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Abstract

We propose an importance-weighted training
framework for diffusion samplers — diffusion mod-
els trained to sample from a Boltzmann distribu-
tion — that leverages Monte Carlo methods with
off-policy training to improve training efficiency
and mode coverage. Building upon past attempts
to use experience replay to guide the training of
denoising models as policies, we derive a way
to combine historical samples with adaptive im-
portance weights so as to make the training sam-
ples better approximate the desired distribution
even when the sampler is far from converged. On
synthetic multi-modal targets and the Boltzmann
distribution of alanine dipeptide conformations,
we demonstrate improvements in distribution ap-
proximation and training stability compared to
existing baselines. Our results are a step towards
combining the strengths of amortized (RL- and
control-based) approaches to training diffusion
samplers with those of Monte Carlo methods.

1. Introduction

The problem of sampling from high-dimensional unnor-
malized probability distributions arises in many domains,
including Bayesian inference of statistical model parameters
and sampling of molecular conformations in computational
chemistry (Noé et al., 2019; Holdijk et al., 2023). Solv-
ing this problem requires exploration of a complex, multi-
modal energy landscape defining a Boltzmann distribution
that is intractable to sample from directly. Classical ap-
proaches such as Monte Carlo methods — including both fast
Markov Chain Monte Carlo (MCMC) methods like Hamil-
tonian Monte Carlo (HMC; Duane et al., 1987; Hoffman
et al., 2014) and accelerated Langevin dynamics (Leimkuh-
ler et al., 2014) and particle-based methods like Sequential
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Monte Carlo (SMC; Halton, 1962; Del Moral et al., 2006) —
have been used to address this challenge for decades.

Recent work has considered amortized methods, in which a
parametric model, such as a neural network, is trained to di-
rectly sample from the target distribution (Noé et al., 2019).
In particular, diffusion models have shown promise as the
generative models used for amortized sampling: in contrast
to diffusion models trained to maximize a variational bound
on log-likelihood of a dataset (Ho et al., 2020; Song et al.,
2021bsa), these diffusion samplers are trained, by one of
many available objectives, assuming access to a queryable
energy function (see related work in §4).

In contrast to Monte Carlo methods without learnable com-
ponents, amortized samplers, including diffusion samplers,
can take advantage of the generalization abilities of deep
networks to exploit regularities in the target distribution.
In addition, while Monte Carlo methods typically require
a large number of steps or samples to produce unbiased
samples, amortized samplers can generate samples in finite
time once trained. On the other hand, the anytime nature
of Monte Carlo methods can be seen as a strength: they are
guaranteed to approach the target distribution as the number
of steps or particles increases, while amortized samplers
may fail to converge to the target distribution due to insuffi-
cient model capacity or optimization issues, such as mode
collapse or overfitting to a subset of the target distribution.

In this work, we propose an importance-weighted train-
ing framework for diffusion samplers that combines the
strengths of amortized sampling with Monte Carlo methods.
We first derive a connection between diffusion samplers
and importance sampling that allows us to use an imper-
fectly trained sampler as a proposal distribution. We then
introduce a method for using importance-weighted samples
obtained from past iterations of a diffusion sampler to im-
prove the training of the current model, which we interpret
as a form of prioritized experience replay. We also introduce
an adaptive importance weight tempering strategy, which
reduces variance in the learning signal and significantly
improves training stability.

We demonstrate the effectiveness of our method on syn-
thetic targets and on the Boltzmann distribution of alanine
dipeptide conformations, finding improvements in target
distribution approximation over comparable prior work.
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2. Preliminaries

We address the challenge of sampling from a target probabil-
ity distribution on R? of the form 7(x) = exp(—£(x))/Z
where Z = [,, exp(—&(x))dx is unknown but the energy
function £(x) is known pointwise. Classical approaches
to this problem rely on Monte Carlo methods, including
importance sampling (IS), sequential Monte Carlo (SMC;
Del Moral et al., 2006), and Markov chain Monte Carlo
(MCMC; Hastings, 1970; Kass et al., 1998), along with
their various extensions. More recently, advances in deep
generative models have spurred efforts to train amortized
samplers — parameterized models capable of directly gen-
erating samples from the target distribution 7 (Vargas et al.,
2022; Zhang & Chen, 2022; Vargas et al., 2023, see §4).

Diffusion samplers. Diffusion models assume a genera-
tive process governed by a stochastic differential equation
(SDE):

dx; = ug(xy, t)dt + o(t)dwy, ¢ €[0,1], (1)
where xy ~ 1o and w; is standard Brownian motion. The

goal is to learn the drift ug such that the marginal distribu-
tion of x; closely approximates the target .

To implement this, we discretize the SDE via Euler-
Maruyama scheme (Maruyama, 1955) with predefined time
points 0 =ty < t; < --- <ty = 1. This yields a discrete-
time Markov process with transition kernel:

a0 (Xt 4, |%t,,)

2
= N (Xt,, 13X, + Up(Xe,, tn) At 02 (t) At 14),

where At,, = t,,+1 — t,,. The objective of amortized sam-
pling is to ensure that the marginal distribution satisfies:

o (x1) = / 06 (Xto )0ty ¢ xXD(—E(1)),  (3)

where gy (XtO:N) = Qs (Xto) HT]:T:1 do (th th—l) and
qo(Xt,) = 1o(x0) (also recall that tg = 0 and ty = 1).

