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ABSTRACT

We introduce Kimina-Prover Preview, a large language model that pioneers a novel reasoning-driven
exploration paradigm for formal theorem proving, as showcased in this preview release. Trained with
a large-scale reinforcement learning pipeline from Qwen2.5-72B, Kimina-Prover demonstrates strong
performance in Lean 4 proof generation by employing a structured reasoning pattern we term formal
reasoning pattern. This approach allows the model to emulate human problem-solving strategies in
Lean, iteratively generating and refining proof steps. Kimina-Prover sets a new state-of-the-art on the
miniF2F benchmark, reaching 80.7% with pass@8192. Beyond improved benchmark performance,
our work yields several key insights: (1) Kimina-Prover exhibits high sample efficiency, delivering
strong results even with minimal sampling (pass@ 1) and scaling effectively with computational
budget, stemming from its unique reasoning pattern and RL training; (2) we demonstrate clear
performance scaling with model size, a trend previously unobserved for neural theorem provers
in formal mathematics; (3) the learned reasoning style, distinct from traditional search algorithms,
shows potential to bridge the gap between formal verification and informal mathematical intuition.
We open source distilled versions with 1.5B and 7B parameters of Kimina-Prover'.
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Figure 1: Performance comparison of different theorem proving methods on miniF2F-test dataset. The x-axis shows
the sample budget (number of language model queries), and the y-axis shows the pass rate. Methods are divided into
two categories: whole-proof generation and tree search approaches. Results demonstrate that Kimina-Prover Preview
achieves the highest pass rate with fewer samples, while tree search methods generally require more samples to achieve
comparable performance.
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1 Introduction

Recent advances in neural theorem proving have focused on leveraging large language models (LLMs) to tackle the
inherent challenges of formal reasoning in proof assistants like Lean 4 (Moura et al. ) or Isabelle (Nipkow et al.

). Initial approaches focused on training LLMs to generate individual proof steps or tactics within interactive proof
assistants (Polu et al. ; Wuet al. ; H. Wang et al. ; Deepmind ), often coupling the LLM’s predictive
capabilities with classical search algorithms like Best-First Search (BFS) (Polu et al. ; Wu et al. ; R. Xin et al.

) or Monte Carlo Tree Search (MCTS) (Lample et al. ; H. Wang et al. ; Deepmind ) to explore the
proof space. Other strategies involved training models to generate entire proof structures from a given state (H. Xin et al.

; Y. Lin et al. ; First et al. ). Despite notable progress, these existing methods face significant challenges.
The reliance on explicit search algorithms (BFS, MCTS) introduces substantial computational overhead and complexity,
limiting scalability. Furthermore, while LLMs excel at pattern matching and sequence generation, effectively capturing
the deep, structured, and often non-linear reasoning required for complex formal proofs remains difficult. Standard
supervised fine-tuning or basic chain-of-thought prompting may not sufficiently elicit the sophisticated reasoning
necessary. Critically, previous neural theorem provers tailored for formal mathematics have generally not demonstrated
clear improvements in performance corresponding to increases in model size, suggesting limitations in their ability to
leverage larger model capacity for enhanced reasoning. While some works (H. Lin et al. ; R. Wang et al. )
attempted to integrate informal reasoning hints, they typically relied on shorter chain-of-thought patterns or models not
specifically optimized for long-form reasoning via reinforcement learning.

In this work, we introduce Kimina-Prover Preview, representing an early attempt to bridge this gap by pioneering a novel
reasoning-driven exploration paradigm for formal theorem proving. Built upon the Kimi k1.5 reinforcement learning
(RL) pipeline, which has demonstrated success in eliciting long chain-of-thought reasoning for complex informal
math and coding tasks (Kimi-Team et al. ), Kimina-Prover is specifically adapted for formal reasoning within
the Lean 4 proof assistant. Instead of relying on external search algorithms, our approach leverages the LLM’s own
internal reasoning capabilities, enhanced through large-scale RL with carefully designed reward signals and structured
reasoning patterns. This allows the model to emulate human problem-solving strategies, implicitly exploring the proof
space and iteratively generating and refining proof steps through a process guided by its internal reasoning tokens. Our
contributions include:

* Pioneering Reasoning-Driven Exploration. We pioneer the application of large-scale reinforcement learning to
elicit long chain-of-thought reasoning in theorem proving.

* Effective Model Scaling for Formal Mathematics. We show clear improvements in neural theorem proving
performance as LLLM size increases, a scaling effect not observed in previous systems.

* State-of-the-Art Performance. Illustrated in Figure 1, Kimina-Prover achieves state-of-the-art performance by
reaching 80.7% with pass@8192 on the miniF2F benchmark, significantly surpassing prior SotA achieved by BFS
Prover (R. Xin et al. ) (72.95%).

2 Methodology

2.1 Autoformalization for Constructing a Diverse Base Problem Set

To enable online reinforcement learning for formal theorem proving, we require a large, diverse set of formal problems
in Lean 4. Manual construction of such a dataset is costly and time-intensive. To address this, we train models
to automatically translate natural language problem statements into syntactically valid Lean 4 code ending with a
placeholder proof. However, this task presents a fundamental challenge: the lack of a concrete, automatic reward
signal. Unlike proof search, where success is easily defined by whether a theorem is proven, there is no straightforward
way to verify the correctness of a generated formal problem statement with respect to the natural language input.
Our solution combines careful initialization, supervised fine-tuning, and a structured expert iteration process with
LLM-based judging to progressively improve quality. We open source our model Kimina-Autoformalizer-7B for the
community and detail our training recipe in Appendix C.2.

2.2 Formal Reasoning Pattern

One of the critical challenges for reasoning LLMs to excel at formal theorem proving is the lack of alignment between
informal mathematical reasoning data and its translation to formal proofs. To tackle this, we design a novel formal
reasoning pattern to enable Kimina-Prover to think in an environment that aligns the informal and formal mathematical
reasoning. During training, we filter for responses that format their thinking in between <think> ... </think>


https://huggingface.co/AI-MO/Kimina-Autoformalizer-7B
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Figure 2: Left. Formal Reasoning Pattern. Right. Formal RL pipeline.

tokens and output the final proof between chosen special tokens. Within the thinking block, we seek informal-formal
alignment by interspersing informal reasoning with relevant Lean 4 code snippets, also marked by special tokens. To
enforce thinking block alignment with the final proof, we ensure that the majority of the Lean 4 code snippets appear in
the final proof. With this reasoning pattern (see Figure 2 on the left), we observe scaling of output token length, which
correlates with passing proof-complexity from our evaluations.

Additionally, this pattern also offers great improvement in terms of reasoning explainability compared to search-based
provers. The thinking block allows users to inspect the models’ internal process during proof generation. This provides
tangible insights about the nature of the failure modes of the model and serves as an educational tool for end-users.

Cold start. To kickstart the models’ ability to output formal proofs following our formal reasoning pattern, we perform
a minimal supervised fine-tuning run before starting our reinforcement learning training loop. In particular, we collect a
dataset of olympiad-style mathematics problems with statements and solutions both in natural language format and
formalized in Lean 4. We then ask Claude 3.7 Sonnet (Anthropic ) to synthesize a thinking block output combining
the the informal and formal proofs to synthesize a mini-SFT dataset of around 20K examples (we have tried several
LLMs and only Claude’s performance is satisfying). This significantly boosts the models’ ability to align the informal
and formal reasoning steps and enhances downstream performance during the RL phase.

