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ABSTRACT

Hypergraph Neural Networks (HGNNs) have recently attracted much attention
and exhibited satisfactory performance due to their superiority in high-order cor-
relation modeling. However, it is noticed that the high-order modeling capability
of hypergraph also brings increased computation complexity, which hinders its
practical industrial deployment. In practice, we find that one key barrier to the
efficient deployment of HGNNs is the high-order structural dependencies during
inference. In this paper, we propose to bridge the gap between the HGNNs and
inference-efficient Multi-Layer Perceptron (MLPs) to eliminate the hypergraph
dependency of HGNNs and thus reduce computational complexity as well as im-
prove inference speed. Specifically, we introduce LightHGNN and LightHGNN+

for fast inference with low complexity. LightHGNN directly distills the knowl-
edge from teacher HGNNs to student MLPs via soft labels, and LightHGNN+

further explicitly injects reliable high-order correlations into the student MLPs
to achieve topology-aware distillation and resistance to over-smoothing. Exper-
iments on eight hypergraph datasets demonstrate that even without hypergraph
dependency, the proposed LightHGNNs can still achieve competitive or even bet-
ter performance than HGNNs and outperform vanilla MLPs by 16.3 on average.
Extensive experiments on three graph datasets further show the average best per-
formance of our LightHGNNs compared with all other methods. Experiments
on synthetic hypergraphs with 5.5w vertices indicate LightHGNNs can run 100×
faster than HGNNs, showcasing their ability for latency-sensitive deployments.

1 INTRODUCTION

Compared to the graph with pair-wise correlation, the hypergraph is composed of degree-free hyper-
edges, which have an inherent superior modeling ability to represent those more complex high-order
correlations. Therefore, many Hypergraph Neural Networks (HGNNs) Feng et al. (2019); Gao et al.
(2022); Dong et al. (2020) have been proposed in the vertex classification of citation networks Bai
et al. (2021); Yadati et al. (2019), the recommendation in user-item bipartite graphs Xia et al. (2022);
Ji et al. (2020), link prediction in drug-protein networks Saifuddin et al. (2023); Ruan et al. (2021),
and multi-tissue gene expression imputation Viñas et al. (2023); Murgas et al. (2022). However,
for large-scale industrial applications, especially for those big-data, small-memory, and high-speed
demand environments, the Multi-Layer Perceptrons (MLPs) remain the primary workhorse. The
main reason for such an academic-industrial gap for HGNNs is the dependence on the hypergraph
structure in inference, which requires large memories in practice. Consequently, as the scale of the
hypergraph and the number of layers of HGNNs increase, the inference time will also exponentially
increase, as shown in Figure 1(c), limiting the potential usage of this type of method.

The hypergraph dependence of HGNNs is caused by the high-order neighbor fetching in message
passing of vertex-hyperedge-vertex. On the one hand, some GNNs-to-MLPs methods like Graph-
Less Neural Networks (GLNN) Zhang et al. (2021) and Knowledge-inspired Reliable Distillation
(KRD) Wu et al. (2023) are proposed to distill the knowledge from GNNs to MLPs to eliminate the
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(a) Accuracy vs. Memory. (b) Accuracy vs. Runtime. (c) Runtime vs. Hypergraph Scale

Figure 1: Performance and efficiency comparison. (a) and (b) are run on the IMDB-AW hypergraph
dataset. (c) provides the inference time comparison on a series of synthetic hypergraph datasets.

graph dependency. Those methods Zhang et al. (2021); Wu et al. (2023) either distill the knowledge
by the soft label of teacher GNNs or pull the distance of reliable vertices via pair-wise edge as
the extra supervision. Unlike the pair-wise edge in the graph, each hyperedge in the hypergraph
can connect more than two vertices. The hypergraph neighborhood is more complex and defined
in a hierarchical paradigm Gao et al. (2022). Those GNNs-to-MLPs methods cannot address the
high-order correlation in the hypergraph. On the other hand, compared with the HGNNs, the MLPs
method performs worse (about averaged 16 decline) on hypergraph datasets, as shown in Tab 1, yet
has no dependency on hypergraph structure among batched samples and can be deployed to process
any scale of the hypergraph. Upon the above observations, we ask: Can we fix the gap between MLPs
and HGNNs to achieve hypergraph dependency-free inference and topology-aware distillation?

Present Work. In this paper, we proposed the LightHGNN and LightHGNN+ to eliminate the de-
pendence on the hypergraph in the inference of HGNNs and achieve running fast and consuming
low memory like MLPs and performing as well as HGNNs as shown in Figure 1(a) and 1(b). The
LightHGNN directly distills the knowledge from the teacher HGNNs into the student MLPs with
the classical soft label Hinton et al. (2015) of the teacher. The LightHGNN+ further develops a
topology-aware knowledge distillation supervised by both the soft labels and the proposed high-
order soft labels. To generate the high-order soft labels, we first quantify the reliability of hyper-
edges by the resistance to noise to generate a reliable hyperedge set. Then, the high-order soft labels
can be generated via propagating those soft labels from vertex to hyperedge on those sampled reli-
able hyperedges. The proposed high-order soft-label constraint can explicitly inject the high-order
topology knowledge from those reliable hyperedges into the student MLPs. We further design the
topology-aware score to quantify the relevance of features and the topology, which is the main con-
sequence of over-smoothing Cai & Wang (2020). The results indicate the proposed topology-aware
distillation can effectively resist the over-smoothing on both graphs and hypergraphs.Experiments
on 11 graph and hypergraph datasets demonstrate the effectiveness of our LightHGNNs compared
to GNNs, HGNNs, and GNNs-to-MLPs. Experiments on eight hypergraph datasets indicate that the
proposed LightHGNNs can significantly outperform the MLPs with averaged 16.3 improvements
and only have a slight performance decline of 0.39 compared to the HGNN. Experiments on the
synthetic hypergraph datasets indicate that LightHGNNs run 100× faster than the HGNN and can
potentially deploy in the large-scale hypergraph dataset. Our main contributions are as follows:

• We propose the LightHGNNs to bridge the gap between MLPs and HGNNs to achieve
hypergraph dependency-free inference and topology-aware distillation.

• We design the reliable hyperedge quantification and sampling strategy to achieve topology-
aware distillation, which can explicitly inject reliable high-order knowledge into student
MLPs and achieve an averaged 16.3 performance gain compared to the vanilla MLPs.

• We develop the topology-aware score to quantify the over-smoothing phenomenon from the
relevance of features and topology perspective and demonstrate the proposed LightHGNN+

can effectively resist over-smoothing.
• We show that the proposed LightHGNNs can run 100x faster than the HGNN, which can

be easily deployed in latency-constrained applications.

2 RELATED WORK

Hypergraph Neural Networks. The early HGNNs are defined upon the spectral domain like
HGNN Feng et al. (2019) and HpLapGCN Fu et al. (2019), which conduct the feature smoothing
via the hypergraph Laplacian matrix. Yadati et al. (2019) propose the HyperGCN, which designs a
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strategy to reduce the hypergraph to graphs and further employ the GNNs Kipf & Welling (2017) to
learn the representations. Besides, a series of spatial-based hypergraph convolutions are proposed,
like the vertex-hyperedge attention mechanism (Bai et al., 2021), dynamic hypergraph construction
(Jiang et al., 2019), and two-stage message passing (Gao et al., 2022; Dong et al., 2020).

GNNs-to-MLPs Distillation. To enjoy the efficiency and effectiveness of MLPs and GNNs,
GLNN (Zhang et al., 2021) directly utilizes the prediction distribution of teacher GNNs as the soft
target to supervise the student MLPs, which ignores the topology of the original graph in distilla-
tion. Yang et al. (2021) extracts the knowledge of an arbitrary learned GNN model (teacher model)
and injects it into a well-designed student model to achieve more efficient predictions. KRD (Wu
et al., 2023) further quantifies the knowledge of each vertex and pulls the distance between it and
its neighbors.Existing methods are constrained in the low-order graph neural networks. In contrast,
this paper aims to bridge the hypergraph neural networks and MLPs and design topology-aware
distillation, injecting reliable high-order knowledge into MLPs for faster inference than HGNNs.