Trajectory balance. If the support of the joint distribution
conditioned on a given x; is intractable to integrate over, the
constraint (3) cannot be enforced directly. Instead, we can
introduce auxiliary backward kernels py (xy, , |x:, ) and try
to minimize a divergence between the forward and back-
ward joint distributions over the trajectories, e.g., the reverse
Kullback-Leibler (KL) divergence Dxr.(qo(Xto, 5 ) |7 (Xty )-
Pe(Xig.n_1 [Xin ). Note that, by the data processing in-
equality, the trajectory-level divergence upper-bounds the
divergence between the marginals.

Trajectory balance (TB; Malkin et al., 2022) is an off-policy
objective for minimizing such trajectory-level divergences.

For a given trajectory Xy, . , the TB loss is defined as

2646 (Xto.n ) ))2 ‘

Lrs(xiy) = (1
8 (Xto.v) <°g P T e e

Here, Zy is a learnable parameter that approximates the
normalizing constant Z. When this loss is minimized over
all possible trajectories, we achieve q; =mand Zy = Z.
To lighten the notation, we denote trajectories Xy, as T in
subsequent sections, unless it causes any confusion.

Importance sampling. Consider computing the expec-
tation of an integrable function h(y) under an unknown
target distribution p(y) = p(y)/Zy where y € R and
Zy = fRd p(y)dy:

I=Eph(y)l= | h(y)p(y)dy. Q)

Rd

Since drawing independent samples from p(y) is intractable,
standard Monte Carlo estimation is not applicable. Impor-
tance sampling circumvents this by introducing a tractable
proposal distribution ¢(y) such that ¢(y) > 0 whenever
h(y)p(y) # 0, and rewriting the integral as:

1

I =Ey[w(y)h(y)] = 7

/IR . w(y)h(y)g(y)dy, (6)

where w(y) = p(y)/q(y) is the importance weight. When
Zy is known, importance sampling gives an unbiased es-
. . K iid.
timator I1s = 22 >0, w(y®)h(y*) for y* "X g(y).
However, since Zy is typically unknown, we use the self-
normalized importance sampling estimator:

K
~ 1
Irs =52 > W*h(y"), (7)
k=1
where W = %k()yj) are the self-normalized im-
=1

portance weights. This estimator is consistent, meaning
Irs - Tas K — .

More interestingly, we can also approximate the target distri-
bution p using the importance-weighted empirical measure:

K
Py ) =Y W (y), ®)
k=1

where & (y) is the delta measure at y*. This empiri-
cal measure p(y;y ') converges weakly to the true tar-
get distribution p(y) as K — oo, which implies that
for any bounded, continuous function g¢(y), E5[g(y)] =

S Whg(y) = Eylg(y)] as K — oc.
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3. Methods

We explore how importance sampling can improve the train-
ing of the diffusion samplers, especially when using the
Trajectory Balance (TB) objective (4).

Since TB is an off-policy objective, we can train our sam-
pler using trajectories drawn from any training (behavior)
distribution 7)(7) with full support. The choice of 7 plays a
crucial role in both training efficiency and the quality of the
resulting sampler gy, especially when the target distribution
is multi-modal, where 7 should ideally explore the regions
that our sampler gy has low density (Kim et al., 2025a; Pan
et al., 2023; Phillips & Cipcigan, 2024).

Throughout this and the subsequent sections, we assume
that there exists a desired training distribution 7, that we
want to train our sampler on. While 7, may not be tractable
to sample from directly, we require that its unnormalized
density 7. can be evaluated pointwise, e.g., 7. = 7 - py (see
§3.4 for discussions about the choices of 7,). Our goal is to
approximate the expected gradient with respect to 6 under
this distribution:

Gy, = Ey, [VoLrs(7)], ©))
using importance sampling and its variants.

3.1. Importance-weighted Training

Consider another proposal distribution 7z (7) that we can
easily sample from and also has full support (e.g., qg). Fol-
lowing (8), we approximate the desired training distribution
7« using samples from 7g:

K
Al ) = Whe(r), (10)
k=1
where 75 1 7 and the importance weights are:
k =~k
Wh— Wkt = ) gy

K ARl
Do

Here, 7, is the unnormalized density of 7, that we can
evaluate. Also, we obtain a consistent estimate for G, in

9):

G5 = Eq[VoLrs(T ZW VoLlrs(T"). (12

k=1

As with (6) and (8), consistency ensures that 77 — 7, and
Gy — G, as K — oco. This approach leads to Algo-
rithm 1, which presents the basic version of importance-
weighted training.

3.2. Importance-weighted Experience Replay

Note that the asymptotic bias and variance of (12) are both
O(1/K) (Owen, 2013, Chapter 9.2). To reduce the variance
of this estimator, we can leverage the history of importance-
weighted samples collected from past iterations by storing
them in a replay buffer.

Let 75" be the proposal distribution at m-th training round.
Without loss of generality, let the replay buffer B store
the first M batches of trajectories with their corresponding
importance Weights, ie., B = (UMK LMK "yhere

mk:_ 7. (7™ )

w 7YL(7-7Y7 k)

The key challenge is to effectively combine these historical
samples, each generated using a different proposal distri-
bution, to obtain better gradient estimates. We present two
approaches below.

