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Abstract. Kidney ablation therapy is a minimally invasive procedure used to 

treat renal tumours. Evaluating treatment success for planning follow-up care 

relies on accurate kidney ablation zone (KAZ) segmentation in post-operative CT 

images. However, manual segmentation is time-consuming and prone to inter-

observer variability and traditional segmentation is challenging because ground 

truth labels only provide a partial estimate of the area of interest. This challenge 

is prevalent in many interventional and surgical contexts, yet understudied in the 

medical imaging domain. Therefore, segmenting the area of interest requires 

careful attention to the specific clinical needs of the resulting deep learning 

framework, including adding model interpretability and uncertainty estimation 

for further clinical review. We introduce a deep learning framework, 

XBoundNet++, that permits (1) precise segmentation of the boundary, (2) 

detailed attention maps for model layer-wise interpretability, and (3) model 

uncertainty estimation based on Bayesian Monte-Carlo dropouts and model 

ensembles. The model was trained and evaluated using a nested 5-fold cross-

validation on a local dataset of 76 patients (with 912 CT 2D radial slices), 

collected at London Health Sciences Centre, which included manually annotated 

KAZs. Quantitative analysis showed that XBoundNet++ achieved promising 

segmentation results, including 88% precision, 83% recall, 84% DSC, 74% 

Jaccard, 6.89-pixel Mean Absolute Distance (MAD), -0.60-pixel Mean Signed 

Distance (MSD), and a 19.86-pixel Hausdorff distance (HD). Furthermore, 

heatmaps at each layer, probability and uncertainty maps, and uncertainty 

estimation at several thresholds indicates model trustworthiness, confidence, and 

justification for predictions.  
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1 Introduction 

Many segmentation methods perform well for known structures (e.g., kidney, liver in 

CT) [1, 9], as well as pathological structures (e.g., brain tumours) [10]. However, 

supervised learning requires the ground truth labels for objects of interest for training, 

but there are contexts in which ground-truth labels are generally challenging to obtain. 

Furthermore, it is well-established that only coarse and rough labels are provided by 
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clinicians with the understanding that these are rough estimates that identify the area of 

interest. This context is common in clinical interventions, for example, where pathology 

boundaries are unclear due to poor modality contrast (e.g., CT, MRI, ultrasound). 

Furthermore, additional challenges are presented in these types of clinical contexts as 

they typically consist of a limited number of cases. These contexts are not well studied 

in the literature and require particular care in terms of providing the clinician with 

model transparency and model uncertainty in order to trust the results and review the 

areas of relevance. This is crucial to enable trustworthy AI, helping with: 

• Trust: Clinicians trust in the model will increase if they can understand how it 

arrived at the prediction, which is important for some clinical applications.  

• Safety: Evaluating and monitoring prediction uncertainty to prevent a 

segmentation error and uncertainty from cascading into a clinical error. 

• Transparency: Detecting biases and model failures and making edits. 

• Improved models: Gaining insight as to how and what our model learns. 

Fig. 1. Two sample patient images from the dataset, where (a) are raw images, and (b) clinically 

annotated images.  

In this paper, we consider post-treatment delineation of the ablation zone in kidney 

CT images. Kidney cancer, or renal cell carcinoma, is one of the most prevalent 

urological malignancies worldwide. For patients unfit for surgical intervention, thermal 

ablation therapies like microwave or radiofrequency ablation offer a minimally invasive 

alternative. These procedures aim to destroy malignant cells by creating a “kidney 

ablation zone” (KAZ) that encapsulates the tumour and surrounding margin. Post-

treatment assessment depends on accurately identifying the entirety of the KAZ in 

follow-up CT scans, which is a critical task for determining treatment success and 

guiding subsequent care [4].  

In this work, we introduce an XBoundNet++, an eXplainable Boundary-Aware 

modified ResU-Net++, a novel deep learning segmentation framework designed to 

provide clinicians with high quality segmentation results, model transparency, 

interpretable tools, and uncertainty estimation using Bayesian Monte-Carlo (MC) 

dropout [5]. Our framework is aimed at shifting clinical practice from unclear binary 
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masks to interpretable tools that explicitly provide confidence, uncertainty, probability, 

and transparency. We created an end-to-end pipeline to preprocess an image (as seen 

in Fig. 1), feed it into our model, generate segmentations of high quality that outperform 

other state-of-the-art models, provide comprehensive layer-wise transparency, and 

produce epistemic-uncertainty with probability maps.  

2 Methods 

2.1 XBoundNet++ Segmentation Network and Training 

We propose XBoundNet++, an ensemble-based four-level modified U-Net [13] in Fig. 