Informal math mix-training. To further bolster the initial informal mathematical capabilities of our model, we
incorporate informal mathematical thinking data from Kimi k1.5 into the SFT training. The synthetic data generated
by Claude exhibited a limited range of reflection patterns. While we observed the emergence of test-time scaling and
reflection during subsequent RL training, these reflections were often of low quality, characterized by repetition and
meaningless phrases. Integrating informal thinking data aims to provide a better starting point for generating more
meaningful reflections. Indeed, our experiments during the RL phase demonstrate that checkpoints trained with this
mixed data significantly outperform those trained solely on formal reasoning data.

2.3 Reinforcement Learning

Following the supervised fine-tuning (SFT) phase, we employ reinforcement learning (RL) to further enhance our
model’s formal theorem-proving capabilities, as illustrated in the pipeline schematic (Figure 2). The RL process
iteratively refines the model’s policy. Each iteration begins by sampling a batch of N = 1000 problems from our
established problem set. For each problem, the current policy generates k¥ = 8 candidate solutions (rollouts). The final
Lean 4 code of each candidate is then rigorously verified using the Lean compiler to determine correctness. A binary
reward signal is assigned: 1 for a completely correct proof and 0 otherwise. In line with the methodology of Kimi
k1.5 (Kimi-Team et al. ), we employ the following loss to optimize the language model:
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where 744 is the previous policy model and the normalization constant log Z is approximated using the empirical mean
of the rewards in practice. During RL training, we see strong scaling of formal reasoning at test time. However, limited
SFT data and formal structure cause early RL format collapse from negative gradients. To prevent this, we apply format
filtering with two key constraints: (1) each generated sample must contain at least one tactic block; and (2) tactic blocks
must collectively cover at least 60% of the Lean code included in the final Lean 4 solution. Moreover, To counter
format collapse from negative gradients, we randomly discard samples with negative gradients (probability w = 0.5).
Combined with mixed training on informal math data, this stabilizes training and promotes more sophisticated formal
reasoning.

In practice, our RL training is conducted starting from Qwen2.5-72B (Qwen-Team ). We maintain a constant
learning rate of (2 x 107%) and a fixed KL divergence coefficient 7 = 0.4 (Equation 1). This KL constraint ensures
stability by controlling the policy’s deviation from the initial supervised policy throughout the RL process.

3 Results

3.1 Inference Setup

Benchmark. We evaluate our models on the miniF2F benchmark (K. Zheng et al. ), using the Lean 4 ver-
sion from DeepSeek-ProverV1.5. To prevent data contamination, we perform 13-gram decontamination and ex-
plicitly remove all AMC12, AIME, and IMO problems from the Numina Math 1.5 training set if their sources
overlap with problems in the miniF2F test set. We also identify and correct eight unsolvable problems in the bench-
mark (mathd_numbertheory_618, aime_1994_p3, amc12a_2021_p9, mathd_algebra_342, mathd_numbertheory_343,
mathd_algebra_158, induction_pordiplon2powklt5on2, induction_prodiplonk3le3mlonn), releasing the corrected
versions via the Numina HuggingFace repository. Evaluations utilize a 32K token context length and sampling budgets
up to 8192 attempts, with each attempt sampled independently.

Distillation. We train our 1.5B and 7B models by rolling out data from the Kimina-Prover-Preview model with
72B parameters and performing SFT, initializing from Qwen2.5-Math-1.5B-Instruct and Qwen2.5-Math-7B-Instruct,
respectively. We use packing and cosine learning rate scheduling with I = 2 x 10~° for 3 epochs.

Lean Server. In our reinforcement learning and evaluation pipelines, we integrate the Numina Lean Server (Numina

) as the verification backend to provide real-time feedback for generated proof attempts. Built upon Lean FRO’s
LeanREPL (Lean FRO ), the Numina Lean Server employs an LRU-based caching mechanism that reuses
preloaded environments based on import headers, significantly reducing initialization overhead. Furthermore, it
supports extensive parallelization across multiple CPUs by managing multiple Lean REPL processes concurrently.
These innovations result in a 10x speedup in verification throughput, achieving up to 100 iterations per second on
machines equipped with 64 CPU cores and 512 GB RAM. During RL training, this verification system operates
efficiently in the rollout phase, evaluating proofs in real time as they are generated. Due to the relatively slow proof-
generation process, verification does not become a bottleneck, requiring only 640 CPU cores for training. This efficiency
contrasts with previous language model-based theorem proving approaches, which typically require thousands of CPU
cores to sustain real-time verification at scale (Lample et al. ; H. Xin et al. ).

3.2 Performance Analysis

3.2.1 Comparison with State-of-the-Art Methods

On the miniF2F benchmark, Kimina-Prover Preview achieves a state-of-the-art result among all evaluated sys-
tems—including both whole-proof generation and tree search methods—reaching 80.74% miniF2F-test accuracy
(see Table 1). Importantly, Kimina-Prover demonstrates strong performance even in low-pass settings and scales
effectively with higher sampling budgets. With just pass@1, the model already achieves 52.94%, and with pass@32, it
reaches 68.85%, already competitive with or surpassing many larger-sample baselines, showcasing exceptional sample
efficiency. This efficiency can be attributed to Kimina-Prover’s novel reasoning process. Rather than relying on explicit
step-based searches, Kimina-Prover implicitly flattens the step-wise search, allowing the model to decide both how
and what to search. This architectural flexibility enables more targeted and dynamic reasoning, leading to higher
performance with fewer samples.

Another key observation (see Figure 3) is that our models present a clear upward trend in performance as model size
increases - from 1.5B, to 7B, and finally 72B. Especially with larger sampling budgets, the 72B variant shows significant
gains (the 72B model outperforms the 7B version by +0.44%, +5.75%, and +7.87% at those respective sampling
budgets.). To our knowledge, this is the first formal reasoning system that consistently scales in performance with
model size, suggesting that Kimina-Prover not only scales computationally but also in its reasoning capabilities.
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Prover system Model size Sample budget miniF2F-test
Tree search systems
DeepSeek-Prover-V1.5-RL + RMaxTS (H. Xin et al. 2024) 7B 32 x 16 x 400 63.5%
InternLM2.5-StepProver-BF+CG (Wu et al. 2024) 7B 256 x 32 x 600 65.9%
HunyuanProver v16+BFS+DC (Y. Li et al. 2025) 7B 600 x 8 x 400 68.4%
BFS-Prover (R. Xin et al. 2025) 7B 2048 x 2 x 600 70.8%
Whole-proof systems
DeepSeek-Prover-V1.5-RL (H. Xin et al. 2024) 7B 102400 60.2%
Goedel-Prover-SFT (Y. Lin et al. 2025) 7B 25600 64.7%
Leanabell-Prover (Zhang et al. 2025) 7B 128 61.1%
1 42.6%
Kimina-Prover-Preview-Distill-1.5B 1.5B 32 56.2%
1024 61.9%
1 52.5%
Kimina-Prover-Preview-Distill-7B 7B 32 63.1%
1024 70.8%
1 52.94%
8 65.16%
Kimina-Prover-Preview 72B 32 68.85%
1024 77.87%
8192 80.74 %

Table 1: Performance of various prover systems in terms of model size, sample budget, and miniF2F-test results. Bold
indicates SotA performance in model size and compute budget.
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Figure 3: Performance scaling of Kimina-Prover Figure 4: miniF2F accuracy (pass@32) and average
models across different sizes. output token length of Kimina-Prover during training.