3.2.1. UNIFORM MIXTURE OVER BATCHES

A straightforward approach is to treat the replay buffer as a
uniform mixture over batches, applying importance weight-
ing within each batch independently. This approximates the
desired training distribution 7, as:

| MK
Tuni (73 B) = 7 WS i (T)
m=1k=1 (13)
1 « K
= 3F 2 A,
M m=1
where W™k = K ,7(" 'km — are the normalized weights

within batch m, and 7 1s defined as in (10). When K — oo,
since each 7j(7; 7 1K) converges to 7, as K — oo, their
uniform mixture 7j,,; also converges to 7.

The corresponding gradient estimator for G,,, in (9) then
becomes:

Gﬁuni = E"/I\uni [VQ‘CTB (vak)]

Z W kV@£TB< m, k')

m=1 k=1

K
ZETB,
k

where the last line is the Monte Carlo approximation with

(14)

samples 7% S Tuni (75 B). While the exact estimate (second
line) is available, it requires M times more memory than
typical batch processing, so we use the approximation in
practice.

3.2.2. POOLED IMPORTANCE WEIGHTING

An alternative approach, which we refer to as “pooled im-
portance weighting,” directly combines all M x K samples
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by pooling their original unnormalized weights w™* and
then normalizing them globally across the entire buffer. This
creates a single, comprehensive empirical distribution from
all historical data. The resulting approximation of 7, is:

Tpool (75 B) = WS i
’ Zl:]zj L whi Tnz:l;
M
= 3 ),
m=1
(15)
where W" = £ 7Zm — LYK ymk s the esti-

YN
mate of the normalizing constant from m-th batch, and 7 is
defined as in (10). Note that ﬁpool is a weighted mixture of
the individual batch-specific empirical distributions, with

. . —=5m
mixture weights W

An advantage of 7jpool OVer u in (13) is that 7o ap-
proaches 7, as the total number of samples M x K — oo,
potentially offering a more robust approximation. This pool-
ing approach aligns with Group Importance Sampling (see
Appendix B of Martino et al. (2018) for details).

As with the uniform mixture approach in (14) we obtain gra-
dient estimates for G, in (9) by G, = npm, [VoLrs(T)],
which we approximate using samples from 7,01

Both the uniform mixture (§3.2.1) and the pooled impor-
tance weighting (§3.2.2) require sampling from their re-
spective empirical distributions (7yni and 7peol, respectively).
This sampling step can be efficiently implemented using
prioritized experience replay (Schaul et al., 2016), using
the corresponding importance weights as the priority scores.
See Algorithm 2 for the resulting algorithms.

3.3. Adaptive Importance Weight Tempering

When our proposal g differs significantly from the desired
training distribution 7,, the importance weights can exhibit
extremely high variance. This becomes particularly severe
when 7, involves a target distribution 7 with sharp, well-
separated modes. High variance in the importance weights
leads to the weight degeneracy problem: after normalization,
only a few samples receive significant weights while the rest
become negligible. Such degeneracy significantly increases
the variance of importance-weighted gradient estimates, e.g.,
(12), causing instability in the training.

To address this issue, we temper the importance weights
using an inverse temperature parameter A € [0, 1], trans-
forming w + w” before normalization. This is equiva-
lent to replacing the desired training distribution 7, with
n+(17)*ns(7)'~*, a geometric interpolation of 7, and 7,
since:

v (DY ) na(r) N
(%ﬁD = e 1

While this could significantly reduce variance, it also intro-
duces bias to our approximations. Thus, rather than using
a fixed A\, we adaptively set A to maintain a minimum level
of sample diversity, measured by the Effective Sample Size
(ESS). ESS represents the ratio of variances between plain
Monte Carlo and self-normalized importance sampling es-
timators. Since we cannot compute the plain Monte Carlo
variance directly, ESS is commonly approximated as:

(Zf:l wk>2
Yoy (wh)?

originally proposed by Kong (1992) and recently studied by
Elvira et al. (2022). This approximation is widely used in
adaptive resampling schemes for sequential Monte Carlo.
Note that the value ESS ranges from 1 (complete degener-
acy) to K (uniform weights).

ESS(w' ) = (17)

Our adaptive tempering scheme selects the largest A that
maintains ESS above a specified threshold:

A= max{)\ € [0,1] : ESS ((wA)LK) > ny} . (18)

Since
ESS ((wA)1:K> decreases monotonically from K (when
A=0)to E/S\S(w1 K (when \ = 1), we can efficiently find

a fairly good approximation of A* using binary search with
negligible computational overhead.

where v € [0,1] is a user-defined threshold.

In our experiments, we set 7, = 7 - pg and 1g = qg. As
training progresses and gg better approximates the target, we
expect A* to gradually increase toward 1, since the model
learns to minimize importance weight variance (see §3.4).

3.4. Practical Considerations

Choice of 7, and ng. Two key design decisions are se-
lecting the desired training distribution 7, and the tractable
proposal distribution 1g. The most straightforward choice
for 1, would be 1, (7) = 7(x1) - pe(7|x1) using a fixed
backward policy pg, which we adopt in our experiments.
Alternative formulations are possible, such as using a tem-
pered target 7 - pe (with A € Ry) or incorporating loss-
dependent terms as in Kim et al. (2025a).

