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Abstract

We consider offline imitation learning (IL), which aims to train an agent to imitate
from the dataset of expert demonstrations without online interaction with the
environment. Behavioral Cloning (BC) has been a simple yet effective approach to
offline IL, but it is also well-known to be vulnerable to the covariate shift resulting
from the mismatch between the state distributions induced by the learned policy and
the expert policy. Moreover, as often occurs in practice, when expert datasets are
collected from an arbitrary state distribution instead of a stationary one, these shifts
become more pronounced, potentially leading to substantial failures in existing
IL methods. Specifically, we focus on covariate shift resulting from arbitrary
state data distributions, such as biased data collection or incomplete trajectories,
rather than shifts induced by changes in dynamics or noisy expert actions. In this
paper, to mitigate the effect of the covariate shifts in BC, we propose DrilDICE,
which utilizes a distributionally robust BC objective by employing a stationary
distribution correction ratio estimation (DICE) to derive a feasible solution. We
evaluate the effectiveness of our method through an extensive set of experiments
covering diverse covariate shift scenarios. The results demonstrate the efficacy of
the proposed approach in improving the robustness against the shifts, outperforming
existing offline IL methods in such scenarios.

1 Introduction

Imitation learning (IL) aims to recover the expert behavior from the dataset of demonstrations. The
standard IL setting assumes that the imitator is allowed to interact with the environment during
training, as it provides valuable information regarding state transitions. On the other hand, offline IL
requires training without online interactions, reflecting scenarios where the interactions are either
infeasible or expensive [5, 12, 13, 28]. Despite recent works on offline IL that explore scenarios
involving supplementary datasets, such as suboptimal demonstrations [5, 14], behavioral cloning
(BC) remains a compelling option in practice since BC does not require additional datasets except
expert demonstrations. However, the efficacy of BC can be compromised when the imitator policy’s
behavior deviates from the underlying data distribution. This phenomenon, known as covariate
shift, presents a significant challenge, often resulting in performance degradation. Consequently, a
substantial body of IL research is dedicated to addressing this covariate shift issue [5, 24].

A common approach for solving offline IL problems is to use the so-called distribution matching
objective or its variant [11, 12, 14, 15, 31], which aims to align the stationary distribution of the
imitator policy with that of the expert policy. However, this approach crucially assumes that expert
demonstrations are sampled from the stationary distribution of the expert policy. In practice, this
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assumption may break, that is, sampled expert demonstrations may be from a shifted version of the
stationary distribution. For instance, expert demonstrations may be collected by first sampling states
from a distribution that is different from the stationary distribution of the expert policy, and then
labeling sampled states with expert actions. In this case, expert demonstrations are not samples from
the stationary distribution. As a result, the offline IL algorithms based on the distribution-matching
approach might perform badly in this covariate shift case.

In this paper, we address the issue of the covariate shift in the dataset of expert demonstrations,
particularly when the data distribution does not match the stationary distribution of the expert policy.
We begin by arguing that BC objective is more natural to consider the shift than the distribution
matching objective. Then, inspired by the principle of distributionally robust optimization [2, 6, 20,
25], we propose an adversarial objective for offline IL that addresses covariate shifts in BC training.
Instead of simply considering the worst-case with respect to all possible distributions on state-action
pairs, our objective considers only those distributions that arise as the stationary distributions of
policies, i.e., distributions that satisfy the Bellman flow constraint. Leveraging the techniques from the
stationary distribution correction ratio (DICE) algorithm, we introduce DrilDICE, which efficiently
solves our optimization problem and computes an imitator robust to covariate shifts of the dataset. In
addition, we suggest the practical covariate shift scenarios that may arise in offline IL applications.
Under those problem settings, we compare our approach with baselines and demonstrate that our
approach can imitate the agent robust to covariate shift of our interests.

2 Background and Related Work

2.1 Offline Imitation Learning with Arbitrary State Distributions

We consider a Markov decision process (MDP) without rewards, which is defined as a tuple of
⟨S,A, T, p0, γ⟩ where S is a state space, A is an action space, T : S × A → ∆(S) is a transition
distribution, p0 ∈ ∆(S) is an initial state distribution and γ ∈ [0, 1) is a discounted factor. We
focus on the class of deterministic policies Π = {π : S → A}. Given a policy π ∈ Π, the
stationary distribution dπ of π is defined as dπ(s, a) = (1− γ)

∑∞
t=0 γ

t Pr(st = s, at = a) where
s0 ∼ p0, at = π(st), st+1 ∼ T (st, at). For convenience, we use πE to denote the policy of an expert
and write simply dE for the stationary distribution dπE

of πE .

Assuming the existence of an expert policy πE ∈ Π, the goal of imitation learning (IL) is to recover
πE by utilizing some demonstrations of the expert. Specifically, offline IL prohibits online interactions
and relies solely on a given offline dataset that consists of demonstrations of the expert. We consider
that the demonstration dataset D is the collection of (s, a, s′) triplets where s is sampled from an
arbitrary state distribution dD(s), a is determined by πE(s) and s′ is sampled from T (s′|s, a). Note
that conventional IL approaches assume that dD is close to the expert’s state distribution dE . However,
unlike previous studies, we focus the imitation learning with an arbitrary state distribution dD, without
assuming that dD to be a state stationary distribution of any policy.

As we mentioned in the introduction, one common approach for offline IL is to use the distribution
matching objective or its variant [11, 12, 14, 15] and to find an imitator policy whose stationary
distribution matches that of the expert policy. But as we will show later in the paper, the algorithms
based on this approach do not perform well when there is a covariate shift in the given demonstration
dataset dD(s, a) in a way explained in the previous paragraph. In the paper, we propose an offline IL
algorithm that achieves good performance in the presence of such a covariate shift by using a version
of distributionally robust optimization.

2.2 Covariate Shift in Imitation Learning

Covariate shift is a widely used term in machine learning [1, 7]. Traditionally, it refers to the
phenomenon where the distribution of covariates (inputs) during training differs from that during
testing, i.e. given a covariate variable X ∈ X and a response variable Y ∈ Y ,

ptrain(Y |X = x) = ptest(Y |X = x) ∀x ∈ X , ptrain(X) ̸= ptest(X).

The distribution shift that is considered in this paper has this form where state s and action a
correspond to X and Y , and ptrain and ptest correspond to the distribution dD of the given demonstration
dataset and the stationary distribution dE of the expert policy πE .
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One significant branch of research addressing the issue of covariate shift is distributionally robust
optimization (DRO). DRO involves considering an uncertainty set of the distribution and optimizing
for the worst-case loss within this set [6, 20]. Recent studies have proposed method to attain the worst-
case supremum by using kernel methods [25] or the integral probability metric such as Wasserstein
metric [10]. Additionally, in the field of imitation learning, DRO has been applied to achieve robust
learning in the presence of noisy experts [2] or transition shifts [19].

A closely related problem studied in IL is robust imitation learning, which focuses on learning a
policy that can tolerate various shifts in the transition distribution T of the MDP [4, 19]. Another
related scenario is the noisy expert scenario, where the demonstration dataset is corrupted by noise,
resulting in the distribution dD of the dataset being a noisy version of dE [6, 23]. These issues are
usually addressed by using robust optimization techniques [6, 19], which are also utilized in our
approach. However, it is important to note that the types of distribution shifts considered in our work
and in prior researches differ within the context of offline IL.

To emphasize, we are not focused on addressing covariate shifts induced by transition shifts or noisy
demonstrations. Instead, our work investigates a type of covariate shift where the dataset still consists
of expert actions, but states are not sampled from the stationary distribution of the expert policy: the
distribution dD(s) of the samples in the given demonstration dataset differs from dE(s), but both
distributions share the expert policy given states, i.e., πD(s) = πE(s) for all s ∈ S.