3 PRELIMINARIES

Notions and Problem Statement. Let G = {V, E} be a hypergraph, set V and E denote the vertex
set and hyperedge set, respectively. N = |V| and M = |E|. Each vertex vi is associated with a
feature vector xi, and the overall vertex feature matrix is denoted by X = [x1,x2, · · · ,xN ] ∈
RN×c. In practice, the hypergraph can be represented by an incidence matrix H ∈ {0, 1}N×M ,
where the row and column denote the vertices and hyperedges, respectively. H(v, e) = 1 denotes
the vertex v belongs to the hyperedge e. Besides, Y = {yv | v ∈ V} denotes the vertex label set.
Consider a semi-supervised vertex classification task, the vertex set V is divided into two sub-sets:
labeled data DL = (VL,YL) and the unlabeled data DU = (VU ,YU ). The task aims to learn a map
ϕ : V → Y , which can be used to predict the label of those unlabeled vertices.

Hypergraph Neural Networks (HGNNs). HGNN is defined based on the hypergraph Laplacian
matrix, and its eigenvectors are treated as the Fourier bases for a given signal x. Furthermore, the
Chebyshv polynomial Defferrard et al. (2016) is adopted for the convenience of computation. Then,
the HGNN can be defined as: X l+1 = σ(D

−1/2
v HWD−1

e H⊤D
−1/2
v XtΘ), where Dv and De

are the diagonal matrix of the degree of vertices and hyperedges, respectively. W is the diagonal
matrix of the weight of hyperedges, and Θ is the trainable parameters.

4 METHODOLOGY

In this section, we introduce LightHGNN and LightHGNN+. Then, we provide the complexity
analysis and discuss the relationship to existing GNNs-to-MLPs methods.

4.1 LIGHTHGNN: SOFT-TARGET GUIDED HGNNS DISTILLATION

To boost the inference performance in real-world deployment, we propose the soft-target guided
HGNNs distillation, named LightHGNN, which directly distills the knowledge of HGNNs into the
MLPs. Motivated by the Knowledge Distillation (KD) Hinton et al. (2015) and GNNs-to-MLPs
methods Zhang et al. (2021); Wu et al. (2023), we adopt the MLPs as the student network and
the well-trained HGNNs as the teacher network, and distills the knowledge with the combination
objective LDH of the Cross-Entropy loss Lce and the Kullback-Leibler Divergence loss as follows:

LDH = λ
1

|VL|
∑
v∈VL

Lce(ŷ
s
v,yv) + (1− λ)

1

|V|
∑
v∈V

DKL(ŷ
s
v, ŷ

t
v), (1)

where yv is the one-hot encoded label of vertex v. Vector ŷt
v and ŷs

v are the softmax normalized
prediction of vertex v from the teacher HGNNs and student MLPs, respectively. Note that the first
term of the LDH only computes the typical cross-entropy loss on labeled set VL. The second term
pulls the distance between the soft target of teacher HGNNs and the prediction distribution of student
MLPs on the vertex set V . The hyper-parameter λ is adopted to balance the two terms. The model
essentially is the MLPs with cross-entropy and soft target supervision. Thus, LightHGNN has no
dependency on the hypergraph structure and, during inference, runs as fast as MLPs.
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Figure 2: The framework of the proposed Distilled Hypergraph Neural Networks (LightHGNN+).

4.2 LIGHTHGNN+: RELIABLE HYPEREDGE GUIDED TOPOLOGY-AWARE DISTILLATION

The LightHGNN simply injects the soft-target information into the student MLPs and ignores the
high-order correlations from the original hypergraph. Therefore, we further propose the topology-
aware distillation, named LightHGNN+, as illustrated in Figure 2. In the figure, the left part is the
offline training stage, and the right part is the online deployment with the distilled MLPs. The top of
the left part is the teacher HGNNs, which takes the vertex features and the hypergraph structure as
inputs and is supervised by the true label of these labeled vertexes. The bottom of the left part is the
student MLPs, which only use the vertex features as input. It is supervised by the true label of the
labeled vertices, the soft target of the output of the teacher HGNNs, and the high-order soft target
of those reliable hyperedges. In the following, we will introduce how to qualify the reliability of
hyperedges, the probability model of sampling reliable hyperedges, the extra high-order soft target
constraint for the distillation, and the loss function of the proposed LightHGNN+.

4.2.1 RELIABLE HYPEREDGE QUALIFICATION

Hyperedges, as the core of a hypergraph, can represent the high-order correlation among vertices.
However, not all hyperedges can provide reliable information for the downstream task. Thus, we
develop an entropy-based reliable hyperedge qualification method to quantify the relevance of
the hyperedge to the task. as depicted in Figure 3. Given the well-trained teacher HGNNs fθ :
(X,H) → Y , we add noise ϵ on the input features and measure the invariance of the hyperedge
entropy to determine the reliability of hyperedges, as follows:

δe = E
ϵ∼N (µ,Σ)

∣∣∣∣∣
∣∣∣∣∣ 1|e|∑

v∈e

H(ŷ′
v)−

1

|e|
∑
v∈e

H(ŷv)

∣∣∣∣∣
∣∣∣∣∣
2

where Y ′ = fθ(ϵX,H) and Y = fθ(X,H)

, (2)

where H(p) = −
∑

i pi log(pi) is the information entropy. Given a hyperedge, we calculate the
average entropy of its connected vertices’ prediction distribution. The variance δe of the average
entropy of the hyperedge after introducing the noise ϵ ∼ N (µ,Σ) is used to compute the hyper-
edge’s reliable score ρe. The larger value of δe indicates the hyperedge is more sensitive to the
noise perturbation in the downstream task. Then, we normalize the δe with the max value and
compute the reliable score of hyperedge with ρe = 1− δe

δmax
. Clearly, the ρe measures the robustness

of hyperedge e connected vertices of teacher HGNNs to noise perturbation and reflects the reliabil-
ity of hyperedge with respect to the downstream task. Those hyperedges with higher reliable scores
containing robust knowledge should be paid more attention in the distillation process.

4.2.2 SAMPLING PROBABILITY MODELING AND HIGH-ORDER SOFT-TARGET CONSTRAINT

To fully use those hyperedge reliable scores, we propose a sampling probability modeling for hy-
peredge selection and develop high-order soft target constraint as an additional supervision for high-
order topology-awareness distillation as shown in Figure S1. Here, the Bernoulli distribution is
adopted to model the hyperedge sampling as: p(si | ρei) ∼ Bernoulli(ρei) and ei ∈ E , where si
is the sampling probability of the hyperedge ei ∈ E . Given the hypergraph G = {V, E}, a sub-set,
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Figure 3: The illustration of reliable hyperedge qualification.

named reliable hyperedge set E ′, is drawn with independent Bernoulli distribution by the specific
parameter ρe for each hyperedge, as shown in Figure S1 (a) (Appendix). Each hyperedge may con-
tain vertices from different categories in the hypergraph and have the unique property behind the
high-order correlation. Directly distilling the knowledge from the vertex’s soft target may lose the
crucial high-order correlation information. Thus, we propose constructing the high-order soft target
via the vertex’s soft target and those reliable hyperedges to inject the reliable high-order infor-
mation into the distilled MLPs, as shown in Figure S1 (b) (Appendix). Given the soft target set
{yt

v | v ∈ V} and reliable hyperedge set E ′, the high-order soft target can be computed via a naive
message passing from vertex to hyperedge as follows:

zs
e =

1

|e|
∑

v∈Nv(e)

ŷs
v and yt

e =
1

|e|
∑

v∈Nv(e)

ŷt
v for e ∈ E ′, (3)

where Nv(e) denotes a set of the connected vertices of the hyperedge e. yt
e and zs

e denote the
high-order soft target and the predicted high-order distribution, respectively. Then, the additional
high-order soft-target constraint can be achieved by the KD Divergence as follows:

Lhc =
1

|E ′|
∑
e∈E′

ei∼p(si|ρei
)

DKL(α(z
s
e/τ), α(y

t
e/τ)), (4)

where α(·) is the Softmax function for normalization, and τ is the distillation temperature coeffi-
cient. The Lhc is designed to pull the distance between the predicted high-order distribution of the
student MLPs and the high-order soft label of the teacher HGNNs. By minimizing the Lhc, the dis-
tilled MLPs can reserve more reliable high-order information to achieve better performance. Finally,
the total loss function of LightHGNN+ is formulated as follows:

LDH+ = λ
1

|VL|
∑
v∈VL

Lce(ŷ
s
v,yv) + (1− λ)

(
1

|V|
∑
v∈V

DKL(ŷ
s
v, ŷ

t
v) + Lhc

)
, (5)

where λ is a hyper-parameter to balance the information from the true labels (yv) and teacher
HGNNs (the soft targets ŷt

v and high-order soft targets yt
e). Note that the supervision informa-

tion of the true labels is on the labeled vertex set VL. The supervision information of soft targets
and high-order soft targets are on the entire vertex set V and reliable hyperedge set E ′, respectively.

