Parameters↓ Total Time↓ # of FP Total Models Error

Source 0 - 1 Msrc 55.8
Tent 0.04M 8m35s 1 Mtest 51.0
CoTTA 86.4M 33m23s 3or35 Mtest +Mema +Msrc 54.8
ViDA 93.7M 54m48s 12 Mtest +Mema 43.4
Continual-MAE 86.5M 59m56s 12 Mtest +Msrc 42.5
REM 0.03M 17m21s 3 Mtest 39.2

domain shifts effectively. Figure 5 presents a comparative
analysis of adaptability under varying learning rates, while
Figure 6 illustrates performance trends across a broad range
of learning rate settings. The robustness of the proposed
method across diverse learning rate boundaries underscores
its practical utility, as it enables flexible adaptation speed
selection tailored to specific application requirements.

4.3. Qualitative Results

Masked Image Visualization. From Figure 7, we provide
a visualization of the masked images generated by the ex-
plicit mask chaining, along with the predictions and entropy
values for the corresponding original images. It can be
observed that masking is specifically applied to the pixels
where objects are located. Moreover, compared to Tent,
which tends to be overly confident in uncertain predictions,
this approach maintains higher entropy, allowing for im-
provements in the incorrect predictions of the initial source
model and effectively mitigating overconfidence.

Class Attention Map Visualization. In Figure 8, we
present the Grad-CAM (Selvaraju et al., 2017) visualiza-
tion results to highlight the salient pixels influencing the
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Figure 9. Effect of each component. We present the results of REM and compare them with variations where MCL and ERL are removed.

Figure 10. Effect of masking strategy. We present the results of REM (foreground masking) in comparison with different masking
strategies, including background masking, and random masking.

model’s predictions and to gain insights into its decision-
making process. Each row corresponds to the results for
Gaussian noise, fog, and pixelation, respectively, demon-
strating that Tent gradually highlights local regions over
time. This phenomenon can be interpreted as the model re-
lying on non-discriminative local features rather than global
semantic context for predictions, resulting in the generation
of uniform predictions irrespective of the input. In contrast,
our method adopts consistency regularization for masked
objects and effectively captures comprehensive information
related to context.

4.4. Efficiency Comparison

We compare the computational efficiency of our method
with Tent, an EM approach, and CR based state-of-the-art
methods such as CoTTA, ViDA, and Continual-MAE in Ta-
ble 5. Our method follows the strategy of existing EM
approaches that update only the normalization layers of a
single test model (Mtest), providing advantages in terms
of training time, the number of trainable parameters, and
the number of models that need to be stored. Recent CTTA
approaches store the EMA model (Mema) used as a teacher
model and the source model (Msrc) to regress to the ini-
tial source weights. In addition, it often requires numerous
forward passes to model uncertainty. Compared to the re-
cent state-of-the-art, Continual-MAE, we achieve a 3.3%
performance improvement while requiring only 30% of the
computation time and 0.03% of the training parameters.

4.5. Ablation Studies

Effect of Each Component. We present the results of
the ablation experiments for each component in Figure 9.
Model collapse appeared early for CIFARC, which contains
lower resolution and information compared to ImageNetC,
when MCL and REL were removed. Note that our method
achieves stable performance without model collapse when
both are applied, due to the organic design of each method.

Effect of Masking Strategy. In order to validate the appro-
priateness of our masking strategy, Figure 10 illustrates a
comparison between our foreground masking strategy and
cases involving background masking or random masking.
Our intuition behind defining an explicit ranking relation-
ship for the predictions is satisfied when masking the fore-
ground. In this case, the method performed as designed, and
there is no model collapse for all test datasets.