2, which introduces architectural elements that explicitly promote feature relevance, 

spatial focus, and post-hoc transparency. Our architecture integrates components from 

LeXNet++ [3], ResNet [6], attention mechanisms [11], Squeeze & Excitation (SE) [7], 

STEM [12], and several advanced architectures.  

The Atrous Spatial Pooling Pyramid (ASPP) bridge, connecting the encoder and 

decoder, captured multi-scale context while maintaining dimensionality. It applied 

convolutions with dilations of 1, 6, 12, and 18 [2], performed a summation to merge 

the features, and applied a BN and ReLU activation.  

 

Fig. 2. Network pipeline and architecture with layer-wise activation maps.  

Attention Gate blocks were introduced to selectively propagate relevant features 

during upsampling. They compute spatial attention maps via 1×1 convolutions and 

ReLU-sigmoid activation, suppressing irrelevant activations and enhancing decoder 

focus on the ablation zone. 

The network was optimized with Adam (learning rate 10⁻⁴, batch size 4) and a 

custom combined loss of Log-Dice (α = 0.7) and binary cross-entropy (α = 0.3), as Dice 

addresses class imbalance, while BCE improves per-pixel calibration., giving 
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probabilistic outputs that can be further used for uncertainty estimation. Early stopping 

(patience = 50) and Reduce-LR-on-Plateau (factor 0.1, patience = 15) were employed 

to prevent over-fitting and facilitate convergence. The final combined loss is: 

 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑𝐿𝑜𝑠𝑠(𝑦, ŷ) = 𝛼 ∗ 𝐿𝑜𝑔𝐷𝑖𝑐𝑒𝐿𝑜𝑠𝑠(𝑦, ŷ) + (1 − 𝛼) ∗ 𝐵𝐶𝐸(𝑦, ŷ) (1) 

where y is the ground truth, ŷ is the prediction, and α is set to 0.7.  

For each of the five patient-wise folds, we trained five instances of XBoundNet++ 

with differing seeds, yielding 25 independent models in total. Altering the seed affects 

weight initialization, alters the stochastic augmentation stream, and changes the 

sequence of dropout masks encountered during optimization. The resulting ensemble 

enhances predictive stability, generalizes the small dataset, and forms the basis for the 

uncertainty analysis described in the next section.  

2.2 Layer-wise Heatmap Generation 

We propose a custom Gradient-weighted Class Activation Mapping (Grad-CAM) [14] 

method that helps visualize which regions of an image had the most influence on the 

model by analyzing gradient-weighted activations that serve as spatial attention maps. 

First, the image is processed by the model, a class prediction is made, and during 

backpropagation, the gradients of the prediction are computed for the feature map at 

the chosen convolutional layer. Finally, the results are passed through a ReLU 

activation (and upsampled if necessary) to produce the heatmap for any given 

convolutional layer in the network.  

We then extract heatmaps from every convolutional block across the network to 

observe how feature abstraction evolves at different depths. This strategy allows us to 

visually trace the information flow and decision-making within the network, revealing 

where and how the network’s focus shifts, from low-level texture extraction to high-

level semantic boundary recognition.  

2.3 Model Inference and Uncertainty Estimation 

During training, dropout mitigates over-fitting. During inference, the five seed-specific 

trained network models retained from each outer fold are evaluated with dropout kept 

active. For every unseen test slice, we generate 50 stochastic outputs using Bayesian 

MC dropout, yielding a collection of 250 predictions per slice. We then average this 

collection to create an ensemble-predictor, producing a probability map 𝑝 for KAZ 

segmentation.  

We use the probability map to generate an uncertainty map using normalized 

entropy, 𝐻, as a measure of uncertainty as portrayed below: 

 𝐻 = −[𝑝 log(𝑝) + (1 − 𝑝) log(1 − 𝑝)]. (2) 

We pool the raw predictions of the validation slices and fit a one-dimensional 

logistic-regression calibrator. The fitted sigmoid is saved and applied to all test-set 

probabilities, producing a calibrated map. We then use a 0.4 threshold to binarize the 
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prediction so that values are either 0 or 1. Next, we perform a morphological closing 

operation to seal small holes or gaps in the prediction if necessary. We also examined 

whether numerous disconnected components were present, in which case the largest 

foreground component is retained, and all other objects are suppressed. This didn’t 

apply to instances where cysts are larger than the KAZ; in such a case, the second 

largest component is selected.  

The cleaned final segmentation mask was then resized to the original CT image size 

(510 × 788 pixels) with Lanczos-4 interpolation and written to disk as an 8-bit BMP. 