4.3 ANALYSIS

Time Complexity Analysis. The pseudo-code of LightHGNN+ framework is in Appendix A. The
training of LightHGNNs can be divided into two steps: pre-training the teacher HGNNs and distill-
ing knowledge into student MLPs, which are supervised by the cross-entropy loss and distillation
loss, respectively. The training and inference complexity comparison is provided in Appendix B.

Relation to GNNs-to-MLPs Methods. We further discuss the relationship between the proposed
method and the related GNNs-to-MLPs methods Zhang et al. (2021); Wu et al. (2023). The Graph-
Less Neural Networks (GLNN) Zhang et al. (2021) proposes using the soft label of the teacher
GNNs to supervise the student MLPs. Compared to it, our LightHGNN is a simple extension from
GNNs to HGNNs. However, our LightHGNN+ further proposes the high-order soft label to help
the student MLPs learn more high-order structure information from the teacher HGNNs. As for
the Knowledge-inspired Reliable Distillation (KRD) Wu et al. (2023), its student MLPs can only be
supervised by the soft label from those reliable vertices (knowledge point in their paper), which still
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lose the structure information and cannot be utilized in the hypergraph. However, our LightHGNN+

can quantify the reliability of the high-order correlations and inject the reliable high-order infor-
mation into the student MLPs via explicit supervision from high-order soft labels of those reliable
hyperedges. The proposed LightHGNN+ can sufficiently take advantage of both the vertex features
and high-order structure information, thus yielding better performance and faster inference speed.

5 EXPERIMENTS

Datasets, Compared Methods, and Settings. In our experiments, we adopt three typical graph
datasets: Cora Sen et al. (2008), Pubmed McCallum et al. (2000), and Citeseer Giles et al. (1998),
and eight hypergraph datasets: News20 Asuncion & Newman (2007), CA-Cora, CC-Cora, CC-
Citeseer Yadati et al. (2019), DBLP-Paper, DBLP-Term, DBLP-Conf Sun et al. (2011), and IMDB-
AW Fu et al. (2020). More details of the datasets are in Appendix C. We compare three types of
methods: GNNs (including GCN Kipf & Welling (2017) and GAT Velickovic et al. (2017)), HGNNs
(including HGNN Feng et al. (2019), HGNN+ Gao et al. (2022), and HNHN Dong et al. (2020)),
GNNs-to-MLPs (including GLNN Zhang et al. (2021), KRD Wu et al. (2023) and NOSMOG Tian
et al. (2022)). We adopt two experimental settings for sufficient comparison, including the trans-
ductive and production settings. The transductive is a classical setting for vertex classification on
graph/hypergraph datasets. The production setting contains both the transductive and inductive pre-
dictions, which is developed to evaluate the performance towards realistic deployment. More details
about the two settings and splitting of different datasets are provided in Appendix D. We run 5 times
with different random seeds for each experiment and report the average and standard deviation. The
hyper-parameter configuration of each method is provided in Appendix E.

Table 1: Experimental results on eight hypergraph datasets under transductive setting.
Dataset MLP HGNN LightHGNN LightHGNN+ ∆MLP ∆HGNN

News20 63.53±2.70 75.94±0.66 76.25±0.32 75.87±0.38 12.72 +1.70
CA-Cora 51.86±1.47 73.19±1.12 73.63±5.14 73.54±3.80 21.76 +0.44
CC-Cora 49.87±1.38 68.21±3.68 69.25±3.46 69.48±3.04 19.61 +1.27
CC-Citeseer 51.79±2.59 63.37±2.63 62.97±3.53 63.01±2.76 11.27 −0.30
DBLP-Paper 62.84±1.58 72.27±0.91 72.74±1.07 72.93±0.97 10.09 +0.66
DBLP-Term 62.84±1.58 82.01±2.27 80.27±0.91 80.77±0.68 17.93 −1.23
DBLP-Conf 62.84±1.58 94.07±0.13 90.23±0.58 90.24±0.71 27.40 −3.83
IMDB-AW 40.87±1.43 50.47±1.66 50.19±1.56 50.78±1.92 9.90 +0.30

Avg. Rank/Avg. 4.0 1.7 2.4 1.8 16.33 −0.29

5.1 HOW DO LIGHTHGNNS COMPARE TO MLPS AND HGNNS?

We start by comparing the LightHGNNs to MLPs and HGNNs on eight hypergraph datasets under
standard transductive learning. As shown in Table 1, the performance of LightHGNNs improves
over MLPs by large margins of about averaged 16.3. Compared with the HGNN, the proposed
LightHGNNs exhibit a slight performance degradation of about 0.29. Besides, we observe that the
proposed LightHGNN+ obtains seven times the best or second-best performance and ranks very
close to the teacher HGNN on eight hypergraph datasets. However, the LightHGNNs adopt the
same architecture as MLPs without hypergraph dependency. The experimental results demonstrate
the effectiveness of distilling the knowledge from teacher HGNNs to student MLPs. We attribute
the improvement of LightHGNN+ to the devised topology-aware distillation, which can further ex-
tract those reliable hyperedges and explicitly inject the reliable topology knowledge into the student
MLPs, thus yielding better performance than the LightHGNN without topology distillation.

In real-world applications, not all samples can be seen in the training phase. Thus, to fully validate
the performance of the proposed methods confronting realistic deployment, we adopt a more general
setting: the production setting, which contains both transductive and inductive prediction. More de-
tails can be found in Appendix D. As shown in Table 2, we see that the LightHGNNs still outperform
MLPs by large margins of about 14.8. However, we also notice the distinct margin of the HGNN
and LightHGNNs under the inductive setting, especially on the DBLP-Conf dataset, about 11% de-
cline. This is because the dataset only contains 20 hyperedges with averaged linking 982.2 vertices,
which leads to a high dependency on the topology of the prediction. In the inductive setting, HGNN
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Table 2: Experimental results on eight hypergraph datasets under production setting.
Dataset Setting MLPs HGNN LightHGNN LightHGNN+ ∆MLP ∆HGNN

News20
Prod. 63.86±3.01 75.18±1.65 75.81 ±1.28 74.56±1.34 11.95 +0.63
Tran. 63.80±3.03 75.08±1.44 75.81±1.23 74.58±1.24 12.01 +0.73
Ind. 64.10±2.97 75.13±2.01 75.82±1.61 75.44±1.94 11.71 +0.68

CA-Cora
Prod. 50.73±1.43 71.01 ±3.19 70.33±3.49 71.46±2.13 20.72 +0.45
Tran. 50.75±1.64 70.80±3.25 71.62±4.29 72.49±2.13 21.73 +1.68
Ind. 50.67±1.44 70.83±2.83 65.14±2.95 67.34±3.36 16.67 −3.48

CC-Cora
Prod. 50.73±1.43 68.20±3.89 68.29±4.47 67.89±3.58 17.55 +0.09
Tran. 50.75±1.64 68.26±3.92 69.00±4.16 68.70±3.32 18.24 +0.73
Ind. 50.67±1.44 66.00±4.55 65.46±5.87 64.61±4.69 14.79 −0.53

CC-Citeseer
Prod. 54.41±1.36 64.02±0.92 62.90±1.95 64.11±0.85 9.69 +0.09
Tran. 54.42±1.52 63.74±0.75 63.30±1.92 64.53±0.63 10.10 +0.79
Ind. 54.36 ±1.14 63.51±1.34 61.31±2.21 61.93±2.01 7.56 −1.58

DBLP-Paper
Prod. 63.23±1.48 71.52±1.31 71.14±1.23 71.69±1.44 8.46 +0.16
Tran. 62.97±1.69 70.75±1.49 70.88±1.29 71.40±1.50 8.42 +0.65
Ind. 64.25±1.75 72.72±2.32 72.22 ±2.08 72.86 ±2.33 8.61 +0.14

DBLP-Term
Prod. 63.56±1.15 81.08±2.51 78.39±3.22 78.32±2.70 14.83 −2.69
Tran. 63.37±1.17 81.23±2.39 78.54±3.08 78.58±2.73 15.21 −2.64
Ind. 64.30±1.50 81.56±2.75 77.79±4.15 77.28±3.29 13.48 −3.77

DBLP-Conf
Prod. 63.56±1.15 94.15±0.19 89.48±0.52 89.50±0.49 25.94 −4.64
Tran. 63.37±1.17 94.08±0.32 91.12±0.76 91.20±0.74 27.83 −2.87
Ind. 64.30±1.50 94.21±0.52 82.93±1.15 82.68±0.57 18.62 −11.27

IMDB-AW
Prod. 41.05±2.49 50.29±1.58 49.10±1.64 49.12±2.02 8.05 −1.17
Tran. 41.16 ±2.67 49.46±1.43 49.39±1.63 49.68±1.86 8.51 +0.21
Ind. 40.61 ±1.95 52.05±2.68 47.96±2.12 47.58±3.21 7.35 −4.08

Avg. Rank/Avg. 4.0 1.5 2.3 1.9 14.86 −1.45

can utilize the extra topology information of those unseen vertices (unseen topology) to support the
prediction, while LightHGNN cannot. Therefore, the LightHGNN shows a distinct performance
decline. It is essential to distill the general topology knowledge and learn the topology-aware ability
towards the unseen topology under the inductive setting, which can be exploited in further work.