5. Limitation
Our study is grounded in the assumption that explicitly
masking objects used as the basis for predictions can lead to
a decrease in accuracy and an increase in entropy. While our
method is simple and intuitive, it is not yet fully supported
by rigorous theoretical proof. Despite efforts to address this,
the counterexamples arising from the diversity of images
still pose significant challenges. To mitigate this, we con-
duct several experiments that provide empirical evidence
demonstrating statistical significance.
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6. Conclusion
In this paper, we introduce Ranked Entropy Minimization
(REM) to improve stability and efficiency in CTTA. Based
on observation of model collapse, we propose a progressive
masking strategy and dual complementary loss functions:
masked consistency loss and ranked entropy loss. Conse-
quently, REM captures the best of both worlds by integrating
the stability of consistency regularization and the efficiency
of entropy minimization. Through quantitative evaluations
on various CTTA benchmarks, REM achieves state-of-the-
art performance, demonstrating its effectiveness. Moreover,
extensive qualitative experiments and ablation studies offer
in-depth insights into the working principles. We hope that
our work serves as a foundation for valuable discussions on
computational cost in CTTA, paving the way for advances
in efficiency and real-world applicability.
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Figure 11. Conceptual illustration comparing CTTA frameworks. (a) Entropy minimization approach updates only the normalization
layer for the target domain while utilizing a single model. (b) Consistency regularization method employs both a student model, which
updates all parameters, and a teacher model, which is updated via exponential moving average (EMA). This approach enhances prediction
diversity by numerous data augmentations or applying MC dropout to the model. (c) Our proposed method updates the normalization layer
and adopts a single model. It integrates entropy minimization and consistency regularization with only two additional forward passes.

A. Overall Framework and Comparison with Other Approaches
To improve clarity and facilitate comprehension, we present the overall frameworks of the Entropy Minimization (EM)
approach, the Consistency Regularization (CR) approach, and our proposed method, REM in Figure 11. We maintain the
training scheme of EM to preserve its computational efficiency. Additionally, we replace the traditional data augmentations
used in CR approaches with explicit masking, eliminating the reliance on extensive image augmentations for enhancing
predictive diversity. Consequently, our method preserves the computational efficiency of EM approaches while enhancing
the robustness and generalization performance of CR approaches.

B. Implementation Details
Table 6 provides details on the implementation of our experiments, including optimizer settings, learning rates, batch sizes,
model architectures, and hyperparameters. For CTTA experiments, we follow the Continual-MAE framework. Specifically,
for CIFAR datasets, we resize the input images to 384×384, while for all other experiments, the images are resized to
224×224.

Table 6. Implementation details.
Task CTTA TTA TTA-CLIP

Dataset ImageNetC CIFARC ImageNetC ImageNet-R/V2/S CIFAR Other Datasets

Experimental Protocols
Reproducibility Continual-MAE (Liu et al., 2024a) DeYO (Lee et al., 2024) WATT (Osowiechi et al., 2024)

Training Parameters
Optimizer Adam Adam SGD SGD Adam Adam
Optimizer momentum (0.9, 0.999) (0.9, 0.999) 0.9 0.9 (0.9, 0.999) (0.9, 0.999)
Learning rate 1e-3 1e-3 1e-3 1e-3 1e-3 1e-4
Batch size 50 20 1 or 64 1 or 64 128 128
Model architecture ViT-B/16 ViT-B/16 ViT-B/16 ViT-B/16 CLIP-ViT-B/16 CLIP-ViT-B/16

Algorithm Parameters
λ (Eq. 5) 1.0 1.0 0.5 0.5 1.0 1.0
m (Eq. 4) 0 0 0 0 0 0
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Table 7. Classification accuracy (%) on ImageNetC (severity level5) under online imbalanced label shifts (imbalance ratio = ∞).