3 Mitigating Covariate Shift in BC

3.1 Robustness to Covariate Shift

Assume that we have a free access to πE , such that we can optimize our trained policy π to be close
to it on any state. We can write the BC objective for optimizing π as:

min
π

Es∼dE
[ℓ(π(s), πE(s))] (1)

for some supervised learning loss ℓ (e.g. squared error, cross-entropy, ...). Previous studies on
imitation learning have assumed that dD ≈ dE . Under this assumption, BC approach of:

min
π

Es∼dD
[ℓ(π(s), πE(s))] (2)

does show strong performance if we have sufficient data. Otherwise, if the expert data is not sufficient,
we can also incorporate transition information and benefit from the distribution matching (DM)
approach, which aims to get a stationary distribution dDM that is close to data distribution dD with
the following objective:

dDM := argmax
d∈∆(S)

− D(d(s, a)∥dD(s, a))

s. t.
∑
a

d(s, a) = (1− γ)ρ0(s) + γ
∑
s̄,ā

T (s|s̄, ā)d(s̄, ā) ∀s ∈ S

where D is any divergence between two probability distributions. The solution of the optimization
problem dDM can be used for the state distribution for BC instead of dE , and it is widely known
that this can complement lack of data with additional transition information, leading to improved
performance. Nevertheless, under harsh covariate shift, i.e., when the state distribution of dD diverges
from that of dE , both two approaches above can fail miserably, as there is no guarantee on improving
policy performance when dE and dD are significantly different. See Section A for an example of
failure cases.

To overcome the covariate shift, we adopt a distributionally robust objective, i.e., for an arbitrary
distribution d, we know Es∼dE

[ℓ(π(s), πE(s))] ≤ maxd∈∆(S) Es∼d[ℓ(πE(s), π(s))], which holds
with dπ as well, and we can instead optimize for

min
π

max
d∈Q

Es∼d[ℓ(π(s), πE(s))], (3)

which corresponds to an upper-bound minimization for optimizing π with respect to some uncertainty
set Q ⊆ ∆(S). However, when Q is choosed as ∆(S), this objective can easily lead to overly
pessimistic solutions, as we seek for any extreme state distribution d that maximizes the policy loss,
and it will easily place all its probability on a single state. Hence, a choice of Q is crucial to obtain
an appropriate solution of distributionally robust optimization.
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3.2 Towards Less Pessimistic Robust Objective

For notational convenience, denote Cπ(s) := ℓ(π(s), πE(s)). In the objective (3), the worst-case
policy loss is considered among an uncertainty set Q. However, when Q = ∆(S), it would be too
pessimistic and the objective can be improved when we consider a smaller choice of Q. To keep
the fact that it is an upper-bound minimization for Eq. 1, which is the loss with dE , the expert state
distribution dE should still be contained in Q, even if we aim to use a smaller set.

To facilitate this, we impose two constraints on Q with respect to a state distribution d: (1) d should
satisfy Bellman flow constraint, (2) d should be close enough to dD to prevent d diverging too far
from dD

1. The first constraint is a constraint that should be satisfied by dE , and thus it effectively
reduces the potential distribution set for d if we impose it properly. The second constraint may not
seem necessary, but as we estimate the policy loss from finite samples from dD, diverging too far
from dD will reduce effective number of samples. Then, by introducing f -divergence regularization
to enforce the second constraint, we consider the following constrained optimization problem:

min
π

max
d∈∆(S)

Es∼d[Cπ(s)]− αDf (d(s, a)||dD(s, a))

s.t.
∑
a

d(s, a) = (1− γ)ρ0(s) + γ
∑
s̄,ā

T (s|s̄, ā)d(s̄, ā) ∀s ∈ S (4)

where Df denotes f -divergence with a convex function f . We develop a practical algorithm in a
stationary distribution correction ratio estimation (DICE) framework style. From Eq. 4, we can take
Lagrangian ν to solve the inner constrained optimization, i.e.

max
d∈∆(S)

min
ν

∑
s,a

d(s, a)Cπ(s)− αDf (d(s, a)||dD(s, a))

+
∑
s

ν(s)[(1− γ)ρ0(s) + γ
∑
s̄,ā

T (s|s̄, ā)d(s̄, ā)−
∑
a

d(s, a)]

= max
w∈W

min
ν

(1− γ)Es∼ρ0
[ν(s)] + E(s,a,s′)∼dD

[−αf (w(s, a)) + w(s, a)eπ,ν(s, a, s
′)]

(5)

where eπ,ν := (Cπ(s) + γ
∑

s′ T (s
′|s, a)ν(s′)− ν(s)), w(s, a) := d(s,a)

dD(s,a) and W is a class of
functions w : S ×A → R≥0.

By Slater’s condition [3], since the strong duality holds on Eq. 5, we can change the minimax into a
maximin optimization as follows:

min
ν

max
w∈W

(1− γ)Es∼ρ0
[ν(s)] + E(s,a,s′)∼dD

[−αf (w(s, a)) + w(s, a)eπ,ν(s, a, s
′)] , (6)

and the closed-form solution w∗ can be obtained by solving for the inner maximization.

Proposition 1. (Lee et al. [16]) The closed-form solution for the inner maximization of Eq. (6) is

w∗
π,ν(s, a) = max

(
0, (f ′)−1

(
eπ,ν(s, a)

α

))
∀s, a (7)

After obtaining w∗
π,ν , the minimax optimization (6) is converted into a minimization problem with

respect to ν. As a result, each objective for ν, π can be summarized as follows:

min
ν

(1− γ)Es∼ρ0
[ν(s)] + E(s,a,s′)∼dD

[
−αf

(
w∗

π,ν(s, a)
)
+ w∗

π,ν(s, a)eπ,ν(s, a, s
′)
]

min
π

E(s,a)∼dD

[
w∗

π,ν(s, a)Cπ(s)
] (8)

Hence, the problem can be practically addressed by alternatively optimizing ν and π following recent
developments in DICE approaches [16, 17]. We call this distributionally robust optimization approach
to covariate shift in offline IL as DrilDICE (Distributionally Robust Imitation Learning via DICE).

1Note that this constraint is analogous to the use of a robustness radius used in [19].
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Figure 1: Illustration of soft TV-distance. (left) f functions, (right) corresponding derivatives f ′.

3.3 Soft TV-Distance

To facilliate a fair comparison with the uncertainty set defined by total variation (TV) distance, as
utilized in [19], we introduce the soft-TV distance as a specific choice of f -divergence of DrilDICE.
It is important to note that Proposition 1 requires (f ′)−1, the invertable derivative of f . However, the
generator function of TV-distance fTV(x) :=

1
2 |x− 1|, lacks an invertible derivative as illustrated in

Figure 1, rendering the direct application of TV distance in DrilDICE challenging.

We technically overcome this limitation by relaxing the derivative function of TV-distance. Given that
the derivative function of TV-distance manifests as a step-function, we choose to relax this function
by employing the tanh function. Specifically, we utilize the log-cosh function [22] to f as follows:

fSoftTV(x) =
1

2
log(cosh (x− 1)), (f ′

SoftTV)
−1(y) = tanh−1 (2y) + 1. (9)

By plugging f ′
SoftTV into Eq. 7, we can obtain the closed-form solution w∗

π,ν of the inner maximization
objective (6) tailored to a specific choice of fSoft-TV as follows:

w∗
π,ν(s, a) = ReLU

(
tanh−1

(
2eπν (s, a, s

′)

α

)
+ 1

)
(10)

where ReLU(x) := max(x, 0). This choice of f enables DrilDICE to obtain a closed form solution of
inner maximization problem while maintaining similar properties of TV-distance. For other possible
choice of f -divergence in DrilDICE, see Section B in the supplementary material.