3.2.2 Comparison with General Purpose LLMs

In Table 2. we compare Kimina-Prover with leading general-purpose reasoning models—OpenAI’s 03 and Gemini
2.5 Pro—on the miniF2F benchmark and its IMO and AIME subsets. Despite these subsets containing relatively
easier, older problems, Kimina-Prover significantly outperforms both models across the board. At pass@32, Kimina-
Prover achieves 68.85% on miniF2F, versus 37.70% for Gemini and 24.59% for 03. On the IMO and AIME subsets,
Kimina-Prover scores 20.00% and 46.67%, respectively—well above Gemini (5%, 13.33%) and 03 (0%, 6.67%).
At pass@8192, Kimina-Prover further improves to 80.74%, 40.00% (IMO), and 86.67% (AIME). These results
highlight a core limitation of general-purpose models. 03 and similar systems fail at formal reasoning, defaulting to
informal, unverifiable answers. Gemini shows formal reasoning capabilities but often suffers from hallucination and
generates invalid proofs. In contrast, Kimina-Prover consistently generates formally verifiable, Lean-checkable proofs,
demonstrating both accuracy and reasoning ability.
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Benchmark Sample budget miniF2F miniF2F/IMO miniF2F/AIME
OpenAl 03-mini 32 24.59% 0% 6.67%
gemini-2.5-pro-preview-03-25 32 37.70% 5% 13.33%

32 68.85% 20.00% 46.67%

Kimina-Prover-Preview 8192 80.74% 40.00% 86.67%

Table 2: Performance Comparison of SOTA Large Reasoning Models on the IMO and AIME Subset of miniF2F. While
Gemini 2.5 and Openai 03-mini can solve all 15 AIME problems in miniF2F using informal reasoning, both models
struggle to formalize these solutions. This highlights a significant gap between informal reasoning capacity and formal
reasoning capabilities in current state-of-the-art models.

3.2.3 Gap between Informal Mathematics and Formal Mathematics

One particularly interesting finding is that our formal reasoning model shows strong potential to bridge the gap
between formal and informal mathematics. As shown in Table 2, while general-purpose reasoning models such as
Gemini-2.5-pro and 03-mini are capable of solving all AIME problems in miniF2F under informal settings, they exhibit
substantially lower performance in formal mathematics. This discrepancy suggests that transferring domain knowledge
from general mathematical problem solving to formal mathematical reasoning remains a challenging task. In contrast,
Kimina-Prover’s formal reasoning capabilities demonstrate that formal mathematics can complement and enhance
informal reasoning, rather than exist in isolation. By learning to reason within a formal system, the model appears to
gain deeper structural understanding, which could in turn benefit informal mathematical problem solving. This opens
exciting future directions, where formal mathematics may not only be useful for verification, but also for boosting
model performance on informal math reasoning tasks.

3.2.4 Test Time Scaling in Formal Reasoning

A key capability of reasoning models is their ability to improve with increased test-time budget. Figure 4 shows how
Kimina-Prover’s miniF2F pass@32 accuracy (blue) correlates with the average token length of its outputs (orange)
over training. As the model learns to generate longer proofs—from 2,500 to over 10,000 tokens—its accuracy rises
from 61.8% to nearly 69%. Unlike informal math models, which often scale smoothly, formal reasoning shows a much
more volatile pattern. Accuracy jumps are frequent and sometimes regress, especially in the mid-phase between 50-150
iterations, likely due to the model adjusting to complex, structured reasoning with limited formal training data. This
turbulent but ultimately successful trend highlights how formal reasoning can still scale effectively, even without vast
pretraining corpora. This success suggests that similar reasoning approaches may be transferable to other domains that
are also limited in domain knowledge during pre-training.

3.2.5 Emergent human-like proof style.

Given the described formal reasoning pattern, we observe that after initialization and RL training, our model demon-
strates the ability to produce complex reasoning patterns. These include exploring multiple reasoning paths, reflecting
on and refining its thinking process, and analyzing small-scale cases to uncover general patterns (see Appendix F).
Additionally, the proofs generated by Kimina-Prover are more decomposed and structured compared to those of previous
step-based provers. This is exhibited by the abundance of have statements within the proofs, which is a common pattern
observed in human-written proofs optimized for clarity (see Appendix E). These emergent behaviors of reflection,
decomposition, and refinement scale effectively with increasing problem difficulty, giving our approach a distinct
advantage over models that extensively rely on existing Lean 4 automation tools.

4 Conclusion

In conclusion, we present Kimina-Prover, a large reasoning model for Lean 4 theorem proving developed through a
training recipe combining autoformalization, SFT, and RL with a specific formal reasoning pattern. Our key findings
demonstrate that performance scales significantly with both context length and model size—a trend not typically
observed in tree-search provers—Ieading to state-of-the-art results (80.74% on miniF2F pass@8192) with modest
compute. This underscores the potential of reasoning-enabled neural provers. Promising future directions include
enhancing proof quality by filtering outputs that overuse high-level tactics, enabling iterative refinement using Lean
compiler feedback to fix errors efficiently, and integrating external tools like library search and computation engines to
alleviate generation challenges.
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B Related Work

Recent approaches to automated theorem proving have combined large language models with formal proof assistants
such as Lean 4. These systems typically employ a language model trained to either generate individual proof steps
(Lample et al. ; Polu et al. ; Deepmind ; H. Wang et al. ; Wu et al. ; R. Xin et al. ; Y. Lin
et al. ; H. Wang, H. Xin, Liu, et al. ) or produce entire proof completions from a given proof state (H. Xin et al.

; Y. Lin et al. ; First et al. ; Huang et al. ; H. Wang, H. Xin, C. Zheng, et al. ; Jiang et al. ).

To enhance exploration in proof search, these language-model-based approaches are frequently integrated with classical
tree search algorithms, such as Best-First Search (Polu et al. ; Wu et al. ; R. Xin et al. ) and Monte Carlo
Tree Search (Lample et al. ; H. Wang et al. ; Deepmind ). The search component plays a central role in
these systems, as it guides the exploration and selection of promising proof paths based on heuristic evaluations. Such
hybrid methods significantly benefit from heuristic-driven exploration but incur substantial computational overhead.

Large-scale reinforcement learning has recently been applied to improve the reasoning abilities of language models,
exemplified by models such as OpenAI’s ol (OpenAl et al. ), DeepSeek’s R1 (DeepSeek-Al ), and Kimi’s
k1.5 (Kimi-Team et al. ). These models, trained with extensive RL on carefully engineered reward signals,
exhibit emergent long chain-of-thought reasoning behavior, enabling them to achieve impressive results in complex
mathematical and coding tasks, including competitions like AIME and Codeforces. These achievements underscore the
potential for long, structured reasoning in overcoming challenging reasoning problems.

A few recent works have attempted to integrate informal reasoning with formal theorem proving. For instance, H. Lin
etal. proposed generating informal thoughts prior to predicting individual tactics, and R. Wang et al. employs
a structured interaction between informal natural language reasoning and formal verification in Lean 4. However, these
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previous attempts either relied on conventional short-form chain-of-thought reasoning or relied on reasoning models
trained via transfer learning from general reasoning tasks and supervised fine-tuning rather than reinforcement learning.
Prior to our work, the feasibility and effectiveness of applying RL-driven long-form reasoning directly within formal
theorem proving remained unexplored.

C Training Details of Kimina-Prover

C.1 Informal Dataset

The informal dataset serves as the foundational layer of our pipeline, feeding directly into supervised fine-tuning (SFT)
and reinforcement learning (RL) for the large formal reasoning model. Below, we outline the data processing steps that
convert the raw informal mathematical dataset into a curated prompt set for training our models.

Our informal data pipeline consists of the following steps:

1. Initial Dataset Acquisition: We begin with the Numina 1.5 dataset (J. Li et al. ), a comprehensive collection
of mathematical problems.

2. Filtering and Preprocessing: We filter this dataset based on specific criteria, retaining only problems clearly
classified as either proofs or problems with explicit numeric or symbolic outputs. Problems involving geometry and
combinatorics are excluded to form a dataset more suitable for autoformalization. This filtered dataset is denoted
by auto-statement-candidates.

3. Autoformalization: The auto-statement-candidates dataset undergoes an automatic formalization process, resulting
in the auto-statements dataset. This step converts natural language mathematical problems into formal statements
compatible with the Lean 4 proof assistant.