Label Shifts
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Source (Dosovitskiy et al., 2021) 9.4 6.7 8.3 29.1 23.4 34.0 27.0 15.8 26.3 47.4 54.7 43.9 30.5 44.5 47.6 29.9 0.0
MEMO (Zhang et al., 2022) 21.6 17.4 20.6 37.1 29.6 40.6 34.4 25.0 34.8 55.2 65.0 54.9 37.4 55.5 57.7 39.1 9.2
Tent (Wang et al., 2021) 53.1 53.1 54.3 54.2 51.5 58.6 52.4 3.5 7.8 69.5 74.8 67.0 58.7 69.2 66.2 52.9 23.0
EATA (Niu et al., 2022) 45.5 47.2 44.1 45.4 41.5 52.0 47.4 54.8 46.7 57.1 70.4 29.2 55.9 62.2 60.6 50.7 20.8
SAR (Niu et al., 2023) 53.1 53.3 54.3 54.0 52.1 58.0 52.7 8.6 28.6 69.1 74.7 66.7 59.1 67.1 64.9 54.4 24.5
DeYO (Lee et al., 2024) 52.9 54.8 55.4 54.1 55.6 62.1 34.4 64.6 63.7 71.1 77.1 64.2 67.2 72.4 68.2 61.2 31.3
REM (Ours) 57.0 57.2 58.1 58.6 56.3 63.2 58.4 67.3 67.5 74.4 78.9 70.5 65.6 73.3 70.0 65.1 35.2

Table 8. Classification accuracy (%) on ImageNetC (severity level5) under batch size 1.

Batch Size 1
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Source (Dosovitskiy et al., 2021) 9.5 6.8 8.2 29.0 23.5 33.9 27.1 15.9 26.5 47.2 54.7 44.1 30.5 44.5 47.8 29.9 0.0
MEMO (Zhang et al., 2022) 21.6 17.4 20.6 37.1 29.6 40.6 34.4 25.0 34.8 55.2 65.0 54.9 37.4 55.5 57.7 39.1 9.2
Tent (Wang et al., 2021) 52.1 51.8 53.2 52.4 48.7 56.5 49.5 8.5 15.2 67.3 73.4 66.7 52.6 64.9 64.3 51.8 21.9
EATA (Niu et al., 2022) 48.5 46.5 49.6 46.2 40.2 50.5 44.1 37.8 41.7 64.6 68.2 64.5 49.6 61.0 61.6 51.6 21.7
SAR (Niu et al., 2023) 52.0 51.7 53.1 51.7 48.9 56.8 50.6 16.8 54.8 67.2 74.7 66.1 55.3 66.8 65.2 55.5 25.6
DeYO (Lee et al., 2024) 54.6 55.6 56.0 55.5 17.3 62.7 59.5 65.6 64.4 72.0 77.3 10.9 66.3 71.8 68.7 57.2 27.3
REM (Ours) 57.4 57.8 58.6 59.2 56.9 63.5 59.1 68.4 67.5 74.5 79.0 71.1 65.7 73.3 70.5 65.5 35.6

Table 9. Classification accuracy (%) on ImageNetC (severity
level 5 and level 3) under mixture of 15 corruption.

Mixed Shifts Level 5 Level 3
Source (Dosovitskiy et al., 2021) 29.9 53.8
Tent (Wang et al., 2021) 24.1 70.2
EATA (Niu et al., 2022) 56.4 69.6
SAR (Niu et al., 2023) 57.1 70.7
DeYO (Lee et al., 2024) 59.4 72.1
REM (Ours) 62.4 74.0

Table 10. Classification accuracy (%) on ImagNet-R/V2/Sketch.
Mean (%) denotes the average accuracy across 3 target domains.

Domain Shifts R V2 Sketch Mean
Source (Dosovitskiy et al., 2021) 59.5 75.4 44.9 59.9
Tent (Wang et al., 2021) 63.9 75.2 49.1 62.7
CoTTA (Wang et al., 2022) 63.5 75.4 50.0 62.9
SAR (Niu et al., 2023) 63.3 75.1 48.7 62.4
FOA (Niu et al., 2024) 63.8 75.4 49.9 63.0
REM (Ours) 64.3 75.2 49.7 63.1

C. Experiments on Online Test-Time Adaptation Scenario
In addition to CTTA scenarios, our method is readily applicable to a wide range of TTA scenarios. To evaluate its
effectiveness in a more challenging setting, we compare our approach against EM-based state-of-the-art methods, including
MEMO (Zhang et al., 2022), Tent (Wang et al., 2021), EATA (Niu et al., 2022), SAR (Niu et al., 2023), and DeYO (Lee
et al., 2024), in the wild online TTA scenarios proposed in SAR.