For the proposal distribution, we use the current policy gy
being trained, i.e., 73" = gg" at training round m. A simple
alternative is to use a variant of ¢* by increasing variance
in the transition kernels (2), as employed in several previous

works (Lahlou et al., 2023; Sendera et al., 2024).

Notably, when we set 7, = m-py and 17g = ¢, minimization
of the TB loss (4) yields the optimal proposal distribution

that minimizes the variance of the importance weights, since

_ Tx(1) _ exp (=E(x1))py(T]x1) _
w(r) =5 = a0 (™) = Zo.
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Terminal-state buffer. The approach described in §3.2
requires storing complete trajectories 7 in the replay buffer,
which is memory-intensive and limits the number of trajec-
tories we can retain. However, when our desired training
distribution takes the form 7. (7) = 1, (x1)pe(7|x1) with
a fixed backward policy py, we can significantly reduce
memory consumption by storing only the terminal states x; .

The key insight is that if weighted trajectories follow the
distribution 7, then the corresponding weighted terminal
states automatically follow the marginal distribution 7.
This allows us to reuse trajectory-level importance weights
to construct an approximation of the terminal-state distri-
bution. For instance, corresponding to the trajectory-level
uniform mixture in (13), we define the terminal-state ap-
proximation:

1 M K
~T . _ m,k
nuni(xh BX) - M Z Z w 5x;"k (xl)v (19)

m=1 k=1

where B contains only terminal states and W "* are the
same importance weights used in (13).

For training, we sample terminal states from this importance-
weighted terminal-state buffer, and then generate complete
trajectories by sampling backwards using the fixed policy p.
This approach dramatically reduces memory requirements
while maintaining the same statistical properties as the full
trajectory buffer.

4. Related Works

Inspired by the successes of diffusion models in approxi-
mating empirical distributions by denoising processes (Sohl-
Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021b),
diffusion samplers, beginning with Vargas et al. (2022);
Zhang & Chen (2022); Vargas et al. (2023), are generative
models of the same form that are trained to sample a distri-
bution that can be queried for its energy (and possibly its
gradient), but not sampled from directly. The problem of
training a diffusion sampler is known to have an interpre-
tation as stochastic optimal control (Zhang & Chen, 2022;
Niisken & Richter, 2021; Berner et al., 2024).

Diffusion samplers can be trained by off-policy methods,
that is, ones minimizing some discrepancy between a gener-
ative process and its reverse without differentiating through
the sampling process. Such methods were independently in-
troduced from the path space measure perspective (Richter
et al., 2020; 2024) and that of generative flow networks,
general off-policy RL algorithms for sampling from unnor-
malized densities, in works including Lahlou et al. (2023)
(further developed in Zhang et al. (2024); Sendera et al.
(2024); Kim et al. (2025a). A unifying perspective on all
objectives and continuous-time limit analysis is provided in
Berner et al. (2025). Various off-policy behavior policies

for diffusion samplers have been proposed: these policies
attempt to modify the distribution of states seen during train-
ing so as to lead to better coverage of the modes of the target
distribution by the trained sampler. Behavior policies using
auxiliary Monte Carlo exploration (Sendera et al., 2024)
and an additional trained policy guided by the loss of the
sampler (Kim et al., 2025a) show promise in this regard.
Our simple and principled approach of using Monte Carlo
methods for training trajectory selection is inspired by these
works and shows further improvements in the training of
diffusion samplers.

Several works have explored the connection between dif-
fusion models or samplers and sequential Monte Carlo or
importance sampling, albeit in different ways than this pa-
per. For diffusion models, Monte Carlo methods, including
SMC, have been proposed in the setting of sampling a poste-
rior distribution under a diffusion prior (Doucet et al., 2022;
Cardoso et al., 2024; Song et al., 2023; Dou & Song, 2024).
These sampling algorithms run at inference time, rather
than guiding the training of an amortized sampler that can
provide unbiased samples in finite time at convergence. In
Maité & Fleuret (2023), the training objective for a denoizer
maintains the sampler in balance with (learned) intermedi-
ate target distributions, amounting to an amortized adaptive
proposal for twisted SMC in the continuous-time limit; re-
lated ideas are explored in Vargas et al. (2024); Chen et al.
(2025); Albergo & Vanden-Eijnden (2025). However, these
methods are typically coupled to a specialized training ob-
jective, while we are interested in behavior policy selection
for general off-policy training losses.

Finally, it is worth noting that our proposed algorithms
are not specific to diffusion sampler training and are in
theory applicable to any hierarchical sampler. Monte Carlo
methods have been used in GFlowNet training, with Monte
Carlo tree search for forward exploration (Morozov et al.,
2024) and both appropriate Monte Carlo exploration in the
target space (Zhang et al., 2022; Kim et al., 2024; Sendera
et al., 2024; Kim et al., 2025a) and replay buffers for off-
policy training (Deleu et al., 2022; Tiapkin et al., 2024;
Sendera et al., 2024, among others) showing success in
domains more general than diffusion samplers.

S. Experiments

We evaluate our importance-weighted training methods on
synthetic target distributions (§5.1) and the Boltzmann dis-
tribution of Alanine Dipeptide (§5.2).