4. Human Annotation and Refinement: To ensure the quality and precision of formalizations, we established a
dedicated annotation team tasked with reviewing and refining the outputs from the autoformalization process.
Annotated outputs are categorized as follows:

* Human Statements: Statements refined by human annotators.

* Human Proofs: Select, challenging statements are further annotated with formal proofs by domain experts.
These proofs constitute a significant portion of our supervised fine-tuning (SFT) dataset.

5. Prompt Set Creation: The refined formalized statements from the auto-statements and human statements datasets
are combined to form our final prompt set. The validated and proven formal statements subsequently enrich the SFT
dataset, creating a dynamic cycle of continuous improvement for subsequent iterations of reinforcement learning.

This structured and iterative approach ensures robust data quality, facilitating effective model training and iterative
refinement in subsequent phases.

C.2 Training Details of Kimina-Autoformalizer
C.2.1 Model Initialization

We begin by creating a supervised fine-tuning dataset for autoformalization, to teach the model the structure and
style of competition-level Lean 4 problems. This dataset aggregates formal problem pairs from multiple sources:
PutnamBench, miniF2F, ProofNet, and Compfiles (Renshaw ) (K. Zheng et al. ) (Tsoukalas et al. )
(Azerbayev et al. ). We ablate the contribution of each source and find that all positively contribute to downstream
performance. In particular, including Mathlib data, such as the MMA dataset (Jiang et al. ) - an LLM-generated
informalization of Mathlib - degrades performance. We hypothesize two key reasons: (1) the mathematical content in
Mathlib is substantially different in nature and tone from competition problems, and (2) Mathlib statements often involve
auxiliary variables and rely on external definitions, which may confuse the model during generation. Our initialization
is a fine-tuned version of Qwen2.5-Coder-7B-Instruct on the curated dataset, capable of producing syntactically valid
Lean 4 problem statements from informal descriptions.

C.2.2 Expert Iteration with LLM Judge

After supervised initialization, we employ a structured expert iteration loop to improve the quality and coverage of the
autoformalization model. This loop uses a challenging subset of competition-style problems from the NuminaMath
1.5 dataset. For each iteration, we begin by sampling a minibatch of informal problems. For each problem, the model
generates a number of candidate formalizations. These are filtered to retain only those that compile successfully in

10
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Lean 4. We then employ a QwQ-32B as a judge to evaluate the semantic correctness of each remaining formalization,
using a handcrafted prompt to guide its assessment. We observe that using multiple samples from the judge model
and unanimous voting structure significantly reduces the amount of false positives with little impact on true positives.
Formalizations that pass both the compilation and judging stages are added to the training dataset, and a training step is
performed.

Since the reward signal in this task is inherently fuzzy, and LLM-based feedback is susceptible to false positives, we
monitor model outputs throughout training with Lean 4 experts and gradually improve the judge prompt over iterations.
This allows us to maintain fine-grained control over the data quality. As our proving infrastructure improves, we
also introduce automated filters to discard problematic formalizations. These include detecting logical contradictions,
proving the negation of the formalized statement, or identifying that the problem is trivial via a short LLM-generated
proof. These safeguards help ensure the training set remains both challenging and correct, guiding the model toward
meaningful improvements in future iterations.

C.2.3 Kimina-Autoformalizer Performance

Autoformalizer Performance

—e— Compilation Rate

90% Accuracy

80%
70%:

60%!

Percentage

50%

40%

30%

2 3 3 8 10 12 14 16
Iterations

Figure 5: Performance of Autoformalizer Across Iterations.

To evaluate our autoformalizer, we use a human-curated test set of size approximately 1,000 and optimize an LLM
judge prompt on this set for reliable results. After each iteration, we generate one autoformalization per problem
using greedy decoding. We track two metrics: (1) Lean 4 compilation rate and (2) autoformalization accuracy, defined
as the percentage of samples that both compile and are judged correct by the LLM. We observe steady and reliable
improvement over iteration as can be seen in the plots, reaching 90% one-shot compilation rate and 66% accuracy.

We evaluate several existing models for autoformalization tasks, but found that most struggled to generate valid
Lean 4 code consistently. Instead, these models predominantly produced Lean 3 syntax, a limitation we attribute to
the composition of their pretraining data. Prior to these LLMs’ knowledge cutoff dates, Lean 3 dominated online
repositories and documentation, while Lean 4—with its substantial syntax differences—remained relatively new and
underrepresented. This training data imbalance caused models without specific Lean 4 fine-tuning to default to the
more familiar Lean 3 patterns. The inability of comparison models to produce compilable Lean 4 code at meaningful
rates ultimately prevented us from establishing fair benchmarks against existing approaches, highlighting the challenges
of working with emerging formal languages.

We note that this method required careful expert monitoring as we observe that the model would repeatedly make
mistakes that the LLM judge model cannot catch, as long as it passed compilation. We believe this presents a significant
challenge in applying reinforcement learning in non-verifiable domains.

C.3 Problem Set

In this section, we detail the creation of our problem set, which serves as a foundational component of our reinforcement
learning pipeline. The prompt set consists of two distinct subsets: one derived from the autoformalization model and
another consisting of human-annotated statements. To ensure balanced difficulty across the problem set, we utilize the
QwQ-32B preview model to assign a difficulty rating to each problem and subsequently construct a dataset with an
evenly distributed difficulty spectrum.

11
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Given that our annotated statements are limited in number—approximately 10k—compared to the 100k generated by
autoformalization, we prioritize high-quality data in training. Therefore, we resample our annotated set to achieve a 1:1
ratio with the autoformalized subset, yielding a balanced and high-quality problem set of 200k total problems.

To further improve the efficiency and effectiveness of the reinforcement learning pipeline, we iteratively refine the
prompt set using the following strategies:

Error Filtering via Negation Proving. We employ DeepSeek-Prover’s negation-proving to identify and remove
potentially erroneous formalizations from our problem set.

Adaptive Problem Pruning. After specific iterations of reinforcement learning, we prune problems where the model
consistently demonstrates high proficiency. This adaptive pruning allows the model to concentrate computational
resources on increasingly challenging and informative problems, promoting continuous improvement in formal reasoning
capabilities.

Annotation Pipeline for Difficult Problems. For wrongly formalized statements or very difficult problems, we send
them to the annotation pipeline for additional statement and proof annotation by human annotators. This ensures that
challenging problems are not discarded but receive appropriate human oversight.

Post-RL Validation. After reinforcement learning training, we use a judge model to assess whether the proofs generated
by the model are correct or if the model has merely leveraged a mistake in the formalization. This step ensures the
integrity and reliability of the generated proofs.