4 Experiments

4.1 Comparison on Baselines Objectives

To provide clear descriptions about the baselines used for comparison in our experiments, we
summarize the relevant objectives in Table 1.

Adversarial Weighted BC (AW-BC) We refer to adversarial weighting by following the termi-
nology from [27] as the minimax objective without constraints. As we discussed in Section 3.2, the
adversarial weighting objective is also an upper-bound of the target objective. However, it tends to be
overly pessimistic because it considers the entire state distribution space, including distributions that
do not correspond to the stationary distribution of any policy.

Distributionally Robust BC (DR-BC) To adjust the level of the robustness, DR-BC [19] can be
employed in this context. Despite originally designed to address transition shifts, DR-BC remains
relevant to our scenario since it considers the uncertainty set over state distributions by adopting a
robustness radius hyperparameter ρ. Notably, the f -divergence constraint of DrilDICE is functionally
analogous to the robustness radius constraint DTV(d∥dD) ≤ ρ. However, our approach, which
incorporates Bellman flow constraints, addresses a more restricted set when constrained by the
equivalent radius level, thereby offering a tighter upper-bound to Eq. 1.
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Functionality Objective

Distribution matching min
π

Es∼dDM
[Cπ(s)] s.t. dDM = argmax

d∈Q
−Df (d(s, a)∥dD(s, a))

AW-BC objective min
π

max
d∈∆S

Es∼d[Cπ(s)]

DR-BC objective min
π

max
d:DTV(d∥dD)≤ρ

Es∼d[Cπ(s)]

Best-case weighting min
π

max
d∈Q̄

Es∼d[−Cπ(s)]− αDf (d(s, a)∥dD(s, a))

Worst-case weighting (Ours) min
π

max
d∈Q̄

Es∼d[Cπ(s)]− αDf (d(s, a)∥dD(s, a))

Table 1: Objective comparisons for related approaches. Denote a stationary distributions class as Q̄,
i.e., Q̄ := {d ∈ ∆(S) : d(s) = (1− γ)ρ0(s) + γ

∑
s̄,ā T (s|s̄, ā)d(s̄, ā)∀s ∈ S}

Best-case Weighting If the sign of the cost function in the worst-case weighting objective is
converted, the objective seeks to find a cost-minimizing stationary distribution that is close to the
data-collecting policy. We call this objective as the best-case weighting. When dE ∈ Q, the best-case
weighting minimize the lower bound of the target objective since mind∈Q Ed[Cπ(s)] ≤ EdE

[Cπ(s)],
which is not relevant to minimize the target objective. Despite there is no direct connection, to ensure
that performance of our method are not due to side effects of algorithm’s implementation, we include
this method for performance comparison in the following experiment section.

4.2 Toy Domain Experiment: Four Rooms domain with Imbalanced Datasets

4.2.1 Experiment Settings
Room 1 Room 2

Room 3 Room 4

Figure 2: Four Rooms environment and a
deterministic expert (red arrows).

Four Rooms environment Four Rooms is a grid-
world environment which aims to find a path from
a starting state to a goal state. Each cell in the grid
represents a state and the starting state and the goal
state are marked by the orange and the green box in
Figure 2 respectively. The agent can choose one of 4
actions from each state: UP,DOWN, LEFT, RIGHT, and
the rooms are numbered as shown in Figure 2. We
pre-collect expert dataset DE by using a determinis-
tic expert policy πE and online interactions.

Covariate shift scenarios To investigate that our
approach can effectively addresses the covariate shift,
we need the dataset that notably deviates from the
expert stationary distribution dE . A possible realistic
scenario of the dataset deviation occurs when data
collectors gather data at different frequencies for each state or action. For example, if a data collection
device (e.g. cameras or sensors) operates at different recording frequencies in each room, the
frequency of observing a room in the dataset will not match dE . To simulate this scenario, we
design datasets where the marginal room (or action) distribution of dataset deviates from dE . By
manipulating the marginal proportion of a predetermined variable in dataset, we generate a deviated
dataset from the original dataset. We consider a total of 8 problem settings by manipulating the
marginal distribution of four rooms and four actions. In each scenario, we set a marginal distribution
pi(u) of the variable to be manipulated u to a certain fixed probability and resample transitions to
configure the dataset Di through the following process. (See Section C in the supplementary material)

Di = {(s, a)|u ∼ pi(u), s ∼ DE(s|u), a = πE(s)}

Implementations and baselines Since we are not interested in trivial scenarios where the policy
can easily minimize the supervised loss over entire state space to zero (i.e. maxs∈S Cπ(s) = 0), we
conduct experiments using function approximators instead of a tabular setting. We initialize π0 for
the cost function Cπ as BC policy. To solve optimization problems, each algorithm is implemented
with a two-step procedure: (1) optimize each objective by using the cost Cπ0

determined by an
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Scenario Metrics BC DemoDICE AW-BC DR-BC OptiDICE-BC DrilDICE (Ours)

R
oo

m
M

ar
gi

na
lM

an
ip

ul
at

io
n Room 1

Normalized score 90.84 ± 0.69 91.62 ± 0.65 90.84 ± 0.58 91.38 ± 0.73 94.30 ± 0.41 95.04 ± 0.48
Worst-25% 63.36 ± 2.74 66.48 ± 2.59 63.36 ± 2.31 65.68 ± 2.84 77.20 ± 1.64 80.16 ± 1.92
Target 0-1 loss (×102) 8.69 ± 0.06 8.28 ± 0.06 7.92 ± 0.05 8.42 ± 0.55 7.85 ± 0.05 8.31 ± 0.07

Room 2
Normalized score 89.16 ± 1.07 89.72 ± 1.00 89.20 ± 0.78 89.28 ± 1.08 94.06 ± 0.65 94.44 ± 0.62
Worst-25% 57.84 ± 3.90 59.36 ± 3.83 57.28 ± 2.88 58.32 ± 3.92 76.24 ± 2.61 77.76 ± 2.47
Target 0-1 loss (×102) 10.75 ± 0.15 10.51 ± 0.14 9.34 ± 0.09 10.72 ± 1.03 6.85 ± 0.08 6.46 ± 0.07

Room 3
Normalized score 88.50 ± 1.27 89.66 ± 1.21 88.68 ± 1.16 88.70 ± 1.26 94.20 ± 0.98 95.04 ± 0.86
Worst-25% 55.28 ± 4.74 59.60 ± 4.56 55.52 ± 4.40 55.92 ± 4.75 76.80 ± 3.92 80.16 ± 3.44
Target 0-1 loss (×102) 13.85 ± 0.16 13.22 ± 0.15 11.75 ± 0.16 13.74 ± 1.11 9.64 ± 0.14 8.51 ± 0.13

Room 4
Normalized score 90.94 ± 0.75 91.34 ± 0.70 90.62 ± 0.75 90.94 ± 0.75 94.26 ± 0.54 94.92 ± 0.37
Worst-25% 64.00 ± 2.89 65.36 ± 2.81 62.72 ± 2.91 64.00 ± 2.89 77.04 ± 2.15 79.68 ± 1.49
Target 0-1 loss (×102) 9.30 ± 0.09 9.34 ± 0.08 8.70 ± 0.08 9.30 ± 6.20 8.21 ± 0.07 7.97 ± 0.05