5.2 HOW DO LIGHTHGNNS COMPARE TO GNNS AND GNNS-TO-MLPS?

We further compare LightHGNNs to existing GNNs and GNNs-to-MLPs on both graph and hy-
pergraph datasets. More details of the experimental setting are in Appendix F. As shown in Table
3, unlike the results on pure hypergraph datasets (Tables 1 and 2), the LightHGNN+ achieves the
average first place, which outperforms MLPs, GNNs, HGNNs, and GNNs-to-MLPs methods. The
LightHGNNs show comparable performance to HGNNs in the hypergraph datasets while showing
better performance in the graph datasets. This is because the topology-aware distillation can adap-
tively select the task-relevant low-order and high-order structures as extra supervision. As demon-
strated in HGNN+ Gao et al. (2022), explicitly modeling those potential high-order structures can
improve the model’s performance, especially those graph datasets lacking high-order correlations.

Table 3: Experimental results on graph and hypergraph datasets.
Type Model Graph Datasets Hypergraph Datasets Avg.

Cora Pubmed Citeseer CA-Cora DBLP-Paper IMDB-AW Rank

MLPs MLP 49.64±1.13 66.05±2.78 51.69±2.08 51.86±1.47 62.84±1.58 40.87±1.43 10.0

GNNs GCN 79.90±1.75 77.54±1.63 69.58±1.89 72.82±1.70 72.02±1.43 50.62±1.44 5.3
GAT 78.35±2.24 76.54±1.56 69.38±2.33 70.73±1.75 72.53±1.15 49.55±1.82 7.7

HGNNs HGNN 80.04±1.42 76.93±1.38 69.89±1.94 73.19±1.12 72.27±0.91 50.47±1.66 5.3
HGNN+ 78.75±1.44 77.54±1.63 69.15±2.08 72.79±1.28 73.05±1.69 50.67±1.75 5.2

GNNs-to-MLPs
GLNN 80.93±1.90 78.36±1.99 69.88±1.66 72.19±3.83 72.50±1.62 50.48±1.51 4.3
KRD 79.47±1.73 78.72±1.94 69.82±3.36 71.75±3.53 72.85±6.76 49.65±2.12 5.5

NOSMOG 80.12±0.91 80.42±0.33 70.86±3.53 68.96±7.34 71.47±2.13 48.96±1.43 5.5

HGNNs-to-MLPs LightHGNN 80.36±2.06 79.15±1.57 69.17±3.27 73.63±5.14 72.74±1.07 50.19±1.56 4.2
LightHGNN+ 80.68±1.74 79.16±1.37 70.34±1.95 73.54±3.80 72.93±0.97 50.78±1.92 1.8
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5.3 HOW FAST ARE LIGHTHGNNS COMPARED TO MLPS AND HGNNS?

In the deployment environment, the timeliness of the model is crucial. A good model can achieve
higher performance in less time. Thus, we conduct three experiments for the performance and effi-
ciency comparison as shown in Figure 1. Figures 1(a) and 1(b) show the comparison of accuracy vs.
memory and runtime on the IMDB-AW dataset, respectively. The suffixes “-w32” and “-L3” repre-
sent the dimension of the hidden feature and the number of layers of the model, respectively. The
upper left is the ideal model with lowe memory, less time, and high accuracy. Obviously, the MLPs
runs faster and cost lower memory but has lower accuracy. In contrast, the HGNN performs better
but runs slower and consumes more memory. The proposed methods bridge the gap between MLPs
and HGNN and have advantages in memory, runtime, and accuracy, as shown in the upper left of
the two figures. Considering that the IMDB-AW only contains 4278 vertices and 5257 hyperedges,
we further generate a series of larger hypergraphs to investigate how fast the proposed LightHGNNs
compared to the HGNNs, as shown in Figure 1(c). The x-coordinate with the log scale represents
the number of vertices in the hypergraph, and the y-coordinate indicates the inference time of dif-
ferent models. Obviously, under logarithmic scaling of the hypergraph, the runtime of HGNN and
HGNN+ increases exponentially in time complexity, while the proposed LightHGNNs still run very
fast (100× faster in the hypergraph with 5.5w vertices compared to the HGNN) and exhibit robust
linear time complexity. More details of the three experiments can be found in Appendix G.

5.4 HOW LIGHTHGNN+ BENEFITS FROM TOPOLOGY-AWARE DISTILLATION?

As shown in Tables 1, 2 and 3, GNNs and HGNNs significantly outperform the MLPs on the
vertex classification task, and LightHGNN exhibits comparable performance to them. With extra
topology-aware distillation, LightHGNN+ is often better than LightHGNN. We further investigate
how LightHGNN+ benefits from topology-aware distillation. As we all know, GNNs and HGNNs
often suffer from over-smoothing Cai & Wang (2020); Chen et al. (2022), which means the higher
relevance of the vertex features and the topology. This is because that task-irrelevant information
Wu et al. (2020); Zhang et al. (2022), including connections and features, will amplify the noise
on vertices as layers go deeper. In our topology-aware distillation, only a few task-relevant hyper-
edges are selected to inject reliable topology knowledge into the student MLPs. Here, we design a
topology-aware score S to measure the relevance of features and hypergraph typology as:

S =
1

|E|
∑
e∈E

∑
v∈e ||xv − xe||2

de(e)
and xe =

1

de(e)

∑
v∈e

xv, (6)

where xv and xe are the embeddings of vertex v and hyperedge e, respectively. The de(e) denotes
the degree of the hyperedge e. The vertex embedding is the output of the first convolution layer,
and the hyperedge embedding is calculated by aggregating the embedding of its connected vertices.
Then, the topology-aware score measures the average distance of vertex and hyperedge. The lower
score indicates the vertex feature is closer in each hyperedge and more relevant to the topology. The
higher score indicates a lower relevance to the topology.

Table 4: The topology-aware score comparison in graph and hypergraph datasets.

Model Graph Datasets Hypergraph Datasets Avg.Cora Pubmed Citeseer CA-Cora DBLP-Paper IMDB-AW

MLPs 3.78 2.06 2.64 2.76 1.02 1.18 2.24
GCN 0.25 0.32 0.09 0.08 0.12 0.08 0.15
HGNN 0.31 0.27 0.13 0.10 0.12 0.04 0.16
LightHGNN 1.20 1.50 0.33 0.94 0.69 0.71 0.89
LightHGNN+ 1.58 1.95 0.64 1.15 0.73 0.77 1.14

The topology-aware scores of different models on graph and hypergraph datasets are shown in Table
4. Since the vanilla MLPs do not utilize the topology structure, its topology-aware score is the upper
bound of all models. In contrast, the GCN and HGNN explicitly smooth the vertex with neighbors on
the graph/hypergraph, which is the lower bound of all models. The proposed LightHGNNs achieve
a trade-off score since the HGNNs is the teacher and the MLPs is the architecture. We notice that
the LightHGNN+ obtains a higher score than the LightHGNN, which indicates that learned vertex
embeddings have lower topology relevance to the hypergraph. In the topology-aware distillation,
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those reliable hyperedges are selected by the high resistance to the noise, which is more relevant
to the task than those hyperedges with lower reliable scores. Thus, the LightHGNN+ can resist
the over-smoothing of features and topology, thus yielding better performance than LightHGNN. In
Appendix K, we further provide visualization to demonstrate that the LightHGNN+ will pull those
vertices in hyperedges with higher reliable scores than those with lower scores.