D Illustrative Proof Examples found by Kimina-Prover

D.1 Newly Proved IMO problem from the miniF2F Benchmark

Kimina-Prover successfully proves an IMO problem (imo_1968_p5_1) that no previous publicly released model has
ever solved. We present the proof generated by Kimina-Prover below. This proof shows an excellent ability of the
model to plan its proof sketch. Such emergent behavior in the output shows a clear improvement in reasoning ability
compared to previous models. For example, in this proof, the model begins by first stating a key auxiliary lemma h2 and
continues to prove it across multiple lines. This is followed by guessing the correct answer via the (use 2 * a) tactic.
The proof is completed via a complex reasoning chain, where the previously proved lemma h2 is key and necessary to
complete the proof.

theorem imo_1968_p5_1 (a : R) (f : R - R) (hy : 0 < a)
(hy : Vx, f(x+a =1/2+Real.sqrt (f x -fx ~2)) : 3b>0, Vx, f (x+b)=1£fzx:=hby
have h2 : Vx, 0 < fx A fx <1 :=hby
intro x
have hl := h; (x - a)
rw [show x - a + a = x by ring] at hil
have h3 : 0 < Real.sqrt (f (x - a) - £ (x - a) ~ 2) := Real.sqrt_nonneg (f (x - a) - £ (x -
a) ~ 2)
have h4 : £ x =1 / 2 + Real.sqrt (f (x - a) - £ (x - a) =~ 2) := by linarith
have h6 : £ x < 1 := by
have h6 : Real.sqrt (f (x - a) - f (x -a) ~2) <1/ 2 :=hby
have h7 : f (x - a) - f (x-a) ~2<1/4 :=by
nlinarith [sq_nonneg (f (x - a) - 1 / 2)]
have h8 : 0 < Real.sqrt (f (x - a) - £ (x - a) = 2) := Real.sqrt_nonneg (f (x - a) - £ (x
-a) " 2)
have h9 : Real.sqrt (f (x - a) - £ (x - a) = 2) < Real.sqrt (1 / 4 : R) :=
Real.sqrt_le_sqrt (by linarith)
have h10 : Real.sqrt (1 / 4 : R) =1/ 2 := by
rw [Real.sqrt_eq_iff_sq_eq] <;> norm_num
linarith
linarith [h4, h6]
have hil : 0 < f x := by
nlinarith [Real.sqrt_nonneg (f (x - a) - £ (x - a) ~ 2), h4]
exact (h1l, hb)
use 2 * a
constructor
- linarith [hg]
- intro x

12
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have h3 := h; (x + a)
have h4 := h; x
rw [show x + a + a = x + 2 ¥ a by ring] at h3
have h6 : £ (x + 2 * a) =1/ 2 + Real.sqrt (f (x +a) - £ (x + a) = 2) := by linarith
have h6 : f (x +a) - f (x+a) ~2=(Ex-1/2) "2 :=hby
have h7 : £ (x +a) =1/ 2 + Real.sqrt (f x - £ x =~ 2) := by linarith
rw [h7]
ring_nf
rw [Real.sq_sqrt (by nlinarith [h2 x])]
ring
rw [h6] at h5
have h7 : Real.sqrt ((f x - 1/ 2) =~ 2) =abs (f x -1/ 2) :=by
rw [Real.sqrt_sq_eq_abs]
have h8 : abs (f x -1/ 2) =fx -1/ 2 :=by
have h9 : £ x > 1/ 2 := by
have h10 := h; (x - a)
rw [show x - a + a = x by ring] at h10
have h1l : Real.sqrt (f (x - a) - f (x - a) ~ 2) > 0 := Real.sqrt_nonneg (f (x - a) - £
(x -a) ~ 2
linarith [h10, hi1]
apply abs_of_nonneg
linarith
rw [h7, h8] at h5
linarith [h5]

Listing 1: Lean 4 proof of IMO 1968 P5 (15 part) found by Kimina-Prover.

D.2 Example Proofs of AIME Problems

Kimina-Prover excels at solving complex trigonometric equations in the formal theorem proving domain. This is shown
in its proof of aime_1991_p9 presented below. Given the initial hypothesis ho stated as: h0 : 1 / Real.cos x +
Real.tan x = 22 / 7, the model is able to use the trigonometric identity

have h3 : Real.sin x ~ 2 + Real.cos x ~ 2 = 1 := Real.sin_sq_add_cos_sq x

to derive the values for the sine and cosine functions.

have h_cos : Real.cos x = 308 / 533 := by nlinarith [h_cos_sq]
have h_sin’ : Real.sin x = 435 / 533 := by
have h9 : Real.sin x = (22 * Real.cos x - 7) / 7 := h_sin
rw [h9, h_cos]
norm_num

From here, the model substitutes these derived values intoh1: h1 : 1 / Real.sin x + 1 / Real.tan x = m

After this step, it successfully closes out the proof showing great mastery of algebraic techniques.

theorem aime_1991_p9 (x : R) (m : @) (hO : 1 / Real.cos x + Real.tan x = 22 / 7)
(h1 : 1 / Real.sin x + 1 / Real.tan x = m) : fTm.den + m.num = 44 := by
have h2 : Real.cos x # 0 := by
by_contra h
have h3 : 1 / Real.cos x = 0 := by
field_simp [h]
have h4 : Real.tan x = 0 := by
rw [Real.tan_eq_sin_div_cos]
simp [h]
have h6 : (22 : R) / 7 = 0 := by linarith [hg, h3, h4]
norm_num at hb

13
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have h_tan : Real.tan x = Real.sin x / Real.cos x := by
rw [Real.tan_eq_sin_div_cos]

have h3 : Real.sin x = 2 + Real.cos x = 2 = 1 := Real.sin_sq_add_cos_sq x

have h4 : 1 / Real.cos x + Real.tan x
rw [h_tan] at h4
have h5 : 1 / Real.cos x + Real.sin x / Real.cos x =22 / 7 := hd
have h6 : (1 + Real.sin x) / Real.cos x = 22 / 7 := by

have h7 : Real.cos x # 0 := h2

field_simp [h7] at h5 F

nlinarith

22 / 7 := hy

have h7 : 7 * (1 + Real.sin x) = 22 * Real.cos x := by
have h8 : Real.cos x # 0 := h2
field_simp at h6
nlinarith

have h_sin : Real.sin x = (22 * Real.cos x - 7) / 7 := by linarith

have h8 : Real.sin x =~ 2 + Real.cos x ~ 2 = 1 := Real.sin_sq_add_cos_sq x
have h9 : Real.sin x = (22 * Real.cos x - 7) / 7 := h_sin

have h_cos_sq : Real.cos x =~ 2 = (308 / 533) ~ 2 := by
have h10 : Real.cos x # 0 := h2
have hll : Real.sin x = (22 * Real.cos x - 7) / 7 := h_sin
rw [h11] at h3
have h12 : ((22 * Real.cos x - 7) / 7) =~ 2 + Real.cos x ~ 2 = 1 := by linarith
have h13 : (22 * Real.cos x - 7) =~ 2 + (7 x Real.cos x) ~ 2 = 49 := by
nlinarith
have h14 : (Real.cos x) * (533 * Real.cos x - 308) = 0 :
ring_nf at hi13
linarith
cases’ (mul_eq_zero.mp hi4) with h_cos hil5
- -- Real.cos x =0
exfalso
exact h10 (by linarith)
- -- 533 * Real.cos x - 308 =0
have h_cos : Real.cos x = 308 / 533 := by linarith
nlinarith [h_cos]
have h_cos : Real.cos x = 308 / 533 := by nlinarith [h_cos_sql

by

435 / 533 := by

have h_sin’ : Real.sin x =
= (22 * Real.cos x - 7) / 7 := h_sin

have h9 : Real.sin x
rw [h9, h_cos]
norm_num

have h_csc_cot : (1 / Real.sin x : R) + (1 / Real.tan x : R) = (29 / 15 : R) := by
have h10 : Real.sin x # 0 := by
by_contra h
have hll : Real.sin x
rw [h11] at h3
have hl12 : Real.cos x =~ 2
have h13 : Real.cos x =1
have hl4 : Real.cos x ~
have hi15 : (Real.cos x - 1
ring nf at hi4
linarith
cases (mul_eq_zero.mp h15) with
| inl h16 => left; linarith
| inr h17 => right; linarith
cases h13 with
| inl h14 =>
have h15 : Real.cos x = 308 / 533 := h_cos
linarith