A
ct

io
n

M
ar

gi
na

lM
an

ip
ul

at
io

n Action UP
Normalized score 84.96 ± 1.33 87.20 ± 1.17 84.94 ± 1.27 84.96 ± 1.33 92.06 ± 0.69 93.22 ± 0.61
Worst-25% 43.92 ± 4.43 51.04 ± 4.04 43.44 ± 4.18 43.92 ± 4.43 68.32 ± 2.73 72.88 ± 2.43
Target 0-1 loss (×102) 13.80 ± 0.18 11.83 ± 0.16 12.64 ± 0.16 13.80 ± 1.26 8.29 ± 0.09 8.18 ± 0.08

Action DOWN
Normalized score 89.96 ± 0.96 91.28 ± 0.84 90.52 ± 0.90 89.96 ± 0.96 93.62 ± 0.62 94.60 ± 0.39
Worst-25% 60.80 ± 3.45 65.36 ± 3.27 62.24 ± 3.53 60.80 ± 3.45 74.48 ± 2.47 78.40 ± 1.55
Target 0-1 loss (×102) 10.45 ± 0.13 9.53 ± 0.12 8.79 ± 0.12 10.45 ± 0.89 7.73 ± 0.09 7.13 ± 0.06

Action LEFT
Normalized score 90.18 ± 1.11 90.32 ± 1.10 90.80 ± 1.11 90.18 ± 1.11 91.86 ± 1.03 92.62 ± 0.95
Worst-25% 61.60 ± 4.15 62.16 ± 4.10 64.40 ± 4.02 61.60 ± 4.15 68.32 ± 3.73 71.36 ± 3.38
Target 0-1 loss (×102) 11.40 ± 1.02 11.16 ± 0.15 10.56 ± 0.15 11.42 ± 1.02 9.94 ± 0.14 9.16 ± 0.12

Action RIGHT
Normalized score 93.04 ± 0.63 93.12 ± 0.62 92.76 ± 0.51 93.44 ± 0.60 94.46 ± 0.44 94.52 ± 0.44
Worst-25% 72.16 ± 2.52 72.48 ± 2.48 71.04 ± 2.02 73.76 ± 2.38 77.84 ± 1.77 78.08 ± 1.77
Target 0-1 loss (×102) 7.07 ± 0.06 7.04 ± 0.06 6.58 ± 0.04 6.62 ± 4.04 6.48 ± 0.05 6.56 ± 0.05

Table 2: Comparison of different methods across manipulated datasets in Four Rooms environment.
(p(u) = 0.4) Each experiment is repeated with 50 times and the average values with their standard
errors are reported. The best average values are highlighted in bold.

Figure 3: Visualizations of policy behaviors and weights. (a) dD(s) : dataset state distribution,
(b) dπbc (s) : behavior of BC policy, (c) d(s)w∗

πbc
(s): corrected state distribution that maximizes Cπ,

(d) behavior of dπnew(s): DrilDICE policy (BC weighted with w∗
πbc

(s)).

initial policy π0 and obtain w∗
π0

, (2) train π with the weighted BC. For policy and weight models,
we use linear approximators with RBF features, which exploit distances from representative points.
For more details, see Section C. For choices of f -divergence for OptiDICE-BC and DrilDICE, we
select KL-divergence instead of the soft TV-distance for a simplicity of convex optimization solver
implementation. We consider following baselines:

• BC: a standard behavioral cloning without any regularization.

• DemoDICE [14] : a representative distribution matching approach to offline IL. We compare a
special case of DemoDICE that does not exploits supplementary datasets.

• AW-BC: adversarial weighting method without Bellman flow constraints and robustness radius.

• DR-BC [19]: distributionally robust BC method without Bellman flow constraints.

• OptiDICE-BC [16] : a representrative method as the best-case weighting.

Evaluation metrics The following metrics are measured with 100 episodes for each trained policy.

• Normalized score: a normalized episode return that scales from 0 (random score) up to 100
(expert score) averaged by 100 episodes.

• Worst-25% performance : the normalized scores averaged by the worst 25% episodes.

• Target 0-1 loss: the averaged 0-1 loss (i.e. Edπ [I(π(s) ̸= πE(s))])2

2For convenience, we evaluate the expected loss over dπ instead of the original target dE . It is important to
note that DRO objectives are also upper-bounds for this expected loss if dπ ∈ Q.
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Task p(D1) BC DemoDICE AW-BC DR-BC OptiDICE-BC DrilDICE (Ours)

R
eb

al
an

ce
d

by
st

at
e hopper

0.1 24.7 ± 4.2 25.8 ± 3.2 17.9 ± 2.0 27.0 ± 4.3 12.7 ± 1.3 52.2 ± 5.6
0.5 35.4 ± 4.1 37.6 ± 15.1 24.6 ± 1.7 36.7 ± 3.6 8.6 ± 2.0 67.1 ± 8.2
0.9 11.2 ± 2.5 15.0 ± 3.4 13.4 ± 4.8 27.4 ± 4.9 10.4 ± 1.8 36.4 ± 6.1

walker2d
0.1 18.9 ± 4.1 15.1 ± 2.4 7.3 ± 1.2 14.7 ± 3.3 4.9 ± 1.1 51.6 ± 8.2
0.5 22.9 ± 3.1 30.2 ± 3.7 27.8 ± 2.8 45.1 ± 10.0 8.1 ± 0.4 73.7 ± 5.4
0.9 30.4 ± 7.1 21.6 ± 3.3 35.8 ± 5.0 46.0 ± 8.4 7.7 ± 0.5 77.6 ± 5.5

halfcheetah
0.1 49.3 ± 5.2 38.1 ± 4.6 53.2 ± 4.3 32.9 ± 3.8 7.1 ± 1.5 52.5 ± 3.6
0.5 38.0 ± 3.1 43.9 ± 3.4 32.6 ± 1.9 26.2 ± 4.9 6.1 ± 1.2 55.0 ± 3.3
0.9 15.5 ± 3.1 5.0 ± 1.1 7.8 ± 1.2 9.0 ± 3.3 1.0 ± 1.1 22.3 ± 2.9

R
eb

al
an

ce
d

by
ac

tio
n hopper

0.1 29.7 ± 4.0 26.8 ± 3.0 24.6 ± 4.8 25.9 ± 2.5 11.7 ± 2.1 56.6 ± 11.9
0.5 26.4 ± 4.9 34.3 ± 4.4 30.8 ± 2.3 35.1 ± 5.4 11.8 ± 1.1 73.8 ± 3.6
0.9 30.5 ± 3.6 16.5 ± 1.4 19.3 ± 2.9 36.6 ± 2.3 19.4 ± 2.8 49.0 ± 12.3

walker2d
0.1 23.6 ± 5.1 22.6 ± 6.5 20.4 ± 4.2 31.2 ± 4.2 7.3 ± 0.5 70.6 ± 3.2
0.5 32.3 ± 6.7 33.8 ± 7.5 25.7 ± 3.5 30.5 ± 3.9 6.4 ± 1.0 72.1 ± 8.7
0.9 16.9 ± 2.8 12.0 ± 1.0 16.9 ± 2.5 37.6 ± 9.0 4.6 ± 1.0 69.5 ± 8.5

halfcheetah
0.1 41.9 ± 4.8 34.9 ± 3.1 41.7 ± 3.9 27.5 ± 1.0 8.4 ± 3.4 56.4 ± 4.6
0.5 45.8 ± 4.5 32.5 ± 2.0 30.7 ± 2.3 33.4 ± 6.5 4.6 ± 0.8 60.8 ± 1.6
0.9 25.9 ± 3.4 8.8 ± 3.1 14.2 ± 0.7 12.1 ± 2.0 0.6 ± 0.7 29.2 ± 4.6

Table 3: Performance comparison on Scenario 1 (rebalanced dataset). p(D1) determines the propor-
tion of dataset D1, which is close to the representative point. Each experiment is repeated with 5
times and the average normalized scores with their standard errors are reported. The highest mean
performance scores are highlighted in bold.