5.5 ABLATION STUDIES

In this subsection, we conduct four ablation studies of the proposed LightHGNNs on the DBLP-
Paper dataset as shown in Figure 4. We also provide extra ablation studies on the inductive ratio
under production setting (Appendix I) and distillation with different teacher HGNNs (Appendix H).

(a) On noise of features. (b) On training split. (c) On λ of LDH/LDH+ . (d) On τ of LDH+ .

Figure 4: Experimental results of ablation studies.

On noise of vertex features. We investigate the robustness by adding Gaussian noise on the vertex
features X: X̃ = (1 − α)X + αϵ, where ϵ ∼ N (0, 0.01). The model is trained with the original
feature X and evaluated with the noise feature X̃ . As shown in Figure 4(a), the LightHGNNs
achieve the middle performance between MLPs and HGNN. When given a small noise ratio, the
LightHGNNs is still better than HGNN. As the noise ratio rises, the performance of LightHGNNs
is marching to that of MLPs. This is because the HGNN has an extra hypergraph structure as input,
while MLPs and LightHGNNs rely only on the vertex features to make predictions. As the noise
ratio rises, the input information will be submerged in the noise, which leads to worse performance.

On training split under the transductive setting. In Figure 4(b), we show the ablation study on
the number of training samples under the transductive setting. The number of training samples for
each class varies from 5 to 500. Obviously, LightHGNNs exhibits competitive performance with
the HGNN and has significant advantages over MLPs. As for 5 training samples for each class, the
margin between HGNN and MLPs is about 12%. Nevertheless, for 500 training samples for each
class, the margin is only 4%. It indicates that the correlation information can supply the model better
in the few information scenarios.

Hyperparameter sensitivity on λ and τ . In Figures 4(c) and 4(d), we provide the hyperparameter
sensitivity of λ and τ in the loss function of LightHGNNs. The λ balances the weight of supervi-
sion from the true labels and soft labels, respectively. Due to the soft labels from teacher HGNN
containing more information compared with the true labels Hinton et al. (2015), the performance of
LightHGNNs decreases as the weight of the soft label decreases. However, the LightHGNN+ can
still outperform the LightHGNN via the extra high-order soft labels supervision. As for the temper-
ature τ , we find that too large or too small are both detrimental to the distillation. In practice, the
τ = 0.5 often yields pretty good performance, which is set in all datasets for a fair comparison.

6 CONCLUSION

In this paper, we propose LightHGNNs, including LightHGNN and LightHGNN+, to bridge the gap
between MLPs and HGNNs to achieve fast inference with low complexity. We design the reliable
hyperedge quantification and sampling strategy to inject those task-relevant topology knowledge
into the student MLPs. Extensive experiments on 11 real-world graph and hypergraph datasets
indicate our LightHGNNs can achieve competitive performance to HGNNs and GNNs. Besides,
experiments on a series of larger-scale synthetic hypergraph datasets indicate that by eliminating
hypergraph dependency, our LightHGNNs can achieve 100× faster inference, demonstrating the
potential to deploy in realistic latency-constrained applications.
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(a) Sampling Probability Modeling (b) The construction of high-order Soft target.

Figure S1: The illustration of sampling probability modeling and high-order soft target.

A ALGORITHM

In this section, we provide the pseudo-code of the LightHGNN+ framework for better understand-
ing. As shown in Algorithm 1, to achieve HGNNs-to-MLPs knowledge distillation, we first pre-train
the teacher HGNNs via the cross-entropy loss on the labeled vertices. Then, the soft targets and the
hyperedge reliable scores are extracted based on the teacher HGNNs. In each epoch of the training
process of the student MLPs, we sample the reliable hyperedge set from the total hyperedges and
compute the high-order soft-label loss via those reliable hyperedges and the prediction of student
and teacher. The original true label and soft-target supervision are also calculated for the final loss
Lhc of LightHGNN+. After training, the MLPs distilled from the HGNNs can be deployed for the
online fast-inference environment without dependency on hypergraphs.

Algorithm 1 Algorithm of LightHGNN+ Framework.
Input: The hypergraph G = {V, E}, Vertex feature matrix X , Labeled dataset DL = {VL,YL}.

Number of epoch E.
Output: Predicted labels ŶU for unlabeled vertices, Parameters of student MLPs {Θ}Ll=1.

1: Pre-train the teacher HGNNs with label YL.
2: Initialize the parameters {Θ}Ll=1 of student MLPs.
3: {ŷt

v | v ∈ V} ← extract the soft targets via teacher HGNNs.
4: {ρe | e ∈ E} ← reliable hyperedge qualification.
5: t← 0
6: while t < E do
7: t← t+ 1
8: Predict the distribution of vertices {ŷs

v | v ∈ V} via student MLPs.
9: Sample reliable hyperedge set E ′ = {e ∈ E | p(e) ∼ Bernoulli(ρe)} from the original

hyperedge set E .
10: Calculate the high-order soft targets {ŷt

e | e ∈ E ′} of hyperedges in the reliable hyperedge
set via vertices’ soft targets.

11: Calculate the student MLPs’ prediction {ẑs
e | e ∈ E ′} of high-order soft targets of hyper-

edges in the reliable hyperedge set.
12: Calculate the total loss LDH+ of cross-entropy loss, soft-target loss, and high-order soft-

target loss.
13: Update student MLPs’ parameters {Θ}Ll=1 by back propagation.
14: end while
15: return Predicted labels ŶU for unlabeled vertices, Parameters of student MLPs {Θ}Ll=1.
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B TIME COMPLEXITY ANALYSIS

In this section, we provide the time complexity analysis during training and inference for deeper
comparison, as shown in Table S1. In this table, the L and F denote the number of layers and the
dimension of hidden layers, respectively. N and M are the number of vertices and hyperedges. C
indicates the number of categories. Clearly, the MLPs take O(LNF 2) time complexity during the
training and inference. In comparison, the HGNN propagates messages via the N ×N hypergraph
Laplacian matrix, which needs extra O(LN2F ) time complexity. HGNN+ further develops a two-
stage message propagation vertex-hyperedge-vertex, which needs theO(LNMF ) time complexity.

Table S1: The time complexity comparison during training and inference.
MLPs HGNN HGNN+ LightHGNN LightHGNN+

Training O(LNF 2) O(LN2F + LNF 2) O(LNMF + LNF 2) O(LNF 2) O(NMC + LNF 2)
Inference O(LNF 2) O(LN2F + LNF 2) O(LNMF + LNF 2) O(LNF 2) O(LNF 2)

As for the proposed LightHGNN, it takes the same time complexity O(LN2F ) as the MLPs during
the training and inference stage. During training, for better capture the high-order information, the
LightHGNN+ evaluates the reliable score of hyperedges and generates the high-order soft label,
which both need to propagate the label distribution from vertex to hyperedge (O(NMC)). Reliable
hyperedge sampling only needs O(M). Therefore, the LightHGNN+ takes O(NMC + LNF 2)
time complexity for training and runs as fast as MLPs in inference.

C DATASET

We adopt three common-used graph datasets: Cora Sen et al. (2008), Pubmed McCallum et al.
(2000), and Citeseer Giles et al. (1998), and eight hypergraph datasets: News20 Asuncion & New-
man (2007), CA-Cora, CC-Cora, CC-Citeseer Yadati et al. (2019), DBLP-Paper, DBLP-Term,
DBLP-Conf Sun et al. (2011), and IMDB-AW Fu et al. (2020). Table S2 provides the summary
of these datasets. The Cora, Pubmed, and Citeseer are the paper citation networks, where each
vertex denotes a scientific publication, and the label is the paper’s topic. Each paper has a sparse
bag-of-words feature vector and citation relationships among publications represented by corre-
sponding edges. As for the hypergraph datasets, the CA-Cora, CC-Cora, and CC-Citeseer are also
the publication datasets, where the vertices that are co-authored (CA) by an author or co-cited (CC)
by a publication are connected in one hyperedge. The label of the vertex is also the topic of the
publication. The authors are the vertices in the three hypergraphs: DBLP-Paper, DBLP-Term, and
DBLP-Conf. The hyperedge constructed by the cooperating a paper, using the same term, published
in the same conference, respectively. The label of the vertex is the research area of the author. As
for the IMDB-AW dataset, the vertex is a movie, and the label is the corresponding category. The

Table S2: Statics of datasets. “#Edge” denotes the number of edges or hyperedges.