0 := by linarith

1 := by nlinarith

Real.cos x = -1 := by

= 0 := by linarith
(Real.cos x + 1) = 0 := by

N < I

~ |

14
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| inr h14 =>
have h15 : Real.cos x = 308 / 533 := h_cos
linarith

have hil : Real.tan x # 0 := by

by_contra h

have h12 : Real.sin x = 0 := by
rw [Real.tan_eq_sin_div_cos] at h
have h13 : Real.cos x # 0 := h2
field_simp [h13] at h

linarith
contradiction
have h12 : (1 / Real.sin x : R) + (1 / Real.tan x : R) = (29 / 156 : R) := by
have h13 : Real.tan x = Real.sin x / Real.cos x := Real.tan_eq_sin_div_cos x
rw [h13]

have hi4 : Real.sin x # 0 := h10
have hi15 : Real.cos x # 0 := h2
field_simp [h14, h15, h_sin’, h_cos]
norm_num
exact h12
have hom : (m : R) = (29 / 156 : R) := by
have h12 : (1 / Real.sin x : R) + (1 / Real.tan x : R) = (29 / 15 : R) := h_csc_cot
have h13 : (1 / Real.sin x : R) + (1 / Real.tan x : R) = (m : R) := by
exact_mod_cast hj
rw [h13] at hi2
linarith
have hi4 : m = (29 / 15 : Q) := by
have hi5 : (m : R) (29 / 15 : R)
have h16 : (m : R) (29 / 15 : Q)
norm_num at hi5 F
exact_mod_cast hilb
exact_mod_cast hl6
rw [hi4]
norm_num

h_m
by

Listing 2: Lean 4 proof of AIME 1991 Problem 9 found by Kimina-Prover.

Kimina-Prover also excels at carrying out long calculations using the Lean 4 tactic calc. This is shown in the proof
of aime_1997_p9 presented below. We would especially like to draw attention to the calc blocks required to prove
statements h32, h33, ..., h34. in this proof. These calculation steps require careful and precise consideration of the
current proof context and cannot rely solely on Lean 4’s automation tactics, which shows deep understanding of the

formal theorem proving domain.

15
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D.3 Example of Formal Reasoning Pattern

The following list demonstrates the formal reasoning pattern of Kimina-Prover. Upon receiving the problem, the model
first uses natural language reasoning to get a general proof idea. Then, it proceeds to formalize its thoughts to Lean
4 code step by step. In this process, the model further ensures the rigor of the reasoning and deliberates on how to
effectively utilize appropriate tactics to formalize the proof. Upon completion of the proof, the model assembles all

Lean code snippets to form a coherent and complete Lean proof.

Input:

-- In an arithmetic sequence, the 7th term is 30, and the 11th term is 60. Determine the 21st
term.

theorem mathd_algebra_354 (ad : R) (hp : a + 6 xd =30) (hy : a + 10 * 4 = 60)
a+ 20 xd =135 := by

Output:

<think>

# Solving for the 21st Term of an Arithmetic Sequence

I’m given that in an arithmetic sequence, the 7th term is 30, and the 11th term is 60. I need to find the 21st term.

First, let’s think about the structure of an arithmetic sequence. The general term of an arithmetic sequence is given
by a,, = a + (n — 1)d, where a is the first term and d is the common difference.

Given:

- The 7th term a7 = a + 6d = 30

- The 11th term a17; = a 4+ 10d = 60

- We need to find the 21st term as; = a + 20d

Let’s solve for a and d to find a9 .

Subtracting the first equation from the second gives:
(a +10d) — (a + 6d) = 60 — 30

4d = 30

d=3=750r

Now, substituting d = 7.5 back into the first equation:
a+6(7.5) =30

a+45 =30

a=30—-45=-15
So, the 21st term is ag; = a + 20d = —15 4+ 20(7.5) = —15 + 150 = 135

Let’s formalize this in Lean 4:

import Mathlib
import Aesop

set_option maxHeartbeats 0O
open BigOperators Real Nat Topology Rat

theorem mathd_algebra_354 (ad : R) (hp : a + 6 xd =30) (hy : a + 10 * d = 60)
a+ 20 xd =135 := by

We have two equations:

16
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1. a 4+ 6d = 30 (ho)

2. a+10d = 60 (hy)

We need to find a + 20d.

From the two equations, we can eliminate a to solve for d. Subtracting hg from h;:
(a +10d) — (a + 6d) = 60 — 30

4d = 30

d=30/4=T750r %

Let’s compute this in Lean:

have hd : d = 15 / 2 := by
linarith

Now we have d = % Let’s verify this calculation:

From a + 10d = 60 and a + 6d = 30, subtracting gives 4d = 30, so d = % = % This is correct.
Next, we’ll substitute d = % back into one of the equations to solve for a. Let’s use hg: a + 6d = 30
a+6(%) =30

a+ 45 =30

a=30—-45=—15

In Lean, once we have d, we can determine a:

have ha : a = -15 := by
linarith [hg, hd]

Now we need to compute a + 20d: a + 20d = —15 + 20(22) = —15 + 150 = 135

In Lean, we can directly compute a + 20d using the values of a and d:

linarith [ha, hd]

The Lean proof is concise because once we have d = 12—5 and a = —15, it can directly compute that a + 20d =
—15+20- % =-15430- 1—15 = —15 4 150 = 135 using linear arithmetic.

So, the 21st term of the sequence is 135.
</think>

import Mathlib
import Aesop

set_option maxHeartbeats O

open BigQOperators Real Nat Topology Rat

theorem mathd_algebra_354 (ad : R) (hp : a + 6 xd =30) (hy : a + 10 *x d = 60) :
a+ 20 xd =135 := by
have hd : d = 15 / 2 := by
linarith
have ha : a = -15 := by
linarith [hg, hd]
linarith [ha, hd]
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E Proof Comparison against BFS-Prover

The performance of all previous provers on the miniF2F benchmark shows that BFS-Prover solved the most IMO
problems — five in total: imo_1959_p1, imo_1960_p2, imo_1962_p2, imo_1964_p2, and imo1983_p6. Kimina-Prover
was able to correctly prove all five of these problems. Below, we select one example imo_1962_p2 to compare the
proofs generated by BFS-Prover and Kimina-Prover.

We observe that Kimina-Prover generates proofs by decomposing the argument into a sequence of ‘have* statements,
resulting in a clear and highly readable logical structure. In contrast, the proof produced by BFS-Prover—which
relies on step-by-step tactic search—makes it difficult to discern the purpose of each step directly from the code. This
comparison highlights the strong proof sketch planning capabilities of Kimina-Prover.

theorem imo_1962_p2 (x : R) (o : 0 < 3 -x) (hy : 0 < x + 1)
(hg : 1 / 2 < Real.sqrt (3 - x) - Real.sqrt (x + 1)) : -1 < x A x <1 - Real.sqrt 31 / 8 := by
have h3 : -1 < x := by
nlinarith
have h4 : Real.sqrt (3 - x) - Real.sqrt (x + 1) > 1 / 2 := by linarith
have h5 : Real.sqrt (x + 1) > 0 := Real.sqrt_nonneg (x + 1)
have h6 : (7 / 4 - 2 * x) > Real.sqrt (x + 1) := by
nlinarith [Real.sq_sqrt (show (0 : R) < 3 - x by linarith), Real.sq_sqrt (show (0 : R) < x +
1 by linarith),
Real.sqrt_nonneg (3 - x), Real.sqrt_nonneg (x + 1)]
have h7 : (7 / 4 - 2 *x x) =~ 2 > (Real.sqrt (x + 1)) =~ 2 := by
nlinarith [h6, Real.sqrt_nonneg (x + 1)]
have h8 : (7 / 4 - 2% x) ~2>x+ 1 :=by
have h10 : (Real.sqrt (x + 1)) -~ 2 =x + 1 := by
rw [Real.sq_sqrt]
linarith
nlinarith [h7, hi10]
have h9 : 64 * x = 2 - 128 * x + 33 > 0 := by
nlinarith [h8]
have h10 : x < 1 - Real.sqrt 31 / 8 := by
by_contra hx
push_neg at hx
have h12 : Real.sqrt 31 > 0 := by
apply Real.sqrt_pos.mpr
norm_num
nlinarith [sq_nonneg (x - (1 - Real.sqrt 31 / 8)), sq_nonneg (Real.sqrt 31), Real.sq_sqrt
(show (0 : R) < 31 by norm_num),
h12]
exact (h3, h10)