4.3 Results

As depicted Table 2, DrilDICE outperformed baselines in the Four Rooms environment under
various covariate shift scenarios. Our approach achieved the highest normalized scores across all
scenarios and consistently demonstrated superior performance in the worst-25% performance. In
scenarios involving Room 3, where the original dataset DE had only 8.9% coverage, the probability
of observing states in Room 3 was increased to 40%, causing significant covariate shifts. This led
to a significant degradation in the robust performance of BC (worst-25%). However, DrilDICE
successfully improved the worst-25% performance in Room 3 to levels comparable to other scenarios,
demonstrating its robustness to covariate shifts induced by dataset deviations.

Figure 3 illustrates the behaviors of BC and DrilDICE in the Room 3 scenario. With an increased
dataset proportion visiting Room 3, as shown in Figure 3-(a), πbc performs accurately in Room 3,
predicting the correct expert actions in nearly all states (26 out of 27) in Room 3. However, its
performance remains suboptimal in other rooms. DrilDICE, leveraging the cost derived from πbc,
computes the corrected state distribution through the worst-case weighting, denoted as w∗

bc, as depicted
in Figure 3-(c). Notably, states mispredicted by πbc or those with high probabilities for the dataset
distribution tend to obtain relatively higher weight values, contributing more to loss optimization.
Consequently, DrilDICE effectively trains the agent by correcting suboptimal behaviors.

4.4 D4RL Dataset with Covariate-Shifted Expert Demonstrations

4.4.1 Covariate Shift Scenarios

To investigate our approach also benefits distributionally robust training in more complex tasks, we
conduct experiments on continuous control domains. In addition, we devise three practical problem
settings that could possibly occur in the real-world and simulate those scenarios by restructuring the
given dataset to simulate these dataset deviation scenarios (For experiments on standard scenarios, re-
fer to Section E). We utilize hopper-expert, walker2d-expert, halfcheetah-expert datasets
included in D4RL benchmark [9] as original datasets. We utilize the soft TV-distance defined in
Section 3.3 as f -divergence for OptiDICE-BC and DrilDICE for these scenarios (For experiments
with another choice of f -divergence, see Section E.4). See Section D for implementation details.

Scenario 1: Rebalanced dataset From a practical perspective, a data collector may encounter
scenarios in which the costs associated with taking an action or visiting a specific state exhibit
substantial costs varying across different states or actions. In such scenarios, the data collected
in states or actions with lower costs is likely to be observed, while those with higher costs tend

8



(a) Timesteps subsampled for Scenario 2. (b) Segments collected for Scenario 3.

Figure 4: Illustrative examples for generating datasets for Scenario 2 and 3.

Task p(D1) BC DemoDICE AW-BC DR-BC OptiDICE-BC DrilDICE (Ours)

Ti
m

es
te

p
de

pe
nd

en
cy

hopper

(1, 1) 28.9 ± 3.8 26.4 ± 5.8 18.0 ± 3.1 21.1 ± 2.3 22.8 ± 3.9 45.4 ± 5.1
(1, 5) 31.0 ± 0.9 25.7 ± 2.8 24.9 ± 1.6 25.0 ± 1.7 19.3 ± 1.2 45.6 ± 4.6
(5, 1) 26.8 ± 7.1 23.0 ± 5.4 23.2 ± 4.6 17.5 ± 3.4 25.7 ± 6.0 34.7 ± 9.0
(5, 5) 27.7 ± 6.7 38.7 ± 11.0 27.7 ± 7.8 23.2 ± 6.3 14.1 ± 3.6 25.6 ± 6.0

walker2d

(1, 1) 29.0 ± 5.3 21.7 ± 4.1 27.6 ± 3.7 45.7 ± 9.9 6.1 ± 1.0 81.2 ± 5.4
(1, 5) 61.5 ± 5.2 52.0 ± 6.5 34.7 ± 5.9 57.3 ± 4.8 17.6 ± 2.7 84.3 ± 4.9
(5, 1) 8.1 ± 0.7 7.4 ± 0.8 8.8 ± 2.2 18.0 ± 2.6 4.4 ± 0.5 48.2 ± 8.3
(5, 5) 6.7 ± 1.2 7.4 ± 1.2 10.6 ± 3.3 12.5 ± 1.8 5.5 ± 0.7 52.6 ± 6.2

halfcheetah

(1, 1) 33.7 ± 3.0 35.0 ± 6.2 33.4 ± 3.5 17.1 ± 2.4 9.9 ± 3.6 44.2 ± 5.6
(1, 5) 72.7 ± 2.6 74.2 ± 1.4 71.1 ± 2.2 61.8 ± 2.5 24.4 ± 3.3 77.1 ± 2.4
(5, 1) 2.4 ± 0.5 4.6 ± 1.5 4.2 ± 0.4 3.8 ± 1.3 1.3 ± 1.1 5.7 ± 1.5
(5, 5) 2.0 ± 0.9 2.9 ± 2.2 0.9 ± 0.7 2.9 ± 1.1 −1.2 ± 0.4 5.5 ± 0.8

Table 4: Performance comparison on Scenario 2 (time-dependently collected dataset). Each experi-
ment is repeated 5 times, and the average normalized scores with their standard errors are reported.
The highest mean performance scores are highlighted in bold.

to be underrepresented. To simulate these circumstances, we partition the state or action space
and manipulate their mixture ratio to generate an imbalanced dataset, under assuming the costs of
collecting data points in each group is significantly different, hence their proportion is shifted from
the original dataset.

In order to implement this scenario, we measure the distance between each state and the represen-
tative point of the states, then split the dataset into two groups D1, D2 based on the statistics of
distances: D1 comprises states close to the point, while D2 is consists of states farther from the
point. Subsequently, we resample datasets according to a predetermined proportion of p(D1) in
{0.1, 0.5, 0.9} by uniformly sampling different numbers of samples from each group.

Scenario 2: Time-dependently collected dataset One of well-known practical issues of covariate
shift in supervised learning and time-series forecasting communities is dataset shift caused by seasonal
or time-dependent variables [8, 18, 26]. In real-world scenarios, data collection agents affected by
seasonality (e.g., temperature, humidity) can cause the data to be collected far from the expert agent’s
full demonstration. For instance, consider a sensor with the collecting frequency is sensitive to the
temperature, making it prone to frequent breakdowns in the summer, and this sensor should collect
expert data throughout the entire year. However, due to its frequent failures during the summer, the
collected dataset will deviate from dE .

Motivated by these scenarios, we simulate time-dependent covariate shift scenarios by subsampling
timesteps of the trajectory in extensive manners. To model the timestep sampling distribution, we
utilize Beta distribution B(a, b). Since the support of B(a, b) is [0, 1], with multiplying with the
maximum timestep and discretization, we can sample timesteps in various shapes of distributions
by adjusting parameters a, b. We conduct experiments on four parameter combinations, (a, b) ∈
{(1, 1), (1, 5), (5, 1), (5, 5)} and the timestep distribution notably varies as depicted in Figure 4a.

Scenario 3: Segmented trajectory dataset As similarly explored in [30], when decision-making
horizons are extensively long, it is not feasible to gather multiple long trajectories keep tracking from
initial states to ensure the stationarity of the expert dataset. Instead, it is more practical to gather
shorter segments of expert demonstrations in such scenarios. We simulate this scenario by utilizing
short segments of the pre-collected trajectories. To collect this, for each trajectory in the original
dataset, we sample the starting timestep of the segment by using a subsampling method similar to
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Figure 5: Performance comparison on Scenario 3 (segmented dataset) along the number of segments.
The points and shaded areas indicate the means and standard errors measured over 5 repetitions.