Datasets Type #Nodes #Edge #Features d̄v d̄e #Classes

Cora Graph 2,708 7,440 1,433 4.8 2 7
Pubmed Graph 19,717 54,944 500 5.5 2 3
Citeseer Graph 3,327 6,590 3,703 3.7 2 6

News20 Hypergraph 16,342 100 100 4.0 327.7 4
CA-Cora Hypergraph 2,708 970 1,433 1.7 3.6 7
CC-Cora Hypergraph 2,708 1,483 1,433 2.1 2.1 7
CC-Citeseer Hypergraph 3,312 1,004 3,703 1.5 1.8 6
DBLP-paper Hypergraph 4,057 5,701 334 2.3 1.6 4
DBLP-term Hypergraph 4,057 6,089 334 28.6 19.1 4
DBLP-Conf Hypergraph 4,057 20 334 4.8 982.2 4
IMDB-AW Hypergraph 4,278 5,257 3,066 3.5 2.9 3
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dataset contains two types of hyperedges: the co-actor and the co-writer relationships. For each
actor or writer, participating in movies is connected by a hyperedge.

D TRANSDUCTIVE SETTING AND PRODUCTION SETTING

The transductive setting is widely adopted in the evaluation of the vertex classification on the graph
and hypergraph datasets. In this setting, the vertex set V is divided into two sub-sets: labeled vertex
set VL and unlabeled vertex set VU . The unlabeled vertex set is used for testing and final evaluation.
At the same time, the labeled vertex is further divided into the training set VL

tr and validation set
VL
va. In the training phase, a big hypergraph G including vertices from VL

tr∪VL
va∪VL

te is constructed
for message passing. However, only labels of those vertices from the training set VL

tr are used to
supervise the model’s training, and the validation set VL

va is adopted for “best model” selection.
Finally, we report the performance of the “selected best model” on the testing set VU . Note that, in
this setting, those vertices in the testing set VU are still visible in the training phase. The labels of
vertices from the validation set VL

va and testing set VL
te are absolutely unknown in the training phase.

The detailed splitting of different datasets under the transductive setting is provided in Table S3.

Table S3: Splitting of datasets under the transductive setting.
Datasets #Nodes #Classes #Training #Validation #Testing

Cora 2,708 7 140 700 1,868
Pubmed 19,717 3 60 300 19,357
Citeseer 3,327 6 120 600 2,607
News20 16,342 4 80 400 15,862
CA-Cora 2,708 7 140 700 1,868
CC-Cora 2,708 7 140 700 1,868
CC-Citeseer 3,312 6 120 600 2,592
DBLP-Paper 4,057 4 80 400 3,577
DBLP-Term 4,057 4 80 400 3,577
DBLP-Conf 4,057 4 80 400 3,577
IMDB-AW 4,278 3 60 300 3,918

However, the transductive setting is not the best way to evaluate a deployed model in the real world,
where the unseen vertices usually appear in the testing set. Consequently, in this paper, we utilize
the realistic production setting, which contains both transductive and inductive predictions. In the
production setting, the unlabeled set VU is further divided into transductive testing set VU

t and
inductive testing set VU

i . In the training phase, vertices from Vobs = VL
tr ∪ VL

va ∪ VU
t are utilized

to construct a sub hypergraph Gsub for messages passing. The model training and selection are the
same in the transductive setting. Then, we can fetch three types of performance, including under
transductive setting, inductive setting, and production setting, respectively. The performance under
the transductive and inductive settings is obtained by the big hypergraph G and the transductive
testing set VU

t as input and sub-hypergraph Gsub and inductive testing set VU
i as input, respectively.

Table S4: Splitting of datasets under the production setting.

Datasets #Nodes #Classes #Training #Validation #Transductive #Inductive
Testing Testing

News20 16,342 4 80 400 12,689 3,172
CA-Cora 2,708 7 140 700 1,494 373
CC-Cora 2,708 7 140 700 1,494 373
CC-Citeseer 3,312 6 120 600 2,073 518
DBLP-Paper 4,057 4 80 400 2,861 715
DBLP-Term 4,057 4 80 400 2,861 715
DBLP-Conf 4,057 4 80 400 2,861 715
IMDB-AW 4,278 3 60 300 3,134 783
Recipe-100k 101,585 8 160 800 80,500 20,125
Recipe-200k 240,094 8 160 800 191,307 47,826
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The performance under the production setting is obtained by the big hypergraph G and the testing
set VU = VU

t ∪ VU
i as input. In our experiments, 20% vertices of the testing set VU are adopted

for the inductive testing and the rest for the transductive testing. The detailed splitting of different
datasets under the production setting is provided in Table S4.

E TRAINING DETAILS

We run 5 times with different random seeds for each experiment and report the average score and
standard deviation. In each run, 20 samples from each category are selected for training, and 100
samples from each category are selected for validation. The rest is used for testing. The accuracy
is adopted for performance comparison, and the model with the best performance in the validation
set is applied to the test set for the results. Adam is adopted for optimization. KRD is implemented
based on their released code 1. The experiments of other baselines and our methods are implemented
using Pytorch and DHG library 2. As for the GNNs-to-MLPs methods, the teacher is the GCN, and
the student is the MLPs. Besides, in the training phase, the same hyper-parameters are used for all
methods to achieve a fair comparison, as shown in Tables S5 and S6. We run all experiments on a
machine with 40 Intel(R) Xeon(R) E5-2640 v4 @2.40GHz CPUs, and a single NVIDIA GeForce
RTX 3090 GPU.

Table S5: Hyper-parameter configuration of GCNs and HGNNs.
GCN GAT HGNN HGNN+ UniGNN UniGAT

Learning Rate 0.01 0.01 0.01 0.01 0.01 0.01
Weight Decay 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
Dropout Rate 0.5 0.5 0.5 0.5 0.5 0.5

Hidden Dimension 32 8 32 32 32 8
#Attention Heads - 4 - - - 4

#Layer 2 2 2 2 2 2

Table S6: Hyper-parameter configuration of GNNs-to-MLPs and LightHGNNs.
MLPs GLNN KRD LightHGNN LightHGNN+

Learning Rate 0.01 0.01 0.01 0.01 0.01
Weight Decay 0.0005 0.0005 0.0005 0.0005 0.0005
Dropout Rate 0.5 0.5 0.5 0.5 0.5

Hidden Dimension 128 128 128 128 128
λ - 0 0 0 0
τ - - 0.5 0.5 0.5

#Layer 2 2 2 2 2

Multi-Layer Perceptrons (MLPs). To achieve efficient inference, the naive MLPs is adopted.
The l-th layer of the MLPs is defined as:

zl+1 = Dropout
(
σ(zlΘl)

)
, (7)

where the zl is the embedding as the input of l-th Layer, and the σ(·) is a non-linear activation
function. {Θl}Ll=1 is the learnable parameters of the MLPs. By default, the last layer removes the
dropout and activation functions.

F GRAPH MODELS ON HYPERGRAPH DATASETS AND HYPERGRAPH
MODELS ON GRAPH DATASETS

In this section, we introduce how to deploy the graph models on the hypergraph datasets and how
to deploy the hypergraph models on the graph datasets. As for the graph datasets, if the method is a

1https://github.com/LirongWu/RKD
2https://github.com/iMoonLab/DeepHypergraph
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hypergraph-based model like HGNN and HGNN+, we will construct a hypergraph upon the original
graph via the concatenation of the original pair-wise edge and the 1-hop neighborhood hyperedges
as Feng et al. (2019). Given the graph, the 1-hop neighborhood hyperedges {ei}Ni=1 is the union of
the hyperedge from each vertex’s 1-hop neighborhood. For the vertex vi, its 1-hop neighborhood
hypergraph can be defined as:

ei = {vi} ∪ {vj | vj ∈ N (vi)}, (8)

where N (·) represents the neighbor set of the specified vertex. By constructing the hypergraph
from the graph in this way, the HGNNs can fully utilize the high-order representation and learning
capability in the simple graph. As for the hypergraph datasets, if the method is a graph-based model
like GCN and GAT, the clique expansion Gao et al. (2022) is utilized to transfer the hypergraph to
the graph structure. Specifically, given hypergraph G = {V, E}, for each hyperedge, we link every
pair of vertices in the hyperedge to generate edges as follows:

A(i, j) =

{
1 if vi, vj ∈ e and e ∈ E
0 else

, (9)

where A ∈ {0, 1}N×N is the adjacency matrix of the generated graph from the hypergraph.