Listing 3: Lean 4 proof of IMO-1962-P2 found by Kimina-Prover.

theorem imo_1962_p2 (x : R)
(hO : 0 <=3 - x)
(hi : 0 <=x + 1)
(h2 : 1/2 < sqrt(3 - x) - sqrt(x + 1))
-1 <=xand x <1 - sqrt(31)/8 := by {
constructor
linarith
rw [+ sub_pos]
field_simp [Real.sqrt_1lt] at h2 |-
apply 1lt_of_le_of_1lt
rw [mul_comm]
rw [sub_eq_add_neg]
apply lt_of_le_of_1t
rw [« 1lt_sub_iff_add_1t]
ring_nf
rw [« 1lt_sub_iff_add_1t]
linarith [Real.sq_sqrt (by linarith : 0 <= 1 + x)]
rw [Real.sqrt_1t (by norm_num)]
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rw [Real.sqrt_1t] <;> nlinarith
norm_num at this

}

Listing 4: Lean 4 proof of IMO-1962-P2 found by BFS-Prover.

F Examples of Thinking Output & Analysis

F.1 Success Modes

F.1.1 Success Case: Exploration of Multiple Informal Reasoning paths

Formal statement of Problem IMO-1983-P6:

theorem imo_1983_p6 (abc : R) (hg : 0<a AO0O<bAO<c) (h : c<a+b) (hg : b<a+
c)
(hs :a<b+c) :0<a~2+«bx*x(a-b)+b~2*xc*(b-c)+c”~2%ax*(c-a):=
by

In addressing IMO 1983 P6, a challenging inequality problem, Kimina-Prover starts its analysis by exploring multiple
variable substitution methodologies.

<think>

I’1l tackle the problem of proving that for the sides a, b, and c of a triangle, the inequality ab(a — b) + b%c(b —
¢) + c*a(c — a) > 0 holds, and determine when equality occurs.

First, let’s think about the structure of the problem. We’re given that a, b, and c are positive real numbers satisfying
the triangle inequality, and we need to prove that a certain expression is non-negative.

One possible approach is to consider symmetry or substitution. However, this expression isn’t symmetric - it’s
cyclic. So we need to find a way to handle the cyclic structure. Another approach is to use the substitution for
triangular inequalities. Since a, b, and ¢ form a triangle, we can set:

-a=x+Yy
-b=y+=2
-c=z+x

Alternatively, we can try to rewrite the inequality in a different form. Let’s expand the expression:
a’b(a — b) + b%c(b — ¢) + 2a(c — a) = a®b — a®b? + b>c — b?c® + c*a — c2a?

Another approach: Use the identity that for any real numbers x, y, z: 3 + y3 + 23 — 3oyz = (v +y + 2)(2? +
y? + 2% — vy —yz — 21)

Alternatively, consider using the substitution a = %, b= y;rz, c= Z;I, but I’m not sure.

Alternatively, use the substitution a = y + 2z, b = z + z, ¢ = x + y, with x, y, z > 0 (the Ravi substitution). Let’s
try that again more carefully.

Alternatively, use the substitution a = % b=+ c= % but I don’t think this helps.

1
g,
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Let’s try another approach. The expression can be rewritten using the identity: a2b(a—b)+b*c(b—c)+c?a(c—a) =
(a=b)(b—c)(c—a)(a+b+c)

After numerous unsuccessful attempts, the model backtracks to its initial approach and conducts in-depth analysis. In
this way, it identifies a crucial simplification of the original equality, which ultimately leads to the successful resolution

of the problem.

Alternatively, we can use the substitution a = x 4+ y, b = y + 2z, ¢ = z + x as before, and try to prove the resulting
expression is non-negative.

After expanding, we had the expression in terms of x,y, z: (y + 2)%(z + 2)(y — z) + (z + 2)?(x + y)(z — y) +
(@+y)?*(y+2)(x—2) =0

Let’s try to expand this.

First term: (y + 2)2(z + 2)(y — ) = (y* + 2yz + 22)(z + 2)(y — x) = (v* + 2yz + 2%)(yz + 2y — 22 — 2?)
This expands to: = y3z + 2y® — xy?2 — 22y% + 29222 + 22922 — 20y2? — 22%yz + y23 + 2y2? — 123 — 2222
This is complex, but after expanding all terms and simplifying, it can be rewritten as a sum of squares:

(=2 +2)et+y+2)+ (-2 +a)z+y+2)+(@-y?*@+y)(z+y+z)

This sum is clearly non-negative because it’s a sum of squares multiplied by positive terms.

Therefore, in Lean, after substitution and expansion, we can prove the resulting expression is non-negative.

The complete Lean proof would be:

1. Introduce z, y, z as above

2. Prove z,y, z > 0 using the triangle inequalities

3. Substitute a = x + y, b = y + 2, ¢ = z + x into the goal

4. Expand the expression

5. Show it’s equal to the sum of squares

6. Conclude non-negativity

The Lean code to perform this substitution would look like:

have ha : a =x +y := by
dsimp [x, y, z]
linarith

The entire Lean proof leveraging the Ravi substitution and expansion would look something like:

theorem imo_1983_p6 (abc : R) (hgp : 0<a AO0O<bAO<c) (h : c<a+b) (hg : b<a+

c)
(hs :a<b+c) :0<a~2*«xbx*x(a-b)+b~2*xc*(b-c¢c)+c”~2%ax*(c-a):=
by

let x := (a+c-b) /2

let y :=(a+b-¢) /2

let z := (b+c-a) /2

have hx : 0 < x := by

dsimp [x]

nlinarith [ho.left, hg.right.left, hi]
have hy : 0 <y := by

dsimp [y]

nlinarith [hg.left, ho.right.right, hal
have hz : 0 < z := by

dsimp [z]
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nlinarith [ho.right.left, ho.right.right, hs]
have ha : a =x +y := by

dsimp [x, y, z]

nlinarith
have hb : b =y + z := by

dsimp [x, y, z]

nlinarith

have hc : ¢ =z + x := by
dsimp [x, y, z]
nlinarith

rw [ha, hb, hc]

nlinarith [sq_nonneg (x - y), sq_nonneg (y - z), sq_nonneg (z - x),
mul_pos hx hy, mul_pos hy hz, mul_pos hz hx,
sq_nonneg (x +y + z),
sq_nonneg (x - y), sq_nonneg (y - z), sq_nonneg (z - x),
sq_nonneg (x +y + z),
sq_nonneg (x - y), sq_nonneg (y - z), sq_nonneg (z - x),
sq_nonneg (x +y + z),

sq_nonneg (z - x), sq_nonneg (x +y + z),
sq_nonneg (x - y), sq_nonneg (y + z + x),
sq_nonneg (y - z), sq_nonneg (z + x + x),
sq_nonneg (z - x), sq_nonneg (x +y + y)]

In addressing this problem, the model initially struggles with the complexity of the expanded expression but revisits its
earlier approaches with a deeper analysis. This reflects a "human-like" problem-solving process - trying, failing, and
refining.

F.1.2 Success Case: Reflection and Refinement

Formal statement of Problem number_theory_72826:

theorem number_theory_72826 {n : N} (hn : Even n) (h : n > 38)
Jabcd: N, 0ddaA0OddbAOddc ANOdddAa>1Ab>1Ac>1Ad>1An-=ax
b+ c*xd:=by

Another example is a number theory problem that involves proving the decomposition of large odd numbers. This
problem requires creative constructions and a detailed analysis of different cases. The thinking and analysis process of
Kimina-Prover for this problem is shown in the list below.