Scenario 2. Then, we extract consequent segments with fixed-length timesteps and configure the
segmented trajectory dataset similar to Figure 4b. In this scenario, we adjust the number of segments
used for training to investigate the relationship between performance and the number of segments.

4.4.2 Results

Scenario 1 Table 3 summarizes the performance comparison on the rebalanced datasets. From the
table, we observe that DrilDICE overally outperforms other methods across different proportions and
tasks and outperforms 14 out of 15 problem settings with signficant margins. DemoDICE, AW-BC
and OptiDICE-BC fail to outperform BC more than half of the problem settings, which demonstrates
the distribution matching and the best-case weighting are not robust to these shift scenarios. Moreover,
we can conclude a robustness of DrilDICE is not gifted by side effects from the implementation of
DICE algorithms at least this scenario. DR-BC, which does not incorporate Bellman flow constraints,
also exhibits improved robustness, outperforming BC in 9 out of 15 problem settings. However,
DrilDICE consistently surpasses DR-BC across all settings, illustrating that the inclusion of Bellman
flow constraints is crucial for effectively addressing the covariate shift of our interest.

Scenario 2 As depicted in Table 4, DrilDICE shows robust overall performance, achieving the
highest mean performance in 11 out of 12 settings. Remarkably, while all baseline methods, including
DR-BC, fail to surpass BC more than half of the problem settings, only DrilDICE consistently
demonstrates exceptional robustness. This emphasizes that the critical role of incorporating Bellman
flow constraint to enhance robustness in scenarios involving this type of covariate shift.

Scenario 3 Figure 5 presents a performance comparison across three metrics while varying the
number of segments. As illustrated, DrilDICE’s normalized score consistently increases as the number
of segments grows, and the target MSE exhibits a steady decreases maintaining levels that are lower
or comparable to those of other approaches. The robust performance metrics also display consistent
behavior, with an exception of walker2d task. Interestingly, we observed that a weak correlation
between the target MSE and the episode return (see Figure E in the supplementary material).

In summary, by constraining the uncertainty set to a plausible set, DrilDICE effectively minimizes
target MSE and enables BC to imitate the agent robust to various covariate shift scenarios.

5 Conclusions and Limitations

We propose DrilDICE, a offline IL approach that is robust to the covariate shift caused by the data
distribution deviated from the stationary distribution of the expert. By optimizing the Bellman-flow-
constrained worst-case objective, our approach effectively minimize the surrogate loss of the expected
error w.r.t non-shifted target distribution. We also suggests an extensive set of practical covariate shift
scenarios of our interest and empirically show that DrilDICE successfully imitate the expert robust to
those shift scenarios. For a limitation, we don’t consider uncertainty from transition shift or noisy
demonstrations. We expect that extending our approach into such scenario will be beneficial on many
practical scenarios, such as Sim2Real or transfer learning tasks. Moreover, we believe exploring a
real-world application of our method is also an attractive extend of the future work.
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A Suboptimality Bounds with Arbitrary State Distributions

In this section, we present an example of BC where the performance guarantee fails when the
data state distribution dD differs from expert stationary dE . For simplicity, here we focus on the
finite-horizon average state distribution, but this can be straightforwardly extended to the infinite-
horizon discounted state distribution. Consider a finite-horizon setting with a horizon H ≥ 2
and denote the state distribution diπ of π at timestep i. Define the H-horizon state distribution
dπ of π as dπ(s) := 1

H

∑H
i=1 d

i
π(s) for all s ∈ S. Denote the performance of π as J(π) :=∑H−1

t=0 Edt
π
[R(st, at)] = HEdπ

[R(s, a)] where R : S × A → [0, 1] is a true reward function.
Denote a surrogate loss function ℓ, which measures how far the learner policy π is from the expert
policy for the state s ∈ S. Here, consider 0-1 loss, i.e. ℓ(π(s), πE(s)) = I[π(s) ̸= πE(s)].
Proposition 2. (Ross and Bagnell [21]) The suboptimality of an imitator policy π̂ is bounded by

J(πE)− J(π̂) ≤ H2Es∼dE
[ℓ(π̂(s), πE(s))] (11)

In our problem setting, we assume the lack of access to dataset sampled from dE(s), instead deal
with dataset sampled from an arbitrary distribution dD(s). When applying BC approach to minimize
Es∼dD

[ℓ(π(s), πE(s))], it is possible to construct an example where this expected loss fails to upper
bound the policy suboptimality, J(πE)− J(π). To illustrate, we revisit [21] and consider an example
that tightens the inequality (11). Assume 0 < ϵ ≤ 1/H, 0 < δ < 1/H .

Figure A: Example of [21].

s1 s2 s3

πE a1 a2 a1

dE
1
H

H−1
H 0

π̂

{
a1 with prob. 1− ϵH

a2 with prob. ϵH
a2 a2

dπ̂
1
H (1− ϵH) · H−1

H ϵH · H−1
H

dD1 δ 1− δ 0

Table A: Policies and their corresponding state distributions.

Consider an MDP illustrated in Figure A, where S = {s1, s2, s3},A = {a1, a2}, the transition T
is deterministic with T (s1, a1) = s2, T (s1, a2) = s3, T (s2, a1) = s3, T (s2, a2) = s2, T (s3, a1) =
s2, T (s3, a2) = s3 and s1 is the initial state. We define the expert policy πE and an imitator
policy π̂ and derive their corresponding H-horizon state distributions dE , dπ̂ in Table A. Define
R(s, a) = I[a = πE(s)] for all s ∈ S, a ∈ A. Then, J(πE), J(π̂) would be:

J(πE) = H
∑
s∈S

dE(s)
∑
a∈A

πE(a|s)R(s, a) = H

(
1

H
+

H − 1

H

)
= H

J(π̂) = H
∑
s∈S

dπ̂(s)
∑
a∈A

π̂(a|s)R(s, a) = H

(
1

H
· (1− ϵH) +

H − 1

H
· (1− ϵH)

)
= H − ϵH2

Hence, J(πE)−J(π̂) = ϵH2. Note that Es∼dE
[ℓ(π̂, πE)] =

1
H · ϵH+ H−1

H · 0+0 · 1 = ϵ, therefore
the both left-hand and right-hand sides of the equality (11) are equal to ϵH2.

However, considering the expect loss with respect to dD1 , where dD1(s1) = δ, dD1(s2) = 1 −
δ, dD1(s3) = 0 as described in Table A, we can calculate Es∼dD1

[ℓ(π̂, πE)] = δϵH . Then,

J(πE)− J(π̂) = ϵH2 > δϵH3 = H2Es∼dD1
[ℓ(π̂, πE)]

where δ < 1/H . As δ decreases, the right-hand side also decreases, allowing it to be made arbitrarily
small regardless of the left-hand side. This implies that there exist a scenario in which minimizing
BC loss with an arbitrary data state distribution does not guarantee a reduction in the performance
gap between the expert and the imitator.
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Although straightforward, we emphasize that distributionally robust optimization (DRO) approaches
can minimize the suboptimality under the realizability assumption, i.e, dE ∈ Q.
Remark 1. Given an uncertainty set Q ⊆ ∆(S) with dE ∈ Q, we can guarantee that J(πE) −
J(π) ≤ H2 supd∈Q Es∼d[l(π(s), πE(s))]. Furthermore, given Q1 ⊆ Q2 ⊆ ∆(S) with dE ∈ Q1,
the upper-bound of Q1 would be tighter than Q2, i.e.