G DETAILS OF HOW FAST ARE THE PROPOSED LIGHTHGNNS

To exploit the inference potential in larger hypergraph datasets, we manually synthesize a series of
hypergraphs as shown in Table S7. The 12 synthetical hypergraphs are generated by the function
‘dhg.random.hypergraph Gnm()’ of the DHG library. The number of vertices (N ) varies from 1000
to 55000, and the number of hyperedges is fixed to N/8. The dimensions of vertex features and
hidden layers are set to 16. Given the synthetic hypergraph, we report the inference time of the entire
hypergraph and vertex feature matrix as input, like the transductive setting. Obviously, as the scale
of the hypergraph increases, the inference time of HGNNs increases exponentially. In contrast, the
LightHGNNs still exhibit stable inference speed. The advantage of LightHGNNs inference speed
increases as the size of the hypergraph grows.

In Table S8, we conduct experiments on two larger hypergraph datasets: Recipe-100k (10w vertices)
and Recipe-200k (24w vertices). As shown in the table, our LightHGNNs can not only achieve better
performance but also extremely reduce the inference time. As the scale of the dataset increases, the
advantage of our LightHGNNs becomes more evident. Naive HGNN becomes slower and slower,
even throwing the Out-Of-Memory (OOM) error confronting 10w+ vertices, while our LightHGNNs
are still fast. Besides, our LightHGNNs exhibit better performance compared to the naive HGNN
under the transductive testing set (about 1w or 2w vertices for testing), which demonstrates the
effectiveness of our distillation framework. Besides, we provide the accuracy, memory, and runtime
comparison of methods with different configurations on the IMDB-AW dataset in Table S9.

Table S7: Inference time (ms) comparison on 12 synthetic hypergraphs.
#Vertices of HGNN HGNN+ LightHGNNs FasterHypergraph

1,000 0.47 0.98 0.39 1.2×
2,000 0.50 0.98 0.40 1.3×
4,000 1.10 1.02 0.42 2.6×

10,000 5.39 3.77 0.44 12.3×
20,000 19.00 14.79 0.56 33.9×
25,000 29.78 22.92 0.67 44.4×
30,000 42.44 29.60 0.78 54.4×
35,000 56.85 45.04 0.91 62.5×
40,000 73.72 57.18 1.03 71.6×
45,000 92.30 71.98 1.15 80.3×
50,000 113.20 88.42 1.26 89.8×
55,000 137.70 107.24 1.37 100.5×
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Table S8: Experimental results on two larger-scale hypergraph datasets. “#Testing” indicates “The
number of vertices for testing”. “#Infer” denotes the “Inference Time”. “OOM” denotes the “Out
of Memory” error.

Recipe-100k Recipe-200k

#Testing Accuracy #Infer #Testing Accuracy #Infer

HGNN
Trans. 10,063 41.26±3.08 5.39 23,914 37.25±4.88 29.78
Ind. 90,562 OOM ∞ 215,220 OOM ∞
Prod. 100,625 OOM ∞ 239,134 OOM ∞

LightHGNN
Trans. 10,063 41.82±3.48 0.44 23,914 38.48±5.59 0.67
Ind. 90,562 41.15±3.23 2.18 215,220 37.62±5.89 5.05
Prod. 100,625 41.22±3.26 2.40 239,134 37.70±5.86 5.62

LightHGNN+
Trans. 10,063 42.50±3.74 0.44 23,914 38.76±5.24 0.67
Ind. 90,562 42.28±3.62 2.18 215,220 38.26±5.67 5.05
Prod. 100,625 42.31±3.63 2.40 239,134 38.31±5.62 5.62

Table S9: The comparison of accuracy, memory, and runtime on the IMDB-AW dataset.
Methods Runtime (ms) Memory (MB) Accuracy (%)

MLPs-L1 0.26 4.27 36.48±1.87

MLPs-L3 0.52 12.63 40.89±1.13

MLPs-w32 0.35 8.45 40.00±1.38

MLPs-w64 0.40 16.80 40.46±1.82

MLPs 0.40 33.51 40.77±1.15

MLPs-w256 0.53 66.94 41.63±1.28

HGNN-L1 0.35 144.94 48.58±1.23

HGNN 0.53 289.79 50.78±1.67

HGNN-L3 0.65 434.64 49.01±2.25

HGNN-w64 0.57 300.24 50.44±1.76

HGNN-w128 0.83 321.13 49.77±1.63

HGNN-w256 1.45 362.90 49.63±1.95

HGNN+-L1 0.77 6.60 50.78±1.67

HGNN+ 1.31 13.10 50.77±1.75

HGNN+-L3 1.88 19.61 48.48±1.40

HGNN+-w64 1.53 26.12 50.37±1.99

HGNN+-w128 2.12 52.14 50.40±1.81

HGNN+-w256 3.35 104.18 50.06±1.73

LightHGNNs-w32 0.35 8.45 46.60±7.16

LightHGNNs-w64 0.40 16.80 50.77±1.61

LightHGNNs 0.40 33.51 51.53±1.67

LightHGNNs-w256 0.53 66.94 50.32±2.68

H ABLATION STUDY ON TEACHER HGNNS ARCHITECTURE

In this section, we further investigate the performance of the LightHGNNs with different teacher
architectures on the DBLP-Paper dataset, as shown in Table S10. Among these methods, HGNN
Feng et al. (2019) serves as our baseline approach. HGNN+ Gao et al. (2022) extends HGNN by
introducing a general framework for modeling high-order data correlations. UniGNN, UniGAT,
and UniGCNII Huang & Yang (2021) generalize pre-designed graph neural network architectures
to hypergraphs. ED-HNN Wang et al. (2023) combines the star expansions of hypergraphs with
standard message passing neural networks. AllSet Chien et al. (2022) implements hypergraph neural
network layers as compositions of two multiset functions that can be efficiently learned for each task
and each dataset. The “Original” in the table denotes the performance of the teacher architecture.
We observe that the LightHGNNs show robust competitive performance compared with different
teachers. Experimental results indicate that our method can adapt to different teachers, and the
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better the teacher network’s performance, the better our method’s performance will be improved
accordingly.

Table S10: Experimental results of LightHGNNs with different teacher Architectures.
Method Setting Original LightHGNN LightHGNN+

HGNN
Prod. 71.52±1.31 71.14±1.23 71.69±1.44

Tran. 70.75±1.49 70.88±1.29 71.40±1.50

Ind. 72.72±2.32 72.22±2.08 72.86±2.33

HGNN+
Prod. 72.91±1.23 72.63±0.80 72.65±0.66

Tran. 71.83±1.50 72.33±0.89 72.47±0.95

Ind. 74.43±2.39 73.84±1.69 74.15±1.66

UniGNN
Prod. 72.73±1.45 72.66±1.48 72.83±1.66

Tran. 71.88±1.51 72.38±1.54 72.40±1.66

Ind. 73.79±2.57 73.79±1.68 74.54±2.58

UniGAT
Prod. 73.00±1.40 72.74±1.20 72.59±1.32

Tran. 71.99±1.49 72.46±1.36 72.32±1.21

Ind. 74.29±2.53 73.90±1.69 73.65±2.64

ED-HNN
Prod. 72.01±1.06 73.45±1.48 73.53±1.61

Tran. 70.64±1.52 72.11±1.66 73.34±1.78

Ind. 73.79±1.72 74.79±1.61 74.32±1.86

UniGCNII
Prod. 72.94±0.97 73.29±1.29 73.58±1.69

Tran. 72.04±0.84 72.87±1.12 73.05±1.60

Ind. 73.81±2.48 74.95±2.30 75.71±2.54

AllSet
Prod. 71.37±1.60 73.20±1.96 73.53±1.48

Tran. 71.15±1.93 73.00±2.57 73.14±1.32

Ind. 72.97±2.61 75.36±2.07 75.10±2.61

Avg. Rank 2.43 2.1 1.43

I ABLATION STUDY ON INDUCTIVE RATIO UNDER PRODUCTION SETTING

In this section, we adjust the ratio of the inductive testing from 10% to 90% to investigate the in-
fluence of the unseen vertices ratio on the performance in the DBLP-Paper dataset. Experimental
results are shown in Table S11. Based on the results, we have three observations. Firstly, as the
ratio of inductive testing increases, the performance of the three types of settings all show a slight
decline. This is because a task under the inductive setting is inherently harder than that under the
transductive setting due to the seen topology being less. Secondly, we observe that the proposed
LightHGNNs often show competitive performance to the HGNNs and exhibit significant improve-
ment to the MLPs, demonstrating the proposed methods’ effectiveness. Thirdly, we notice that
LighHGNN+ shows better performance when the inductive testing ratio is small. This is because as
the inductive testing ratio increases, the unseen hyperedges and vertex features also increase. This
information, especially the unseen topology, will be seen in the inductive testing of the HGNNs,
while it still is unseen in the testing of the LightHGNNs. As the unseen information increases, the
performance of our LightHGNN will decrease accordingly.