2.4 Evaluation Metrics 

Standard pixel and distance-based metrics were used to assess both technical and 

clinical segmentation quality. These metrics included the Dice similarity coefficient 

(DSC), Precision, Recall, and Jaccard, which provide valuable quantitative insight on 

boundary overlap, precision, and quality of segmentation. Boundary accuracy was 

evaluated by the mean absolute distance (MAD), mean signed distance (MSD), and 

Hausdorff distance (HD), to quantify the comparative closeness and surface area.  

To validate the segmentation uncertainty estimations, we apply thresholds. This 

involved normalizing the entropy estimates per slice ranged from 0 and 100, and 

varying the thresholds (T = 25, 50, 75) at different confidence levels as in [8]. Pixels 

exceeding the given threshold were labelled as uncertain and the remainder were cross-

checked against the annotated mask to generate four disjoint classes: true positive (TP) 

(overlapping areas), false positive (FP) (over-prediction), false negative (FN) (under-

prediction), and uncertain. As we lowered the uncertainty threshold, the FN and FP 

areas should have been filtered out while retaining the TP pixels. This validated that in 

areas where the model is confident, it is correct, while incorrect areas have high 

uncertainty. This permits clinical trust in areas of high model confidence. The entire 

spatial confidence map, along with the segmentation results, allows a framework for 

downstream clinical review. 

3 Experiments and Results 

3.1 Patient Data, Preprocessing and Implementation Details 

Our patient dataset was collected after approval by the Western University Research 

Ethics Board using a GE Lightspeed 64-slice CT scanner and included 76 patients’ 

cases, each containing 12 axial CT slices obtained post-ablation. All the images were 

in BMP format, grayscale, originally sized at 510 × 788 pixels, and were accompanied 

by manually annotated binary masks of the KAZ, which were generated by an expert. 

The 3D CT images were resliced radially around an approximate vertical axis of the 

KAZ every 15° into 2D CT images. This transformation ensured that the zone appears 

more consistently across 2D image samples. Each slice was resized to 256 × 256 pixels 

for computational feasibility to fit into the model, resulting in a dataset of 912 2D CT 

images, as shown in Fig. 1. 
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We normalized pixel intensities to a [0, 1] range, and split the dataset by patient into 

training (64%), validation (16%), and testing (20%) sets. This ensured that slices from 

the same patient did not appear in multiple subsets to avoid model bias. To enhance 

model reliability and reduce variance due to dataset partitioning, a nested 5-fold patient-

wise cross-validation strategy was adopted. Each fold used a unique set of patients for 

training, validation, and testing, ensuring that no slices from a single patient were 

shared across splits. 

On-the-fly data augmentation was applied to expand the appearance diversity while 

preserving label fidelity to compensate for the relatively small dataset. Augmentations 

were executed in TensorFlow eager mode, so a new stochastic version of every training 

image was generated for each epoch without materializing augmented files on disk. 

Each slice had a 30% chance of undergoing one or more spatial transformations: 

horizontal or vertical flip, translation of ±10 % of the image extent, rotation of ±20°, or 

isotropic zoom between 0.9 and 1.1. Independently, there was a 30 % chance of a 

photometric adjustment that scales contrast between 0.8 and 1.2. 

 

Fig. 3. XBoundNet++ results for three image slices from three different patients, in each row a) 

Original image, showing model prediction contour and clinical annotation, b) Clinically 

annotated mask, c) LeXNET++ prediction, d) XBoundNet++ prediction, e) The prediction 

attention heatmap from the convolutional layer before the sigmoid is applied. Attention shows 

higher gradient activation in red and thus more involvement in the resulting prediction, as it is 

more confident in the centre and is less confident at the boundaries. 

3.2 Segmentation Results 

Fig. 3 shows the original image, mask, XBoundNet++ prediction, and the 

corresponding attention-based heatmap. These results show that the predictions 

generated by XBoundNet++ accurately align with the KAZ better than LeXNET++, as 

well as provide clarity on how strong the activations are that result in the arrival to the 

final prediction. This is evident in the first patient, where the KAZ, annotation mask, 

and model prediction all agree and cover the same area inside the kidney. While the 

second image may appear to be over-segmented, it is due to an incomplete annotation 
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mask. The model correctly delineated the full ablation zone, actually outperforming the 

human annotation. The third prediction correctly under-segments, as the manual 

annotation extends beyond the actual KAZ and kidney region. 

Table 1. Ablation analysis on different metrics in XBoundNet++, with the cumulative addition 

(+) of new components in descending order, highlighting the best result in grey. 