Online Imbalanced Label Distribution Shifts. Table 7 presents the performance comparison of TTA methods under
class-imbalanced distributions across different domains. Our method achieves best performance across all domains except
for elastic transform, improving the average performance by 3.9% compared to the previous state-of-the-art method, DeYO.

Batch Size 1. Table 8 shows the results for TTA under a batch size of 1, demonstrating the robustness of our method in
scenarios where batch statistics cannot be effectively leveraged. Similar to the label shift scenario, our method achieves the
best performance across all domains except for elastic transform, resulting in an 8.3% performance improvement.

Mixed Distribution Shifts. Table 9 presents the results for the TTA scenario where domain boundaries are ambiguous,
leading to mixed domain distributions. Our method achieves performance improvements of 3.0% and 1.9% for corruption
severity levels 5 and 3, respectively, indicating its potential for generalization across diverse domains.

Domain Shifts. Table 10 presents the TTA results for domain shifts from ImageNet to ImageNet-R (Hendrycks et al., 2021),
ImageNet-V2 (Recht et al., 2019), and ImageNet-Sketch (Wang et al., 2019). We achieve a mean accuracy of 63.1% across
all domains, surpassing the previous state-of-the-art FOA (Niu et al., 2024), which achieved 63.0%.
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Table 11. Classification accuracy (%) comparison on vision-language model using CLIP ViT/B-16 across different datasets and domains.
Dataset Domain CLIP Tent TPT CLIPArTT WATT REM REM+WATT

CIFAR-10 89.25 92.75 89.80 92.61 91.97 91.76±0.06 93.19±0.14

CIFAR CIFAR-100 64.76 71.73 67.15 71.34 72.85 69.15±0.05 72.87±0.11

Mean 77.01 82.24 78.48 81.98 82.41 80.46 83.03
3D (trainset) 87.16 87.57 84.04 87.58 87.72 87.45±0.00 88.95±0.03

VisDA-C YT (valset) 86.61 86.81 85.90 86.60 86.75 86.89±0.01 86.84±0.03

Mean 86.89 87.19 84.97 87.09 87.24 87.17 87.90
Art 79.30 79.26 81.97 79.34 80.43 80.17±0.11 80.29±0.11

Clipart 65.15 65.64 67.01 65.69 68.26 66.96±0.04 68.32±0.09

Office-Home Product 87.34 87.49 89.00 87.35 88.02 87.77±0.02 87.99±0.09

RealWorld 89.31 89.50 89.66 89.29 90.14 90.14±0.01 90.08±0.09

Mean 80.28 80.47 81.91 80.42 81.71 81.26 81.67
Art 97.44 97.54 95.10 97.64 97.66 97.71±0.00 97.64±0.06

Cartoon 97.38 97.37 91.42 97.37 97.51 97.53±0.00 97.45±0.02

PACS Photo 99.58 99.58 98.56 99.58 99.58 99.58±0.00 99.58±0.00

Sketch 86.06 86.37 87.23 86.79 89.56 88.35±0.07 90.19±0.14

Mean 95.12 95.22 93.08 95.35 96.08 95.79 96.22
Caltech101 99.43 99.43 97.62 99.43 99.36 99.36±0.00 99.39±0.03

LabelMe 67.75 67.31 49.77 67.74 68.59 68.06±0.12 69.26±0.08

VLCS SUN09 71.74 71.57 71.56 71.67 75.16 75.04±0.04 75.76±0.10

VOC2007 84.90 85.10 71.17 84.73 83.24 83.79±0.12 83.89±0.20

Mean 80.96 80.85 72.53 80.89 81.59 81.56 82.08

D. Experiments on Vision-Language Model
Our proposed REM can be applied in a plug-and-play manner and is adaptable to various modalities. We present experiments
on the TTA setting with CLIP as the target model in Table 11. We compare the performance of our method against
CLIP (Radford et al., 2021), Tent (Wang et al., 2021), TPT (Shu et al., 2022), CLIPArTT (Hakim et al., 2024), and
WATT (Osowiechi et al., 2024). Following WATT, we report the TTA results from the CLIP model to CIFAR (Krizhevsky
et al., 2009) and various domain adaptation and generalization benchmarks, including VisDA (Peng et al., 2018), Office-
Home (Venkateswara et al., 2017), PACS (Li et al., 2017), and VLCS (Fang et al., 2013). As a result, our method achieves
competitive performance compared to the previous state-of-the-art WATT, without requiring additional inner-loop training
processes or ensemble methods. Furthermore, when WATT is combined with REM, it surpasses the existing results.