<think>

If we can write n = a - b + ¢ - d, where all variables are odd and greater than 1, then we can try to find such a
decomposition for any n > 38.

One possible method is to fix some of the variables and solve for the others. For example, if we fix a = 3, then
weneed 3-b+ c-d=n, withb,c,d odd and > 1.

But let’s think differently. Since n is even, we can write it as n=2m, and m can be either even or odd.
Alternatively, think of n as being in different congruence classes mod 6 or mod 12 to find a suitable decomposition.

Alternatively, think of n as either 4 mod 6 or 2 mod 6 (since even numbers can be 0 mod2, and further classified
as 0,2,4 mod6)

But this might complicate things.

Alternatively, use a more direct approach: construct the numbers.
For example, for n=40 (which is 4 mod 6), we found 3*5 +5*5
For n=42 (0 mod6), we found 3*3 +3*11
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n=44 (2 mod6): 3*3 +5%*7

n=46 (4 mod6):3*7 +5*5

n=48 (0 mod6):3*5 +3*11

n=50 (2 mod6):3*5 +5*7

n=52 (4 mod6):3*9 +5*5

n=54 (0 mod6):3*3 +3*15

To formalize a proof, we can separate into cases based on n mod6:

Case 1: n = 0 mod6. Then n=6k. If k is odd or even, we can use similar approaches as above. For n=6k, we can
write n=3*3 +3%(2k-3). For example, n=42=6*7: 3*3 +3*11. Here 2k-3=2%7-3=11.

Case 2: n = 2 mod6. Then n=6k+2. For example, n=44=6*%7+2. We need to express 6k+2 as a sum of two
products.

Now, to complete the proof in Lean, we need to combine these three cases:
1. n = 0 mod6: n=06k, use a=3, b=3, c=3, d=2k-3

2. n = 2 mod6: n=6k+2, use a=3, b=2k-11, c=5, d=7

3. n = 4 mod6: n=6k+4, use a=3, b=2k-7, c=5, d=5

</think>

theorem number_theory_72826 {n : N} (hn : Even n) (h : n > 38)
Jdabcd: N, 0ddaAOddbAOddc AOAdd ANa>1Ab>1Ac>1Ad>1An-=ax*
b+ cx*xd:=by
have hl1 : n % 2 = 0 := by
exact Nat.even_iff.1 hn
have h2 : n > 38 :=h
have h3 : n %4 6 =0V n’% 6=2Vmnij}6=4:=hby
have hl1 : n ), 2 =0 := by
exact Nat.even_iff.1 hn
have : n %6 =0V n¥% 6=2Vnj 6=4:=hby
omega
assumption
rcases h3 with (h3 | h3 | h3)
- --Casen’% 6 =0
have h4 : n % 6 = 0 := h3
have h6 : 3k, n = 6 *x k := by
refine (n / 6, by omega)
rcases h5 with (k, hk)
have hkl : k > 7 := by
omega
use 3, 3, 3, 2 x k - 3
have h_odd : 0dd 3 := by
use 1
norm_num
have h_odd2 : 0dd (2 * k - 3) := by
use k - 2
omega
exact (by exact h_odd, by exact h_odd, by exact h_odd, by exact h_odd2,
by norm_num, by norm_num, by norm_num, by omega,
by omega)
- --Casen % 6 =2
have h4 : n % 6 = 2 := h3
have h5 : 3k, n =6 * k + 2 := by
refine ((n - 2) / 6, by omega)
rcases h5 with (k, hk)

22



@ Kimina-Prover Preview TECHNICAL REPORT

have hkl : k > 7 := by
omega

use 3, 2 *x k - 11, 5, 7

have h_oddl : 0dd 3 := by
use 1
norm_num

have h_odd2 : 0dd (2 * k - 11) := by
use k - 6
omega

have h_odd3 : 0dd 5 :
use 2
norm_num

have h_odd4 : 0dd 7 :
use 3
norm_num

exact (by exact h_oddl, by exact h_odd2, by exact h_odd3, by exact h_odd4,
by norm_num, by omega, by norm_num, by norm_num,
by omega)

- --Casen% 6=4

have h4 : n % 6 = 4 := h3

have h6 : 3k, n =6 x k + 4 := by
refine ((n - 4) / 6, by omega)

rcases h5 with (k, hk)

have hkl : k > 6 := by
omega

use 3, 2 *x k -7, 5, 5

have h_oddl : 0dd 3 :
use 1
norm_num

have h_odd2 : 0dd (2 * k - 7) := by
use k - 4
omega

have h_odd3 : 0dd 5 := by
use 2
norm_num

exact (by exact h_oddl, by exact h_odd2, by exact h_odd3, by exact h_odd3,
by norm_num, by omega, by norm_num, by norm_num,
by omega)

by

by

by

The model successfully solved the problem, demonstrating notable constructive reasoning ability. The approach
begins by strategically assuming 3 as one of the odd numbers, achieving significant simplification. Then by observing
small-scale cases, it identified distinct patterns for each residue class of n modulo 3. Finally, the model systematically
verified each case through rigorous reasoning. This "observation of small cases — conjecture formulation — rigorous
proof™ approach represents a highly successful pattern in mathematical proof.

F.2 Failure Mode

F.2.1 Failure Case: Incomplete Case Analysis

theorem aime_1987_p5 (x y : Z) (hop : y ~ 2+ 3 % (x ~ 2%y ~2) =30 *xx ~ 2+ 517)
3% (x~ 2%y~ 2) =588 :=by

<think>

Wait, the Lean proof is trying to prove 22 < 4 directly. Let’s see why that’s true:
From y? + 32%y? = 3022 + 517

Rearranged: y*(3z% + 1) = 3022 4 517
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2 _ 30z%4517
Y= T3err

If 22 > 4, then 322 + 1 > 13, let’s see if that’s possible:
If 22 = 9 (i.e.,, x = +3), then 322 + 1 = 28
2 _ 30x94517 _ 2704517 _ I87 (o integer)

y = 28 = 738 28
If 22 = 16 (i.e., 2 = +4), then 322 + 1 = 49

2 _ 30x164517 _ 4804517 __ 997 :
ye = 15 = =57 = %5 (not integer)

So indeed, only 2% < 4 is possible. The Lean proof is establishing this upper bound.

Let’s continue with the Lean proof
</think>

theorem aime_1987_p5 (xy : Z) (ho : y -2+ 3 * (x -2y ~2) =30 % x~ 2+ 517)
3% (x~ 2%y~ 2) =588 :=by

have h1 : 3 x (x ~ 2 * y =~ 2) = 588 := by
have h2 : y°2 + 3 * (x72 * y°2) = 30 * x”2 + 517 := hg
have h3 : x72 < 4 := by

by_cases hx : x =0
- -- x =0 leads to y~2 = 517, but 517 is not a square
rw [hx] at h2
nlinarith [sq_nonneg (y : Z)]
- --x #0, sox"2>1
have h4 : x°2 > 1 := by
have h6 : x # 0 := by
exact fun h => hx (by omega)
nlinarith [sq_pos_of_ne_zero h5]
nlinarith [sq_nonneg (y : Z), h2] -- This tactic does not close the goal

The reasoning contains a logical gap when trying to prove 2 < 4. Although correctly showing that x = 43 and
x = =4 lead to non-integer values for y, it fails to address whether larger values of x could satisfy the equation.
The model mistakenly assumed that solving the cases for n = 3 and n = 4 would resolve all cases for n > 2. This
incomplete case analysis pattern hinders the model from solving problems correctly.
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