The results of the ablation study is shown in Table 1 and was conducted to isolate 

the effect of each added XBoundNet++ component. Starting from the LeXNet++ [3] 

baseline, which lacks data augmentation, post-processing, and loss customization, we 

observe steady improvements across all metrics with each addition. XBoundNet++ 

alone improves DSC by 11%, recall by 12%, and HD by 25 pixels. Adding data 

augmentation further boosts DSC by 12%, Jaccard by 22%, and reduces MAD and 

MSD by over 9 pixels. Post-processing and the combined loss yield additional gains in 

boundary-related metrics, notably 3% DSC and a 15-pixel HD reduction. Finally, the 

ensemble improves all metrics, culminating in a 29% gain in DSC and Jaccard, 20% 

precision, and 67.1-pixel HD reduction compared to the baseline. 

While these metrics clearly demonstrate the quality of our proposed model, it is 

important to consider that there is no clear ground-truth in this application because KAZ 

boundaries are inherently ambiguous and the manually-drawn masks are subject to user 

variability. Thus, quantitative gains do not always capture the full clinical value (i.e., 

rows 2 and 3 in Fig. 3, where the model outperformed the annotation – based on post-

hoc review).  

3.3 Model Transparency 

As visualized in Fig. 2, early convolutional layers tend to activate broadly across the 

ablation zone, while deeper layers increasingly emphasize peripheral boundary regions, 

particularly near ambiguous areas. The heatmaps clearly illustrate a transition from 

low-level texture detection in early layers to high-level semantic abstraction in deeper 

layers, confirming that the network progressively refines its attention toward clinically 

relevant boundaries. As a result, we can clearly track information flow and decision 

making, revealing the model’s focus, enabling trustworthy AI.  

Metrics 

Models 

Precision Recall DSC Jaccard MAD  

(pixels) 

MSD  

(pixels) 

HD  

(pixels) 

LeXNet++ 

Baseline 

0.68±0.33 0.54±0.36 0.55±0.34 0.45±0.31 37.06±57.94 27.44±61.89 86.96±119.89 

+XBoundNet++  0.71±0.20 0.68±0.30 0.66±0.27 0.54±0.26 26.00±41.83 17.59±44.03 61.95±66.28 

+Augmentation 0.82±0.18 0.80±0.23 0.78±0.19 0.76±0.17 15.48±26.10 8.19±27.22 43.47±55.10 

+Post- 
Processing 

0.81±0.18 0.83±0.19 0.81±0.17 0.71±0.18 12.47±29.55 6.28±30.76 28.29±37.16 

+CombinedLoss 0.84±0.18 0.82±0.19 0.82±0.17 0.72±0.17 10.54±24.13 3.80±25.39 24.83±31.64 

+Ensemble 0.88±0.11 0.83±0.13 0.84±0.10 0.74±0.13 6.89±4.33 -0.60±5.90 19.86±12.40 
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3.4 Uncertainty Analysis 

Fig. 4 illustrates a qualitative analysis of a given patients’ KAZ region and provides 

more insight for clinicians. The prediction doesn’t span over the healthy tissue at the 

bottom despite the manual annotation including it. The clinician can refer to the 

probability and uncertainty overlays to manually scrutinize areas with less confidence 

and higher uncertainty. The results show that decreasing the threshold leads to filtering 

out pixels of high uncertainty only. 

 

Fig. 4. XBoundNet++ results, uncertainty, probability, and thresholding visualized over a 

patient’s CT slice. (a) CT original patient image slice, (b) Manually annotated mask, (c) 

XBoundNet++ predicted mask, (d) Probability map based on MC and ensembling, (e) Predicted 

entropy map from the probability map, (f) Uncertainty threshold = 100, (g) Uncertainty threshold 

= 75, (h) Uncertainty threshold = 50, (i) Uncertainty threshold = 25. It is desired that with more 

filtered out, more False Positives and False Negatives pixels are filtered out (marked uncertain), 

while True Positive pixels remain unfiltered.  

4 Conclusions 

In this work, we propose XBoundNet++, a novel deep learning segmentation 

framework that provides clinicians with several auxiliary interpretable and uncertainty 

tools to better equip them for clinically challenging contexts such as poor image 

contrast, no delineated boundary, or incomplete labels. The model excels at 

segmentation based on several key metrics, provides in-depth transparency using Grad-

CAM, and uncertainty estimation generated by Bayesian MC dropout and model 

ensembling. By offering transparency, spatial uncertainty and probability overlays, 

XBoundNet++ enables more informed clinical review and supports safer, more 

trustworthy AI-assisted decision-making in interventional radiology. 

Future work can involve propagating the uncertainty the model’s generated 

uncertainty into downstream clinical tasks or metrics, such as margin status, ablation 

volume, tumour volume changes, and residual tumour estimation.   
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