E. Experiments on Practical TTA Scenarios
Computational Time Constraint TTA Scenario. Table 12 presents experimental results on ImageNet-3DCC (Kar et al.,
2022) under the time-constrained protocol (Alfarra et al., 2024). We compare EATA (Niu et al., 2022) and our proposed
method using ViT-B/16. EATA requires 2.41× the time relative to the adaptation speed of g for which C(g) = 1, while REM
requires 5.10× the time. Therefore, in the episodic scenario, where the model is re-initialized for each domain, REM shows
lower performance than EATA due to its relatively slower adaptation. However, in the continual scenario, where domains
are learned sequentially without model re-initialization, our method achieves higher performance due to the accumulation of
learned knowledge and demonstrates stable adaptation across domains.

Table 12. Classification error rate (%) on ImageNet-3DCC under time constraint scenario
Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Method
Depth of field Noise Lighting Weather Video Camera motion

Mean ↓
Near focus Far focus Color quant ISO Low light Flash Fog 3D Bit err H.265 ABR H.265 CRF XY-mot. blur Z-mot. blur

EATA-Episodic 27.43 35.58 42.14 46.25 33.61 55.64 54.70 80.39 48.31 42.26 48.92 43.77 46.58
REM-Episodic 28.76 36.72 41.87 46.31 41.18 59.73 53.21 89.37 50.09 45.40 53.07 46.96 49.39

EATA-Continual 26.81 33.21 40.66 43.94 35.05 57.21 56.28 83.63 55.41 47.47 56.07 49.86 48.80
REM-Continual 29.30 33.95 41.12 43.65 31.85 56.24 51.20 87.17 49.07 41.38 49.35 43.33 46.47
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F. Experiments on Different Network Architectures
The proposed REM leverages the self-attention mechanism of ViT, yet it can be readily extended to other architectures as
long as a ranked structure of difficulty can be explicitly defined through chained masking. To demonstrate generality, we
introduce two additional variants: one based on feature activation (FA), where the attention map is computed as the average
L2-norm of feature vectors across all spatial positions, and another based on Grad-CAM (Selvaraju et al., 2017) to modulate
the masked regions. As shown in Table 13, FA-based REM consistently improves performance across various Transformer
architectures. Additionally, Table 14 demonstrates its applicability to CNNs, where our method achieves notable gains even
without the use of self-attention, highlighting the broad utility of the proposed difficulty-aware masking strategy.

Table 13. Mean error rate (%) on ImageNetC using transformer architectures
Model Source Tent CoTTA ViDA REM

Mobile-ViT-S 75.28 75.61 75.72 75.27 74.28
SwinTransformer-B 59.26 73.17 46.84 57.84 46.56

Table 14. Mean error rate (%) on ImageNetC using CNN architectures
Model CoTTA EATA EcoTTA BECoTTA REM (FA) REM (Grad-CAM)

WideResNet-28 16.2 18.6 16.8 - 16.9 16.5
WideResNet-40 - 37.1 36.4 35.5 34.5 34.6

G. Calibration Error Analysis
We investigate the mitigation of model collapse by analyzing the issue of overconfidence through model calibration error.
We observe a consistent trend in which the Expected Calibration Error (ECE) tends to increase as the model outperforms
the initial source model (Naeini et al., 2015). Notably, our method maintains a low ECE while achieving low error rates,
emphasizing the practical importance of calibration for reliable and robust adaptation under distribution shifts.