We refer to the basic importance-weighted training (§3.1)
as “IW-Training,” importance-weighted experience re-
play with uniform mixture approach (§3.2.1) as “UIW-
Buffer,” and pooled importance weighting (§3.2.2) as
“PIW-Buffer.”
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Table 1. Results on synthetic targets. For each metric, we report the mean and standard deviation from five independent runs. The best
mean values and the second-best mean values among all algorithms are highlighted with bold and underline, respectively.

Target — GMM40 (d = 2) ManyWell (d = 32)
Algorithm | Metric — ELBO (1) IW-ELBO (1) EUBO ({) Sinkhorn ({) ELBO (1) IW-ELBO (1) EUBO ({) Sinkhorn ({,)
PIS 297 +032 -2.46 +027 267.81 + 1994 827.34 £299.01  161.03 +001  161.99 002  299.57 + 1841  35.28 +o0.04
TB -3.13 £ o001 -2.60 +0.00 273.00 + 1996  680.47 £969  160.96 +001  161.99 +0.02 315.72 + 834 35.28 +0.02
+ e-expl. -1.73 + 0.06 -1.20 + 007 143.19 £2474  439.56 £898  160.99 £o001  161.99 +0.02  341.34 +1045 35.28 £0.02
+ IW-Training (ours) -1.18 +0.03 -0.35 + 001 68.56 + 851 223.33 + 0091 160.90 £ 001  161.99 £002  316.62 +1009  35.35 +£0.03
+ Buffer -2.34 + 042 -1.67 033 109.25 + 6442 506.05 £51.80  160.97 £003  162.31 + 041 212.08 +590  35.06 +0.24
+ R-Buffer -1.83 £ 0.08 -1.17 £ 021 34.52 +7.76 37293 +9160 161.61 +012  164.37 +098 174.75 + 1.60 30.80 +0.78
+ L-Buffer -1.85 £ 028 -0.89 +0.13 112.19 +5639 31293 +3638 161.75 £029  163.97 +0.22 176.92 + 4.77 26.82 + 1.44
+ UIW-Buffer (ours)  -1.03 +0.03 0.01 +o0.01 0.53 + 001 1.01 +0.03 163.04 + 004  164.69 +0.02 166.04 + 002  23.16 +0.05
+ PIW-Buffer (ours)  -1.09 +0.02 0.01 +o0.02 0.55 +0.00 1.08 +0.02 163.07 006  164.71 +002  166.03 +003  23.03 +0.04

: &

PIS TB TB + R-Buffer TB + L-Buffer TB + UIW-Buffer TB + PIW-Buffer

Figure 1. Samples obtained from samplers trained with each algorithm on GMM40 for the first random seed. The proposed importance-
weighted scheme (UIW- and PIW-Buffer) significantly improves the mode coverage.

We compare our methods against several existing off-policy
training schemes for Trajectory Balance (TB), including
e-exploration (e-expl.; Lahlou et al., 2023), a naive buffer
without prioritization, a reward-prioritized buffer (R-Buffer;
Shen et al., 2023), and a loss-prioritized buffer (L-Buffer;
Schaul et al., 2016). We also include the path-integral sam-
pler (PIS; Zhang & Chen, 2022), which uses the same
variance-exploding diffusion process as our TB variants.
For all algorithms, we excluded the Langevin precondition-
ing scheme introduced in Zhang & Chen (2022) and recently
analyzed by He et al. (2025), since it significantly increases
the number of energy evaluations and also makes training
highly unstable in the Alanine Dipeptide task.

5.1. Synthetic Targets

We consider two challenging synthetic target distributions
with multiple well-separated modes: a 2-dimensional mix-
ture of Gaussians with 40 mixture components (GMM40)
from (Midgley et al., 2023), and a 32-dimensional Many-
Well distribution, constructed as the product of 16 identi-
cal 2-dimensional double-well potentials (Noé et al., 2019;
Niisken & Richter, 2021).

The multi-modality of these targets poses a fundamental ex-
ploration challenge where a sampler needs to be trained to
closely approximate the target while simultaneously explor-
ing the space to discover the modes. Methods that minimize
the reverse KL divergence, including PIS and on-policy TB,
typically struggle with mode collapse on these distributions

due to the mode-seeking nature of reverse KL divergence
(Minka et al., 2005). The off-policy learning objectives,
such as TB, offer a distinct advantage in terms of mode-
coverage, allowing for stable training with exploratory off-
policy samples collected from different policies (Malkin
et al., 2023).

We evaluate using four metrics: evidence lower bound
(ELBO), evidence upper bound (EUBO; Blessing et al.,
2024), importance-weighted ELBO (IW-ELBO), and
Sinkhorn distance (Cuturi, 2013). Please refer to Ap-
pendix B.1 for detailed target specifications and hyperpa-
rameter settings, and Appendix C for metric definitions.