J(πE)− J(π) ≤ H2 sup
d∈Q1

Es∼d[l(π(s), πE(s))] ≤ H2 sup
d∈Q2

Es∼d[l(π(s), πE(s))]

Let Qρ := {d ∈ ∆(S) : DTV(d, dD) ≤ ρ} and QDrilDICE
ρ = {d ∈ ∆(S) : DTV(d, dD) ≤

ρ, d satisfies Bellman flow constraints}. Since dE satisfies Bellman flow constraints, if dE ∈ Qρ,
then dE ∈ QDrilDICE

ρ with QDrilDICE
ρ ⊆ Qρ. Then, the uncertainty set of QDrilDICE

ρ provides a more
tighter upper-bound for the suboptimality compared to that of Qρ.

B Summary of f -Divergence Choices

Define

fSoft-χ2(x) :=

{
x log x− x+ 1 if 0 < x < 1

(x− 1)2 if x ≥ 1
and (f ′

Soft-χ2)−1(y) :=

{
exp(y) if y < 0

y + 1 if y ≥ 0
,

ReLU(x) := max(0, x), ELU(x) :=

{
exp(x)− 1 if x < 0

x if x ≥ 0
. Then, f -divergence choices can

be summarized in Table B.

Divergence f(x) (f ′)−1(y) w∗
π,ν

KL Divergence x log x exp(y − 1) exp
(

eπ,ν(s,a,s
′)

α − 1
)

χ2-Divergence 1
2 (x− 1)2 (y + 1) ReLU

(
eπ,ν(s,a,s

′)
α + 1

)
Soft χ2-Divergence fSoft-χ2(x) (f ′)−1

Soft-χ2(y) ELU
(

eπ,ν(s,a,s
′)

α + 1
)

TV-Distance 1
2 |x− 1| - -

Soft TV-Distance 1
2 log(cosh(x− 1)) tanh−1(2y) ReLU

(
tanh−1

(
2eπ,ν(s,a,s

′)
α

)
+ 1

)
Table B: Summary of f -divergences and their associated functions.
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Figure B: Visualization of f functions and derivatives f ′ corresponding to f -divergence choices. We
also visualize corresponding w∗

f (e) = max((f ′)−1(e), 0), which is a closed form solution of the
inner maximization in Eq. 7.
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C Experimental Settings for Four Rooms Environment

C.1 Marginal probability of the original dataset

Rooms Room 1 Room 2 Room 3 Room 4
DE(u) 0.342 0.291 0.089 0.278

Actions "UP" "DOWN" "LEFT" "RIGHT"
DE(u) 0.080 0.453 0.016 0.451

Table C: Marginal probability of DE over rooms and actions.

C.2 Implementation details

• The number of transitions: 1000 + |S|3

• RBF feature bandwidth: 10
• The number of representative points for RBF feature : 5× 5

• Cπ: 1-0 loss

C.3 Hyperparameters

• α ∈ {100, 50, 20, 10, 5, 2, 1, 0.5, 0.2, 0.1} (for OptiDICE-BC, DrilDICE)
• ρ ∈ {100, 50, 20, 10, 5, 2, 1, 0.5, 0.2, 0.1} (for DR-BC)
• Logit margin maximum: log(100)

D Experimental Settings for D4RL Benchmark

D.1 Implementation details

• Since the number of s0 is much smaller than s, we follow heuristics to estimate Es∼dD
[ν(s)]

instead of Es∼ρ0
[ν(s)] in the objective (8).

• In Scenario 3, to determine a starting timestep of each segment, we sample timesteps by using
Geometric distribution with p = 5× 10−3.

• Cπ: Mean Squared Error (MSE) loss

D.2 Hyperparameters

Hyperparameter BC DemoDICE AW-BC DR-BC OptiDICE-BC DrilDICE (Ours)
Policy distribution Tanh Normal
Batch size 512
Policy learning rate 3× 10−5

hidden units [256, 256]
Training iteration 500K

α - - - - [10−1, 10−2, 10−3, 10−4]
ρ - - - [10−1, 10−2, 10−3, 10−4] - -
ν (or w) learning rate - 3× 10−5

Table D: Summary of hyperparameters used in D4RL benchmark experiments.

3To prevent support mismatch, one data point for each s ∈ S is added to dataset.
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D.3 Number of sub-trajectories

Problem setting hopper walker2d halfcheetah
Scenario 1 100 100 250
Scenario 2 100 100 250
Scenario 3 [10,20,30,40,50] [10,20,30,40,50] [50,100,150,200,250]

Table E: Number of sub-trajectories used in each scenario. Each sub-trajectory consists of one initial
transition and 50 subsampled transitions from a complete trajectory. To enhance dataset support, one
complete trajectory is appended for each specified count of sub-trajectories.

E Additional Experimental Results

E.1 Performance comparison on complete trajectories

To compare performance of IL methods on standard scenarios, we have conducted additional ex-
periments using complete expert trajectories using D4RL expert-v2 dataset varying the number of
trajectories in {1, 5, 10, 50}. The results are detailed in Figure C. As demonstrated, DrilDICE can
deal with sampling errors of small datasets, showing a superior data efficiency compared to other
methods.
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Figure C: Performance comparison on complete trajectory scenarios. The points/shaded areas indicate
the means/standard errors measured over 5 repetitions.

E.2 Performance comparison on lower quality segments

Despite our primary focus on expert-quality datasets, we conducted experiments with additional
datasets on Scenario 3 (segment datasets) to ensure consistency across different datasets. Rather than
employing the original dataset, D4RL expert-v2, we use D4RL medium-v2 quality demonstrations
as our imitation standard for comparison. The results are depicted in Figure D. The results indicate
that both DrilDICE and DR-BC demonstrate competitive imitation performance compared to other
baselines, with a consistent decrease in target MSE as the number of segments increases.
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Figure D: Performance comparison on Scenario 3 (segmented dataset) with D4RL medium-v2
datasets. Each black dashed-dot line expresses the averaged normalized score of the used dataset.
The points/shaded areas indicate the means/standard errors measured over 5 repetitions.
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E.3 Weak correlation between target MSE and normalized score
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Figure E: Correlation between the target MSE and normalized scores.

E.4 Performance comparison with a different f -divergence choice

To evaluate the effect of f -divergence choice on imitation performance, we additionally evaluate
OptiDICE-BC and DrilDICE with the soft χ2-divergence, as originally utilized in [16], across
all considered scenarios. The results for scenarios 1-3 are presented in Table F, G and Figure F
respectively. These results indicate that the choice of the soft TV-distance significantly enhances
the performance of DrilDICE compared to using soft-χ2. To explain this performance gain, we
hypothesize that the soft-TV distance provides more discriminative weighting of samples based on
their long-term policy errors. As shown in Figure B, conventional f -divergences (e.g. KL, soft-χ2,
...) make less pronounced to the long-term policy error, yet the soft-TV distance responds sensitively
to changes in e, resulting in a more pronounced weight w. This enables BC loss to more selectively
focus on critical samples with significant magnitude of long-term policy errors, thereby effectively
enhancing performance, akin to the benefits observed in Sparse Q-Learning [29].