J MORE EVALUATION ON THE NUMBER OF LAYERS AND THE
TOPOLOGY-AWARE SCORE.

In Section 5.4, we attempt to define a specific metric to quantify the over-smoothing phenomenon
and design a topology-aware score S to measure the relevance of features and hypergraph typology.
Specifically, we first calculate the cosine similarity between the vertex and hyperedge features and
then calculate the average cosine similarity of all vertices in the hypergraph. The topology-aware
score S is defined as the average cosine similarity of all hyperedges in the hypergraph. The higher
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Table S11: Experimental results of ablation study on inductive ratio under production setting.
Ind./Trans. Ratio Setting MLP HGNN LightHGNN LightHGNN+

10%/90%
Prod. 63.56±1.22 71.30±1.82 70.91±1.35 71.06±2.08

Tran. 63.49±1.40 70.95±2.14 70.76±1.37 70.98±2.24

Ind. 64.20±1.92 72.04±2.53 72.26±2.65 71.82±2.00

20%/80%
Prod. 63.56±1.15 71.52±1.31 71.14±1.23 71.69±1.44

Tran. 63.37±1.17 70.75±1.49 70.88±1.29 71.40±1.50

Ind. 64.30±1.50 72.72±2.32 72.22±2.08 72.86±2.33

30%/70%
Prod. 63.36±1.52 71.58±0.73 71.69±0.91 72.08±0.70

Tran. 63.10±1.30 70.31±1.36 71.21±1.30 71.64±1.18

Ind. 63.97±2.37 72.61±1.24 72.80±0.89 73.10±0.73

40%/60%
Prod. 63.29±1.22 70.44±1.61 70.73±1.75 70.93±1.38

Tran. 62.87±1.23 68.92±2.20 70.41±2.07 70.52±1.69

Ind. 63.93±1.46 71.03±1.20 71.20±1.30 71.55±0.98

50%/50%
Prod. 63.17±1.56 70.84±0.79 70.57±0.61 70.31±0.60

Tran. 63.23±1.66 69.21±1.01 70.82±1.48 70.48±0.88

Ind. 63.11±1.59 70.76±0.71 70.33±0.50 70.14±1.19

60%/40%
Prod. 63.32±1.30 70.24±0.73 69.27±0.69 70.15±0.70

Tran. 63.15±1.67 68.88±0.98 69.53±0.99 70.30±1.36

Ind. 63.43±1.28 70.11±0.98 69.09±1.38 70.06±1.23

70%/30%
Prod. 63.28±1.56 70.50±1.40 69.93±1.61 69.98±1.42

Tran. 63.25±2.35 68.79±1.68 69.79±2.10 69.98±2.11

Ind. 63.30±1.53 70.41±1.25 69.98±1.53 69.98±1.34

80%/20%
Prod. 63.24±1.62 70.12±1.45 68.98±1.28 68.84±1.11

Tran. 62.79±2.20 67.51±1.84 68.65±2.16 68.18±2.19

Ind. 63.36±1.57 70.14±1.47 69.06±1.37 69.01±1.24

90%/10%
Prod. 63.38±1.51 69.81±1.28 69.11±0.99 68.34±1.47

Tran. 63.96±2.76 68.88±2.25 69.94±3.12 68.43±3.20

Ind. 63.32±1.53 69.66±1.26 69.02±1.02 68.33±1.42
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the score, the more relevant the features and hypergraph typology. We first provide the accuracy
of MLP, HGNN, and LightHGNNs with respect to different numbers of layers, as shown in Ta-
ble S12. In the table, the accuracy of MLP, HGNN, and LightHGNNs all significantly decrease
as the number of layers increases, especially for the MLP and HGNN. However, the accuracy of
LightHGNN+ is more stable than that of MLP, HGNN, and LightHGNNs. This is because the
proposed LightHGNN+ can alleviate the over-smoothing phenomenon via the hyperedge reliability
sampling, thus yielding robust performance that combats the increase in the number of layers.

Table S12: Experimental results of different number of layers on IMDB-AW dataset.
#Layer MLP HGNN LightHGNN LightHGNN+

2 40.87±1.43 50.78±1.67 50.19±1.56 50.47±1.92

3 41.25±1.03 50.32±1.23 49.52±2.38 50.38±2.23

4 41.44±1.45 44.97±3.72 47.58±5.82 49.75±2.91

5 41.52±0.67 42.59±2.45 48.55±5.59 47.97±6.08

6 41.18±0.93 39.72±3.76 47.61±5.95 47.66±5.84

7 40.23±1.48 31.47±5.61 46.33±8.06 47.67±5.97

8 38.75±1.95 32.89±4.11 46.64±7.89 47.16±6.31

9 36.81±2.22 32.14±4.59 46.24±5.50 47.69±6.03

10 36.75±2.35 32.91±0.89 42.64±6.11 44.18±5.99

We further provide the topology-aware score S of MLP, HGNN, and LightHGNNs with respect to
different numbers of layers, as shown in Table S13. Based on the results in the table, we have the
following three observations. First, despite the increase in the number of layers, the topology-aware
score of MLP is always higher than that of HGNN and LightHGNNs. This is because the MLP
only relies on the vertex features and ignores the hypergraph typology. Second, the topology-aware
score of LightHGNN+ is more stable than MLP, HGNN, and LightHGNNs. This is because the
proposed LightHGNN+ can alleviate the over-smoothing phenomenon via the hyperedge reliability
sampling, thus yielding robust performance that combats the increase in the number of layers. Third,
we find an interesting phenomenon that the topology-aware score significantly decreases in #layer
6 → 7. The results explain when the accuracy of HGNN and LightHGNN significantly decreases
in #layer 6 → 7, as shown in the above table. This is because the phenomenon of over-smoothing
has reached a critical point with the increase in the number of layers, impacting the representations
for hypergraphs. As a result, the performance has sharply declined. However, why the critical point
is reached at this specific layer needs further investigation in future work. We believe this is an
intriguing experimental result that will impact the research community’s study of over-smoothing.

Table S13: Results of topology-aware scores on the IMDB-AW dataset.
#Layer MLP HGNN LightHGNN LightHGNN+

2 1.180 0.040 0.713 0.770
3 2.498 0.049 0.876 0.954
4 2.660 0.017 0.782 0.821
5 2.778 0.023 0.533 0.648
6 2.887 0.021 0.454 0.570
7 1.922 0.008 0.076 0.376
8 2.842 0.004 0.082 0.226
9 2.480 0.007 0.058 0.178

10 2.096 0.006 0.014 0.120

K VISUALIZATION

In this section, we provide the visualization of the hyperedge reliable score on different datasets as
shown in Figure S2. To investigate whether the topology-aware distillation can adaptively inject
the high-order information into the student, we calculate the distance (KL Divergence) of the cor-
responding hyperedge between the student LightHGNN+ and the teacher HGNN. The x-coordinate
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(a) Cora. (b) Pubmed. (c) Citeseer

(d) CA-Cora. (e) CC-Cora. (f) CC-Citeseer

(g) DBLP-Paper. (h) DBLP-Term. (i) IMDB-AW

Figure S2: Visualization on the hyperedge reliable score.

denotes the hyperedge reliable score ρ of each hyperedge, and the y-coordinate is the distance of
the high-order soft targets of the teacher and student calculated by equation 3. Obviously, those
hyperedges with higher reliable scores will be closer to the teacher, which demonstrates that our
topology-aware distillation can adaptively inject reliable high-order information into the student.
The teacher HGNNs blindly smooth vertex features via all hyperedges, while the student only fo-
cuses on a few reliable hyperedges and uses them to guide the message prorogation. This is also the
main reason why our LightHGNN+ can effectively resist over-smoothing, as stated in Section 5.4.
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