Results. The results are summarized in Table 1, with Fig. 1
showing samples from samplers trained with each algorithm
on GMM40. From high EUBO values, we can see, PIS
and on-policy TB suffer severe mode collapse as expected,
covering only a subset of target modes. IW-Training shows
improved performance over on-policy TB on GMM40 but
not on ManyWell, likely due to increased gradient vari-
ance from importance weighting in higher dimensions. In
contrast, both UIW- and PIW-Buffer demonstrate remark-
able performance, outperforming other buffer prioritization
schemes by substantial margins across both tasks. These
results suggest significant potential for advancing off-policy
training of amortized samplers (Lahlou et al., 2023; Sendera
et al., 2024; Richter et al., 2024), where replay buffers are
widely adopted but typically rely on naive implementations
or heuristic prioritization.
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Table 2. Results of distribution-based metrics on molecular con-
former generation in Alanine Dipeptide. For each metric, we report
the mean and standard deviation obtained from five independent
runs. “Xx” indicates that training failed due to numerical error.

Algorithm | Metric — ELBO (1) IW-ELBO (1) EUBO ()
PIS X X X
TB X X X
+ Buffer -755.9 +2683  -274.1 +353  -125.8 + 14
+ R-Buffer -797.7 +4412  -1849 +115 -1494 +57
+ L-Buffer -494.3 + 470 -303.0 337 -112.2 +55
+ UIW-Buffer (ours) -217.1 +18.1 -173.9 + 05 -159.5 +36
+ PIW-Buffer (ours) -199.9 +27 -173.7 + 0.6 -158.6 35
5.2. Alanine Dipeptide

We evaluate our methods for approximating the Boltz-
mann distribution of alanine dipeptide (ALDP), a 22-atom
molecule in an implicit solvent at a temperature of 300K.
This represents a challenging real-world molecular sampling
task that has become a standard benchmark for Boltzmann
generators (Noé et al., 2019; Wu et al., 2020).

ALDP presents several key challenges: the energy landscape
contains multiple well-separated modes with high barriers
between them, and the high-dimensional coordinate space
(66 Cartesian coordinates) requires careful preprocessing.
Following Midgley et al. (2023), we employ internal coor-
dinates and apply transformations relative to the minimum
energy configuration, thereby reducing the dimensionality
from 66 to 60.

We employ the same MLP architecture as in §5.1 but with
increased capacity to handle the higher complexity of this
task. Additionally, we occasionally augment the buffer
using MCMC starting from existing buffer samples, given
the difficulty of exploring the highly multi-modal energy
landscape. See Appendix B.2 for detailed experimental
settings, including the details of the MCMC procedure.

We evaluate performance using ELBO, IW-ELBO, EUBO,
and Ramachandran plots. For EUBO calculations and ref-
erence Ramachandran plots, we use the validation samples
provided by Midgley et al. (2023).

Results. Table 2 summarizes the distribution metrics, and
Fig. 2 shows the Ramachandran plots drawn with samples
drawn from the models trained with each algorithm. Due
to the highly peaky energy landscape, algorithms without
the buffer failed during the optimization process. The pro-
posed UIW- and PIW-buffer schemes significantly improve
the results in terms of both distribution metrics and Ra-
machandran plots. Still, substantial room for improvement
remains, such as using advanced network architectures, finer
discretization steps, incorporating likelihood maximization
of buffer samples, or employing more powerful MCMC
algorithms.

0

¢
Reference

TB + UIW-Buffer

TB + PIW-Buffer

Figure 2. Ramachandran plots generated with 100,000 samples
drawn from samplers trained with each algorithm for the first
random seed. The reference samples are taken from (Midgley
et al., 2023).

6. Conclusion

Contributions. In this work, we introduced several ap-
proaches for incorporating importance sampling ideas into
the off-policy training of diffusion samplers, with the goal of
combining the strengths of amortized sampling and Monte
Carlo techniques. Specifically, we developed an importance-
weighted training framework to approximate a desired train-
ing distribution that provides better learning signals. We also
presented practical variants of this approach by leveraging a
history of weighted samples stored in a replay buffer. When
combined with the proposed stabilization techniques, our
methods demonstrated substantial improvements over on-
policy training and replay buffers with other prioritization
strategies. Finally, we validated our algorithms on molecu-
lar conformer generation for the alanine dipeptide system
and demonstrated their potential for real-world applications.

Our work contributes to the growing body of research that
connects learning-based sampling with Monte Carlo meth-
ods (Chen et al., 2025; Albergo & Vanden-Eijnden, 2025).
While sharing similarities with existing work, our approach
is more general in that our framework does not assume
any specific form in training loss, requiring only a general
off-policy training loss. Additionally, we highlighted the
critical importance of replay training — a widely adopted
technique that is often implemented in simplistic ways that
do not release its full potential — and showed how it can
be significantly enhanced through principled importance
sampling strategies.
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Future research directions. As discussed in §3.4, we
used the target distribution with the backward kernel as our
desired training distribution. There may exist a better choice
that possibly adapts to indicate the most informative regions
in terms of the current sampler, similar to Kim et al. (2025a).