Task p(D1) BC DR-BC
(TV)

OptiDICE-BC
(Soft-χ2)

OptiDICE-BC
(Soft-TV)

DrilDICE
(Soft-χ2)

DrilDICE
(Soft-TV)

R
eb

al
an

ce
d

by
st

at
e hopper

0.1 24.7 ± 4.2 27.0 ± 4.3 35.3 ± 3.2 12.7 ± 1.3 58.9 ± 4.3 52.2 ± 5.6
0.5 35.4 ± 4.1 36.7 ± 3.6 24.4 ± 5.1 8.6 ± 2.0 60.9 ± 7.6 67.1 ± 8.2
0.9 11.2 ± 2.5 27.4 ± 4.9 17.3 ± 2.1 10.4 ± 1.8 28.3 ± 3.0 36.4 ± 6.1

walker2d
0.1 18.9 ± 4.1 14.7 ± 3.3 5.9 ± 0.6 4.9 ± 1.1 31.9 ± 5.9 51.6 ± 8.2
0.5 22.9 ± 3.1 8.1 ± 0.4 11.1 ± 1.4 8.1 ± 0.4 30.5 ± 3.5 73.7 ± 5.4
0.9 30.4 ± 7.1 7.7 ± 0.5 17.5 ± 2.6 7.7 ± 0.5 43.3 ± 4.5 77.6 ± 5.5

halfcheetah
0.1 49.3 ± 5.2 32.9 ± 3.8 33.4 ± 4.7 7.1 ± 1.5 44.8 ± 5.2 52.5 ± 3.6
0.5 38.0 ± 3.1 26.2 ± 4.9 33.4 ± 3.0 6.1 ± 1.2 41.1 ± 3.5 55.0 ± 3.3
0.9 15.5 ± 3.1 9.0 ± 3.3 2.2 ± 1.2 1.0 ± 1.1 7.3 ± 1.6 22.3 ± 2.9

R
eb

al
an

ce
d

by
ac

tio
n hopper

0.1 29.7 ± 4.0 25.9 ± 2.5 28.4 ± 1.1 11.7 ± 2.1 42.3 ± 6.4 56.6 ± 11.9
0.5 26.4 ± 4.9 35.1 ± 5.4 30.0 ± 4.3 11.8 ± 1.1 53.4 ± 9.5 73.8 ± 3.6
0.9 30.5 ± 3.6 36.6 ± 2.3 38.9 ± 4.7 19.4 ± 2.8 63.1 ± 7.1 49.0 ± 12.3

walker2d
0.1 23.6 ± 5.1 31.2 ± 4.2 12.1 ± 1.2 7.3 ± 0.5 40.7 ± 1.1 70.6 ± 3.2
0.5 32.3 ± 6.7 30.5 ± 3.9 16.4 ± 1.7 6.4 ± 1.0 47.9 ± 12.4 72.1 ± 8.7
0.9 16.9 ± 2.8 37.6 ± 9.0 15.6 ± 3.6 4.6 ± 1.0 43.7 ± 11.5 69.5 ± 8.5

halfcheetah
0.1 41.9 ± 4.8 27.5 ± 1.0 26.6 ± 2.5 8.4 ± 3.4 32.8 ± 1.9 56.4 ± 4.6
0.5 45.8 ± 4.5 33.4 ± 6.5 45.5 ± 3.3 4.6 ± 0.8 48.1 ± 5.5 60.8 ± 1.6
0.9 25.9 ± 3.4 12.1 ± 2.0 4.3 ± 1.5 0.6 ± 0.7 9.6 ± 2.3 29.2 ± 4.6

Table F: Performance comparison on Scenario 1 (rebalanced dataset) including a different choice of
f -divergence (soft χ2-divergence) for OptiDICE-BC and DrilDICE.
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Task p(D1) BC DR-BC
(TV)

OptiDICE-BC
(Soft-χ2)

OptiDICE-BC
(Soft-TV)

DrilDICE
(Soft-χ2)

DrilDICE
(Soft-TV)

Ti
m

es
te

p
de

pe
nd

en
cy

hopper

(1, 1) 28.9 ± 3.8 21.1 ± 2.3 50.3 ± 6.6 22.8 ± 3.9 54.8 ± 7.7 45.4 ± 5.1
(1, 5) 31.0 ± 0.9 25.0 ± 1.7 39.5 ± 4.0 19.3 ± 1.2 37.2 ± 7.9 45.6 ± 4.6
(5, 1) 26.8 ± 7.1 17.5 ± 3.4 48.4 ± 13.0 25.7 ± 6.0 39.9 ± 9.2 34.7 ± 9.0
(5, 5) 27.7 ± 6.7 23.2 ± 6.3 32.5 ± 10.8 14.1 ± 3.6 40.2 ± 7.4 25.6 ± 6.0

walker2d

(1, 1) 29.0 ± 5.3 45.7 ± 9.9 17.4 ± 3.0 6.1 ± 1.0 51.9 ± 5.3 81.2 ± 5.4
(1, 5) 61.5 ± 5.2 57.3 ± 4.8 37.3 ± 5.7 17.6 ± 2.7 64.5 ± 7.9 84.3 ± 4.9
(5, 1) 8.1 ± 0.7 18.0 ± 2.6 4.4 ± 0.9 4.4 ± 0.5 23.3 ± 3.4 48.2 ± 8.3
(5, 5) 6.7 ± 1.2 12.5 ± 1.8 8.5 ± 2.3 5.5 ± 0.7 14.4 ± 3.2 52.6 ± 6.2

halfcheetah

(1, 1) 33.7 ± 3.0 17.1 ± 2.4 33.7 ± 5.5 9.9 ± 3.6 33.4 ± 3.7 44.2 ± 5.6
(1, 5) 72.7 ± 2.6 61.8 ± 2.5 52.9 ± 4.0 24.4 ± 3.3 69.6 ± 3.9 77.1 ± 2.4
(5, 1) 2.4 ± 0.5 3.8 ± 1.3 2.5 ± 1.1 1.3 ± 1.1 4.0 ± 1.2 5.7 ± 1.5
(5, 5) 2.0 ± 0.9 2.9 ± 1.1 1.6 ± 1.3 −1.2 ± 0.4 4.6 ± 1.6 5.5 ± 0.8

Table G: Performance comparison on Scenario 2 (time-dependently collected dataset) including a
different choice of f -divergence (soft χ2-divergence) for OptiDICE-BC and DrilDICE.
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Figure F: Performance comparison on Scenario 3 (segmented dataset) including a different choice of
f -divergence (soft χ2-divergence) for OptiDICE-BC and DrilDICE.

F Licenses

For all experiments in Four Rooms environment, we use CVXPY and convex optimization solver
MOSEK with academic licenses. We also use Mujoco free licenses. Our code has been developed
upon MIT licenses.

G Computation Resources

We used Google cloud computing engine with 100 c2-standard-4 instances that have the following
system specification:

• Series : C2
• Family : compute-optimized
• vCPU : 4
• Memory : 16 GB
• CPU Manufacturer : Intel
• CPU Platform : Intel Cascade Lake

• CPU Base Frequency : 3.1 GHz
• CPU Turbo Frequency : 3.8 GHz
• CPU Max. Turbo Frequency : 3.9 GHz
• Network Bandwidth : 10 Gbps
• Max. Disk Size : 257 TB
• Max. Number of Disks : 128

H Broader Impacts

Since we study distributionally robust learning, our approach can be used in fairness or bias reduction.
As we discussed in experiment section, our algorithm is also beneficial when the training agent in the
cost-constrained environment. Further, we expect our research contributes to build more trustworthy
and robust AI systems.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, we clearly reflect our scope and contribution in abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Yes, please see Section 5

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: We does not claim any theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide hyperparameters and code in the supplementary materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We used D4RL dataset, which is public, and provide toy domain code to
generate datasets.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, we include training and test details in Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, we report standard errors for all experiments we did.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, we provide resource information in the appendix

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, we read and conducted research with Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We describe broader impacts in the appendix

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Experiments of our research grounded only on simulators.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We describe License in Appendix F.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: we does not release new assets
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our research does not involve crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our research does not involve crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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