Table 15. Comparison of ECE and error rates on ImageNetC.
ImageNet-C Source Tent SAR ViDA REM

ECE (%) ↓ 5.3 12.6 10.3 14.6 8.7
Error (%) ↓ 55.8 51.0 45.2 43.4 39.2

H. Comparison with Augmentation-based EM approaches
Recent augmentation-based EM methods (Marsden et al., 2024; Lee & Chang, 2024) adopt a variety of stochastic augmenta-
tions, such as color jitter and random affine transformations, similar to CoTTA and its variants. In contrast, our method
introduces an interpretable and sample-specific augmentation scheme based on structured masking. By designing a ranked
prediction distribution, we progressively refine the model’s predictions while preserving the relative ranking, offering an
intuitive and effective adaptation mechanism. ROID and CMT, like EATA, incorporate the Active Sample Criterion (ASC),
which omits the backward pass for inaccurately predicted samples by setting their loss to zero. When ASC is applied to our
method, it achieves a similar level of computational efficiency. As shown in Table 16, REM with ASC reduces inference time
while maintaining competitive error rates. While ASC-based methods enable efficient adaptation by selectively updating on
confident samples, our main objective is to leverage the entire set of test samples. Instead of discarding uncertain predictions,
REM aims to reduce domain dependency at test time by enforcing a clear intra-image predictive structure, thereby enhancing
robustness against unpredictable domain shifts.

Table 16. Comparison of total adaptation time and error rate on ImageNetC.
Method ROID CMT REM (N=1) REM (N=1, ASC)

Time 9m33s 9m38s 11m47s 9m22s
Error (%) 41.4 40.7 39.5 39.7
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I. Failure Case Analysis
We analyze the discrepancy between the outputs of original and masked images using Total Variation Distance (TVD)
in Table 17, focusing on two domains where our method achieved significant performance improvements (Gaussian and Shot
noise) and two domains where it showed relatively lower performance (Brightness and JPEG). Interestingly, the domains
with successful performance gains, e.g., Gaussian and Shot noise, exhibited larger differences in the predicted probability
distributions with and without masking. One possible interpretation is that, for relatively easier domains, a small discrepancy
between the predicted distributions of the original and masked images may lead to a low loss, which in turn could reduce the
adaptation speed. This observation suggests that dynamically adjusting the loss magnitude based on the estimated domain
gap may further enhance the adaptation performance. In particular, incorporating an adaptive loss weighting scheme could
help balance learning across domains of varying difficulty. We consider this a promising direction and leave its detailed
exploration for future work.

Table 17. Total Variation Distance (TVD) for the first and last 50% samples under various corruptions on CIFAR100C.
CIFAR100C Gaussian Shot Brightness Jpeg

TVD (first 50%) 5.54± 1.36 3.44± 1.38 1.69± 0.45 2.90± 0.95
TVD (last 50%) 5.03± 1.38 3.82± 0.69 1.55± 0.41 2.59± 0.78

J. Hyperparameter Sensitivity Analysis
REM incorporates three hyperparameters: the masking ratio MN in Equation (3), the margin m in Equation (4), and the
weighting coefficient λ in Equation (5). We provide an ablation study on the masking ratio in Table 18. Although the
best performance is achieved when N = 3, we adopt the combination MN = {0, 5%, 10%} to strike a balance between
computational complexity and accuracy. Moreover, Figure 12 presents the results of a grid search over all hyperparameters,
reporting the mean error across all domains in the ImageNet-to-ImageNetC benchmark. The experimental results indicate
that our method exhibits low sensitivity to hyperparameter variations. Based on these results, we set λ = 1 and m = 0 for
the CTTA experiments.

Table 18. Mean error rate (%) for different masking ratios MN on
ImageNetC

MN M1 M2 M3

+5% {0, 5%} {0, 5%, 10%} {0, 5%, 10%, 15%}
Error 40.6% 39.4% 38.9%

+10% {0, 10%} {0, 10%, 20%} {0, 10%, 20%, 30%}
Error 39.7% 39.2% 39.4%

+15% {0, 15%} {0, 15%, 30%} {0, 15%, 30%, 45%}
Error 39.5% 39.4% 40.0%

Figure 12. Hyperparameter sensitivity analysis
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