Another promising future direction would be investigating
how our importance-weighted experience replay schemes
perform with objectives beyond TB, such as subtrajectory
balance (Madan et al., 2023). Subtrajectory objectives were
studied for diffusion samplers in Zhang et al. (2024) but
found in Sendera et al. (2024) to underperform TB and its
close relative, log-variance loss (Richter et al., 2020), due
to high cost and instability. However, results in the few-step
setting (Berner et al., 2025) suggest subtrajectory balance
and detailed balance may see their intended credit assign-
ment benefits realized with appropriate training policies
such as the IW-based ones we propose. These methods
involve learning approximations to intermediate target den-
sities, as in twisted SMC (Lawson et al., 2018; 2022), and
can thus be combined with predictor-corrector schemes.
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A. Algorithms

Algorithm 1 Importance-weighted Training

Require: gg, 7., Nepoch, K.
1: form =1,..., Nepoch do
2:  Define 7" (probably depending on gy and m).
Draw a set of samples {7%};_, from 7.
Calculate the TB loss L1p(7%) for each 7%. {Eq. (4)}
if DoWeighting(m) then
Calculate the self-normalized importance weight W* for each 7%. {Eq. (11)}
else
Set W* = 1/K for all k.
end if
10:  Update ¢ using the importance-weighted gradient: § <— Optimizer(6, G5). {Eq. (12)}
11: end for

R A S

Algorithm 2 Training with the Importance-weighted Experience Replay
Require: gg, 7., Nepoch, K, B, IWMethod.

1: form =1,..., Nepoch do
2:  if DoBufferSampling(m) then
3: Draw a set of samples {T’“}kK:1 from B by sampling with replacement,

Thani (73 if IWMethod is Unifi Eq. (13
according to the probability P(1; B) = Z (7; B) 1 etho %S niform {Eq. (13)}
Tpoot (T3 B)  if IWMethod is Pooled. {Eq. (15)}

else
Define 7" (probably depending on gg and m).
Draw a set of samples {7"}/, from n}'.
Calculate the importance weights w* for each 7%. {Eq. (11)}
Add the samples in the buffer, B +— BU {7F, w*}E .
end if
10:  Calculate the TB loss L1g () for each 7%. {Eq. (4)}
11:  Update 6 using the gradient: 6 < Optimizer (0, + Zszl VL1 (Tk)).
12: end for

LR ; Nk

B. Detailed Experimental Settings
B.1. Synthetic Targets

In this section, we formally define the synthetic target distributions and provide details about the model architecture and the
hyperparameters used for these tasks.

Target distributions.

¢ GMM40 (d=2) (Midgley et al., 2023) is a 2-dimensional mixture of Gaussians with 40 components. Each component
has mean v;, where each dimension of v; is randomly sampled from /[—40, 40], and covariance matrix I (unit
variance). The energy for GMMA4O0 is:

40
1
gGMM4Q(X) = — log (40 ;N(X; v;, I)> .
We used the same mean values as Midgley et al. (2023).
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* ManyWell (d=32) (Niisken & Richter, 2021; Midgley et al., 2023) is constructed as the product of 16 independent
copies of a 2-dimensional Double Well distribution (Noé et al., 2019). The Double Well energy is:

1 1
Epw(ry, 22) = x‘f — 627 — 5951 + 53:3 -+ const..

The ManyWell energy is then defined as:

16

Emw(x) = Z Eow (T2i—1, T2;).

i=1

Model architecture and hyperparameters. For the diffusion process and neural network architecture, we follow the
established settings from Sendera et al. (2024), which are based on Zhang & Chen (2022). Specifically, we define the
backward process as a Brownian bridge where iy = dp is a point mass. After discretization, this gives the backward
transition kernels:
tn - Atn tn - Atn
Po(Xe, |Xt,,,) = N (xtn; T T “a%tnld) : (20)
tnt1 tny1

where At,, = t,,11 — t,,. The forward kernel follows (2), with o? (t,,) fixed to the constant o2 defined in (20). The drift ug
is parameterized by a Multi-Layer Perceptron (MLP) with hidden dimension 256, which we increased from the setting in
Sendera et al. (2024) to compensate for excluding Langevin preconditioning.

For synthetic tasks, we use 50 discretization steps during training and 100 steps for evaluation. To mitigate potential errors
from coarse discretization during training, we employ the equidistant discretization scheme recently proposed in Berner
et al. (2025).

The key hyperparameter settings are:

* Common: We train our sampler for Nepocn = 15000 epochs using a batch size of K = 300. We use a learning rate of
0.001 for the policy ug and 0.1 for log Zy, decaying both by a factor of 0.2 after 0.5 Nepoch and 0.8 Nepoch epochs.

* Energy-specific: We set ¢ in (20) to 10.0 for GMM40 and 1.0 for ManyWell.

* Algorithm-specific: For the e-exploration baseline, the behavior policy’s variance starts at 202 and linearly decays to
o2 over the first half of training. For IW-Weighting, we set ESS; g to 0.05 and alternate importance-weighted training
and normal training (i.e., DoWeighting(m) in Algorithm 1 line 5 is [m mod 2 == 0]). For algorithms that use replay
buffers, we set the buffer size to 300000 (1000 times the batch size), with a buffer-to-proposal sample ratio of 2:1,
meaning that every three epochs consist of two epochs using buffer samples followed by one epoch using proposal
samples (i.e., DoBufferSampling(m) in Algorithm 2 line 3 is [m mod 3 == 0]). Note that the epochs with buffer
samples do not require additional energy calls, since energy evaluations occur only for newly drawn proposal samples.
For reward- and loss-prioritized buffers, we use rank-based prioritization following Sendera et al. (2024), while for
UIW and PIW-Buffer, we use the systematic sampling scheme (Kitagawa, 1996). For importance-weighted experience
replay, we set ESSy g to 0.05 for UIW-Buffer, and 0.2 for PIW-Buffer.

B.2. Alanine Dipeptide
We largely follow the experimental setup of Midgley et al. (2023) for the alanine dipeptide (ALDP) task.

Target distribution. Alanine dipeptide is a 22-atom molecule widely used as a benchmark for molecular conformation
sampling. The target distribution is the Boltzmann distribution at temperature 7" = 300K:

7(x) o exp (—Ig’;)) , @

where U (x) is the potential energy, kp is the Boltzmann constant, and x represents the molecular conformation. Following
Midgley et al. (2023), we compute the energy using OpenMM (Eastman et al., 2023).
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Coordinate system. Following Midgley et al. (2023), we use internal coordinates (bond lengths, bond angles, and dihedral
angles) instead of Cartesian coordinates to ensure translational and rotational invariance (Noé et al., 2019; Midgley et al.,
2023). The molecule has 60 internal coordinates in total. The backbone dihedral angles ¢ and 1 are of particular interest as
they characterize the major conformational states of the molecule. Moreover, to focus on the L-form samples, we assign a
sufficiently high energy to the D-form samples to suppress their generation, unlike Midgley et al. (2023), which filtered the
D-form samples after they were generated.

Model architecture and hyperparameters. We use the same SDEs as the synthetic tasks with ¢ = 1.0. Due to the highly
peaked and complex energy distribution, we increased the discretization steps to 100 for training and 500 for evaluation. The
model architecture was the same as with synthetic tasks, but the MLP hidden dimension was increased to 1024. We increase
the number of epochs to Nepochs = 30000, the batch size to K = 2000, and the buffer size to 2000000. We use learning
rates 0.0005 for the policy ug and 0.05 for log Zy. Other hyperparameters remain the same as the synthetic target tasks.

Buffer augmentation with MCMC. While our proposed importance-weighted training showed significant improvement,
results were not fully satisfactory because we didn’t use gradient (force) information, unlike prior works (Zhang & Chen,
2022; Midgley et al., 2023). To further enhance performance in this challenging task, we augment the buffer with samples
from a gradient-informed MCMC algorithm. This approach aligns with the local search methods introduced by Sendera
et al. (2024) and further developed in Kim et al. (2025b).

Specifically, we employ underdamped Langevin dynamics tailored for molecular conformation following Kim et al. (2025b),
equipped with BAOAB integration (Leimkuhler & Matthews, 2013). We run multiple independent MCMC chains starting
from samples in the buffer; thus, the quality of MCMC samples depends on the buffer type.

Every 500 epochs, we run 100 MCMC chains for 500 steps each. We intentionally use a small number of iterations to
ensure that performance gains are not solely due to MCMC. Over 30000 epochs, this results in 3 million additional energy
evaluations, which is relatively small compared to the approximately 20 million energy calls from the sampler.

C. Evaluation Metrics

In this section, we introduce the evaluation metrics used to benchmark the diffusion samplers. We employ three distribution-
based metrics: the evidence lower bound (ELBO), importance-weighted ELBO (IW-ELBO), evidence upper bound (EUBO;
Blessing et al., 2024). Also, following Chen et al. (2025), we incorporate the Sinkhorn distance (Cuturi, 2013) as a
sample-based metric. Note that EUBO and Sinkhorn distance calculations require unbiased samples from the target
distribution.

ELBO. The ELBO is defined as
eXp(ig(XtN ))p¢ (XtO:N—l |XtN )
q0 (Xto;N)
exp(—E&(x1))pg (T | Xl)]
q0(T) ’

where x; is the final state of trajectory 7. The ELBO is a lower bound on the true log-partition function log Z. We use a
Monte Carlo estimate using 10,000 samples from gy for synthetic tasks and 100,000 for alanine dipeptide.

ELBO = E;—(xg—-—x1)~as [log

=Erng [log

IW-ELBO. The K-sample IW-ELBO is an importance-weighted variant of the ELBO, defined as

1 o exp(=€(x1))po (7" | x1)
IW—ELBOK = Ele.,TKN log - - 5
o g

where x} is the final state of trajectory 7¢. Notice that K = 1 recovers the ELBO. This is a lower bound on log Z for all K
and approaches log Z as K — oo assuming gy has full support (Burda et al., 2016); in fact:

K—oo

ELBO = IW-ELBO; < IW-ELBO; < .- < IW-ELBOg_; < IW-ELBOx ——— log Z.

We report a Monte Carlo estimate of IS-ELBO using a single batch of K trajectories, where K is the same as used to
estimate the ELBO.
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EUBO. The EUBO is defined as

xp(—&(x1))pe(7 | X1)
q0(T)

€
EUBO = Exlwﬂ.ﬁwqu(ﬂxl) log

and is an upper bound on log Z. We estimate EUBO with K samples as above.
Sinkhorn distance. Sinkhorn distance is the entropic optimal transport cost, using the squared-Euclidean distance and

regularization parameter 1, between two batches of K samples: one from the ground truth and one from a trained sampler.
We use JAX ot t library (Cuturi et al., 2022) to compute the Sinkhorn distance.
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